湖北省黄冈市黄冈中学2011年自主招生考试数学试卷及答案
湖北省黄冈市2011年中考数学样卷以及答案

湖北省黄冈市2011年中考数学样卷一、填空题(每小题3分,共24分) 1.9的算术平方根是 。
2.分解因式:=-x x 3。
3.函数33-=x y 中,自变量x 的取值范围是 。
4.在关爱残疾人义演晚会上,我市热心企业和现场观众踊跃捐款319083.58元。
将319083.58保留两位有效数字可记为 。
5.如图,C 岛在A 岛的北偏东50°方向,C 岛在B 岛的北偏西40°方向,则 从C 岛看A ,B 两岛的视角∠ACB 等于 。
6.如图,∠ABC 中,点D 在边AB 上,满足∠ACD =∠ABC ,若AC = 2,AD =l ,则DB = 。
7.点A(-5,3)关于y 轴的对称点的坐标是 。
8.如图,在矩形ABCD 中,AD =4,DC =3,将△ADC 按逆时针方向 绕点A 旋转到△AEF(点A 、B 、E 在同一直线上),连结CF ,则 CF = 。
二、选择题(A ,B ,C ,D 四个答案中,有且只有一个是正确的,请将题 中唯一正确答案的序号填人题后的括号内,不填、填错或多填均不得分,每小题3分,满分18分) 9.下列运算正确的是( )A .50=5 B .4-的相反数是4 C .552=-)( D .由22-<->b a b a 得10.下列四个图形中既是中心对称图形又是轴对称图形的个数为( ).A .1个B .2个C . 3个D . 4个11.某几何体的三视图如图所示,则这个几何体是( ) A .圆锥 B .圆柱 C .球体 D .棱锥12.一条公路全长约为126km .一辆小汽车、一辆货车同时从A 、B 两地相向开出,经过45分钟 相遇,相遇时小汽车比货车多行6km ,设小汽车和货车的速度分别为xkm /h 、ykm /h ,则 下列方程组正确的是( )A .⎩⎨⎧=-=+6)(45126)(45y x y xB .⎪⎩⎪⎨⎧=-=+6126)(43y x y xC .⎪⎩⎪⎨⎧=-=+6)(45126)(43y x y x D .⎪⎪⎩⎪⎪⎨⎧=-=+6)(43126)(43y x y x13.如图所示,正方形ABCD 中,对角线AC 、BD 交于点O ,点M 是OB 的中点,点N 是OC 的中点,则COS ∠DMN 的值为( ) A .21 B .22 C .23 D .1 14.如图,AB 是⊙O 的直径,AD 是⊙O 的切线,点C 在⊙O 上,BC ∥ OD ,AB =2,OD =3,则BC 的长为( ) A .32 B .23 C .23 D .22 15.某游泳池的横截面如图所示,用一水管向池内持续注水,若单位时间内注入的水量保持不变,则在注水过程中,下列图象能反映深水 区水深h 与注水时间t 关系的是( ).三、解答题16.(本题满分5分)解方程:0662=--x x17.(本题满分8分)如图,在△ABC 中,D 是BC 边的中点, E 、F 分别在AD 及其延长线上,CE ∥BF ,连接BE 、CF . (1)求证:△BDF ≌△CDE ;(2)若AB =AC ,求证:四边形BFCE 是菱形.18.(本题满分7分)为了解某住宅区的家庭用水量情况,从该住宅区中随机抽样调查了50户家庭去年每个月的用水量,统计得到的数据绘制了下面的 两幅统计图.图1是去年这50户家庭月总用水量的折线统计图,图2是去年这50户家庭 月总用水量的不完整的频数分布直方图.(1)根据图1提供的信息,补全图2中的频数分布直方图;(2)在抽查的50户家庭去年月总用水量这12个数据中,极差是米3,中位数是 米3;(3)请你根据上述提供的统计数据,估计该住宅区今年每户家庭平均每月的用水量是多少米3?19.(本题满分6分)如图,AB 为⊙O 的直径,弦CD ⊥AB ,垂足为点M ,AE 切⊙O 于点A ,交 BC 的延长线于点E ,连接AC . 求证:AP 2=EB .EC .20.(本题满分8分)师徒二人分别组装28辆摩托车,他们每天都组装整数辆。
黄冈市2011年初中学业水平考试数学试题精选

黄冈市2011年初中学业水平考试数学试题精选2.分解因式8a 2-2=____________________________.5.如图:矩形ABCD 的对角线AC =10,BC =8,则图中五个小矩形的周长之和为_______.6.如图,在△ABC 中E 是BC 上的一点,EC =2BE ,点D 是AC 的中点,设△ABC 、△ADF 、△BEF 的面积分别为S △ABC ,S △ADF ,S △BEF ,且S △ABC =12,则S △ADF -S △BEF =_________. 8.如图,△ABC 的外角∠ACD 的平分线CP 的内角∠ABC 平分线BP 交于点P ,若∠BPC =40°,则∠CAP =_______________. 11.下列说法中①一个角的两边分别垂直于另一个角的两边,则这两个角相等②数据5,2,7,1,2,4的中位数是3,众数是2③等腰梯形既是中心对称图形,又是轴对称图形④Rt △ABC 中,∠C =90°,两直角边a ,b 分别是方程x 2-7x +7=0的两个根,则AB 边上的中线长为1352正确命题有 A .0个B .1个C .2个D .3个12.一个几何体的三视图如下:其中主视图都是腰长为4、底边为2的等腰三角形,则这个几何体的侧面展开图的面积为A .2πB .12π C . 4π D .8πAB CD第5题图第6题图ABCEFD A B CPD第8题图13.如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且CO =CD ,则∠PCA = A .30° B .45°C .60°D .67.5°14.如图,把Rt △ABC 放在直角坐标系内,其中∠CAB =90°,BC =5,点A 、B 的坐标分别为(1,0)、(4,0),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为 A .4 B .8C .16D .822.2(2a +1)(2a -1) 5.286.2 8.50° 11.C 12.C 13.D14.C15.D第12题图4 2 2 4左视图 右视图 俯视图CDA OPB 第13题图第14题图AB CO yx。
2011年湖北省黄冈中学自主招生预录考试数学模拟试卷

2011年湖北省黄冈中学自主招生预录考试数学模拟试卷参考答案与试题解析一、选择题(每题只有一个正确答案,共6题.每小题5分,共30分)1.(5分)设a=,b=,c=,则a,b,c之间的大小关系是()A.a<b<c B.c<b<a C.c<a<b D.a<c<b考点:估算无理数的大小;实数大小比较.专题:计算题.分析:利用平方法把三个数值平方后再比较大小即可.解答:解:∵a2=2000+2,b2=2000+2,c2=4000=2000+2×1000,1003×997=1 000 000﹣9=999 991,1001×999=1 000 000﹣1=999 999,10002=1 000 000.∴c>b>a.故选A.点评:本题考查了估算无理数的大小及实数大小比较的知识,这里注意比较数的大小可以用平方法,两个正数,平方大的就大.此题也要求学生熟练运用完全平方公式和平方差公式.2.(5分)已知△ABC的三边长为a,b,c,且满足方程a2x2﹣(c2﹣a2﹣b2)x+b2=0,则方程根的情况是()A.有两相等实根B.有两相异实根C.无实根D.不能确定考点:根的判别式;三角形三边关系.专题:计算题.分析:求出△,然后对△进行因式分解,利用三角形三边的关系可证明△<0,因此得到答案.解答:解:∵a,b,c为△ABC的三边长,∴a2≠0.∴△=(c2﹣a2﹣b2)2﹣4a2•b2,=(c2﹣a2﹣b2﹣2ab)(c2﹣a2﹣b2+2ab),=[c2﹣(a+b)2][c2﹣(a﹣b)2],=(c﹣a﹣b)(c+a+b)(c+a﹣b)(c﹣a+b),又∵三角形任意两边之和大于第三边,所以△<0,则原方程没有实数根.故选C.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.同时考查了因式分解和三角形的三边关系.3.(5分)已知abc≠0,而且,那么直线y=px+p一定通过()A.第一、二象限B.第二、三象限C.第三、四象限D.第一、四象限考点:一次函数图象与系数的关系;比例的性质.专题:分类讨论.分析:先根据,列出方程,然后根据一次函数的性质即可得出答案.解答:解:由条件得:①a+b=pc,②b+c=pa,③a+c=pb,三式相加得2(a+b+c)=p(a+b+c).∴有p=2或a+b+c=0.当p=2时,y=2x+2.则直线通过第一、二、三象限.当a+b+c=0时,不妨取a+b=﹣c,于是p==﹣1,(c≠0),∴y=﹣x﹣1,∴直线通过第二、三、四象限.综合上述两种情况,直线一定通过第二、三象限.故选B.点评:本题考查了一次函数的图象与系数的关系及比例的性质,难度不大,关键是根据a+bc=b+ca=c+ab=p列出方程,然后讨论求解.4.(5分)函数y=ax2+bx+c图象的大致位置如图所示,则ab,bc,2a+b,(a+c)2﹣b2,(a+b)2﹣c2,b2﹣a2等代数式的值中,正数有()A.2个B.3个C.4个D.5个考点:二次函数图象与系数的关系.专题:计算题.分析:图象开口向下a<0,c<0,对称轴x﹣>0,当x=1时,y>0,当x=﹣1时,y<0,由以上信息即可解答此题.解答:解:观察图形,显然,a<0,c<0,b>0,∴ab<0,bc<0,由,得b<﹣2a,所以2a+b<0;由a﹣b+c<0得(a+c)2﹣b2=(a+b+c)(a﹣b+c)<0;由a+b+c>0得a+b>﹣c>0,因此(a+b)2﹣c2>0,|b|>|a|,b2﹣a2>0.综上所述,仅有(a+b)2﹣c2,b2﹣a2为正数.故选A.点评:本题考查了二次函数图象与系数关系,难度不大,关键认真观察图形题图结合正确地分析出a,b,c的正负.5.(5分)(2003•海南)如图,AB为半圆O的直径,C为半圆上一点,且为半圆的.设扇形AOC、△COB、弓形BmC的面积分别为S1、S2、S3,则下列结论正确的是()A.S1<S2<S3B.S2<S1<S3C.S2<S3<S1D.S3<S2<S1考点:扇形面积的计算.分析:首先根据△AOC的面积=△BOC的面积,得S2<S1.再根据题意,知S1占半圆面积的.所以S3大于半圆面积的.解答:解:根据△AOC的面积=△BOC的面积,得S2<S1,再根据题意,知S1占半圆面积的,所以S3大于半圆面积的.故选B.点评:此类题首先要比较有明显关系的两个图形的面积.6.(5分)设m是整数,关于x的方程mx2﹣(m﹣1)x+1=0有有理根,则方程的根为()A.B.x=﹣1C.D.有无数个根考点:一元二次方程的整数根与有理根;根的判别式.专题:计算题;分类讨论.分析:(1)当m=0,原方程变为:x+1=0,解得x=﹣1,为有理根;(2)当m≠0,原方程为一元二次方程,则△=b2﹣4ac为完全平方数,即△=(m﹣1)2﹣4m=(m﹣3)2﹣8为完全平方数,设(m﹣3)2﹣8=n2,即(m﹣3)2=8+n2,而m是整数,完全平方数的末位数只能为1,4,5,6,9,经过分析得到m﹣3=3,即m=6,方程为:6x2﹣5x+1=0,(2x﹣1)(3x﹣1)=0,解得x1=,x2=.解答:解:(1)当m=0,原方程变为:x+1=0,解得x=﹣1,为有理根;(2)当m≠0,原方程为一元二次方程,∵方程mx2﹣(m﹣1)x+1=0有有理根,∴△=b2﹣4ac为完全平方数,即△=(m﹣1)2﹣4m=(m﹣3)2﹣8为完全平方数,而m是整数,∴设(m﹣3)2﹣8=n2,即(m﹣3)2=8+n2,∴完全平方数的末位数只能为1,4,5,6,9.∴n2的末位数只能为1,6,而大于10的两个完全平方数相差大于8,∴n=1,∴m﹣3=3,即m=6,所以方程为:6x2﹣5x+1=0,(2x﹣1)(3x﹣1)=0,∴x1=,x2=,故选C.点评:本题考查了一元二次方程有有理根的条件:△=b2﹣4ac为完全平方数.也考查了分类讨论的思想的运用和一元二次方程的解法.二、填空题(每小题5分,共30分)7.(5分)已知a是质数,b是奇数,且a2+b=2009,则a+b=2007.考点:质数与合数.分析:首先根据一个奇数与一个偶数的和是奇数,由a2+b=2009,b为奇数,即可断定a2为偶数.又由a为质数,根据既是质数又是偶数的数只有2,即可确定a的值,继而求得b的值,即可求得a+b的值.解答:解:∵a2+b=2009,b为奇数,∴a2为偶数,∴a是偶数,又∵a是质数,∴a=2,∴b=2005,∴a+b=2007.故答案为:2007.点评:此题主要考查了整数的奇偶性、质数与合数、代数式求值的问题.解决本题的关键是注意既是质数又是偶数的数只有2.8.(5分)有甲、乙、丙3种商品,某人若购甲3件、乙7件、丙1件共需24元;若购甲4件、乙10件、丙1件共需33元,则此人购甲、乙、丙各一件共需6元.考点:三元一次方程组的应用.专题:应用题.分析:设甲、乙、丙3种商品的单价分别是x元、y元、z元.由题意列方程组得:,然后求得x+y+z的值.解答:解:设甲、乙、丙3种商品的单价分别是x元、y元、z元.由题意列方程组得由①×3﹣②×2得x+y+z=6故答案为6.点评:根据系数特点,通过加减,得到一个整体,然后整体求解.9.(5分)已知有理数x满足:,若|3﹣x|﹣|x+2|的最小值为a,最大值为b,则ab=5.考点:解一元一次不等式;绝对值.专题:计算题;分类讨论.分析:首先解不等式:,即可求得x的范围,即可根据x的范围去掉|3﹣x|﹣|x+2|中的绝对值符号,即可确定最大与最小值,从而求得.解答:解:解不等式:不等式两边同时乘以6得:3(3x﹣1)﹣14≥6x﹣2(5+2x)去括号得:9x﹣3﹣14≥6x﹣10﹣4x移项得:9x﹣14﹣6x+4x≥3﹣10即7x≥7∴x≥1∴x+2>0,当1≤x≤3时,x+2>0,则|3﹣x|﹣|x+2|=3﹣x﹣(x+2)=﹣2x+1则最大值是﹣1,最小值是﹣5;当x>3时,x+2>0,则|3﹣x|﹣|x+2|=x﹣3﹣(x+2)=x﹣3﹣x﹣2=﹣5,是一定值.总之,a=﹣5,b=﹣1,∴ab=5故答案是:5.点评:本题主要考查了一元一次不等式的求解方法,解不等式要依据不等式的基本性质,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.10.(5分)使得m2+m+7是完全平方数的所有整数m的积是84.考点:完全平方数.专题:分类讨论.分析:将m2+m+7表示为k2的形式,然后转化可得出(2m+2k+1)(2m﹣2k+1)=﹣27,从而讨论可得出m的值,从而得到所有整数m的积.解答:解:设m2+m+7=k2,所以m2+m++=k2,所以(m+)2+=k2,所以(m+)2﹣k2=﹣,所以(m++k)(m+﹣k)=﹣,所以(2m+2k+1)(2m﹣2k+1)=﹣27因为k≥0(因为k2为完全平方数),且m与k都为整数,所以①2m+2k+1=27,2m﹣2k+1=﹣1,解得:m=6,k=7;②2m+2k+1=9,2m﹣2k+1=﹣3,解得:m=1,k=3;③2m+2k+1=3,2m﹣2k+1=﹣9,解得:m=﹣2,k=3;④2m+2k+1=1,2m﹣2k+1=﹣27,解得:m=﹣7,k=7.所以所有m的积为6×1×(﹣2)×(﹣7)=84.故答案为:84.点评:本题考查完全平方数的知识,难度较大,关键是将m2+m+7表示为k2的形式,得到(2m+2k+1)(2m﹣2k+1)=﹣27,同时也要掌握讨论法的运用.11.(5分)若x+y=﹣1,则x4+5x3y+x2y+8x2y2+xy2+5xy3+y4的值等于1.考点:因式分解的应用;代数式求值.专题:计算题;因式分解.分析:首先将x4+5x3y+x2y+8x2y2+xy2+5xy3+y4式子拆分项、运用完全平方式逐步整理分解,在整理过程中对于出现的x+y用﹣1直接代入计算即可.解答:解:∵x+y=﹣1,∴x4+5x3y+x2y+8x2y2+xy2+5xy3+y4,=(x4+2x2y2+y4)+5xy(x2+y2)+xy(x+y)+6x2y2,=(x2+y2)2+5xy[(x+y)2﹣2xy]+xy(x+y)+6x2y2,=[(x+y)2﹣2xy]2+5xy(1﹣2xy)﹣xy+6x2y2,=(1﹣2xy)2+5xy﹣10x2y2﹣xy+6x2y2,=1﹣4xy+4x2y2+5xy﹣10x2y2﹣xy+6x2y2,=1+(﹣4xy+5xy﹣xy)+(4x2y2﹣10x2y2+6x2y2),=1.故答案为:1.点评:本题考查因式分解的应用、代数式求值、完全平方式.同学们特别注意在化简过程中,通过运用完全平方式、提取公因式统一用x+y、xy来表示所求代数式.12.(5分)从1,2,3,4中任取3个数,作为一个一元二次方程的系数,则构作的一元二次方程有实根的概率是0.25.考点:概率公式;根的判别式.专题:计算题.分析:分析题意,从1,2,3,4中任取3个数,作为一个一元二次方程的系数共有A43种情况,再计算满足构作的一元二次方程有实根的情况数,二者的比值即为所求的概率.解答:解:由分析知:从1,2,3,4中任取3个数,作为一个一元二次方程的系数共有A43=24种情况,设一元二次方程为ax2+bx+c=0,要使其有根必须b2﹣4ac≥0,所以满足构作的一元二次方程有实根的情况数(以此代表a,b,c)有①1,3,2;②2,3,1;③1,4,2;④1,4,3;⑤2,4,1;⑥3,4,1共6种,∴构作的一元二次方程有实根的概率是=0.25.故答案为:0.25.点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A 出现m种结果,那么事件A的概率P(A)=.三、解答题(每题15分,共60分)13.(15分)甲、乙两辆公共汽车分别自A、B两地同时出发,相向而行.甲车行驶85千米后与乙车相遇,然后继续前进.两车到达对方的出发点等候30分钟立即依原路返回.当甲车行驶65千米后又与乙车相遇,求A、B两地的距离.考点:分式方程的应用.专题:应用题.分析:设甲车的速度为x千米/小时,设乙车的速度为y千米/小时,A、B两地的距离为s千米.同时出发,相向而行,甲车行驶85千米后与乙车相遇,即甲走85千米所用的时间=乙走s﹣85千米所用的时间;当甲车行驶65千米后又与乙车相遇,即甲、乙从开始到第二次相遇所用的时间相同,据此即可列方程求解.解答:解:设甲车的速度为x千米/小时,设乙车的速度为y千米/小时,A、B两地的距离为s千米.则:,即:,有①÷②得:,化简得:s2﹣190s=0,解得:s=0(舍去)或s=190.答:A、B两地的距离是190千米.点评:本题主要考查了利用方程解决实际问题,正确理解题目中的意义,理解题目中时间中包含的相等关系是解决的关键.14.(15分)已知a、b、c都是整数,且a﹣2b=4,ab+c2﹣1=0,求a+b+c的值.考点:一元二次方程的应用;代数式求值.专题:计算题.分析:a、b、c都是整数,且a=4+2b代入ab+c2﹣1=0,可用求根公式求的b和c的关系,然后因为是整数,可求解.解答:解:将a=4+2b代入ab+c2﹣1=0得:2b2+4b+c2﹣1=0.解得∵b,c都是整数∴b,c只能取,,,.相对应a1=4,a2=4,a3=0,a4=0.故a+b+c=5或3或﹣1或﹣3.点评:本题的关键是审清题意,a,b,c是整数,然后利用这个条件的限制求的解.15.(15分)如图,已知AB是⊙O的直径,BC是⊙O的切线,B为切点,OC平行于弦AD,连接CD.过点D作DE⊥AB于E,交AC于点P,求证:点P平分线段DE.考点:切线的判定与性质;切线长定理.分析:本题从切线的判定和性质出发,先判定△ODC≌△OBC,从平行线得到线段的比,从而证得.解答:证明:先证明CD是⊙O的切线.连接OD,∵OC∥AD,∴∠1=∠ADO,∠2=∠DAO,∵OA=OD,∴∠ADO=∠DAO,∴∠1=∠2,∵OD=OB,OC=OC,∴△ODC≌△OBC,∴∠ODC=∠OBC.∵OB是⊙O的半径,BC是⊙O的切线,∴BC⊥OB.∴∠OBC=90°,∴∠ODC=90°,∴CD⊥OD.∴CD是⊙O的切线.再证点P平分线段DE.过A作⊙O的切线AF,交CD的延长线于点F,则FA⊥AB.∵DE⊥AB,CB⊥AB,∴FA∥DE∥CB,∴.在△FAC中,∵DP∥FA,∴.∵FA、FD是⊙O的切线,∴FA=FD,∴.在△ABC中,∵EP∥BC,∴.∵CD、CB是⊙O的切线,∴CB=CD,,∴,∴DP=EP,∴点P平分线段DE.点评:本题考查了切线的判定和性质,从三角形的全等出发,从平行得到DP=EP.16.(15分)要使关于x的方程ax2﹣(a+1)x﹣4=0的一根在﹣1和0之间,另一根在2和3之间,试求整数a的值.考点:一元二次方程根的分布.分析:首先令f(x)=ax2﹣(a+1)x﹣4,由关于x的方程ax2﹣(a+1)x﹣4=0的一根在﹣1和0之间,另一根在2和3之间,即可知f(﹣1)•f(0)<0,f(2)•f(3)<0,则可得不等式组解此不等式组即可求得整数a的值.解答:解:令f(x)=ax2﹣(a+1)x﹣4,∵f(x)=0在(﹣1,0)之间有一根,∴f(﹣1)•f(0)=(2a﹣3)•(﹣4)<0,①∵f(x)=0在(2,3)之间有一根,∴f(2)•f(3)=(2a﹣b)•(6a﹣7)<0.②解不等式组解得.∵△=[﹣(a+1)]2﹣4a•(﹣4)=a2+18a+1,当时,△>0,∵a为整数∴a=2时,二次方程a=2时,二次方程ax2﹣(a+1)x﹣4=0的一根在﹣1和0之间,另一根在2和3之间.点评:此题考查了一元二次方根的分布,函数的性质与一元二次不等式的解法.此题难度较大,解题的关键是掌握函数思想的应用.。
2011 届 高三黄冈中学数学试题

湖北省黄冈中学、黄石二中2011 届高三联考数学试题(理科)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若A = {2,3,4},B = {x | x = n·m,m,n∈A,m≠n},则集合B的元素个数为()A.2 B.3 C.4 D.52.已知是等差数列的前n项和,且的值为()A.117 B.118 C.119 D.1203.已知函数(其中)的图象如下面右图所示,则函数的图象是()f(xA.B. C.D.4.已知,,则是的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件5.由函数的图象()A.向左平移个单位 B.向左平移个单位C.向右平移个单位 D.向右平移个单位6.已知x>0,y>0,x+3y=1,则的最小值是()A. B.2 C.4 D.7.在中,的面积,则与夹角的取值范围是()A. B. C.D.8.车流量被定义为单位时间内通过十字路口的车辆数,单位为辆/分,上班高峰期某十字路口的车流量由函数F(t)=50+4sin(其中0≤t≤20)给出,F(t)的单位是辆/分,t的单位是分,则在下列哪个时间段内车流量是增加的()A.[0,5] B.[5,10] C.[10,15] D.[15,20]9.函数()A.图象无对称轴,且在R上不单调B.图象无对称轴,且在R上单调递增C.图象有对称轴,且在对称轴右侧不单调D.图象有对称轴,且在对称轴右侧单调递增10.记集合,,将M 中的元素按从大到小的顺序排列,则第2011个数是()A. B.C. D.二、填空题(本大题共5小题,每小题5分,共25分)11.不等式的解集为____________.12.已知两点,则直线与轴的交点分有向线段的比为.13.已知是等比数列,,则= .14.对于函数, 存在一个正数,使得的定义域和值域相同, 则非零实数的值为__________.15.若,,λ∈R,且,,则的值为= .三、解答题:(本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤)16.(本小题满分10分)已知,为实常数。
2011年湖北省黄冈市中考数学试卷答案及详细解析

2011年湖北省黄冈市中考数学试卷答案及详细解析一、填空题(共8小题,每小题3分,满分24分)1、(2011•随州)﹣错误!未找到引用源。
的倒数是﹣2.2、(2011•随州)分解因式:8a2﹣2=2(2a+1)(2a﹣1).3、(2011•随州)要使式子错误!未找到引用源。
有意义,则a的取值范围为a≥﹣2且a≠0.4、如图:点A在双曲线错误!未找到引用源。
上,AB丄x轴于B,且△AOB的面积S△AOB=2,则k=﹣4.5、(2011•鄂州)如图:矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为28.解答:解:由勾股定理,得AB=错误!未找到引用源。
=6,将五个小矩形的所有上边平移至AD,所有下边平移至BC,所有左边平移至AB,所有右边平移至CD,∴五个小矩形的周长之和=2(AB+CD)=2×(6+8)6、(2011•鄂州)如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF﹣S△BEF=2.考点:三角形的面积。
分析:S△ADF﹣S△BEF=S△ABD﹣S△ABE,所以求出三角形ABD的面积和三角形ABE的面积即可,因为EC=2BE,点D是AC的中点,且S△ABC=12,就可以求出三角形ABD的面积和三角形ABE的面积.解答:解:∵点D是AC的中点,S△ABC=12,∴S△ABD=错误!未找到引用源。
×12=6.∵EC=2BE,S△ABC=12,∴S△ABE=错误!未找到引用源。
×12=4,∴S△ADF﹣S△BEF=S△ABD﹣S△ABE=6﹣4=2.7、(2011•鄂州)若关于x,y的二元一次方程组错误!未找到引用源。
的解满足x+y<2,则a的取值范围为a<4.解答:解:错误!未找到引用源。
①﹣③×3,解得y=1﹣错误!未找到引用源。
湖北黄冈中学2011届高三模拟试卷(数学理)

2011届高三模拟试卷数学 (理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 第Ⅰ卷50分,第Ⅱ卷100分,卷面共计150分,时间120分钟.第Ⅰ卷(选择题 共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知集合{2,3,4}A =,{2,4,6,8}B =,*{(,)|,,}x C x y x A y B y N 且log =挝 ,则C 的子集个数是( ) A .4 B .8 C .16 D .32 2.“p 或q 是假命题”是“非p 为真命题”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.已知函数()12f x x =-,若3(log 0.8)a f =,131[()]2b f =,12(2)c f -=,则( )A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.已知()f x =M 上的反函数是其本身,则M 可以是( )A .[1,1]-B .[1,0]-C .[0,1]D . (1,1)-5.在数列{a n }中,对任意*n ÎN ,都有211n n n na a k a a +++-=-(k 为常数),则称{a n }为“等差比数列”. 下面对“等差比数列”的判断: ①k 不可能为0;②等差数列一定是等差比数列;③等比数列一定是等差比数列;④通项公式为(0,0,1)n n a a b c a b =+构 的数列一定是等差比数列,其中正确的判断为( )A .①②B .②③C .③④D .①④ 6.已知()y f x =是偶函数,当0x >时,4()f x x x=+,且当[3,1]x ∈--时,()n f x m ≤≤恒成立,则m n -的最小值是( )A .13B .23C .1D .437.已知函数()()y f x x = R 满足(2)()f x f x +=,且当[1,1]x ?时,2()f x x =,则()y f x = 与7log y x =的图象的交点个数为( ) A .3 B .4C .5D .68.设12()1f x x=+,11()[()]n n f x f f x +=,且(0)1(0)2n n n f a f -=+,则2010a =( )A .20081()2B .20091()2-C .20101()2D .20111()2-9.若动点P 的横坐标为x ,纵坐标为y ,使lg y ,lg ||x ,lg2y x-成公差不为0的等差数列,动点P 的轨迹图形是( )10.若函数2()||f x x x ab =+-+在区间(,0]-∞上为减函数,则实数a 的取值范围是()A .0a ≥B .0a ≤C .1a ≥D .1a ≤第Ⅱ卷(非选择题 共100分)二、填空题(本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置上.) 11.在等差数列{}n a 中,若1781212a a a a +++=,则此数列的前13项的和为 . 12.设0,1a a >≠,函数2()log (23)a f x x x =-+有最小值,则不等式log (1)0a x ->的解集为 .13.已知定义域为R 的函数()f x 满足①2()(2)242f x f x x x ++=-+,②(1)(1)f x f x +--4(2)x =-,若1(1),,()2f t f t --成等差数列,则t 的值为 .14__________.15.已知函数()y f x =是R 上的偶函数,对于x R ∈都有(6)()(3)f x f x f +=+成立,且(4)2f -=-,当12,[0,3]x x ∈且12x x ≠时,都有1212()()0f x f x x x ->-,则给出下列命题:①(2008)2f =-;②函数()y f x =图象的一条对称轴为6x =-;③函数()y f x =在[9,6]--上为减函数;④ 方程()0f x = 在[9,9]-上有4个根 ,上述命题中的所有正确命题的序号是 .(把你认为正确命题的序号都填上)BC A D三、解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.) 16.(本题满分10分)已知p :{}2|230,,A x x x x R =--≤∈q :{}22|290,,B x x mx m x R m R =-+-≤∈∈. (1)若[]1,3A B = ,求实数m 的值;(2)若p 是q ⌝的充分条件,求实数m 的取值范围. 17.(本小题满分12分)已知函数5()3xf x x =-,[()]4f g x x =-.(1)求()g x 的解析式;(2) 求1(5)g -的值. 18.(本小题满分12分)已知{}n a 是一个公差大于0的等差数列,且满足3655a a ⋅=, 2716a a += . (1) 求数列{}n a 的通项公式;(2) 若数列{}n a 和数列{}n b 满足等式:1212222n n nb b b a =+++(n 为正整数), 求数列{}n b 的前n 项和n S .19.(本小题满分13分)某公司是专门生产健身产品的企业,第一批产品A 上市销售40天内全部售完,该公司对第一批产品A 上市后的市场销售进行调研,结果如图(1)、(2)所示.其中(1)的抛物线表示的是市场的日销售量与上市时间的关系;(2)的折线表示的是每件产品A 的销售利润与上市时间的关系.(1)写出市场的日销售量()f t 与第一批产品A 上市时间t 的关系式;(2)第一批产品A 上市后的第几天,这家公司日销售利润最大,最大利润是多少?20.(本小题满分14分)设函数()(01)xxf x ka a a a -=->≠且是定义域在R 上的奇函数.) /件)) (1) (2)(1)若2(1)0,(2)(4)0f f x x f x >++->试求不等式的解集; (2)若223(1),()2()[1,)2x x f g x a a mf x -==+-+∞且在上的最小值为—2,求m 的值. 21.(本小题满分14分)已知函数f (x )的定义域为[0,1],且同时满足:①f (1)=3;②()2f x ≥对一切[0,1]x Î恒成立;③若10x ≥,20x ≥,121x x +≤,则1212()()()2f x x f x f x ≥++-.①求函数f (x )的最大值和最小值; ②试比较1()2n f 与122n+ ()n ÎN 的大小; ③某同学发现:当1()2n x n =N 时,有()22f x x <+,由此他提出猜想:对一切[0,1]x Î,都有()22f x x <+,请你判断此猜想是否正确,并说明理由.黄冈中学2011届10月月考试题数学 (理科)参考答案一、选择题1.C 2.A 3.D 4.B 5.D 6.C 7.D 8.D 9.B 10.A 二、填空题11.39 12.(2,)+∞ 13.2或3 14.2011 15.、①②③④ 三、解答题16.解:(1) {}|13,,A x x x R =-≤≤∈{}|33,,B x m x m x R m R =-≤≤+∈∈, []1,3A B =∴4m =(2) p 是q ⌝的充分条件, ∴R A B ⊆ð, ∴6m >或4m <-. 17.解:(1) ∵5()3xf x x =-,∴[()]f g x 5()()3g x g x =-又[()]4f g x x =-,∴5()4()3g x x g x =--,解得312()1x g x x -=+;(2) ∵ 反函数的自变量就是原函数的函数值∴ 在312()1x g x x -=+中有31251x x -=+,解得172x =-,∴117(5)2g -=-. 18.解: (1) 解: 设等差数列{}n a 的公差为d , 则依题知0d > ,由273616a a a a +=+=且3655a a ⋅= 得365,11,2a a d === 3(3)221n a a n n ∴=+-⨯=-; (2) 令2nn n b c =,则有12n n a c c c =+++ ,1121n n a c c c ++=+++ ,两式相减得: 11n n n a a c ++-= 由(1)得11,a =12n n a a +-=, 12,2(2),n n c c n +==≥即当2n ≥时,122n n n n b c +==, 又当1n =时, 1122b a ==, 12, (1)2 (2)n n n b n +=⎧∴=⎨≥⎩ 于是:341122222n n n S b b b +=+++=++++ 212224n +=+++-122(21)2621n n ++-==--.19.解:(1) 设2()(20)60f t a t =-+,由(0)0f =可知320a =-即2233()(20)6062020f t t t t =--+=-+(040)t t N <≤∈,; (2) 设销售利润为()g t 万元,则2232(6)(030)20()360(6)(3040)20t t t t g t t t t ⎧-+<<⎪⎪=⎨⎪-+≤≤⎪⎩当3040t ≤≤时,()g t 单调递减;当030t <≤时,'29()2410g t t t =-+,易知()g t 在80(0,)3单增,80(,30)3单减,而t N ∈,故比较(26)(27)g g ,,经计算,(26)2839.2(27)2843.1g g =<=,故第一批产品A 上市后的第27天这家公司日销售利润最大,最大利润是2843.1万元.20.解:(1)()f x 是定义域为R 上的奇函数,(0)0,10,1f k k ∴=∴-=∴= 1(1)0,0f a a>∴-> ,又0a >且1, 1.a a ≠∴> 易知()f x 在R 上单调递增,原不等式化为:2(2)(4)f x x f x +>-224x x x ∴+>-,即2340x x +->14x x ∴><-或∴不等式的解集为{|14}x x x ><-或;(2)313(1),22f a a =∴-= ,即212320,22a a a a --=∴==-或(舍去) 222()222(22)(22)2(22)2x x x x x x x x g x m m ----∴=+--=---+,令()22xxt f x -==-22231,(1),()22()22x t f g t t mt t m m ≥∴≥=∴=-+=-+- 当32m ≥时,当t m =时,2min ()22,2g t m m =-=-∴= 当32m <时,当32t =时,min 17()324g t m =-=-, 解得253122m =>,舍去综上可知2m =.21.解:(1)设12,[0,1]x x ∈,12x x <,则21[0,1]x x -∈ ∴2211211()[()]()()2f x f x x x f x x f x =-+≥-+- ∴2121()()()20f x f x f x x -≥--≥∵12()()f x f x ≤,则当01x ≤≤时,(0)()(1)f f x f ≤≤ ∴当()1x =时,()f x 取得最大值(1)3f =;又(0)(00)2(0)2(0)2f f f f =+≥-⇒≤而(0)2f ≥∴(0)2f = 当0x =时,()f x 取得最小值(0)2f = (2)在③中令1212n x x ==,得111()2()222n nf f -≥- ∴10111111()2[()2][()2]222222n n n n f f f --≤-≤≤-=∴11()222n nf ≤+ (3)对[0,1]x ∈,总存在n N ∈,满足11122n nx +≤≤由(1)(2)得:11()()222n n f x f ≤≤+ 又1112222222n n x ++>+=+ ∴()22f x x <+综上所述,对任意(0,1]x ∈,()22f x x <+恒成立。
黄冈中学2011年高中招收预录生数学试题

黄冈中学2011年高中招收预录生数学试题一. 填空题:1.下面几个结论:①相反数等于本身的数是0;②绝对值等于本身的数是正数;③平方等于本身的数是1;④立方等于本身的数是±1,其中正确的结论的序号是______________ 2.如图,点E 是平行四边形ABCD 的边AB 的中点,DE ⊥EC ,∠DCE=35°,则 ∠DAB=_____________3.已知实数满足a4-3a 2+1=0,b-3b +1=0,且b ≠a4,则a 4+b=_____________4.如图,点G 在矩形ABCD 的外接圆上,DG 分别交AB ,AC 于点F 、E DE=2EF=2FG=2,则矩形的面积是_____________5.已知实数a ,b 满足︱a-1︱+)(22b a =3-︱b-3︱-b ,则a+b=6.把纸质的正方体的六个面沿该正方体的一些棱剪开展平,得到右侧的平面图形,若正方体的棱长是1,则在正方体中线段AB 的长是_____________7.小沈在街上匀速慢步,发现每隔10分钟从背后驶过一辆1路公交车,每隔5分钟迎面开来一辆1路公交车,若公交车总站每隔固定时间发一辆车,并且公交车是以同一速度匀速行驶的,则发车的间隔时间是_____________分钟。
8.如图,在等腰直角三角形ABC 中,∠C=90°,D 为BC 的中点,将⊿ABC 折叠,使点A 与点D 重合,EF 为折痕,则Sin ∠BED 的值是____________9.已知,n 是大于1981的整数,nn --20111981是完全平方数,则n 的值是____________10.已知⊿ABC 的内切圆圆心为O ,过O 作BC 的平行线分别交AB ,AC 于点D 、E ,若⊿ABC 三边BC 、CA 、AB 的长分别是a 、b 、c ,则DE 的长是____________二. 解答题11.如图,抛物线y=x2+23x+c 与x 轴交于点A 、B ,与y 轴负半轴交于点C ,⊿ABC 是Rt ⊿,点E 在抛物线上,且⊿EAC 是以A 为直角顶点的直角三角形,线段CE 交x 轴于点F 。
黄冈中学等八校2011届高三第一次联考数学(理)试题及答案

2011 届 高 三 第 一 次 联 考数学试题(理科)满分:150分 时间:120分钟一、选择题:本大题10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{0,1,2,3},{|2,}A B x x a a A ===∈集合,则( )A .AB A = B .A B A ÙC .A B B =D .A B A Ø2.命题p :若0,a b a b ⋅<则与的夹角为钝角,命题q :定义域为R 的函数()(,0)(0,)f x -∞+∞在及上都是增函数,则()(,)f x -∞+∞在 上是增函数下列说法正确的是 ( ) A .“p 且q ”是假命题 B .“p 或q ”是真命题C .p ⌝为假命题D .q ⌝为假命题3.函数sin (3sin 4cos )()y x x x x R =+∈的最大值为M ,最小正周期为T ,则有序数对(M ,T )为 ( )A .(5,)πB .(4,)πC .(1,2)π-D .(4,2)π4.“1a =-”是“直线260a x y -+=与直线4(3)90x a y --+=互相垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.在ABC ∆中,角A 、B 、C 所对的边长分别为a 、b 、c ,若120,C c ==,则( )A .45B > B .45A >C .b a >D .b a <6.定义在区间(0,)a 上的函数2()2xx f x =有反函数,则a 最大为 ( )A .2ln 2B .ln 22C .12 D .27.已知22(,)(3)1P x y x y +-=是圆上的动点,定点A (2,0),B (—2,0),则PA PB⋅ 的最大值为( )湖北省八校黄冈中学 黄石二中 华师一附中 荆州中学孝感高中 襄樊四中 襄樊五中 鄂南高中A.4 B.0 C.—12 D.128.如图,在1,3ABC AN NC∆=中,P是BN上的一点,若211AP mAB AC=+,则实数m的值为()A.911B.511C.311D.2119.设二次函数2()4()f x ax x c x R=-+∈的值域为19[0,),19c a+∞+++则的最大值为()A.3125B.3833C.65D.312610.有下列数组排成一排:121321432114321 (),(,),(,,),(,,,),(,,,,), 112123123452345如果把上述数组中的括号都去掉会形成一个数列:121321132154321 ,,,,,,,,,,,,,,, 112123423412345则此数列中的第2011项是()A.757B.658C.559D.460二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年黄冈中学自主招生考试数学试卷命题:李明利一、填空题(4085=⨯分)1、方程组⎪⎩⎪⎨⎧=+=-++2621133y x y x 的解是 2、若对任意实数x 不等式b ax >都成立,那么a 、b 的取值范围为3、设21≤≤-x ,则2212++--x x x 的最大值与最小值之差为 4、两个反比例函数x y 3=,xy 6=在第一象限内的图象点1P 、2P 、3P 、…、2007P 在反比例函数xy 6=上,它们的横坐标分别为1x 、2x 、3x 、…、2007x ,纵坐标分别是1、3、5…共2007个连续奇数,过1P 、2P 、3P 、…、2007P 分别作y 轴的平行线,与xy 3=的图象交点依次为)','(111y x Q 、)','(222y x Q 、…、),('2007'20072007y x Q ,则=20072007Q P 5、如右图,圆锥的母线长是3,底面半径是1,A 是底面圆周上一点,从A 点出发绕侧面一周,再回到A 点的最短的路线长是6、有一张矩形纸片ABCD ,9=AD ,12=AB ,将纸片折叠使A 、C 两点重合,那么折痕长是7、已知3、a 、4、b 、5这五个数据,其中a 、b 是方程0232=+-x x 的两个根,则这五个数据的标准差是8、若抛物线1422++-=p px x y 中不管p 取何值时都通过定点,则定点坐标为二、选择题(4085=⨯分)9、如图,ABC ∆中,D 、E 是BC 边上的点,1:2:3::=EC DE BD ,M 在AC 边上,2:1:=MA CM ,BM 交AD 、AE 于H 、G ,则GM HG BH ::等于 ( )A 、1:2:3B 、1:3:5C 、5:12:25D 、10:24:5110、若一直角三角形的斜边长为c ,内切圆半径是r ,则内切圆的面积与三角形面积之比是( )A 、r c r 2+πB 、r c r +πC 、r c r +2πD 、22rc r +π 11、抛物线2ax y =与直线1=x ,2=x ,1=y ,2=y 围成的正方形有公共点,则实数a 的取值范围是( )A 、141≤≤a B 、221≤≤a C 、121≤≤a D 、241≤≤a 12、有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需15.3元;若购铅笔4支,练习本10本,圆珠笔1支共需2.4元,那么,购铅笔、练习本、圆珠笔各1件共需 ( )A 、2.1元B 、05.1元C 、95.0元D 、9.0元13、设关于x 的方程09)2(2=+++a x a ax ,有两个不相等的实数根1x 、2x ,且1x <<12x ,那么实数a 的取值范围是 ()A 、112-<a B 、5272<<-a C 、52>a D 、0112<<-a 14、如图,正方形ABCD 的边1=AB ,和都是以1为半径的圆弧,则无阴影部分的两部分的面积之差是 ( )A 、12-πB 、41π-C 、13-πD 、61π- 15、已知锐角三角形的边长是2、3、x ,那么第三边x 的取值范围是( )A 、51<<xB 、135<<xC 、513<<xD 、155<<x16、某工厂第二季度的产值比第一季度的产值增长了%x ,第三季度的产值又比第二季度的产值增长了%x ,则第三季度的产值比第一季度增长了 ( )A 、%2xB 、%21x +C 、%%)1(x x ∙+D 、%%)2(x x ∙+三、解答题17、(15分)设m 是不小于1-的实数,关于x 的方程033)2(222=+-+-+m m x m x 有两个不相等的实数根1x 、2x ,(1)若21x 622=+x ,求m r 值;(2)求22212111x mx x mx -+-的最大值。
18、(15分)如图,开口向下的抛物线a ax ax y 1282+-=与x 轴交于A 、B 两点,抛物线上另有一点C在第一象限,且使OCA ∆∽OBC ∆,(1)求OC 的长及ACBC 的值;(2)设直线BC 与y 轴交于P 点,点C 是BP 的中点时,求直线BP 和抛物线的解析式。
19、(15分)某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调器、彩电、冰箱共360台,且冰箱至少生产60台,已知生产这些家电产品每台所需工时和每台产值如下表 家电名称空调 彩电 冰箱 工 时21 31 41 产值(千元) 4 3 2问每周应生产空调器、彩电、冰箱各多少台,才能使产值最高?最高产值是多少(以千元为单位)?20、(10分)一个家庭有3个孩子,(1)求这个家庭有2个男孩和1个女孩的概率;(2)求这个家庭至少有一个男孩的概率。
21、(15分)如图,已知⊙O 和⊙'O 相交于A 、B 两点,过点A 作⊙'O 的切线交⊙O 于点C ,过点B 作两圆的割线分别交⊙O 、⊙'O 于E 、F ,EF 与AC 相交于点P ,(1)求证:PF PC PE PA ∙=∙;(2)求证:PB PF PCPE =22;(3)当⊙O 与⊙'O 为等圆时,且5:4:3::=EP CE PC 时,求PEC ∆与FAP ∆的面积的比值。
黄冈中学2011自主招生数学试卷参考答案及评分标准 一、1、⎩⎨⎧==02611y x 或 ⎩⎨⎧=-=28222y x 2、0=a 0<b 3、1 4、240135、33 6、445 7、2 8、)33,4( 二、9~16 DBDB DABD三、17、(15分)解: 方程有两个不相等的实数根∴044)33(4)2(422>+-=+---=∆m m m m1<∴m由题意知:11<≤-m(1)610102)33(2)2(42)(222212212221=+-=+---=-+=+m m m m m x x x x x x 2175±=∴m 11≤≤-m 2175-=∴m (2)22212111x mx x mx -+-mm m m m m x x x x x x x x m --+-=--+-+=2232121212221)2882()1)(1()]([ 25)23(2)13(2)1()13)(1(2222--=+-=-+--=m m m m m m m m m )11(<≤-m 1-=∴m y 取最大值为1018、(15分)解:(1)由题设知0<a ,且方程01282=+-a ax ax 有两二根6,221==x x 于是6,2==OB OA OCA ∆∽OBC ∆ 122=∙=∴OB OA OC 即32=OC 而322===∆∆OC OB S S AC BC OCA OBC 故 3=ACBC (2)因为C 是BP 的中点 BC OC =∴ 从而C 点的横坐标为3 又32=OC )3,3(C ∴设直线BP 的解析式为b kx y +=,因其过点)0,6(B ,)3,3(C ,则有 ⎩⎨⎧+=+=b k b k 3360 ⎪⎩⎪⎨⎧=-=∴3233b k 3233+-=∴x y 又点)3,3(C 在抛物线上 a a a 122493+-=∴ 33-=∴a ∴抛物线解析式为:34338332-+-=x x y19、(15分)解:设每周应生产空调、彩电、冰箱的数量分别为x 台、y 台、z 台,则有 ⎪⎪⎩⎪⎪⎨⎧≥++==++=++60)3(12190120413121360z y x z y x z y x 总产值x x y x y x z y x z y x A -=-++=++++=++=1080)3(720)2()(223460≥z 300≤+∴y x 而3603=+y x3003360≤-+∴x x 30≥∴x1050≤∴A 即 30=x 270=y 60=z20、(10分)解:用B 和G 分别代表男孩和女孩,用“树状图”列出所有结果为:∴这个家庭有2个男孩和1个女孩的概率为83。
这个家庭至少有一个男孩的概率87。
21、(15分)解:(1)证明:连结AB CA 切⊙'O 于A ∴F C A B ∠=∠E C A B ∠=∠ ∴F E ∠=∠ CE AF //∴PAPC PF PE =∴PF PC PE PA ∙=∙∴ ① (2)证明:在⊙O 中,PC PA PE PB ∙=∙ ② ①×②得 PF PC PA PB PE PA ∙∙=∙∙22 PBPF PC PE =∴22 (3)连结AE ,由(1)知PEC ∆∽PFA ∆,而5:4:3::=EP CE PC5:4:3::=∴PF FA PA设x EP x CE x PC 5,4,3===222CE PC EP +=∴ 222FA PA PF += 090=∠=∠∴CAF C AE ∴为⊙O 的直径,AF 为⊙'O 的直径⊙O 与⊙'O 等圆 y AF AE 4==∴222AE CE AC =+ 222)4()4()33(y x y x =++∴ 即07182522=-+y xy x 即0))(725(=+-y x y x 257=∴y x 62549:22==∴∆∆y x S S FAP ECP。