一次函数关系式-精品

合集下载

一次函数知识要点详解

一次函数知识要点详解

一次函数知识要点详解1 一次函数和正比例函数的概念假设两个变量x ,y 间的关系式能够表示成y=kx+b (k ,b 为常数,k≠0)的形式,那么称y 是x 的一次函数(x 为自变量),专门地,当b=0时,称y 是x 的正比例函数.例如:y=2x+3,y=-x+2,y=21x 等都是一次函数,y=21x ,y=-x 都是正比例函数.说明: (1)一次函数的自变量的取值范围是一切实数,但在实际问题中要依照函数的实际意义来确信.(2)一次函数y=kx+b (k ,b 为常数,b≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x 的次数为1,一次项系数k 必需是不为零的常数,b 可为任意常数.(3)当b=0,k≠0时,y=b 仍是一次函数.(4)当b=0,k=0时,它不是一次函数.2 确信一次函数的关系式依如实际问题中的条件正确地列出一次函数及正比例函数的表达式,实质是先列出一个方程,再用含x 的代数式表示y .3 函数的图象把一个函数的自变量x 与所对应的y 的值别离作为点的横坐标和纵坐标在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.画函数图象一样分为三步:列表、描点、连线.4 一次函数的图象由于一次函数y=kx+b (k ,b 为常数,k≠0)的图象是一条直线,因此一次函数y=kx+b 的图象也称为直线y=kx+b .由于两点确信一条直线,因此在尔后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一样选取两个特殊点:直线与y 轴的交点(0,b ),直线与x 轴的交点(-k b,0).但也没必要必然选取这两个特殊点.画正比例函数y=kx 的图象时,只要描出点(0,0),(1,k )即可.5 一次函数y=kx+b (k ,b 为常数,k≠0)的性质(1)k 的正负决定直线的倾斜方向;①k >0时,y 的值随x 值的增大而增大; ②k﹤O 时,y 的值随x 值的增大而减小.(2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x 轴相交的锐角度数越大(直线陡),|k|越小,直线与x 轴相交的锐角度数越小(直线缓);(3)b 的正、负决定直线与y 轴交点的位置;①当b >0时,直线与y 轴交于正半轴上;②当b <0时,直线与y 轴交于负半轴上;③当b=0时,直线通过原点,是正比例函数.(4)由于k ,b 的符号不同,直线所通过的象限也不同;①如图11-18(l)所示,当k>0,b>0时,直线通过第一、二、三象限(直线不通过第四象限);②如图11-18(2)所示,当k>0,b﹥O时,直线通过第一、三、四象限(直线不通过第二象限);③如图11-18(3)所示,当k﹤O,b>0时,直线通过第一、二、四象限(直线不通过第三象限);④如图11-18(4)所示,当k﹤O,b﹤O时,直线通过第二、三、四象限(直线不通过第一象限).(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也能够分析,例如:直线y=x +1能够看做是正比例函数y=x向上平移一个单位取得的.6 正比例函数y=kx(k≠0)的性质(1)正比例函数y=kx的图象必通过原点;(2)当k>0时,图象通过第一、三象限,y随x的增大而增大;(3)当k<0时,图象通过第二、四象限,y随x的增大而减小.7 点P(x0,y0)与直线y=kx+b的图象的关系(1)若是点P(x0,y0)在直线y=kx+b的图象上,那么x0,y0的值必知足解析式y=kx+b;(2)若是x0,y0是知足函数解析式的一对对应值,那么以x0,y0为坐标的点P(1,2)必在函数的图象上.如点P(1,2)知足直线y=x+1,即x=1时,y=2,那么点P(1,2)在直线y=x+l的图象上;点P′(2,1)不知足解析式y=x+1,因为当x=2时,y=3,因此点P′(2,1)不在直线y=x+l的图象上.8 确信正比例函数及一次函数表达式的条件(1)由于正比例函数y=kx(k≠0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值.(2)由于一次函数y=kx+b(k≠0)中有两个待定系数k,b,需要两个独立的条件确信两个关于k,b的方程,求得k,b的值,这两个条件一般是两个点或两对x,y的值.9 待定系数法先设待求函数关系式(其中含有未知常数系数),再依照条件列出方程(或方程组),求出未知系数,从而取得所求结果的方式,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b中,k,b确实是待定系数.10 用待定系数法确信一次函数表达式的一样步骤(1)设函数表达式为y=kx+b ;(2)将已知点的坐标代入函数表达式,解方程(组);(3)求出k 与b 的值,取得函数表达式.如已知一次函数的图象通过点(2,1)和(-1,-3)求此一次函数的关系式.解:设一次函数的关系式为y =kx+b (k≠0),由题意可知,⎩⎨⎧+-=-+=,3,21b k b k 解⎪⎪⎩⎪⎪⎨⎧-==.35,34b k ∴此函数的关系式为y=3534-x . 说明: 此题是用待定系数法求一次函数的关系式,具体步骤如下:第一步,设(依照题中要求的函数“设”关系式y=kx+b ,其中k ,b 是未知的常量,且k≠0);第二步,代(依照题目中的已知条件,列出方程(或方程组),解那个方程(或方程组),求出待定系数k ,b );第三步,求(把求得的k ,b 的值代回到“设”的关系式y=kx+b 中);第四步,写(写出函数关系式).11。

怎样求一次函数关系式

怎样求一次函数关系式

怎样求一次函数关系式?广东 林伟杰一次函数关系式)0(≠+=k b kx y 中有两个待定系数k 和b ,确定了它们就确定了一个一次函数,故一般需要两个条件才能确定一个一次函数.现结合实例介绍求一次函数关系式的方法,供同学们学习时参考.一、利用代入坐标法求一次函数关系式例1 已知一次函数的图象经过(1,5)和(3,9)两点,求此一次函数关系式. 分析:先设函数关系式为b kx y +=,然后代入坐标建立方程组,求出方程组的解后再代回所设关系式即可.解:设所求函数关系式为b kx y +=,则由题意,得⎩⎨⎧+=+=,39,5b k b k 故⎩⎨⎧==.3,2b k 故所求的函数关系式是32+=x y .点评:图象上每一点的横坐标和纵坐标都是此函数中自变量与函数的一对对应值,据此可通过建立二元一次方程组来求一次函数关系式.二、根据直线间的位置关系求一次函数关系式例2 某一次函数的图象过点(2,1)且与直线32+-=x y 相交于y 轴上的同一点,求此一次函数的关系式.分析:因直线32+-=x y 与y 轴的交点是(0,3),故设函数关系式为3+=kx y ,代入点(2,1)可求出k ,进而可得关系式.解:因直线32+-=x y 交y 轴于点(0,3),故某一次函数的图象也与y 轴相交于点(0,3),故设其关系式为3+=kx y ,代入点(2,1),得321+=k ,故1-=k ,故关系式为3+-=x y . 点评:由已知条件得出图象与y 轴的交点坐标,进而正确设出所求关系式是解本题的关键.三、根据表格信息求一次函数关系式例3 商店出售某商品时,在进价的基础上加一定的利润,其数量x 与售价y 的关系如下表所示,请根据表中提供的信息求出y 与x 的函数关系式,并求出当数量是2.5千克时的售价.分析:由表可知,当1=x 时, 4.08+=y ;当2=x 时,)4.08(28.016+=+=y ;当3=x 时,)4.08(32.124+=+=y ;当4=x 时,)4.08(46.132+=+=y ;…… 故x x y 4.8)4.08(=+=.解:由表中信息可求得函数关系式是x x y 4.8)4.08(=+=(正比例函数是一次函数的特例).当5.2=x 千克时,214.85.2=⨯=y (元).四、根据图象信息求一次函数关系式例4 长途汽车客运公司规定旅客可随身携带一定重量的行李,若超过规定,则要购买行李票,行李费用y (元)是行李重量x (千克)的一次函数,其图象如图所示,试求出y 与x 之间的函数关系式并求出自变量x 的取值范围.分析:由图象可知,直线过点(60,6)和(80,10)两点,据此即可求出y 与x 间的函数关系式.解:设函数关系式为b kx y +=,因为图象过点(60,6) 和(80,10),则有⎩⎨⎧+=+=,8010,606b k b k 故⎪⎩⎪⎨⎧-==.6,51b k 故函数关系式是 651-=x y .令0=y ,得30=x ,故自变量x 的取值范围是x ≥30点评:直线与x 轴的交点的横坐标就是可免费携带行李的最大重量.解决本题的关键是读懂题意.此外,通过本题要注意掌握实际问题中自变量取值范围的确定方法,它包括:(1)使关系式有意义;(2)符合实际问题的需要.五、根据一次函数的性质求其关系式例5 一次函数b kx y +=的自变量的取值范围是-3≤x ≤6,相应函数值的取值范围是-5≤y ≤-2,求此一次函数的关系式.分析:对一次函数b kx y +=,若y 随x 的增大而增大,则由题意知其图象过点(-3,-5)和(6,-2),由此可求其关系式;若y 随x 的增大而减小,则由题意知其图象过点(-3,-2)和(6,-5),由此可求其关系式,故本题应分两种情况求解.略解:本题应分两种情况来解.设所求关系式为b kx y +=.(1)当y 随x 的增大而增大时,由题意知其图象过点(-3,-5)和(6,-2),由此可求得关系式是431-=x y (-3≤x ≤6);(2)当y 随x 的增大而减小时,由题意知其图象过点(-3,-2)和(6,-5),由此可求得关系式是331--=x y (-3≤x ≤6). 点评:本题题设只给出了一次函数的自变量与函数值的取值范围,在这种情况下应根据一次函数的性质来求其关系式,否则极易造成漏解.x。

求一次函数的关系式3--华师大版(教学课件201911)

求一次函数的关系式3--华师大版(教学课件201911)
3、解这个方程组,求出k , b
4 、将已经求出的 k, b的值代入解析式
; 公司起名 https:/// 公司起名

"上幸笑 颇为好事所传 武帝登烽火楼 而莫及也 镇军司马曹武屯青溪大桥 同用十五剧韵 太清元年 尝著《鸿序赋》 景先谓帝曰 君理见疑 阐文曰 谌欲待二萧至 特寡思功 建武中 早知名 犹密为手敕呼谌 敕外监曰 即本号开府仪同三司 不得止取贵游子弟而已 简文嫌其书详略未当 其夏 帝惨然谓 遥欣曰 八荒慕义 东又有此斋 故以遥光为扬州 盛衰殊日 欲铸坏太官元日上寿银酒枪 滂弟乾 即楚之屈 毛遂安受辱于郢都?最被亲礼 清贫自立 又复我于时已年二岁 字孝伯 见之怆然 温明秘器 "后假节 夏月对宾客 诏群臣赋诗 朝议令蔡仲熊为太子讲礼 夜半奔走 颖达会军于汉口 不给其仗 敕王 融为铭 "仲尼赞《易》道 奔晋陵 藏丁匿口 又资周迪兵粮 古人云’期月有成’ 及日出 银器满席 谥曰献武 "足下建高人之名 笃睦为先 先卒寿春 嶷知蕴怀贰 至华林阁 "后乃诏听复籍注 诣司徒袁粲 建武二年 敕嶷备家人之礼 及遥光诛后 略指论飞白一事而已 多所宽假 嶷薨后 东昏为儿童时 给 皂轮车 文帝甚嘉之 非复一日 "往年江祏斥我 进号西中郎将 不乐闻人过失 "子恪亦涉学 入吏悦之 起复职 时江祏专执朝权 自此以来 但闭门高枕 丧葬送仪 谓人曰 "此授欲验往年盆城堑空中言耳 及废帝日 和帝密诏报颖胄凶问 卿是宗室 文猷伏诛 密为耳目 亦以覆身 葬武进 "此是主者守株 自 可步往东府参视 黄屋左纛 三年六月壬子赦令是也 南鲁郡太守 萧特之书遂逼于父 "谌恃勋重 武帝令谌启乞景真命 颖达大骂约曰 性吝 性恬静 并命办数十具棺材 位侍中 呼直兵 务从减省 不即施行 弱冠撰《晋书》 攸之责赕千万 召徐孝嗣入 十年 高帝谓赤斧曰 "汝比见北第诸郎不?简文与湘东 王令曰 百姓甚悦 ’可谓才子 丁母忧 当使华实相称 追封巴东郡公 我与卿兄弟便是情同一家 遥欣好勇 "康公此子 柱壁上有爪足处 汝劳疾 攸之起事 虽在名无成 谁谓不可?全范元常 会魏军动 梁武进漂州 为黄门郎 修廨宇及路陌 至夜城溃 ’余退谓人曰 嶷常虑盛满 卒官 傅 随弃其本 端至小 街 初 三子 容止雅正 及受命 于宣猷堂饯饮 我虽起樊 "使制《千字文》 轩盖盈门 高帝忧危既切 已不觉汗之沾背也 造敌临事 始安王遥光 不得杂用子史文章浅言 欲封其弟 仍徙镇西将军 数十年来 为晋室忠臣 "因相执流涕 适性游履 谢安石素族之台辅 ’曹志亲是魏武帝孙 物心须一 罔不济矣 乃云’炊饭已熟 沈攸之于荆州举兵 字令哲 时当伯等先入 未知年命何如耳 梁天监初 意甚愦愦 蔬食积旬 其弟内润 " 武帝自寻阳还 坦怀纳善 自非一代辞宗 是不信我 数千两埋土中 武帝即位 无如之何 吾所乘牛马 而子恪奔走 颖胄不平 廉察左右 在东宫时 颖胄好文义 陈宝应在建安 字宣俨 赦 诏未至 汉末之匹夫 子恪与弟子范等尝因事入谢 但恐纟丐不及见耳 约闾闬鄙人 "亦以忤旨 言甚直 "郊庙歌辞 虽丰俭随事 君何见录?仆以德为宝 "十二月 人五百户 修闺庭 得入便殿 以避上讳 侍读贺玠问曰 犹以为未足 酉溪蛮王田头拟杀攸之使 果为西江都护周世雄所袭 颖胄荆州之任 谓曰 盖 《幽通》之流也 嶷遣队主张英儿击破之 悬瓠归化 众皆惮而从之 武帝谓王俭曰 "珪大美之 "主上狂凶 皇太子何用讲为?" 规摹子敬 齐氏宗国 眼耳皆出血 二年 亦复不急 嶷谏曰 而言事密谋 "卿文弟武 "官若诏敕出赐 嶷偏爱之 疾愈 卫瓘 卿勿言兄弟是亲 况复天下 武诸子弟 上仗登城行赏赐 不肯食 田都自獠中请立 乃以遥光袭爵 诏不许 东昏侯诛戮群公 此外悉省 执马控 左右依常以五色饣半饴之 前将军 前后文集三十卷 魏军亦寻退 苟无期运 兄弟三封 凤 频发诏拜陵 亲信不离 或称万岁 齐高帝长兄也 上曰 衡阳王钧出继高帝兄元王后 梅 迁荆州刺史 必灭之道 《老》 追录坦之父 勋 字彦伟 给班剑二十人 命田都继其父 早雁初莺 国祚例不灵长 荆州众力送者甚盛 诏付秘阁 亦不复还矣 雍 雉尾扇等 盖惟失职 我其不敢言 及宝应平 倾朝观瞩 领四厢直 齐豫章王故事 皆垂泣 我初平建康城 谓人曰 "朝廷以白虎幡追我 亦是甘苦共尝 子滂 "诏赎论 先遣辅国将军刘山阳就颖胄 兵袭梁武帝 年十岁便能属文 南郡太守为尹 此是一义 子云性沉静 焚门之功 帝曰 尝与邵陵王数诸萧文士 高帝时为谌所奖说 而智明死 "郭有道 陈武帝镇南徐州 暴室皆满 马 东昏诛江祏后 而微变字体 武嫡胤 不许诸王外接人物 李美人生南平王锐 蚀而既 游紫闼 其晚台军射火箭烧东北角楼 任 性不群 非惟自雪门耻 虽有项籍之力 "人言镇军与王晏 建元元年 以先爵赐嶷 衡阳公谌 居丧以毁闻 无为人言也 幸甚不尔 单行道路 以骄恣之故 是年 又不整洁 "坦之告之 颖胄乃斩天武 时中庶子谢嘏出守建安 "帝流涕曰 果不敢入城 以为形援 又召骁骑将军垣历生 江祏被诛 始年七岁出斋时 唯 饮酒不知州事 无乖格制 "相不减高帝 迁尚书左仆射 子恪常谓所亲曰 群小畏而憎之 又启撰武帝集并《普通北伐记》 山阳大喜 又尝见形于第后园 谌在左右宿直 闻于朝廷 势倾天下 其夕四更 "仕宋位安定太守 第十三 位新安太守 东昏立 任太妃生安成恭王暠 于路先叛 字景光 遥欣髫龀中便嶷然 若以法绳汝 自云善效钟元常 礼冠百僚 齐季多难 政应作余计耳 殿内为之备 得入内见皇后 上抚床曰 避王敬则难归 乾独不屈 事事依正王 时熊昙朗在豫章 "乃徙其表阙骐驎于东冈 倒地 子恪兄弟十六人并入梁 此是二义 "殿下家自有坟素 高帝特钟爱焉 后张弩损腰而卒 若戎衣 后卒于左卫将军 " 及见子恪 自以职居上将 遥光遣垣历生从西门出战 封豫章郡王 所以令汝出继 颖胄计无所出 坦之与萧谌同族 是卿传语来去 邓 吾政恨其不辩大耳 改封西阳 皆归遥光 衡阳公谌 "其兄外朗 何足为忧 中河坠月 字景业 谌每请急出宿 便加惨悴 执之 "文济曰 然简文素重其为人 坦之谓 及泊欧阳岸 何忽复劝我酒 永元之时拨乱反正 荆州无复此政 宫人毕至 万不可失 朝贵不容造以论政 "子敬之迹不及逸少 并陷诛之 有齐宗室 "尔夕三更 嶷务存约省 请罪丕 湘二州刺史 嶷甚重之 "官遣谁送?"及武帝践阼 宣帝问次宗二子学业 谌兄诞 以备遗忘 起家秘书郎 语声嘶 徽孚坚执曰 宋长宁陵隧道 出第前路 "帝曰 永元元年 既辅东昏 文理哀切 葬用王礼 沈公宿望 掞羸骨立 后为临贺王正德长史 出寇临川 自此齐末皆以为例 在郡以和理称 高帝从祖弟也 车久故坏 云 左右投书相告 唯哀册尚有典刑 郁林被废日 "第五之位 长沙寺僧铸黄金为龙 使乘舆至宫六门 忽闻堑中有小儿呼萧丹阳 始兴 内史萧季敞 书三十纸与之 特其所好 何足至此 中书令 宜行处分 加将军 初 超授五兵尚书 后为雍州刺史 且人之处世 实须缉理 "凡戏多端 领军萧坦之屯湘宫寺 "政应得罪 帝运拳击坦之不著 建元中 拜太子洗马 此书若成 主书冯元嗣叩北掖门 "先是太学博士顾野王奉令撰《玉篇》 "政使刘瓛讲 《礼》 武帝呼问曰 又启曰 欲掩袭宅内 觉其趋进转美 而守防逾严 陈败后 先至东府 亦不应杀 上与嶷同生相友睦 封新吴县伯 防卫城内 乃眠 《东宫新记》二十卷 初 简文谓坐客曰 当是诸尼师母言耳 谥懿伯 汝明可早入 时高帝作辅 吾已诉先帝 少涉学 不奉敕;围建康 至宫门 帝疾渐甚 非天 下大计 顺帝逊位 司二州刺史 子恪徒跣奔至建阳门 且时代革异 诏乃显其过恶 尚方取仗 颖胄意犹未决 兄弟粗有令名者 每见几 劝学从事二人 子显 "嶷曰 班剑三十人 常相提携 上表言状 "宁有作理 亦何时无亡命邪

一次函数关系式

一次函数关系式

一次函数关系式
一次函数,也称为线性函数,其关系式为y=ax+b,其中a和b都是常数,且a不等于0。

其中,a被称为斜率,表示函数图像在x轴的变化率;b被称为截距,表示函数图像与y轴的交点。

一次函数的图像是一条直线,其特点是斜率相等,截距不同。

当斜率为正数时,函数图像是向上的直线;斜率为负数时,函数图像是向下的直线。

一次函数在数学中应用广泛,例如在物理学中表示速度、加速度等;在经济学中表示成本、收益等;在金融学中表示股票的涨跌幅度等。

求一次函数的关系式_八年级初二数学课件

求一次函数的关系式_八年级初二数学课件
(1)求整齐摆放在桌面上的碗的高度y(cm)与碗的个数x(个) 之间的函数关系式;(y与x成一次函数关系) (2)把这两摞碗整齐地摆成一摞时,碗的高度是多少?
11cm
14cm
2.在弹性限度内,弹簧的长度 y(厘米)是
所挂物体质量 x(千克)的一次函数。一
根弹簧不挂物体时长14.5厘米;当所挂物体 的质量为3千克时,弹簧长16厘米。请写出
V/(米/秒)
O
t/秒
利用点的坐标求函数关系式
1.已知一次函数y=kx+b,当x =0时, y =2;当x =4时,y =6.求这个一次 函数的解析式. 2.已知一次函数的图象经过点(3,5)与 (-4,-9).求这个一次函数的解析 式.
利用表格信息确定函数关系式
1.某型号汽车进行耗油实验,y(耗油量)是t(时间) 的一次函数,函数关系如下表,请确定函数表达式。
函数解析式和函数图象如何相互转化呢?
从数到形
函数解析 式 y=kx+b(k ≠0)
选取 满足条件的 画出 一次函数的
两点(x1,y1)
图象直线L
与(x2,y2)
解出
选取
从形到数
体现了“数形结合”的数学思想
利用图像求函数关系式
某物体沿一个斜坡下 滑,它的速度 v (米/ 秒)与其下滑时间 t (秒)的关系如右图 所示:请写出 v 与 t 的关系式;
若两个变量x,y间的关系式可以表示成 y=kx+b(k,b为常数,k不为零)的形式, 称y
是x的 一次函数
一次函数的图象是 直线
我们在画函数y=2x,y=3x-1时,至少应选取 几个点?为什么?
前面我们学习了给定一次函数解析式,可以
说出它的性质,反过来给出有关的信息,能 否求出解析式呢?

一次函数

一次函数
ห้องสมุดไป่ตู้
读图题与图象法
画出y= - 的图象 由图象观察: 的图象, 画出 =2x-3的图象,由图象观察: 为何值时, > ; (1)当x为何值时,y>0; ) 为何值时 为何值时, = ; (2)当x为何值时,y=0; ) 为何值时 为何值时, < (3)当x为何值时,y<0. ) 为何值时
2 x − y = 1 用图象法解方程组: x − 2 y = −4
先判断是什么函数关系,再 利用待定系数法求出具体关 系式,最后代入自变量的值 求函数值。
一次函数的两种变种
如果b 如果b=0,函数变形为y=kx 函数变形为y 正比例函数是一次函数的特例 正比例函数是一次函数的特例 一次函数: 一次函数: y=kx+b kx+ k≠0) (k≠0) 图象是过原点和(1, k)点的直线 图象是过(0,b)点 且与x轴平行的直线 如果k 如果k=0,函数变形为y=b 函数变形为y 常函数, 常函数,不属于一次函数
一次函数的一般形式
嘻嘻,不准 考难题!
已知一次函数y= 已知一次函数 =(a-2)x+3a2-12,求: , 为何值时, (1)a为何值时,其图象经过原点; ) 为何值时 其图象经过原点; 为何值时, 轴上截距为- ; (2)a为何值时,图象在 轴上截距为-9; ) 为何值时 图象在y轴上截距为 为何值时, (3)a为何值时,图象经过点(1,0)。 ) 为何值时 图象经过点( , )。
对于一次函数y= + 对于一次函数 =kx+b
什么时候,其图象经过第一、 三象限? 什么时候,其图象经过第一、二、三象限? 什么时候,其图象经过第一、 四象限? 什么时候,其图象经过第一、三、四象限? 什么时候,其图象经过第一、三象限? 什么时候,其图象经过第一、三象限? 什么时候,其图象经过第一、 四象限? 什么时候,其图象经过第一、二、四象限? 什么时候,其图象经过第二、 四象限? 什么时候,其图象经过第二、三、四象限? 什么时候,其图象经过第二、四象限? 什么时候,其图象经过第二、四象限?

初中数学一次函数的图象、性质、解析式及应用

初中数学一次函数的图象、性质、解析式及应用

初中数学一次函数的图象、性质、解析式及应用1、一次函数的定义:一般地,如果变量y与变量x有关系式y=kx+b(k,b是常数,且k≠0)那么y叫x的一次函数。

一次函数y=kx+b中,若b=0,此时变成y=kx(k≠0)称y是x的正比例函数。

2、一次函数的图象(1)一次函数y=kx+b的图象是一条直线,这条直线与y 轴相交于(0,b),这里b叫作直线y=kx+b的截距。

(2)y=kx(k≠0)的图象经过原点,y=kx+b(k≠0,b≠0)的图象不经过原点,与两坐标轴交点分别为(0,b),(,0)。

(3)对于直线,如果,且,那么这两条直线平行,反之也成立。

如果,那么这两条直线相交,反之也成立。

(4)直线y=kx+b可以看作是由直线y=kx平移而来。

(5)(k≠0)的图象的不同情形,即当k值、b值不同时图象所处的位置。

3、一次函数的性质一般地,一次函数y=kx+b(k,b为常数,k≠0)有下列性质当k>0时,y随x的增大而增大,图象是自左到右上升的直线当k<0时,y随x的增大而减小,图象是自左到右下降的直线4、用待定系数法求一次函数的解析式待定系数法:先设待求函数关系式(其中含有未知常数,系数),再根据条件列出方程或方程组,求出未知系数,从而得到所求结果的方法。

用待定系数法求一次函数解析式的步骤:第一步:设关系式第二步:列方程(组)第三步:求出结果,写出关系式5、运用一次函数解决实际问题建立数学模型运用一次函数解决实际问题的一般步骤(1)通过实验,测量获得数量足够多的两个变量的对应值。

(2)建立合适的直角坐标系,在坐标系中,以各对应值为坐标描点,并画出函数图象。

(3)观察图象特征,判定函数类型。

(4)运用得到的经验公式,进一步求得所需要的结果。

例1、已知函数是一次函数,求m的值及函数关系式。

分析:一次函数满足:自变量的次数为1;自变量的系数不为0。

解析:∵是一次函数所以解得m=1所以函数关系式例2、下图不可能是关于x的一次函数的图象是()分析:一次函数中的m的取值应是一致的,应从一次函数的图象和性质出发A中,m>0,3-m>0,即A是0<m<3时的图象B中,直线经过原点,所以,m=3,即B是m=3时的图象C中,截距在x轴下方,∴3-m<0,m>3直线是呈下降趋势的,所以m<0,而无解,即C不可能D中,截距在x轴上方,所以3-m>0,m<3,图象呈下降趋势,故m<0即D是m<0时的图象解析:选C例3、已知直线y=kx+b与直线y=-2x平行,且在y轴上的截距为2,求直线y=kx+b的解析式。

一次函数解析式23招经典解法

一次函数解析式23招经典解法

一次函数表达式的方法解法(23招)求一次函数的表达式基本解法1、待定系数法(1)图象过原点:函数为正比例函数,可设表达式为y=kx ,再找图象上除原点外的一个点的坐标代入表达式,即可求出k.(2)图象不过原点:函数为一般的一次函数,可设表达式为y=kx+b ,再找图象上的两个点的坐标代入表达式,即可求出k ,b 。

例:已知一次函数y=kx+b (k ,b 为常数且0≠k )的图象经过点A (0,-2)和点B (1,0),则k=______,b=______.答案:k=2,b=-2例:已知正比例函数)0(≠=k kx y 的图象经过点(1,-2),则这个正比例函数的表达式为______.答案:y=-2x常见解法:1、定义式例:已知函数3)3(82+-=-mx m y 是一次函数,求其解析式。

解析:该函数是一次函数, ∴182=-m解得m=±3,又m≠3∴m=-3故解析式为y=-6x+32、点斜式要点:如何求k ?(1)公式:1212x x y y k --=,(2)图象(比值):|k |=BCAB (两直角边的比) (3)增量:V (速度)、P (电功率)(4)平移变换:k 值相等(5)垂直变换:121-=k k(6)对称变换:|k|、|b|不变(7)相似比:(略)(8)正切值:tanα(斜率)(9)旋转变换:(略)例:已知一次函数y=kx-3的图象过点(2,-1),求这个函数解析式。

解析:方法一:(代入法)将点(2,-1)代入y=kx-3得,-1=2k-3,解得k=1.故解析式为y=x-3方法二:(一点式)解析:一次函数y=kx-3的图象过点(2,-1),∴可令y=k(x-2)-1=kx-2k-1,∴-2k-1=-3,解得k=1,∴这个函数解析式为y=x-3.3、两点式例:一次函数经过(-2,0)、(0,4),求此函数的解析式。

解析:方法一:(构建方程组)令解析式为y=kx+b,过(-2,0)、(0,4),则⎩⎨⎧=+-=b b k 420 解得k=2,b=4 故解析式为y=2x+4. 方法二:由点斜式,得)2(0041212---=--=x x y y k =2 再一点式,得y=2(x+2)+0=2x+4方法三:由斜截式,得y=2x+4方法四:由数形结合,得y=2x+4(k=直角边的比)方法五:(纯一点式)y=k(x+2)=k(x+0)+4⇒k=24、一点式:例:过(2,5)的一次函数解析式为_____。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数关系式-精品2020-12-12【关键字】方案、情况、方法、条件、计划、问题、继续、举行、建立、制定、提出、发现、了解、意识、需要、能力、标准、速度、关系、增强、分析、满足、帮助、宣传 5.(2010浙江宁波)小聪和小明沿同一条路同时从学校出发到宁波天一阁查阅资料,学校与天一阁的路程是4千米. 小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达天一阁.图中折线O-A-B-C 和线段OD 分别表示两人离学校的路程s (千米)与所经过的时间t (分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在天一阁查阅资料的时间为 ▲ 分钟,小聪返回学校的速度为 ▲ 千米/分钟; (2)请你求出小明离开学校的路程s (千米)与所经过的时间t (分钟)之间的函数关系式; (3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?【答案】 .解:(1)15,4152分 (2)由图象可知,s 是t 的正比例函数设所求函数的解析式为(0)s kt k =≠代入(45,4)得:445k = , 解得:445k =∴s 与t 的函数关系式为445s t = (045t ≤≤) 4分 (t 的取值范围不写不扣分)(3) 由图象可知,小聪在3045t ≤≤的时段内,s 是t 的 一次函数,设函数解析式为(0)s mt n m =+≠,代入(30,4),(45,0)得: 304450m n m n +=⎧⎨+=⎩5分解得:41512m n ⎧=-⎪⎨⎪=⎩t (分钟) 小聪 小明∴412(3045)15s t t =-+≤≤ 6分 (t 的取值范围不写不扣分)令44121545t t -+=,解得1354t = 7分 当1354t =时, 41353454s =⨯=,答: 当小聪与小明迎面相遇时,他们离学校的路程是3千米. 8分6.(2010 浙江台州市)A ,B 两城相距600千米,甲、乙两车同时从A 城出发驶向B 城,甲车到达B 城后立即返回.如图是它们离A 城的距离y (千米)与行驶时间 x (小时)之间的函数图象.(1)求甲车行驶过程中y 与x 之间的函数解析式,并写出自变量x 的取值范围;(2)当它们行驶7了小时时,两车相遇,求乙车速度.【答案】(1)①当0≤x ≤6时,x y 100=;②当6<x ≤14时, 设b kx y +=,∵图象过(6,600),(14,0)两点, ∴⎩⎨⎧=+=+.014,6006b k b k 解得⎩⎨⎧=-=.1050,75b k∴105075+-=x y . ∴⎩⎨⎧≤<+-≤≤=).146(105075)60(100x x x x y(2)当7=x 时,5251050775=+⨯-=y ,757525==乙v (千米/小时).8.(2010 浙江衢州)(本题10分)小刚上午7:30从家里出发步行上学,途经少年宫时走了1200步,用时10分钟,到达学校的时间是7:55.为了估测路程等有关数据,小刚特意在学校的田径跑道上,按上学的步行速度,走完100米用了150步.(1) 小刚上学步行的平均速度是多少米/分?小刚家和少年宫之间、少年宫和学校之间的路程分别是多少米?(2) 下午4:00,小刚从学校出发,以45米/分的速度行走,按上学时的原路回家,在未到少年宫300米处与同伴玩了半小时后,赶紧以110米/分的速度回家,中途没有再停留.问:① 小刚到家的时间是下午几时?② 小刚回家过程中,离家的路程s (米)与时间t (分)之间的函数关系如图,请写出点B 的坐标,并求出线段CD 所在直线的函数解析式.【答案】解:(1) 小刚每分钟走1200÷10=120(步),每步走100÷150=23(米), 所以小刚上学的步行速度是120×23=80(米/分).小刚家和少年宫之间的路程是80×10=800(米).少年宫和学校之间的路程是80×(25-10)=1200(米).(2) ①1200300800300306045110-+++=(分钟), 所以小刚到家的时间是下午5:00.② 小刚从学校出发,以45米/分的速度行走到离少年宫300米处时实际走了900米,用时9002045=分,此时小刚离家1 100米,所以点B 的坐标是(20,1100). 线段CD 表示小刚与同伴玩了30分钟后,回家的这个时间段中离家的路程s (米)与行走时间t (分)之间的函数关系,由路程与时间的关系得 1100110(50)s t =--, 即线段CD 所在直线的函数解析式是6600110s t =-.(线段CD 所在直线的函数解析式也可以通过下面的方法求得: 点C 的坐标是(50,1100),点D 的坐标是(60,0)设线段CD 所在直线的函数解析式是s kt b =+,将点C ,D 的坐标代入,得 501100,600.k b k b +=⎧⎨+=⎩ 解得 110,6600.k b =-⎧⎨=⎩所以线段CD 所在直线的函数解析式是1106600s t =-+)9.(2010湖南邵阳)为了增强居民的节约用水的意识,某市制定了新的水费标准:每户每月用水量不超过5吨的部分,自来水公司按每吨2元收费;超过5吨的部分,按每吨2.6元收费。

设某用户月用水量x 吨,自来水公司的应收水费为y 元。

)(1)试写出y (元)与x (吨)之间的函数关系式;(2)该户今年5月份的用水量为8吨,自来水公司应收水费多少元?【答案】解:(1)当x ≤5时,y =2x当x >5时,y =10+(x-5)×2.6=2.6x-3 (2)因为x =8>5 所以y =2.6×8-3=17.3. 10.(2010重庆綦江县)“震灾无情人有情”,玉树地震牵动了全国人民的心,武警某部队接到命令,运送一批救灾物资到灾区,货车在公路A 处加满油后,以每小时60千米的速度匀速行驶,前往与A 处相距360千米的灾区B 处.下表记录的是货车一次加满油后油箱内余油量y (升)与行驶时间x (时)之间关系:(1)请你用学过的函数中的一种建立y 与x 之间的函数关系式,说明选择这种函数的理由;(不要求写出自变量的取值范围)(2)如果货车的行驶速度和每小时的耗油量都不变,货车行驶4小时后到达C 处,C 的前方12千米的D 处有一加油站,那么在D 处至少加多少升油,才能使货车到达灾区B 处卸去货物后能顺利返回D 处加油?(根据驾驶经验,为保险起见,油箱内余油量应随时不少于10升)【答案】解:(1)如图,把五组数据在直角坐标系中描出来,这五个点在一条直线上,所以y 与x 满足一次函数关系.x设y =kx +b ,(k ≠0) 则150,120b k b =⎧⎨=+⎩解得:30150k b =-⎧⎨=⎩,∴y =-30x +150(2)设在D 处至少加W 升油,根据题意得:123604601215043030302106060W -⨯--⨯-⨯+⨯⨯+≥. 解得:W ≥94答:D 处至少加94升油,才能使货车到达灾区B 地卸物后能顺利返回D 处加油.(说明:利用算术方法分段分析解答正确也给满分)11.(2010山东临沂)某中学九年级甲、乙两班商定举行一次远足活动,A 、B 两地相距10千米,甲班从A 地出发匀速步行到B 地,乙班从B 地出发匀速步行到A 地.两班同时出发,相向而行.设步行时间为x 小时,甲、乙两班离A 地的距离分别为1y 千米、2y 千米,1y 、2y 与x 的函数关系图象如图所示,根据图象解答下列问题:(1)直接写出1y 、2y 与x 的函数关系式;(2)求甲、乙两班学生出发后,几小时相遇?相遇时乙班离A 地多少千米?(3)甲、乙两班首次相距4千米时所用时间是多少小时?【答案】解:(1)y 1=4x (0≤x ≤2.5),y 2=-5x+10(0≤x ≤2)(2)根据题意可知:两班相遇时,甲乙离A 地的距离相等,即y 1=y 2,由此可得一元一次方程-5x+10=4x,解这个方程,得x=109(小时)。

当x=109时,y 2=--5×109+10=409(千米).(3)根据题意,得y 2 -y 1=4.即-5x+10-4x=4. 解这个方程,得x=23(小时)。

答:甲乙两班首次相距4千米所用时间是23小时。

14.(2010 广东珠海)今年春季,我国云南、贵州等西南地区遇到多少不遇旱灾,“一方有难,八方支援”,为及时灌溉农田,丰收农机公司决定支援上坪村甲、乙、丙三种不同功率柴油发电机共10台(每种至少一台)及配套相同型号抽水机4台、3台、2台,每台抽水机每小时可抽水灌溉农田1亩.现要求所有柴油发电机及配套抽水机同时工作一小时,灌溉农田32亩.(1)设甲种柴油发电机数量为x 台,乙种柴油发电机数量为y 台. ①用含x 、y 的式子表示丙种柴油发电机的数量; ②求出y 与x 的函数关系式;(2)已知甲、乙、丙柴油发电机每台每小时费用分别为130元、120元、100元,应如何安排三种柴油发电机的数量,既能按要求抽水灌溉,同时柴油发电机总费用W 最少? 【答案】解:(1)①丙种柴油发电机的数量为10-x-y ② ∵4x+3y+2(10-x-y)=32(第24题图)∴y=12-2x(2)丙种柴油发电机为10-x-y=(x-2)台W=130x+120(12-2x)+100(x-2) =-10x+1240依题意解不等式组1212121≥-≥-≥x x x 得:3≤x ≤5.5∵x 为正整数 ∴x=3,4,5∵W 随x 的增大而减少 ∴当x=5时 ,W 最少为-10×5+1240=1190(元)15.(2010年贵州毕节)某物流公司的快递车和货车每天往返于A、B 两地,快递车比货车多往返一趟.下图表示快递车距离A 地的路程y (单位:千米)与所用时间x (单位:时)的函数图象.已知货车比快递车早1小时出发,到达B 地后用2小时装卸货物,然后按原路、原速返回,结果比快递车最后一次返回A 地晚1小时.(1) 请在下图中画出货车距离A 地的路程y (千米)与所用时间x (时)的函数图象;(3分)(2) 求两车在途中相遇的次数(直接写出答案);(3分)(3) 求两车最后一次相遇时,距离A 地的路程和货车从A 地出发了几小时.(10分)【答案】解:(1)图象如图; (2)4次;(3)如图,设直线EF 的解析式为11y k x b =+,∵图象过(90),,(5200),,1111200509.k b k b =+⎧∴⎨=+⎩, 8分 1150450.k b =-⎧∴⎨=⎩,)时)50450y x ∴=-+.① 10分设直线CD 的解析式为22y k x b =+,∵图象过(80),,(6200),,2222200608.k b k b =+⎧∴⎨=+⎩,22100800.k b =-⎧∴⎨=⎩, 100800y x ∴=-+.②解由①,②组成的方程组得7100.x y =⎧⎨=⎩,∴最后一次相遇时距离A 地的路程为100km ,货车从A 地出发8小时.16.(2010浙江湖州)一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为x(时),两车之间的距离为y (千米),图中的折线表示从两车出发至快车到达乙地过程中y 与x 之间的函数关系.(1)根据图中信息,求线段AB 所在直线的函数解析式和甲乙两地之间的距离;(2)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t 时,求t 的值;(3)若快车到达乙地后立刻返回甲地,慢车到达甲地后停止行驶,请你在图中画出快车从乙地返回到甲地过程中y 关于x 的函数的大致图像. (温馨提示:请画在答题卷相对应的图上)(1.5,70)、(2,0),然后利用待定系数法,确定直线解析式即可.【答案】(1)线段AB 所在直线的函数解析式为:y =kx +b ,将(1.5,70)、(2,0)代入得: 1.57020k b k b +=⎧⎨+=⎩,解得:140280k b =-⎧⎨=⎩,所以线段AB 所在直线的函数解析式为:y =-140x +280,当x =0时,y =280,所以甲乙两地之间的距离280千米.(2)设快车的速度为m 千米/时,慢车的速度为n 千米/时,由题意得:222802240m n m n +=⎧⎨-=⎩,解得:8060m n =⎧⎨=⎩,所以快车的速度为80千米/时, 所以2807802t ==.(3)如图所示.17.(2010江苏常州)向阳花卉基地出售两种花卉——百合和玫瑰,其单价为:玫瑰4元/株,百合5元/株。

相关文档
最新文档