水质分析仪的工作原理及特点

合集下载

在线氨氮水质分析仪的工作原理及仪器性能

在线氨氮水质分析仪的工作原理及仪器性能

在线氨氮水质分析仪的工作原理及仪器性能在线氨氮水质分析仪主要应用于水处理、环境监测、污水处理、饮用水安全等领域。

它可以实时监测水体中的氨氮含量,帮助用户了解水体的污染程度,及时采取相应的措施进行处理。

在线氨氮水质分析仪的工作原理是通过测量水样中的氨氮浓度来评估水质的好坏。

它通常使用氨电极来测量水样中的氨氮浓度。

具体工作原理如下:氨电极:在线氨氮水质分析仪中包含一个氨电极,它是一个特殊的电极,可以测量水样中的氨氮浓度。

氨电极通常由一个玻璃膜和一个参比电极组成。

氨离子选择性膜:氨电极的玻璃膜上涂有一层氨离子选择性膜。

这层膜可以选择性地吸附和传递水样中的氨离子,而不吸附其他离子。

参比电极:氨电极中的参比电极用于提供一个稳定的电位参考,以确保测量的准确性和稳定性。

电位测量:当氨电极浸入水样中时,水样中的氨离子会与氨离子选择性膜发生反应,产生一个电位差。

这个电位差与水样中的氨氮浓度成正比。

信号转换:在线氨氮水质分析仪会将电位差转换为一个电信号,并通过内部的电路进行放大和处理。

数据显示和分析:经过处理的电信号将被转换为氨氮浓度,并在仪器的显示屏上显示出来。

同时,仪器还可以将数据传输到计算机或数据记录器上进行进一步的分析和记录。

在线氨氮水质分析仪的主要仪器性能包括:精确度:在线氨氮水质分析仪具有高精确度,能够准确测量水体中的氨氮含量,保证数据的可靠性。

稳定性:在线氨氮水质分析仪具有良好的稳定性,能够长时间稳定运行,不受外界环境的影响。

快速性:在线氨氮水质分析仪具有快速分析的特点,能够在短时间内完成水体中氨氮含量的测量,提高工作效率。

自动化:在线氨氮水质分析仪具有自动化的功能,能够自动采样、分析和记录数据,减少人工操作的工作量。

可靠性:在线氨氮水质分析仪具有高可靠性,能够长时间稳定运行,不易出现故障,保证数据的准确性。

总之,在线氨氮水质分析仪具有精确度高、稳定性好、快速性强、自动化程度高和可靠性好等优点,能够满足水处理、环境监测、污水处理、饮用水安全等领域的需求。

水分析仪原理

水分析仪原理

水分析仪原理水分析仪是一种用于测量水质成分的仪器,它可以通过不同的原理来分析水中的各种成分,包括溶解氧、pH值、浊度、电导率等。

水分析仪的原理可以分为物理原理和化学原理两大类。

首先,我们来看一下水分析仪的物理原理。

物理原理主要是利用物理性质来进行水质分析。

比如,浊度是指水中悬浮颗粒的多少和大小,可以通过光散射原理来测量。

水分析仪会发出一束光,当光线遇到悬浮颗粒时会发生散射,测量散射光的强度就可以得到水的浊度。

另外,电导率是指水中电导体的含量,可以通过电流通过水的电阻来测量。

水分析仪会通过两个电极之间施加电压,根据电流大小来计算水的电导率。

这些物理原理的应用使得水分析仪可以快速、准确地分析水质成分。

其次,化学原理也是水分析仪的重要原理之一。

化学原理主要是利用化学反应来进行水质分析。

比如,溶解氧是指水中溶解的氧气含量,可以通过化学氧化还原反应来测量。

水分析仪会将水样与氧化剂反应,根据反应产生的电流来计算溶解氧的含量。

另外,pH值是指水的酸碱度,可以通过酸碱指示剂的颜色变化来测量。

水分析仪会将水样与酸碱指示剂反应,根据颜色变化来计算水的pH值。

这些化学原理的应用使得水分析仪可以对水质成分进行全面、深入的分析。

综上所述,水分析仪的原理主要包括物理原理和化学原理两大类。

物理原理利用物理性质进行水质分析,如浊度和电导率;化学原理利用化学反应进行水质分析,如溶解氧和pH值。

水分析仪通过这些原理的应用,可以快速、准确地分析水质成分,为水质监测和水环境保护提供重要的技术支持。

希望本文对水分析仪的原理有所帮助,谢谢阅读。

水质分析仪的原理是怎样的?

水质分析仪的原理是怎样的?

水质分析仪的原理是怎样的?
水质分析仪采用自主专利的“自动进样及剂量计量”和“自动进样”稀释技术,加之优化的试剂配方;
结合其他专有技术,灵敏度和测量稳定性得到了大幅提高。

该仪器已广泛应用于环保、水利、市政以及科研教育等领域。

工作原理
钼黄法+分光光度法
在高温、高压和酸性条件下,过硫酸盐分解出的原子态氧将试样中含磷化合物中的磷元素转化为正磷酸盐;
正磷酸盐与偏钒酸铵和钼酸铵形成磷钒钼黄络合物,于420nm波长处测量其吸光度并换算成相应的浓度值。

钼蓝法(“过硫酸盐+加热+紫外”消解+钼蓝分光光度法)
在加热和紫外照射条件下,过硫酸盐分解出的原子态氧将含磷化合物中的磷元素转化为正磷酸盐(测量正磷酸盐无需此步骤);
在酸性介质和锑盐条件下,正磷酸盐与钼酸铵反应生成的磷钼杂多酸被抗坏血酸还原成蓝色的络合物,于700nm波长处测定其吸光度并换算成相应的浓度值。

标签:
水质分析仪。

水质重金属测定仪工作原理

水质重金属测定仪工作原理

水质重金属测定仪工作原理水质重金属测定仪是一种用于测定水中重金属含量的仪器,其工作原理主要涉及电化学分析和光谱分析两种方法。

本文将详细介绍水质重金属测定仪的工作原理,包括电化学分析和光谱分析的原理、仪器结构和测定过程等内容。

一、电化学分析原理(一)极谱法原理极谱法是水质重金属测定仪中常用的一种电化学分析方法,其原理是利用工作电极与参比电极之间的电势差来测定水中重金属离子的浓度。

该方法适用于测定微量至痕量重金属离子。

1. 工作电极水质重金属测定仪的工作电极一般采用玻碳电极或汞膜电极,其表面常常涂有一层合成膜以增加灵敏度和增加选择性。

2. 参比电极参比电极的作用是提供一个稳定的参比电位,通常采用饱和甘汞电极或银/氯化银电极。

3. 测定过程水样中的重金属离子在适当的电位下,通过工作电极和参比电极之间的电流来测定其浓度,进而得到水样中重金属离子的含量。

(二)安培法原理安培法是另一种常用的电化学分析方法,它利用电流与溶液中物质的化学反应质量关系来测定水样中的重金属含量。

安培法适用于测定重金属离子的量较大时。

1. 电化学反应安培法通常利用溶液中重金属离子的还原反应与电流之间的关系来测定其含量。

通过在特定电位下施加电压,使重金属离子发生还原反应,并测定所产生的电流大小,从而计算出重金属的含量。

2. 仪器结构安培法测定仪一般由工作电极、对电极、参比电极和电化学细胞等部分构成。

工作电极用于引发电化学反应,对电极则用于收集电流信号,参比电极则提供一个稳定的电位作为基准电位。

二、光谱分析原理光谱分析是另一种常用的水质重金属测定仪的工作原理,它可以通过测定水样中重金属离子对特定波长的吸收或发射来测定其含量。

常用的光谱分析方法包括原子吸收光谱法和荧光光谱法。

1. 原子吸收光谱法原子吸收光谱法利用重金属离子对特定波长的光的吸收来测定其含量。

水样中的重金属离子被转化为原子态后,在特定波长的光下会吸收能量,测定被吸收的光能量与重金属浓度的关系,从而得到重金属的含量。

CODet-5000-CODcr型CODcr在线分析仪

CODet-5000-CODcr型CODcr在线分析仪

CODet-5000-CODcr型CODcr在线分析仪一、系统简介:CODet-5000水质分析仪是一种新型的用于测量污水化学需氧量的全自动在线分析仪,CODet-5000采用最新的光电计量、高温高压消解、消解比色一体化等技术,具有测量准确、检出限低、可靠性高、适应性强等特点。

它符合国家环保局发布的铬法测试标准,获得了国家相关部门的计量证书。

仪器所使用的试剂均可按国家相关标准自行配置CODet-5000可广泛应用于污染源水监测/工业生产过程用水/工业和市政污水处理等各个领域。

二、分析原理:依据: 国标GB11914-1989 水质化学需氧量测定,重铬酸钾法环境保护行业标准HJ/T 377-2007 化学需氧量(CODcr)水质在线自动监测仪技术要求在水样中加入定量的重铬酸钾,并在强酸条件下以银盐为催化剂,经过高温消解,水样中的耗氧有机物和还原物质将Cr6+还原为Cr3+,通过光电比色,测得Cr6+的减少量,将样品测得的值和标准样测得的校正曲线进行比较,即可求的样品中的COD值。

三、结构尺寸:四、技术参数:1、测量方法:国标GB11914-89水质化学需氧量-重铬酸钾法2、不确定度:精确性>100mg/L时,<测量值的10%;<100mg/L时,<6mg/L重复性>100mg/L时,<测量值的5%;<100mg/L时,<5mg/L3、测量量程:0-1000-5000mg/L,其他量程可定制4、消解时间:3、5、20、30、40、60、80、100或120min可选5、测量间隔:连续、1、2、3...24小时,也可以通过串口触发6、零点漂移:±5mg/L7、量程漂移:±10%8、试剂用量:24个样/天,每套试剂可使用1个月9、对外接口:模拟量输出:2路4-20mA输出,最大负载500欧姆模拟量输入:4路4-20mA模拟量输入(兼容0-5V输入)继电器输出:4路,可灵活配置通讯接口:RS485/RS232/USB接口10、维护工作量:<1个小时/月11、工作温度:5-40℃12、功耗:200W(220VAC 50Hz),不考虑抽水泵五、系统特点:1、光电非接触式计量,计量精度高、运行可靠性高2、单次做样液体总量<9ml,费用约为0.5元人民币/次,运维成本低3、一体化消解/比色模块(专利技术),高温(170ºC)、高压密闭消解后直接测量,结构小巧,消解完全、效率高4、采用高分辨率工业级彩色触控屏,操作方便、信息量丰富。

水质分析仪的工作原理及参数

水质分析仪的工作原理及参数

水质分析仪的工作原理及参数为了保护水环境,必需加强对污水排放的监测。

检测点的设计和检测仪表(紧要是水质分析仪)的质量对水环境监测起着至关紧要的作用。

用化学和物理方法测定水中各种化学成分的含量。

水质分析仪的工作原理水质分析仪分为简分析、全分析和专项分析三种。

简分析在野外进行,分析项目少,但要求快而适时,适用于初步了解大面积范围内各含水层中地下水的紧要化学成分专项分析的项目依据实在任务的需要而定。

另全自动离子分析仪可快速而精准的定性定量分析,并可全自动、智能化、实时在线、多参数同时进行分析。

水质分析仪紧要接受离子选择电极测量法来实现精准明确检测的。

仪器上的电极:PH、氟、钠、钾、钙、镁和参比电极。

每个电极都有一离子选择膜,会与被测样本中相应的离子产生反应,膜是一离子交换器,与离子电荷发生反应而更改了膜电势,就可检测液,样本和膜间的电势。

膜两边被检测的两个电势差值会产生电流,样本,参考电极,参考电极液构成“回路”一边,膜,内部电极液,内部电极为另一边。

内部电极液和样本间的离子浓度差会在工作电极的膜两边产生电化学电压,电压通过高传导性的内部电极引到到放大器,参考电极同样引到放大器的地点。

通过检测一个精准明确的已知离子浓度的标准溶液获得定标曲线,从而检测样本中的离子浓度。

溶液中被测离子接触电极时,在离子选择电极基质的含水层内发生离子迁移。

迁移的离子的电荷更改存在着电势,因而使膜面间的电位发生变化,在测量电极与参比电极间产生一个电位差。

在线水质分析仪的参数水质参数紧要是COD、氨氮、总磷、总氮和重金属等。

同时对于数据的精准度要求更高。

目前,在我国过程型在线水质分析仪的典型应用有:石油化工行业,在线TOC分析仪已经成为凝结水回用所接受的标准配置;在自来水行业,接受氯及氯胺工艺的水厂接受在线消毒剂分析仪,如余氯、氯胺分析仪,从而实现节省水处理化学品,降低运行费用。

制药工业,在线TOC分析仪的使用也成为了制药用水有机杂质监测和掌控的紧要手段;在市政污水处理行业及水产养殖行业,溶解氧的在线监测降低了能耗和运行费用,同时保证了水质的达标。

总磷在线水质分析仪器的工作原理

总磷在线水质分析仪器的工作原理

总磷在线水质分析仪器的工作原理总磷是什么?水中磷可以元素磷、正磷酸盐、缩合磷酸盐、焦磷酸盐、偏磷酸盐和有机团结合的磷酸盐等形式存在。

总磷的重要来源为生活污水、化肥、有机磷农药及近代洗涤剂所用的磷酸盐增洁剂等。

总磷是水样经消解后将各种形态的磷变化成正磷酸盐后测定的结果,以每升水样含磷毫克数计量。

1、方法原理在酸性条件下,正磷酸盐与钼酸铵、酒石酸锑氧钾反应,生成磷钼杂多酸,被还原剂抗坏血酸还原,则变成蓝色络合物,通常集成磷钼蓝。

本方法检出浓度为0.01mg/L(吸光度A=0.01时所对应的浓度);测定上限为0.6mg/L。

可适用于测定地面水、生活污水及日化、磷肥、机加工金属表面磷化处理、农药、钢铁、焦化等行业的工业废水中的正磷酸盐分析。

2、仪器分光光度计3、试剂(1)1+1硫酸。

(2)10%(m/V)抗坏血酸溶液:溶解10g抗坏血酸于水中,并稀释至100ml。

该溶液储存在棕色玻璃瓶中,在冷处可稳定几周。

如颜色变黄,则弃去重配。

(3)钼酸盐溶液:溶解13g钼酸铵[(NH4)6Mo7O24·4H2O]于100ml水中。

溶解0。

35g酒石酸锑氧钾[K(SbO)C4H4O6·1/2H2O]于100ml水中。

在不断的搅拌下,将钼酸铵溶液缓缓加到300ml(1+1)硫酸中,加酒石酸锑钾溶液并且混合均匀。

试剂贮存在棕色的玻璃瓶中于冷处保存。

至少稳定2个月。

(4)浊度色度补偿液:混合两份体积的(1+1)硫酸和一份体积的10%(m/V)抗坏血酸溶液。

此溶液当天配制。

(5)磷酸盐储备溶液:将磷酸二氢钾(KH2PO4)于110°C干燥2h,在干燥器中放冷。

称取0.217g溶于水,移入1000ml容量瓶中。

加(1+1)硫酸5ml,用水稀释至标线。

此溶液每毫升50.0ug磷。

(6)磷酸盐标准溶液:吸取10.00ml磷酸盐储备液于250ml容量瓶中,用水稀释至标线。

此溶液每毫升含2.00ug磷。

临用时现配。

水质分析仪工作原理

水质分析仪工作原理

水质分析仪工作原理
1.氧化还原电位ORP:氧化还原电位能帮助我们了解水体中存在什么样的氧化物质或还原物质及其存在量,是水体的综合指标之一,水体中的还原电位表示该水体放出或获得电子的趋势,在氧化还原反应中,还原剂失去电子,氧化剂得到电子,其反应式为:Red=Qx+ne
式中:Red——还原态;
Qx——氧化态;
ne——电子。

该体系的氧化还原电位可用能斯特方程式表示
E=E0 + LnX (X=[Qx/Red])
式中:
n——参加反应的电子数;
R——气体常数;
T——绝对温度(K);
F——法拉弟常数。

水体的氧化还原电位测定方法,是用稀有金属(铂)作指示电极,饱和甘汞或银/氯化银电极作参比电极,测定相对于甘汞或银/氯化银电极的氧化还原电位值,然后再换算成相对于标准氢电极的氧化还原电位值作为报告结果。

通常与大气接触的水,其氧化还原电位值在0.3~0.5V。

缺氧水在
0~0.2V,污浊水可至-0.15V。

1.氧化还原电位ORP:
氧化还原电位能帮助我们了解水体中存在什么样的氧化物质或还原物质及其存在量,是水体的综合指标之一,水体中的还原电位表示该水体放出或获。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水质分析仪的工作原理及特点
一、前言
随着近年来我国经济的快速发展,城市的工业和生活垃圾大量增加,目前对垃圾进行处理的主要方法是卫生填埋,而进行填埋都是露天作业,垃圾经压实后,随着垃圾中生物的分解及遇到雨雪天气时,雨水和雪水渗入填埋区,会产生垃圾渗滤液。

渗滤液属高浓度有机废水,浓度值变化范围大,其中含碳氢化合物、硝酸盐、硫酸盐及微量铜、镉、铅等重金属离子,细菌指标很高,如不进行处理直接排入水体,将严重污染当地的水环境。

为了保护水环境,必须加强对污水排放的监测。

检测点的设计和检测仪表(主要是水质分析仪)的质量对水环境监测起着至关重要的作用,本文结合某一污水处理厂的设计谈谈这方面体会。

二、水质分析仪的工作原理
污水处理厂使用的分析仪有两种:pH计和溶氧分析仪。

1、pH计的工作原理
水的pH值随着所溶解的物质的多少而定,因此pH值能灵敏地指示出水质的变化情况。

pH值的变化对生物的繁殖和生存有很大影响,同时还严重影响活性污泥生化作用,即影响处理效果,污水的pH值一般控制在6.5~7之间。

水在化学上是中性的,某些水分子自发地按照下式分解:H2O=H++OH-,即分解成氢离子和氢氧根离子。

在中性溶液中,氢离子H+和氢氧根离子OH-的浓度都是10-7mol/l,pH值是氢离子浓度以10为底的对数的负数:pH=-log,因此中性溶液的pH值等于7。

如果有过量的氢离子,则pH值小于7,溶液呈酸性;反之,氢氧根离子过量,则溶液呈碱性。

pH值通常用电位法测量,通常用一个恒定电位的参比电极和测量电极组成一个原电池,原电池电动势的大小取决于氢离子的浓度,也取决于溶液的酸碱度。

该厂采用了CPS11型pH传感器和CPM151型pH 变送器。

具体结构如图1所示,测量电极上有特殊的对pH反应灵敏的玻璃探头,
它是由能导电、能渗透氢离子的特殊玻璃制成,具有测量精度高、抗干扰性好等特点。

当玻璃探头和氢离子接触时,就产生电位。

电位是通过悬吊在氯化银溶液中的银丝对照参比电极测到的。

pH值不同,对应产生的电位也不一样,通过变送器将其转换成标准4~20mA输出。

2、溶氧分析仪的工作原理
水中的氧含量可充分显示水自净的程度。

对于使用活化污泥的生物处理厂来说,了解曝气池和氧化沟的氧含量非常重要,污水中溶氧增加,会促进除厌氧微生物以外的生物活动,因而能去除挥发性物质和易于自然氧化的离子,使污水得到净化。

测定氧含量主要有三种方法:自动比色分析和化学分析测量,顺磁法测量,电化学法测量。

水中溶氧量一般采用电化学法测量。

麦该厂采用了COS 4型溶氧传感器和COM252型溶氧变送器。

氧能溶于水,溶解度取决于温度、水表面的总压、分压和水中溶解的盐类。

大气压力越高,水溶解氧的能力就越大,其关系由亨利(Henry)定律和道尔顿(Dalton)定律确定,亨利定律认为气体的溶解度与其分压成正比。

以COS 4氧量测量传感器为例,结构如图2所示。

其中的电极由阴极(常用金和铂制成)和带电流的反电极(银)、无电流的参比电极(银)组成,电极浸没在电解质如KCl、KOH中,传感器有隔膜覆盖,隔膜将电极和电解质与被测量的液体分开,因此保护了传感器,既能防止电解质逸出,又可防止外来物质的侵入而导致污染和毒化。

向反电极和阴极之间施加极化电压,假如测量元件浸入在有溶解氧的水中,氧会通过隔膜扩散,出现在阴极上(电子过剩)的氧分子就会被还原成氢氧根离子: O2+2H2O+4e-&reg; 4OH-。

电化学当量的氯化银沉淀在反电极上(电子不足):4Ag+4Cl-&reg; 4AgCl+4e-。

对于每个氧分子,阴极放出4个电子,反电极接受电子,形成电流,电流的大小与被测图1 pH测量电极(左)和参比电极(右)的结构图2 三电极COS溶氧传感器结构图污水的氧分压成正比,该信号连同传感器上热电阻测出的温度信号被送入变送器,利用传感器中存储的含氧量和氧分压、温度之间的关系曲线计算出水中的含氧量,然后转化成标准信号输出。

参比电极的功能是确定阴极电位。

COS 4溶氧传感器的响应时间为:3分钟后达到最终测量值的90%,9分钟后达到最终测量值的99%;最低流速要求为0.5cm/s。

三、特点
1、pH计的特点
pH电极上的玻璃随着时间推移会逐渐老化,梯度(单位pH值变化所引起的电极输出电位的变化值)恶化,花费较长时间才能达到稳定电位。

一般电极的使用寿命,可达两年。

另外,温度对老化也有较大影响,100℃下贮存几周的老化程度相当于室温下贮存一年的老化程度。

pH计具有高精度、高可靠性、安装及维护方便等优点,同时对污染也较敏感,需要经常标定,一般每隔一个到一个半月标定一次,每两年更换一次电极。

2、溶氧仪的特点
溶氧仪具有安装方便,标定周期长(3~4个月),对其他物质不敏感等特点,并且能监测隔膜和探头内电解质的使用情况,一般每一至三年更换一次电解质和隔膜。

COM252型溶氧变送器属智能化仪表,带有HART或Profibus 通讯协议,还具有自诊断功能,当发生故障时,会显示故障代码,提示维护人员故障所在,通过查维护手册找出解决故障的办法,大大降低了维护时间和工作量。

四、安装及维护
1、pH计的安装和维护
pH计的安装方式有流通式和浸入式两种。

污水处理厂一般选用的是浸入式安装,如该污水处理厂的pH计安装在氧化沟的出口溢流槽内,此处的pH 值较具有代表性,且水流平稳,对pH计不会造成大的冲击。

定期的维护有助于仪表的准确测量和延长仪表的使用寿命。

应当注意传感器和变送器之间的专用电缆不能受潮,否则电极的高阻低压信号将无法传送至变送器。

若电极不测量时,应将黄色保护套管套上,它能使电极处于湿润状态,有利于延长电极的使用寿命。

每隔一个月左右,应对电极进行清洗,先用柔和的水流喷洗附着物,再将电极浸泡于清洗液中一段时间,而后用清水洗净。

传感器支架也应清洗。

每次清洗之后,要用缓冲剂溶液进行标定,目前国产的pH标定液中,pH=4的还可以,pH=7的不
够准确,将会影响标定结果。

所以最好使用生产厂家的标定液,生产厂家一般提供两瓶标准溶液,一瓶pH值等于7,用于标定仪表零点;一瓶pH等于4,用于标定仪表的信号输出斜率。

2、溶氧仪的安装和维护
溶氧仪一般采用浸入式安装,在此应注意,一定要选用原厂的安装支架。

厂家配带的安装支架为不锈钢制成,带有塑料链条,通过调整链条长度可以改变传感器的浸入深度,支架上的引导管保证了传感器始终处于垂直位置。

支架部分都经过特殊设计,它可以将水面的波动传至浸入管,从而引起浸入管的轻微振动,使得通过浸入管在探头的表面产生一个附加的清洗效果。

有的用户为了减少投资,自己制作安装支架,往往导致支架上的浸入管和传感器之间密封不严,污水渗入,使得专用电缆和传感器的连接处长期浸泡在污水中,容易造成传感器的损坏;有的甚至不做安装支架,直接将传感器投入水中,这样在传感器和电缆之间会形成较大的拉力,传感器更容易损坏。

溶解氧探头每周应用水轻轻清洗,发现膜头损坏应及时更换,电解液受污染也应及时更换。

当污水中含有H2S、NH3、苯或
酚这些成份时,对膜头是有害的。

在这种场合下必须经常更换膜头。

判断探头中电极的好坏只需看颜色即可,参考电极应是黑灰色,阴极(金电极)应呈黄色,而反电极必须发亮,否则应进行清洗或再生。

五、结束语
随着我国对水资源保护的日益重视,污水的净化处理显得越来越重要,而与之配套的处理过程所需的检测仪表是必不可少的。

水质分析仪作为污水处理行业中最重要的仪表,除了选型和安装正确以外,定期的维护和标定也十分重要,而且是使仪表能够真正发挥作用的关键所在.
氟离子选择电极法因具有电极结构简单牢固、元件灵巧、灵敏度高、响应速度快、便于携带、操作简单、能克服色泽干扰以及精度高等优点而被广泛应用。

目前,氟离子选择电极法有着逐步取代比色法的趋势。

但是,在氟离子选择电极的测试过程中,除了严格按照标准规定的方法进行操作外,还需对参比电极和氟离子选择电极的特性及其使用要求有着全面的了解,否则,往往会出现准确度、精密度(包括再现性和重现性)达不到要求而不知原因所在等问题。

相关文档
最新文档