高中数学必修2立体几何专题

合集下载

高中数学必修2立体几何专题二面角典型例题解法总结(最新整理)

高中数学必修2立体几何专题二面角典型例题解法总结(最新整理)

AA 1 =2, E、E 1 、F 分别是棱 AD、AA 1 、AB 的中点。
D1
A1 (1) 证明:直线 EE 1 //平面 FCC 1 ;
C1 B1
(2) 求二面角 B-FC 1 -C 的余弦值。
E1
D
E
A
F
C B
证(1)略 解 ( 2) 因 为 AB=4, BC=CD=2, 、 F 是 棱 AB 的 中 点 ,所 以 A1 BF=BC=CF,△BCF 为正三角形,取 CF 的中点 O,则 OB⊥CF,又因
分析:本题是一道典型的利用三垂线定理求二面角问题,在证明 AD⊥平面 PAB 后,容易发现平面 PAB⊥ 平面 ABCD,点 P 就是二面角 P-BD-A 的半平面上的一个点,于是可过点 P 作棱 BD 的垂线,再作平面 ABCD
的垂线,于是可形成三垂线定理中的斜线与射影内容,从而可得本解法。(答案:二面角 P BD A 的大
2 ,则 GF
2

2
又∵ SA AC 6 ,∴ AM 2 ,∵ AM AB 2 , ABM 600 ∴△ ABM 是等边三角形,∴
BF 3 。在△ GAB 中, AG 6 , AB 2 , GAB 900 ,∴ BG 3 4 11
2
2
2
cos BFG GF 2 FB 2 BG 2
6
,求二面角 E—AF—C 的余弦值.
2
分析:第 1 题容易发现,可通过证 AE⊥AD 后推出 AE⊥平面 APD,使命 题获证,而第 2 题,则首先必须在找到最大角正切值有关的线段计算出各线段的长度之后,考虑到运用在 二面角的棱 AF 上找到可计算二面角的平面角的顶点 S,和两边 SE 与 SC,进而计算二面角的余弦值。(答

高中数学必修2立体几何专题线面角典型例题求法总结

高中数学必修2立体几何专题线面角典型例题求法总结

线面角的求法1.直接法 :平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。

通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。

例1 ( 如图1 )四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。

(2)SC 与平面ABC 所成的角。

BMHSCA解:(1) ∵SC ⊥SB,SC ⊥SA,图1∴SC ⊥平面SAB 故 SB 是斜线BC 在平面SAB 上的射影, ∴∠SBC 是直线BC 与平面SAB 所成的角为60°。

(2) 连结SM,CM ,则SM ⊥AB,又∵SC ⊥AB,∴AB ⊥平面SCM, ∴面ABC ⊥面SCM过S 作SH ⊥CM 于H, 则SH ⊥平面ABC ∴CH 即为 SC 在面ABC 内的射影。

∠SCH 为SC 与平面ABC 所成的角。

sin ∠SCH=SH /SC∴SC 与平面ABC 所成的角的正弦值为√7/7(“垂线”是相对的,SC 是面 SAB 的垂线,又是面 ABC 的斜线. 作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。

) 2. 利用公式sin θ=h /ι其中θ是斜线与平面所成的角, h 是 垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。

例2 ( 如图2) 长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角。

A 1C 1D 1H4C123BAD解:设点 B 到AB 1C 1D 的距离为h ,∵V B ﹣AB 1C 1=V A ﹣BB 1C 1∴1/3 S △AB 1C 1·h= 1/3 S △BB 1C 1·AB,易得h=12/5 ,设AB 与 面 A B 1C 1D 所成的角为θ,则sin θ=h /AB=4/5,∴AB 与面AB 1C 1D 所成的角为arcsin0.83. 利用公式cos θ=cos θ1·cosθ2(如图3) 若 OA 为平面的一条斜线,O 为斜足,OB 为OA 在面α内的射影,OC 为面α内的一条直线,其中θ为OA 与OC 所成的角,B αOAC图3θ1为OA 与OB 所成的角,即线面角,θ2为OB 与OC 所成的角,那么 cos θ=cos θ1·cosθ2,它揭示了斜线和平面所成的角是这条斜线和这个平面内的直线所成的一切角中最小的角(常称为最小角定理)1.平面的斜线和平面所成的角:已知,如图,AO 是平面α的斜线,A 是斜足,OB 垂直于平面α,B 为垂足,则直线AB 是斜线在平面α内的射影。

高一数学必修2立体几何知识点详细总结

高一数学必修2立体几何知识点详细总结

立体几何一、立体几何网络图:(1)线线平行的判断:⑴平行于同一直线的两直线平行。

⑶如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

⑹如果两个平行平面同时和第三个平面相交,那么它们的交线平行。

⑿垂直于同一平面的两直线平行。

(2)线线垂直的判断:⑺在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。

⑻在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直。

⑽若一直线垂直于一平面,这条直线垂直于平面内所有直线。

补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。

(3)线面平行的判断:⑵如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。

⑸两个平面平行,其中一个平面内的直线必平行于另一个平面。

(4)线面垂直的判断:⑼如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面。

⑾如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。

⒁一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。

⒃如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面。

(5)面面平行的判断:⑷一个平面内的两条相交直线分别平行于另一个平面,这两个平面平行。

⒀垂直于同一条直线的两个平面平行。

(6)面面垂直的判断:⒂一个平面经过另一个平面的垂线,这两个平面互相垂直。

二、其他定理:(1)确定平面的条件:①不公线的三点;②直线和直线外一点;③相交直线;(2)直线与直线的位置关系:相交;平行;异面;直线与平面的位置关系:在平面内;平行;相交(垂直是它的特殊情况);平面与平面的位置关系:相交;;平行;(3)等角定理:如果两个角的两边分别平行且方向相同,那么这两个角相等;如果两条相交直线和另外两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等;(4)射影定理(斜线长、射影长定理):从平面外一点向这个平面所引的垂线段和斜线段中,射影相等的两条斜线段相等;射影较长的斜线段也较长;反之,斜线段相等的射影相等;斜线段较长的射影也较长;垂线段比任何一条斜线段都短。

高中数学必修2立体几何专题-线面、面面垂直专题总结

高中数学必修2立体几何专题-线面、面面垂直专题总结
又∵AD⊥BC,∴AD⊥平面SBC.
∵AD平面ABC,
∴平面ABC⊥平面SBC.
证法二:∵SA=SB=SC=a,又 ∠ASB=∠ASC=60°, ∴△ASB,△ASC都是等边三角形. ∴AB=AC=a. 作AD⊥平面BSC于点D, ∵AB=AC=AS, ∴D为△BSC的外心. 又∵△BSC是以BC为斜边的直角三角形,
2 3
.
即CE与底面BCD所成角的正弦值为
2 3
.
【评析】求平面的斜线与平面所成的角的一般方法是: 在斜线上找一具有特殊性的点,过该点向平面作垂线, 连接垂足和斜足,即为斜线在平面上的射影,进而作出 斜线与平面所成的角,再解直角三角形求出线面角的大 小,同时要注意其取值范围.
在三棱锥O—ABC中,三条棱OA,OB,OC两两
又∵CE∩BE=E,
∴SA⊥平面BCE.∵BC平面BCE,
图2-4-2
返回目录
∴SA⊥BC. 又∵AD⊥BC,AD∩AS=A, ∴BC⊥平面SAD.
∵SH 平面SAD,∴SH⊥BC.
又∵SH⊥AD,AD∩BC=D, ∴SH⊥平面ABC.
【评析】证明线面垂直,需先有线线垂直,抓住条件中 两个等腰三角形共用一条边,抓住公共边的中点,通过 作辅助平面,找到所需要的另一条直线.
【分析】欲证面面垂直,需证线面垂直.故找出垂线是关键.
【证明】证法一:如图1-10-4所示,取BC的中点D,连
接AD,SD.
由题意知△ASB与△ASC是等边三角形,则AB=AC,
∴AD⊥BC,SD⊥BC. 令SA=a,在△SBC中,SD=2 a,
2
又AD=AC2 -CD=2 a,2
2
∴AD2+SD2=SA2,即AD⊥SD.

高中数学必修二第八章立体几何初步考点精题训练(带答案)

高中数学必修二第八章立体几何初步考点精题训练(带答案)

高中数学必修二第八章立体几何初步考点精题训练单选题1、南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔148.5m时,相应水面的面积为140.0km2;水位为海拔157.5m时,相应水面的面积为180.0km2,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔148.5m上升到157.5m时,增加的水量约为(√7≈2.65)()A.1.0×109m3B.1.2×109m3C.1.4×109m3D.1.6×109m3答案:C分析:根据题意只要求出棱台的高,即可利用棱台的体积公式求出.依题意可知棱台的高为MN=157.5−148.5=9(m),所以增加的水量即为棱台的体积V.棱台上底面积S=140.0km2=140×106m2,下底面积S′=180.0km2=180×106m2,∴V=13ℎ(S+S′+√SS′)=13×9×(140×106+180×106+√140×180×1012)=3×(320+60√7)×106≈(96+18×2.65)×107=1.437×109≈1.4×109(m3).故选:C.2、如图已知正方体ABCD−A1B1C1D1,M,N分别是A1D,D1B的中点,则()A.直线A1D与直线D1B垂直,直线MN//平面ABCDB.直线A1D与直线D1B平行,直线MN⊥平面BDD1B1C.直线A1D与直线D1B相交,直线MN//平面ABCDD.直线A1D与直线D1B异面,直线MN⊥平面BDD1B1答案:A分析:由正方体间的垂直、平行关系,可证MN//AB,A1D⊥平面ABD1,即可得出结论.连AD1,在正方体ABCD−A1B1C1D1中,M是A1D的中点,所以M为AD1中点,又N是D1B的中点,所以MN//AB,MN⊄平面ABCD,AB⊂平面ABCD,所以MN//平面ABCD.因为AB不垂直BD,所以MN不垂直BD则MN不垂直平面BDD1B1,所以选项B,D不正确;在正方体ABCD−A1B1C1D1中,AD1⊥A1D,AB⊥平面AA1D1D,所以AB⊥A1D,AD1∩AB=A,所以A1D⊥平面ABD1,D1B⊂平面ABD1,所以A1D⊥D1B,且直线A1D,D1B是异面直线,所以选项C错误,选项A正确.故选:A.小提示:关键点点睛:熟练掌握正方体中的垂直、平行关系是解题的关键,如两条棱平行或垂直,同一个面对角线互相垂直,正方体的对角线与面的对角线是相交但不垂直或异面垂直关系.3、在正方体ABCD −A 1B 1C 1D 1中,三棱锥A −B 1CD 1的表面积为4√3,则正方体外接球的体积为( )A .4√3πB .√6πC .32√3πD .8√6π答案:B解析:根据三棱锥的表面积进一步求出正方体的棱长,最后求出正方体的外接球的半径,进一步求出结果. 解:设正方体的棱长为a ,则B 1D 1=AC =AB 1=AD 1=B 1C =D 1C =√2a ,由于三棱锥A −B 1CD 1的表面积为4√3,所以S =4S △AB 1C =4×12×√32(√2a)2=4√3所以a =√2所以正方体的外接球的半径为√(√2)2+(√2)2+(√2)22=√62, 所以正方体的外接球的体积为43π·(√62)3=√6π故选:B .小提示:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.4、已知三棱锥P −ABC ,其中PA ⊥平面ABC ,∠BAC =120°,PA =AB =AC =2,则该三棱锥外接球的表面积为( )A .12πB .16πC .20πD .24π答案:C分析:根据余弦定理、正弦定理,结合球的性质、球的表面积公式进行求解即可.根据题意设底面△ABC 的外心为G ,O 为球心,所以OG ⊥平面ABC ,因为PA ⊥平面ABC ,所以OG//PA ,设D 是PA 中点,因为OP =OA ,所以DO ⊥PA ,因为PA ⊥平面ABC ,AG ⊂平面ABC ,所以AG ⊥PA ,因此OD//AG ,因此四边形ODAG 是平行四边形,故OG =AD =12PA =1,由余弦定理,得BC =√AB 2+AC 2−2AB ⋅AC ⋅cos120°=√4+4−2×2×2×(−12)=2√3,由正弦定理,得2AG =√3√32⇒AG =2,所以该外接球的半径R 满足R 2=(OG )2+(AG )2=5⇒S =4πR 2=20π,故选:C .小提示:关键点睛:运用正弦定理、余弦定理是解题的关键.5、牟合方盖是由我国古代数学家刘徽首先发现并采用的一种用于计算球体体积的方法,该方法不直接给出球体的体积,而是先计算牟合方盖的体积.刘徽通过计算,“牟合方盖”的体积与球的体积关系为V 牟V 球=4π,并且推理出了“牟合方盖”的八分之一的体积计算公式,即V 牟8=r 3−V 方盖差,从而计算出V 球=43πr 3.如果记所有棱长都为r 的正四棱锥的体积为V ,则V 方差盖:V =( )A.√22B.1C.√2D.2√2答案:C分析:计算出V方盖差,V,即可得出结论.由题意,V方盖差=r3−18V牟=r3−18×4π×43×π×r3=13r3,所有棱长都为r的正四棱锥的体积为V正=13×r×r×r2−(√2r2)2=√26r3,∴V方盖差V正=13r3√2r36=√2,故选:C.6、如图,已知正方体的棱长为a,沿图1中对角面将它分割成两个部分,拼成如图2的四棱柱,则该四棱柱的全面积为()A.(8+2√2)a2B.(2+4√2)a2C.(4+2√2)a2D.(6−4√2)a2答案:C分析:拼成的几何体比原正方体的表面增加了两个截面,减少了原来两个正方形面,据此变化,进行求解. 由题意,拼成的几何体比原正方体的表面增加了两个截面,减少了原来两个正方形面,由于截面为矩形,长为√2a,宽为a,所以面积为√2a2,所以拼成的几何体的表面积为4a2+2√2a2=(4+2√2)a2.故选:C.7、如图所示的正方形SG1G2G3中,E , F分别是G1G2,G2G3的中点,现沿SE,SF,EF把这个正方形折成一个四面体,使G1,G2,G3重合为点G,则有()A.SG⊥平面EFG B.EG⊥平面SEFC.GF⊥平面SEF D.SG⊥平面SEF答案:A解析:根据正方形的特点,可得SG⊥FG,SG⊥EG,然后根据线面垂直的判定定理,可得结果. 由题意:SG⊥FG,SG⊥EG,FG∩EG=G,FG,EG⊂平面EFG所以SG⊥平面EFG正确,D不正确;.又若EG⊥平面SEF,则EG⊥EF,由平面图形可知显然不成立;同理GF⊥平面SEF不正确;故选:A小提示:本题主要考查线面垂直的判定定理,属基础题.8、如图,PA垂直于矩形ABCD所在的平面,则图中与平面PCD垂直的平面是()A.平面ABCD B.平面PBCC.平面PAD D.平面PCD答案:C分析:由线面垂直得到线线垂直,进而证明出线面垂直,面面垂直.因为PA⊥平面ABCD,CD⊂平面ABCD,所以PA⊥CD,由四边形ABCD为矩形得CD⊥AD,因为PA∩AD=A,所以CD⊥平面PAD.又CD⊂平面PCD,所以平面PCD⊥平面PAD.故选:C多选题9、沙漏是古代的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道全部流到下部容器所需要的时间称为该沙漏的一个沙时.如图,某沙漏由上(细管长度忽略不下两个圆锥组成,圆锥的底面直径和高均为8cm,细沙全部在上部时,其高度为圆锥高度的23计).假设该沙漏每秒钟漏下0.02cm3的沙,且细沙全部漏入下部后,恰好堆成一个盖住沙漏底部的圆锥形沙堆.以下结论正确的是()A.沙漏中的细沙体积为1024πcm381B.沙漏的体积是128πcm3C.细沙全部漏入下部后此锥形沙堆的高度约为2.4cmD.该沙漏的一个沙时大约是1565秒(π≈3.14)答案:AC解析:A.根据圆锥的体积公式直接计算出细沙的体积;B.根据圆锥的体积公式直接计算出沙漏的体积;C.根据等体积法计算出沙堆的高度;D.根据细沙体积以及沙时定义计算出沙时.A.根据圆锥的截面图可知:细沙在上部时,细沙的底面半径与圆锥的底面半径之比等于细沙的高与圆锥的高之比,所以细沙的底面半径r=23×4=83cm,所以体积V=13⋅πr2⋅2ℎ3=13⋅64π9⋅163=1024π81cm3B.沙漏的体积V=2×13×π×(ℎ2)2×ℎ=2×13×π×42×8=2563πcm3;C.设细沙流入下部后的高度为ℎ1,根据细沙体积不变可知:1024π81=13×(π(ℎ2)2)×ℎ1,所以1024π81=16π3ℎ1,所以ℎ1≈2.4cm;D.因为细沙的体积为1024π81cm3,沙漏每秒钟漏下0.02cm3的沙,所以一个沙时为:1024π810.02=1024×3.1481×50≈1985秒.故选:AC.小提示:该题考查圆锥体积有关的计算,涉及到新定义的问题,难度一般.解题的关键是对于圆锥这个几何体要有清晰的认识,同时要熟练掌握圆锥体积有关的计算公式.10、(多选题)在四棱锥A-BCDE中,底面四边形BCDE为梯形,BC∥DE.设CD,BE,AE,AD的中点分别为M,N,P,Q,则()A.PQ=1MN B.PQ∥MN2C.M,N,P,Q四点共面D.四边形MNPQ是梯形答案:BCD分析:根据中位线的性质,结合平行的性质逐个判定即可DE,且DE≠MN,由题意知PQ=12所以PQ≠1MN,故A不正确;又PQ∥DE,DE∥MN,2所以PQ∥MN,又PQ≠MN,所以B,C,D正确.故选:BCD11、给出以下关于斜二测直观图的结论,其中正确的是()A.水平放置的角的直观图一定是角B.相等的角在直观图中仍然相等C.相等的线段在直观图中仍然相等D.两条平行线段在直观图中仍是平行线段答案:AD分析:根据直观图和斜二测画法的规则,判断选项.水平放置的角的直观图一定是角,故A正确;角的大小在直观图中都会发生改变,有的线段在直观图中也会改变,比如正方形的直方图中,故BC错误;由斜二测画法规则可知,直观图保持线段的平行性,所以D正确.故选:AD填空题12、如图所示,P为平行四边形ABCD所在平面外一点,E为AD的中点,F为PC上一点,若PA//平面EBF,则PF=_______FC答案:12##0.5 分析:连接AC 交BE 于点M ,连接FM ,由线面平行的性质得线线平行,由平行线性得结论. 连接AC 交BE 于点M ,连接FM ,∵PA//平面EBF ,PA ⊂平面PAC ,平面PAC ∩平面EBF =EM ,∴PA//EM ,又AE//BC ,∴PF FC =AM MC =AE BC =12. 所以答案是:12. 13、已知一个圆锥的底面半径为6,其体积为30π则该圆锥的侧面积为________.答案:39π分析:利用体积公式求出圆锥的高,进一步求出母线长,最终利用侧面积公式求出答案. ∵V =13π62⋅ℎ=30π∴ℎ=52∴l =√ℎ2+r 2=√(52)2+62=132 ∴S 侧=πrl =π×6×132=39π. 所以答案是:39π.14、如图,拿一张矩形纸片对折后略微展开,竖立在桌面上,折痕与桌面的关系是______.答案:垂直分析:根据给定条件,利用线面垂直的判定推理作答.令桌面所在的平面为α,折痕所在直线为l,纸片与桌面公共部分所在直线为a,b,如图,依题意有a∩b=A,因l⊥a,l⊥b,a,b⊂α,所以l⊥α,所以折痕与桌面垂直.所以答案是:垂直解答题15、如图,四棱锥P−ABCD的底面是矩形,PD⊥底面ABCD,M为BC的中点,且PB⊥AM.(1)证明:平面PAM⊥平面PBD;(2)若PD=DC=1,求四棱锥P−ABCD的体积.答案:(1)证明见解析;(2)√23.分析:(1)由PD⊥底面ABCD可得PD⊥AM,又PB⊥AM,由线面垂直的判定定理可得AM⊥平面PBD,再根据面面垂直的判定定理即可证出平面PAM⊥平面PBD;(2)由(1)可知,AM⊥BD,由平面知识可知,△DAB~△ABM,由相似比可求出AD,再根据四棱锥P−ABCD的体积公式即可求出.(1)因为PD⊥底面ABCD,AM⊂平面ABCD,所以PD⊥AM,又PB⊥AM,PB∩PD=P,所以AM⊥平面PBD,而AM⊂平面PAM,所以平面PAM⊥平面PBD.(2)[方法一]:相似三角形法由(1)可知AM⊥BD.于是△ABD∽△BMA,故ADAB =ABBM.因为BM=12BC,AD=BC,AB=1,所以12BC2=1,即BC=√2.故四棱锥P−ABCD的体积V=13AB⋅BC⋅PD=√23.[方法二]:平面直角坐标系垂直垂直法由(2)知AM⊥DB,所以k AM⋅k BD=−1.建立如图所示的平面直角坐标系,设BC =2a(a >0).因为DC =1,所以A(0,0),B(1,0),D(0,2a),M(1,a).从而k AM ⋅k BD =a−01−0×2a−00−1=a ×(−2a)=−2a 2=−1. 所以a =√22,即DA =√2.下同方法一.[方法三]【最优解】:空间直角坐标系法建立如图所示的空间直角坐标系D −xyz ,设|DA|=t ,所以D(0,0,0),C(0,1,0),P(0,0,1),A(t,0,0),B(t,1,0).所以M (t 2,1,0),PB ⃑⃑⃑⃑⃑ =(t,1,−1),AM ⃑⃑⃑⃑⃑⃑ =(−t 2,1,0).所以PB ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ =t ⋅(−t 2)+1×1+0×(−1)=−t 22+1=0. 所以t =√2,即|DA|=√2.下同方法一.[方法四]:空间向量法由PB ⊥AM ,得PB ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ =0.所以(PD⃑⃑⃑⃑⃑ +DA ⃑⃑⃑⃑⃑ +AB ⃑⃑⃑⃑⃑ )⋅AM ⃑⃑⃑⃑⃑⃑ =0. 即PD ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ +DA ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ +AB ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ =0.又PD ⊥底面ABCD ,AM 在平面ABCD 内,因此PD ⊥AM ,所以PD ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ =0.所以DA ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ +AB ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ =0,由于四边形ABCD 是矩形,根据数量积的几何意义,得−12|DA ⃑⃑⃑⃑⃑ |2+|AB ⃑⃑⃑⃑⃑ |2=0,即−12|BC ⃑⃑⃑⃑⃑ |2+1=0. 所以|BC⃑⃑⃑⃑⃑ |=√2,即BC =√2.下同方法一. 【整体点评】(2)方法一利用相似三角形求出求出矩形的另一个边长,从而求得该四棱锥的体积;方法二构建平面直角坐标系,利用直线垂直的条件得到矩形的另一个边长,从而求得该四棱锥的体积;方法三直接利用空间直角坐标系和空间向量的垂直的坐标运算求得矩形的另一个边长,为最常用的通性通法,为最优解;方法四利用空间向量转化求得矩形的另一边长.。

高中数学必修2立体几何常考题型:空间中直线与平面、平面与平面之间的位置关系

高中数学必修2立体几何常考题型:空间中直线与平面、平面与平面之间的位置关系

空间中直线与平面、平面与平面之间的位置关系【知识梳理】1.直线与平面的位置关系位置关系直线a在平面α内直线a在平面α外直线a与平面α相交直线a与平面α平行公共点无数个公共点一个公共点没有公共点符号暗示a⊂αa∩α=A a∥α图形暗示2.两个平面的位置关系位置关系图示暗示法公共点个数两平面平行α∥β没有公共点两平面相交α∩β=l 有无数个公共点(在一条直线上)【常考题型】题型一、直线与平面的位置关系【例1】下列说法:①若直线a在平面α外,则a∥α;②若直线a∥b,直线b⊂α,则a∥α;③若直线a∥b,b⊂α,那么直线a就平行于平面α内的无数条直线.其中说法正确的个数为()A.0个B.1个C.2个D.3个[解析]对于①,直线a在平面α外包孕两种情况:a∥α或a与α相交,∴a和α纷歧定平行,∴①说法错误.对于②,∵直线a∥b,b⊂α,则只能说明a和b无公共点,但a可能在平面α内,∴a纷歧定平行于α.∴②说法错误.对于③,∵a∥b,b⊂α,∴a⊂α或a∥α,∴a与平面α内的无数条直线平行.∴③说法正确.[答案] B【类题通法】空间中直线与平面只有三种位置关系:直线在平面内、直线与平面相交、直线与平面平行.在判断直线与平面的位置关系时,这三种情形都要考虑到,避免疏忽或遗漏.另外,我们可以借助空间几何图形,把要判断关系的直线、平面放在某些具体的空间图形中,以便于正确作出判断,避免凭空臆断.【对点训练】1.下列说法中,正确的个数是()①如果两条平行直线中的一条和一个平面相交,那么另一条直线也和这个平面相交;②一条直线和另一条直线平行,它就和经过另一条直线的任何平面都平行;③经过两条异面直线中的一条直线,有一个平面与另一条直线平行;④两条相交直线,其中一条与一个平面平行,则另一条必然与这个平面平行.A.0 B.1C.2 D.3解析:选C①正确;②错误,如图1所示,l1∥m,而m⊂α,l1⊂α;③正确,如图2所示,在正方体ABCD-A1B1C1D1中,直线A1C1与直线BD异面,A1C1⊂平面A1B1C1D1,且BD∥平面A1B1C1D1,故③正确;④错误,直线还可能与平面相交.由此可知,①③正确,故选C.题型二、平面与平面的位置关系【例2】(1)平面α内有无数条直线与平面β平行,问α∥β是否正确,为什么?(2)平面α内的所有直线与平面β都平行,问α∥β是否正确,为什么?[解](1)不正确.如图所示,设α∩β=l,则在平面α内与l平行的直线可以有无数条:a1,a2,…,a n,…,它们是一组平行线,这时a1,a2,…,a n,…与平面β都平行(因为a1,a2,…,a n,…与平面β无交点),但此时α与β不平行,α∩β=l.(2)正确.平面α内所有直线与平面β平行,则平面α与平面β无交点,符合平面与平面平行的定义.【类题通法】两个平面的位置关系同平面内两条直线的位置关系类似,可以从有无公共点区分:如果两个平面有一个公共点,那么由公理3可知,这两个平面相交于过这个点的一条直线;如果两个平面没有公共点,那么就说这两个平面互相平行.这样我们可以得出两个平面的位置关系:①平行——没有公共点;②相交——有且只有一条公共直线.若平面α与β平行,记作α∥β;若平面α与β相交,且交线为l,记作α∩β=l.【对点训练】2.在底面为正六边形的六棱柱中,互相平行的面视为一组,则共有________组互相平行的面.与其中一个侧面相交的面共有________个.解析:六棱柱的两个底面互相平行,每个侧面与其直接相对的侧面平行,故共有4组互相平行的面.六棱柱共有8个面围成,在其余的7个面中,与某个侧面平行的面有1个,其余6个面与该侧面均为相交的关系.答案:4 63.如图所示,平面ABC与三棱柱ABC-A1B1C1的其他面之间有什么位置关系?解:∵平面ABC与平面A1B1C1无公共点,∴平面ABC与平面A1B1C1平行.∵平面ABC与平面ABB1A1有公共直线AB,∴平面ABC与平面ABB1A1相交.同理可得平面ABC与平面ACC1A1及平面BCC1B1均相交.【练习反馈】1.M∈l,N∈l,N∉α,M∈α,则有()A.l∥αB.l⊂αC.l与α相交D.以上都有可能解析:选C由符号语言知,直线l上有一点在平面α内,另一点在α外,故l与α相交.2.如图所示,用符号语言可暗示为()A.α∩β=lB.α∥β,l∈αC.l∥β,l⊄αD.α∥β,l⊂α解析:选D显然图中α∥β,且l⊂α.3.平面α∥平面β,直线a⊂α,则a与β的位置关系是________.答案:平行4.经过平面外两点可作该平面的平行平面的个数是________.解析:若平面外两点所在直线与该平面相交,则过这两个点不存在平面与已知平面平行;若平面外两点所在直线与该平面平行,则过这两个点存在独一的平面与已知平面平行.答案:0或15.三个平面α、β、γ,如果α∥β,γ∩α=a,γ∩β=b,且直线c⊂β,c∥b.(1)判断c与α的位置关系,并说明理由;(2)判断c与a的位置关系,并说明理由.解:(1)c∥α.因为α∥β,所以α与β没有公共点,又c⊂β,所以c与α无公共点,则c∥α.(2)c∥a.因为α∥β,所以α与β没有公共点,又γ∩α=a,γ∩β=b,则a⊂α,b⊂β,且a,b⊂γ,所以a,b没有公共点.由于a、b都在平面γ内,因此a∥b,又c∥b,所以c∥a.。

(完整word版)高中数学必修二立体几何知识点总结

(完整word版)高中数学必修二立体几何知识点总结

第一章 立体几何初步特殊几何体表面积公式(c 为底面周长,h 为高,'h 为斜高,l 为母线)ch S =直棱柱侧面积'21ch S =正棱锥侧面积 ')(2121h c c S +=正棱台侧面积 rh S π2=圆柱侧 ()l r r S +=π2圆柱表rl S π=圆锥侧面积 ()l r r S +=π圆锥表 lR r S π)(+=圆台侧面积 ()22R Rl rl r S +++=π圆台表柱体、锥体、台体的体积公式 V Sh =柱13V Sh =锥'1()3V S S h =台 2V Sh r h π==圆柱h r V 231π=圆锥 '2211()()33V S S h r rR R h π=+=++圆台 (4)球体的表面积和体积公式:V 球=343R π ; S 球面=24R π第二章 直线与平面的位置关系2.11 2 三个公理:(1符号表示为A ∈LB ∈L => l α⊂ A ∈αB ∈α(2符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。

公理(3公理 L A · α C · B · A · α2.1.2 空间中直线与直线之间的位置关系1空间的两条直线有如下三种关系: 相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点。

2 公理4:平行于同一条直线的两条直线互相平行。

符号表示为:设a 、b 、c 是三条直线a ∥bc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。

公理4作用:判断空间两条直线平行的依据。

3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.4 注意点:① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为了简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, ); ③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ;④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。

部编版高中数学必修二第八章立体几何初步知识集锦

部编版高中数学必修二第八章立体几何初步知识集锦

(名师选题)部编版高中数学必修二第八章立体几何初步知识集锦单选题1、如图所示,在三棱柱ABC−A1B1C1中,侧棱AA1⊥底面A1B1C1,∠BAC=90°,AB=AA1=1,D是棱CC1的中点,P是AD的延长线与A1C1的延长线的交点,若点Q在线段B1P上,则下列结论中正确的是().A.当点Q为线段B1P的中点时,DQ⊥平面A1BDB.当点Q为线段B1P的三等分点时,DQ⊥平面A1BDC.在线段B1P的延长线上,存在一点Q,使得DQ⊥平面A1BDD.不存在DQ与平面A1BD垂直答案:D分析:依据线面垂直性质定理,利用反证法即可否定选项ABC;按照点Q为线段B1P的中点和点Q不为线段B1P的中点两种情况利用反证法证明选项D判断正确.连接AB1,交A1B于H在三棱柱ABC−A1B1C1中,侧棱AA1⊥底面A1B1C1,AB=AA1=1,则四边形A1B1BA为正方形,则AB1⊥A1B又∠BAC=90°,即AB⊥AC,又AA1⊥AC,AB∩AA1=A,AA1⊂面A1B1BA,AB⊂面A1B1BA则AC⊥面A1B1BA,则AC⊥A1B又AB1⊥A1B,AB1∩AC=A,AB1⊂面AB1C,AC⊂面AB1C则A1B⊥面AB1C,选项A:当点Q为线段B1P的中点时,又D是棱CC1的中点,则DQ//AB1若DQ⊥平面A1BD,则AB1⊥平面A1BD又A1B⊥面AB1C,则面AB1C//平面A1BD,这与AB1∩A1B=H矛盾,故假设不成立,即当点Q为线段B1P的中点时,DQ⊥平面A1BD不正确;选项B:当点Q为线段B1P的三等分点时,又D是棱CC1的中点,则DQ//AB1不成立,即DQ与AB1为相交直线,若DQ⊥平面A1BD,则DQ⊥A1B又AB1⊥A1B,DQ与AB1为相交直线,AB1⊂面AB1P,DQ⊂面AB1P则A1B⊥面AB1P,又A1B⊥面AB1C,则面AB1P//面AB1C这与面AB1P∩面AB1C=AB1矛盾,故假设不成立,即当点Q为线段B1P的点三等分时,DQ⊥平面A1BD,不正确;选项C:在线段B1P的延长线上一点Q,又D是棱CC1的中点,则DQ//AB1不成立,即DQ与AB1为相交直线,若DQ⊥平面A1BD,则DQ⊥A1B又AB1⊥A1B,DQ与AB1为相交直线,AB1⊂面AB1P,DQ⊂面AB1P则A1B⊥面AB1P,又A1B⊥面AB1C,则面AB1P//面AB1C这与面AB1P∩面AB1C=AB1矛盾,故假设不成立,即在线段B1P的延长线上,存在一点Q,使得DQ⊥平面A1BD不正确;选项D:由选项A可知,点Q为线段B1P的中点时,DQ⊥平面A1BD不成立;假设点Q在线段B1P上,且不是中点,又D是棱CC1的中点,则DQ//AB1不成立,即DQ与AB1为相交直线,若DQ⊥平面A1BD,则DQ⊥A1B又AB1⊥A1B,DQ与AB1为相交直线,AB1⊂面AB1P,DQ⊂面AB1P则A1B⊥面AB1P,又A1B⊥面AB1C,则面AB1P//面AB1C这与面AB1P∩面AB1C=AB1矛盾,故假设不成立,即点Q在线段B1P上,且不是中点时,DQ⊥平面A1BD不正确;故不存在DQ与平面A1BD垂直.判断正确.故选:D2、下列空间图形画法错误的是()A.B.C.D.答案:D分析:根据空间图形画法:看得见的线画实线,看不见的线画虚线.即可判断出答案.D选项:遮挡部分应画成虚线.故选:D.3、一条直线和两条异面直线中的一条平行,则它和另一条的位置关系是()A.平行B.相交C.异面D.相交或异面答案:D分析:根据空间中两直线的位置关系,即可求解:如图(1)所示,此时直线a与直线b为异面直线,其中l//a,此时直线l与b为相交直线;如图(2)所示,此时直线a与直线b为异面直线,其中l//a,此时直线l与b为异面直线,综上,一条直线与两条异面直线中的一条平行,则它和另一条直线的位置关系是相交或异面. 故选: D.4、已知正四面体P −ABC 内接于球O ,点E 是底面三角形ABC 一边AB 的中点,过点E 作球O 的截面,若存在半径为√3的截面圆,则正四面体P −ABC 棱长的取值范围是( )A .[√2,√3]B .[√3,√6]C .[2√2,2√3]D .[2√3,2√6]答案:C分析:根据条件设正四面体的棱长为a ,用棱长a 表示出其外接球的半径R =√64a ,过E 点作外接球O 的截面,只有当OE ⊥截面圆所在的平面时,截面圆的面积最小,此时此时截面圆的半径为r =12a ,最大截面圆为过球心的大圆,半径为R =√64a ,根据题意则12a ≤√3≤√64a ,从而可得出答案. 如图,在正四面体P −ABC 中,设顶点P 在底面的射影为O 1,则球心O 在PO 1上,O 1在CE 上,且|PO 1|=23|CE |,连接OE 、OC ,设正四面体的棱长为a ,则|CE |=√32a ,|PO 1|=23|CE |=√33a 则正四面体的高PO 1=√PC 2−O 1C 2=a 2−(√33a)2=√63a , 设外接球半径为R , 在Rt △OO 1C 中,OC 2=OO 12+O 1C 2,即R 2=(√63a −R)2+(√33a)2,解得R =√64a , ∴在Rt △OO 1E 中,OE =√OO 12+O 1E 2=(√612a)2+(√36a)2=√24a , 过E 点作外接球O 的截面,只有当OE ⊥截面圆所在的平面时,截面圆的面积最小,此时截面圆的半径为r =√R 2−OE 2=√(√64a)2−(√24a)2=12a ,最大截面圆为过球心的大圆,半径为R=√64a,由题设存在半径为√3的截面圆,∴12a≤√3≤√64a,解得2√2≤a≤2√3,故选:C.小提示:关键点睛:本题考查正四棱锥的外接球的截面圆的半径范围问题,解答本题的关键是用正四棱锥棱长a表示出其外接球的半径R=√64a,得出过E点的球的截面圆的半径的范围,从而得解,属于中档题.5、如图在正三棱锥S−ABC中,M,N分别是棱SC,BC的中点,Q为棱AC上的一点,且AQ=12QC,MN⊥MQ,若AB=2√2,则此正三棱锥S−ABC的外接球的体积为()A.12πB.4√33πC.8√3πD.4√3π答案:D分析:根据题意证明SA,SB,SC两两垂直,将三棱锥放入棱长为2的正方体,两者外接球体积相同,求得正方体外接球体积即可得出答案.因为在△SBC中,M,N分别是棱SC,BC的中点,所以MN//SB,因为MN⊥MQ,所以SB⊥MQ,因为三棱锥S−ABC为正三棱锥,所以SB⊥AC(对棱垂直),又因为MQ,AC⊂面SAC,MQ∩AC=Q,所以SB ⊥面SAC ,因为SA,SC ⊂面SAC ,所以SB ⊥SA,SB ⊥SC ,在Rt △SAB 中,SA 2+SB 2=AB 2,因为三棱锥S −ABC 为正三棱锥,所以△SBC 是等腰三角形,△ABC 是等边三角形,所以SB =SC ,AB =AC ,所以SA 2+SC 2=AC 2,即SA ⊥SC ,所以SA,SB,SC 两两垂直,将此三棱锥放入正方体中,此正方体的面对角线长等于AB 长,为2√2,则该正方体棱长为2,外接球半径R =√(22)2+(2√22)2=√3, 正方体外接球体积V =43πR 3=43π×(√3)3=4√3π, 此正三棱锥S −ABC 的外接球体积和正方体外接球体积相同,为4√3π.故选:D6、如图,在下列四个正方体中,A,B 为正方体的两个顶点,M,N,Q 为所在棱的中点,则直线AB 与平面MNQ 不平行的是( )A .B .C .D .答案:A 分析:利用线面平行的判定定理逐项判断可得出合适的选项.对于A选项,连接CD、BE交于点O,则O为BE的中点,设BE∩MN=F,连接FQ,因为Q、O分别为AE、BE的中点,则OQ//AB,若AB//平面MNQ,AB⊂平面ABE,平面ABE∩平面MNQ=FQ,则FQ//AB,在平面ABE内,过该平面内的点Q作直线AB的平行线,有且只有一条,与题设矛盾,假设不成立,故A选项中的直线AB与平面MNQ不平行.对于B选项,连接CD,如下图所示:因为AC//BD且AC=BD,所以,四边形ABDC为平行四边形,所以AB//CD,因为M、Q分别为CE、DE的中点,所以MQ//CD,所以MQ//AB,因为AB⊄平面MNQ,MQ⊂平面MNQ,所以,AB//平面MNQ;对于C选项,连接CD,如下图所示:因为AC//BD且AC=BD,所以,四边形ABDC为平行四边形,所以AB//CD,因为M、Q分别为CE、DE的中点,所以MQ//CD,所以MQ//AB,因为AB⊄平面MNQ,MQ⊂平面MNQ,所以,AB//平面MNQ;对于D选项,连接CD,如下图所示:因为AC//BD且AC=BD,所以,四边形ABDC为平行四边形,所以CD//AB,因为N、Q分别为CE、DE的中点,则NQ//CD,所以NQ//AB,因为AB⊄平面MNQ,NQ⊂平面MNQ,所以,AB//平面MNQ;故选:A7、阿基米德(Arcℎimedes,公元前287年—公元前212年)是古希腊伟大的数学家、物理学家和天文学家.他推导出的结论“圆柱内切球体的体积是圆柱体积的三分之二,并且球的表面积也是圆柱表面积的三分之二”是其毕生最满意的数学发现,后人按照他生前的要求,在他的墓碑上刻着一个圆柱容器里放了一个球(如图所示),该球与圆柱的两个底面及侧面均相切,圆柱的底面直径与高都等于球的直径,若球的体积为36π,则圆柱的体积为 ( )A .36πB .45πC .54πD .63π答案:C解析:根据球的体积公式求出半径,根据圆柱的体积公式可求得结果.设球的半径为R ,则43πR 3= 36π,所以R =3, 所以圆柱的底面半径为R =3,圆柱的高为2R =6,所以圆柱的体积为πR 2×2R =2πR 3=54π.故选:C8、球面上两点之间的最短连线的长度,就是经过这两个点的大圆在这两点间的一段劣弧的长度(大圆就是经过球心的平面截球面所得的圆),我们把这个弧长叫做两点的球面距离.已知正△ABC 的项点都在半径为2的球面上,球心到△ABC 所在平面距离为2√63,则A 、B 两点间的球面距离为( )A .πB .π2C .2π3D .3π4答案:C分析:设球心为点O ,计算出∠AOB ,利用扇形弧长公式可求得结果.设球心为点O ,平面ABC 截球O 所得截面圆的半径为r =√22−(2√63)2=2√33, 由正弦定理可得4√33=AB sin∠ACB ,∴AB =4√33sin π3=2,又∵OA =OB =2,所以,△AOB 为等边三角形,则∠AOB =π3,因此,A、B两点间的球面距离为2×π3=2π3.故选:C.小提示:思路点睛:求球面距离,关键就是要求出球面上两点与球心所形成的角,结合扇形的弧长公式求解,同时在计算球的截面圆半径时,利用公式r=√R2−d2(其中r为截面圆的半径,R为球的半径,d为球心到截面的距离)来计算.多选题9、如图PA垂直于以AB为直径的圆所在的平面,点C是圆上异于A,B的任一点,则下列结论中正确的是()A.PC⊥BC B.AC⊥平面PCBC.平面PAB⊥平面PBC D.平面PAC⊥平面PBC答案:AD解析:根据线面垂直、面面垂直的判定与性质判断各选项.AB是圆直径,C在圆上,则AC⊥BC,PA⊥平面ABC,BC⊂平面ABC,则PA⊥BC,PA∩AC=A,∴BC⊥平面PAC,又PC⊂平面PAC,∴PC⊥BC,A正确;又BC⊂平面PBC,∴平面PBC⊥平面PAC.D正确;若AC⊥平面PCB,则AC⊥PC,而PA⊥平面ABC,则PA⊥AC,PA,PC重合,矛盾,B错;若平面PAB⊥平面PBC,作CD⊥PB于D,∵平面PAB∩平面PBC=PB,∴CD⊥平面PAB,而PA⊂平面PAB,∴CD⊥PA,CD∩BC=C,∴PA⊥平面PBC,于是平面PBC与平面ABC重合.矛盾,C错.故选:AD.小提示:易错点睛:本题考查空间线面、面面垂直的判定定理和性质定理.由于是多选题,仅仅判断AD正确还不够,必须说明(证明)BC为什么是错误的.否则会出错.10、用一个平面去截正方体,关于截面的形状,下列判断正确的是()A.直角三角形B.正五边形C.正六边形D.梯形答案:CD分析:根据题意,依次作出对应的截面,并判断即可得答案.对于A选项,如图1,作出的截面为三角形,但为锐角三角形,不可能为直角三角形,故A选项错误;对于B选项,如图2,过正方体的一个顶点作截面,可以得到截面为五边形,但该五边形不是正五边形,故B 选项错误;对于C选项,如图3,取各边的中点,连接的截面即为正六边形,故C选项正确;对于D选项,如图4,所做的截面为梯形,故D选项正确.故选:CD11、如图,直三棱柱ABC−A1B1C1中,所有棱长均为1,点E为棱B1C1上任意一点,则下列结论正确的是()]A.直线AA1与直线BE所成角的范围是[0,π4B.在棱B1C1上存在一点E,使AB1⊥平面A1BEC.若E为棱B1C1的中点,则平面ABE截三棱柱ABC−A1B1C1所得截面面积为3√1916D.若F为棱A1B1上的动点,则三棱锥F−ABE体积的最大值为16答案:AC分析:由异面直线夹角求法可判断A;利用反证法结合线面垂直的判定及性质可判断B;利用线线平行得到平面ABE截三棱柱所得截面为等腰梯形ABEG,即可求得面积判断C;由面积公式知S△ABF不变,利用等体积知可求得体积的最大值可判断D.对于A,由直三棱柱ABC−A1B1C1,∴AA1//BB1,∴∠B1BE为直线AA1与直线BE所成角,当E与B1重合时,直线AA1与直线BE所成角为0,当E与C1重合时,直线AA1与直线BE所成角为π4,所以直线AA1与直线BE所成角的范围是[0,π4],故A正确;对于B,假设AB1⊥平面A1BE,又BE⊂平面A1BE,∴AB1⊥BE,设BC中点为H,则AH⊥BC,则AH⊥平面BCC1B1,所以AB1在平面BCC1B1上的射影为B1H,由三垂线定理得B1H⊥BE,又因为BCC1B1为正方形,所以点E为CC1中点,与点E为棱B1C1上一点矛盾,故B 错误.对于C,取A1C1中点G,连结EG,GA,则平面ABE截三棱柱ABC−A1B1C1所得截面为等腰梯形ABEG,AB=1,EG=12,在直角△BB1E中,EB=√52,所以梯形的高为√(√52)2−(14)2=√194,梯形的面积为S=12×(12+1)×√194=3√1916,故C正确.对于D,因为S△ABF=12AB×BB1=12,且V F−ABE=V E−ABF,所以当E与C1重合时,三棱锥F−ABE的体积最大,取A1B1中点M,则C1M⊥平面ABB1A1,得V C1−ABF =13S△ABF×C1M=13×12×√32=√312,故D错误.故选:AC小提示:思路点睛:本题考查求异面直线成角,立体几何截面问题,体积运算,(1)求异面直线所成角的常用方法是平移线段法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决;(2)截面问题:利用线面平行的性质,可以实现与线线平行的转化,尤其在截面图的画法中,常用来确定交线的位置,对于最值问题,常用函数思想来解决.填空题12、如图,点P,Q,R,S分别在正方体的四条棱上,且是所在棱的中点,则直线PQ与RS是平行直线的图是________(填序号).答案:①②分析:根据正方体的结构特征,以及两直线的位置关系的判定方法,即可求解.根据正方体的结构特征,可得①②中RS与PQ均是平行直线,④中RS和PQ是相交直线,③中RS和PQ是是异面直线.所以答案是:①②.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题一浅析中心投影与平行投影中心投影与平行投影是画空间几何体的三视图和直观图的基础,弄清楚中心投影与平行投影能使我们更好地掌握三视图和直观图,平行投影下,与投影面平行的平面图形留下的影子,与这个平面图形的形状和大小完全相同;而中心投影则不同.下表简单归纳了中心投影与平行投影,结合实例让我们进一步了解平行投影和中心投影.投影定义特征分类中心投影光由一点向外散射形成的投影投影线交于一点平行投影在一束平行光线照射下形成的投影投影线互相平行正投影和斜投影例1如何才能使如图所示的两棵树在同一时刻的影长分别与它们的原长相等?解析:方法一:可在同一方向上画出与原长相等的影长,分别连结它们影子顶点与树的顶点,此时为平行投影.方法二:可在两树外侧不同方向上画出与原长相等的影子,连结影子顶点与树的顶点相交于P,此时为中心投影,P为光源位置.点评:这是一道平行投影和中心投影相结合的题目,答案不唯一.连结物体顶点与其影子顶点,如果得到的是平行线,即为平行投影;如果得到的是相交线,则为中心投影,这是判断平行投影与中心投影的方法,也是确定中心投影光源位置的基本作法,还应注意,若中心投影光源在两树同侧时,图中的两棵树的影子不可能与原长相等.例2 如图所示,点O为正方体ABCD­A′B′C′D′的中心,点E为面B′BCC′的中心,点F为B ′C ′的中点,则空间四边形D ′OEF 在该正方体的面上的正投影可能是________(填出所有可能的序号).解析:在下底面ABCD 上的投影为③,在右侧面B ′BCC ′上的投影为②,在后侧面D ′DCC ′上的投影为①. 答案:①②③点评:画出一个图形在一个平面上的投影的关键是确定该图形的关键点,如顶点、端点等,方法是先画出这些关键点的投影,再依次连接各投影点即可得此图形在该平面上的投影.专题二 不规则几何体体积的求法当所给几何体形状不规则时,无法直接利用体积公式求解,可尝试用以下几种常用的方法求出原几何体的体积,下面逐一介绍,供同学们参考. 一、等积转换法当所给几何体的体积不能直接套用公式或套用公式时某一量(底面积或高)不易求出时,可以转换一下几何体中有关元素的相对位置进行计算求解,该方法尤其适用于求三棱锥的体积.例1 在边长为a 的正方体ABCD —A 1B 1C 1D 1中,M ,N ,P 分别是棱A 1B 1,A 1D 1,A 1A 上的点,且满足A 1M = 12A 1B 1,A 1N =2ND 1,A 1P = 34A 1A (如图1),试求三棱锥A 1—MNP 的体积.分析:若用公式V= 13 Sh 直接计算三棱锥A 1—MNP 的体积,则需要求出△MNP 的面积和该三棱锥的高,这两者显然都不易求出,但若将三棱锥A 1—MNP 的顶点和底面转换一下,变为求三棱锥P —A 1MN 的体积,便能很容易的求出其高和底面△A 1MN 的面积,从而代入公式求解.解:V A 1-MNP =V A 1—MNP = 13 ·S △A 1MN ·h = 13 ×12 ·A 1M 1·A 1N ·A 1P=13 ×12×12a ·23 a · 34a=124a 3. 评注:转换顶点和底面是求三棱锥体积的一种常用方法,也是以后学习求点到平面距离的一个理论依据. 二、分割法分割法也是体积计算中的一种常用方法,在求一些不规则的几何体的体积以及求两个几何体的体积之比时经常要用到分割法.例2 如图2,在三棱柱ABC —A 1B 1C 1中,E ,F 分别为AB ,AC 的中点,平面EB 1C 1F将三棱柱分成两部分,求这两部分的体积之比.分析:截面EB 1C 1F 将三棱柱分成两部分,一部分是三棱台AEF —A 1B 1C 1;另一部分是一个不规则几何体,其体积可以利用棱柱的体积减去棱台的体积求得.解:设棱柱的底面积为S ,高为h ,其体积V =Sh . 则三角形AEF 的面积为14S .由于V AEF -A 1B 1C 1=13 ·h ·(s 4 +S+s 2 )= 712Sh ,则剩余不规则几何体的体积为V ′=V-V AEF -A 1B 1C 1=Sh -712 Sh = 512Sh ,所以两部分的体积之比为V AEF -A 1B 1C 1:V ′=7:5.评注:在求一个几何体被分成的两部分体积之比时,若有一部分为不规则几何体,则可用整个几何体的体积减去规则几何体的体积求出其体积,再进行计算. 三、补形法某些空间几何体是某一个几何体的一部分,在解题时,把这个几何体通过“补形”补成完整的几何体或置于一个更熟悉的几何体中,巧妙地破解空间几何体的体积问题,这是一种重要的解题策略——补形法.常见的补形法有对称补形、联系补形与还原补形.对于还原补形,主要涉及台体中“还台为锥”问题.例3 已知某几何体的三视图如图所示,则该几何体的体积为______.分析:由三视图画出直观图,补一个大小相同的几何体,构成一个圆柱即可求其体积.解:由三视图可知,此几何体是底面半径为1,高为4的圆柱被从母线的中点处截去了圆柱的14,根据对称性,可补全此圆柱如图,故体积V =34×π×12×4=3π.评注:“对称”是数学中的一种重要关系,在解决空间几何体中的问题时善于发现对称关系对空间想象能力的提高很有帮助.专题三处理球的切与外接问题与球有关的组合体问题,一种是切,一种是外接。

作为这种特殊的位置关系在高考中也是考查的重点,但同学们又因缺乏较强的空间想象能力而感到模糊。

解决这类题目时要认真分析图形,明确切点和接点的位置及球心的位置,画好截面图可使这类问题迎刃而解。

一、棱锥的切、外接球问题例1 已知正四面体的棱长为a ,外接球半径为R,接球半径为r,则R和r的关系为_______.解:如图1所示,设点O 是切球的球心,由图形的对称性知,点O 也是外接球的球心.设切球半径为r ,外接球半径为R . 正四面体的表面积S 表=4×3 4a 2 = 3 a 2. 体积V A -BCD = 13 × 3 4 a 2×AE = 3 12 a 2AB 2-BE 2= 3 12a2a 2-13 a 2 =2 12a 3. ∵13 S 表·r =V A -BCD ,∴r = 3V A -BCD S 表 =3× 2 12 a33 a 2= 612 a . 在Rt △BEO 中,BO 2=BE 2+EO 2,即R 2=(3 3 a )2+r 2,解得R = 64a . ∴R=3r .点评:由正四面体本身的对称性可知,切球和外接球的两个球心是重合的,为正四面体高的四等分点,即切球的半径为h 4 ( h 为正四面体的高),且外接球的半径3h4,从而可以通过截面图中Rt △OBE 建立棱长与半径之间的关系。

二、球与棱柱的组合体问题1.正方体的切球:球与正方体的每个面都相切,切点为每个面的中心,显然球心为正方体的中心.设正方体的棱长为a ,球半径为R .如图2,截面图为正方形EFGH 的切圆,得R =a2;2.与正方体各棱相切的球:球与正方体的各棱相切,切点为各棱的中点,如图3作截面图,圆O 为正方形EFGH 的外接圆,易得R = 22a ;3.正方体的外接球:正方体的八个顶点都在球面上,如图4,以对角面AC 1作截面图得,圆O 为矩形AA 1C 1C 的外接圆,易得R =A 1O = 32a .例2在球面上有四个点P,A,B,C.如果PA,PB,PC两两互相垂直,且PA=PB=PC=a,那么这个球的表面积是______.解:由已知可得PA,PB,PC实际上就是球接正方体于一点的三条棱,正方体的对角线长就是球的直径,容易求得对角线的长为 3 a ,∴S表面积=4π(32a)2 =3πa2.点评:求解球与多面体的组合问题时,其关键是确定球心的位置,通过作出辅助线或辅助平面确定球的半径和多面体中各个几何元素的关系,达到求解解题需要的几何量的目的.三.构造直三角形,巧解正棱柱与球的组合问题正棱柱的外接球,其球心定在上下底面中心连线的中点处,由球心、底面中心及底面一顶点构成的直角三角形便可得球半径。

例3 已知三棱柱ABC-A1B1C1的六个顶点在球O1上,又知球O2与此正三棱柱的5个面都相切,求球O1与球O2的表面积之比与体积之比.解:如图5,由题意得两球心O1,O2是重合的,过正三棱柱的一条侧棱AA1和它们的球心作截面,设正三棱柱底面边长为a,则R2=36a,正三棱柱的高为h=2R2=33a.在Rt△A1D1O中,由勾股定理得R12 =(33a)2+R22 =(33a)2+(36a)2 =512a2,∴R1=512a,∴S1:S2=R12 :R22=5:1,V1:V2=5 5 :1.点评:切和外接等有关问题,首先要弄清几何体之间的相互关系,主要是指特殊的点、线、面之间关系,然后把相关的元素放到这些关系中解决问题,作出合适的截面图来确定有关元素间的数量关系,是解决这类问题的最佳途径。

专题四直线、平面平行的判定及其性质错解分析同学们在学习直线、平面平行的判定及其性质时,经常遇到困难,下面就同学们在解题中容易出现的错误分析如下,供大家参考.一、未理解平行的意义例1给出下面说法:(1)如果一条直线和一个平面平行,那么它就和这个平面的任何直线平行;(2)如果一条直线和另一条直线平行,那么它就和经过另一条直线的任何平面平行;(3)平行于同一个平面的两条直线平行.其中正确的个数是()A .0 B.1 C.2 D.3错解:D分析:对直线和平面平行的定义、判定和性质不理解,造成错误.(1)正方体的上底面的一条棱平行于下底面,显然下底面存在直线与这条棱是异面直线;(2)存在平面同时经过这两条直线;(3)平行于同一平面的两条直线可能平行、异面、相交.正解:A二、思维定势例2已知直线a 、b,有a∥b,b∥平面α,a ⊄α.求证:a∥平面α.错解: 如图,在α任取一点A,在α过A点作直线c,使c∥b.因为a∥b,所以a∥c.又a ⊄α,c ⊂α,所以a∥平面α.分析:错解中“在α任取一点A,在α过A点作直线c,使c∥b”这一作图不符合立体几何作图的要求,错因是想当然地把平面几何的有关知识迁移到立体几何中造成的.正解: 如图,过b作平面β交平面 于直线c.由b∥平面α,b⊂β,α∩β=c,得b∥c.又因为a∥b,所以a∥c.而a ⊄α,c⊂α,所以a∥平面α.三、未平行的性质例3已知AB,CD为夹在两个平行平面α,β之间的异面线段,M,N分别为AB,CD 的中点.求证:MN∥α,MN∥.β.错解:如图,因为α∥β,所以AC∥BD。

相关文档
最新文档