(完整版)反应堆本体结构
核反应堆总论 第八章 压水堆本体结构

但镍基合金的最大缺点是中子吸收截面大,造成较多的 无益的中子损失。 锆合金格架又分为两种:
– 一种是全锆格架,其主要优点是节省燃料循环费用; – 另一种是锆合金框架中含镍基合金支撑的双金属格架,它 综合了镍基合金格架和全锆合金格架的优点。
– 近年来在工程中已开始使用锆合金。
控制棒导向管
材料:不锈钢或锆—4合金制成 作用:它对控制棒在堆芯上下移动起导向作用。 控制棒与导向管之间留有一定的间隙的用途:
对反应堆本体设计的要求
1、遵循国家相关规定(国家核安全局颁发的《核电质量 保证安全规定》); 2、遵循相关设计准则(压水堆核电厂结构总体设计准则、
堆内构件设计准则、压力容器设计准则、燃料相关组件设计准则 等);
3、满足强度、刚度、和抗腐蚀性能; 4、满足核性能和耐辐照的要求; 5、对堆内主要构件从造型、选材加工到组装 必须做大量试验研究工作; 6、对重要部件尤其是堆芯部件需要在其他反 应内进行验证。
8.1.1燃料组件
燃料组件的工作环境:
–处在高温、高压、含硼水、强中子辐照、腐
蚀、冲刷和水力振动等恶劣条件下长期工作, 因此核燃料组件的性能直接关系到反应堆的 安全可靠性。
8.1.1燃料组件
新型压水堆燃料组件按17×17排列成 正方形栅格; 在每一组件的289个可利用的空位中, 燃料棒占据264个,其余的空位装有控 制棒导向管,最中心的管供中子注量 率测量用。 组件中的燃料棒沿长度方向设有8层弹 簧定位格架,将元件棒按一定间距定 位并夹紧,但允许元件棒能沿轴向自 由膨胀,以防止由于热膨胀引起元件 棒的弯曲。 控制棒导向管、中子注量率测量管和 弹簧定位格架一起构成一个刚性的组 件骨架。 元件棒按空位插于骨架内。骨架的上、 下端是上、下管座。
反应堆结构课件3第三章

燃料元件包壳
材料: 锆-4 合金
燃料元件包壳壁厚的选择 结构强度 化学,腐蚀 一定的安全裕度
包壳内壁与燃料芯块的径向间隙 大小与间隙的导热系数 有密切关系,是影响芯块温度的重要因素,同时芯块的 各种特性如导热系数,裂变气体的释放,蠕变和塑性形 变等也都随温度变化。
17
“骨架”结构
定位格架
控制棒导管 中子通量测量导管 上管座 下管座
7:夹持线圈通电,夹持钩爪夹持驱动轴
如此循环动作,直到达到下降位置为止。 若要保持控制棒在某一位置时,仅传递线圈通电,传 递钩爪承载。 47
紧急停堆-控制棒自由落体
当要实行紧急停堆时,三个线圈 都断电,所有钩爪均脱开, 控制棒在重力作用下,快速 插入堆芯。
48
反应堆压力容器
反应堆压力容器支撑和包容堆芯和堆内构件,工作在高压(15.5MPa左 右)、高温含硼酸水介质环境和放射性辐照的条件下,寿命不少于40 年。百万千瓦级核电厂压力容器高约13m,内径5m,筒体壁厚200mm, 总重约330t。
13
14
棒状燃料元件棒
结构组成
选材原则:限制燃料和包壳 的使用温度 包壳的作用以及选材特点 机械强度;第一道屏障 燃料芯块结构特点 锆氢反应?任何防止?1 2 集气空腔盒充填气体作用: 轴向空腔和径向间隙作用, 预冲压氦气技术作用 15
芯块的结构特点
结构尺寸:圆柱体形 何谓“环脊” 现象 为何采用碟形加倒角的 结构形式 如何防止辐照肿胀的破 坏: 1碟形加倒角 2制孔剂 芯块密度的选择
作用:
1 防止放射性外逸第二道屏障 2 压力边界 3 支承和固定作用 选材原则 1 高度的完整性 2 适当的强度和足够的韧性 3 低的辐照敏感性 4 导热性能好 5 便于加工制造,成本低 49
反应堆本体结构

1
2
3
4
5
6
(一)反应堆堆芯
7
反应堆在核电站的作用就象是火电站的锅炉,它
是整个核电站的心脏。它以核燃料在其中发生特
殊形式的“燃烧”产生热量,来加热水使之变成蒸汽。
反应堆通常是个圆柱体的压力容器,其中裂变
材料所在部分称为反应堆堆芯。
堆芯结构由核燃料组件、控制棒组件、可燃毒物
运行和事故工况下快速控制 反应性的手段。下面看一下 17 17型燃料组件的棒束型 控制棒组件的结构图。
大约1/3的燃料组件的控制棒
导向管是为控制棒组件占据的。
41
2、控制棒组件
控制棒:由星型支架和吸收剂棒组成。
以连接饼为中心呈辐射状有16根连接
翼片,每个翼片上装有一个或两个指 状物,每个指状物带有一根吸收棒。 通过螺纹固定,然后用销钉紧固,这 些吸收剂棒可插入对应燃料组件24根
23
(a)燃料芯块
芯块是由富集度为2-3%的UO2 粉末(陶瓷型芯
块)冷压成形再烧结成所需密度的圆柱体,直径 为8-9毫米,直径与高度之比为1:1.5。
(大亚湾采用直径8.192mm,高度13.5mm)
每一片芯块的两面呈浅碟形,以减小燃料芯块
因热膨胀和辐照肿胀引起的变形。
一根燃料棒内装有271个燃料芯块。
18
堆芯组件
1、核燃料组件
现代压水堆普遍采用了无盒、带棒束型核燃料组件。
组件内的燃料元件棒按正方形排列。常用的有14 14,
15 15,16 16和17 17排列等几种栅格型式。
优点:减少了堆芯内的结构材料; 冷却剂可充分交混,改善了燃料棒表面的冷却。
下面看一下17 17型燃料组件的总体图。
反应堆结构

反应堆结构反应堆结构及几种典型反应堆系统反应堆是核电站中的热源,其内部装有可以进行可控链式核反应的核燃料,源源不断地释放出能量。
核反应产生的热能通过载热剂传给汽轮机作功,汽轮机带动发电机,产生的电能被输送到电网。
反应堆由堆芯、压力容器、上部堆内构件和下部堆内构件等几部分组成。
反应堆安置在反应堆厂房(也称为安全壳)的正中,它的六条进出口接管管嘴支撑在作为一次屏蔽的混凝土坑(即堆坑)内,而堆坑位于一个大约10米深的反应堆换料水池的底部。
如下图它可分为反应堆堆芯、堆内构件、反应堆压力容器和顶盖控制棒驱动机构四部分。
下面主要介绍反应堆堆心和压力容器。
1、反应堆堆芯:核反应堆的堆芯位于压力容器中心,由157个几何形状及机械结构完全相同的燃料组件构成,核反应区高3.65m,等效直径3.04m 。
燃料核裂变释放出来的核能立即转变成热能,并由冷却剂导出。
1.1、燃料组件:燃料组件骨架由8个定位格架、24根控制棒导向管、一根中子通量测量管和上、下管座焊接而成。
其功用是确保组件的刚性,承受整个组件的重量和控制棒快速下插的冲击力,并准确引导控制棒束的升降,保证组件在堆内可靠工作和装卸料时的运输安全。
如下图定位格架由锆-4合金条带制成,这些条带装配成17×17的正方形栅格。
在格架栅元中,燃料棒由其中两边的弹簧夹顶在另两边的两个刚性凸台上,其共同作用使燃料棒保持中心位置。
弹簧夹由因科镍718薄片弯成开口环制成,然后将夹子跨在条带上夹紧定位,并在上下相接面上点焊。
这样形成的两个相背的弹簧分别顶住相邻栅元的两根燃料棒,自然抵消了作用在条带上的力。
每个燃料组件带有24个控制棒导向管,由锆-4合金制成,它们为控制棒的插入和提出导向。
其下部在第一和第二格架之间直径缩小,形成缓冲段,以便当控制棒紧急下落接近底部时起缓冲作用。
在缓冲段上部有流水孔,正常运行时冷却水流入管内,在控制棒下插时水能部分从管内排出。
缓冲段下部的管径扩至正常,使底层格架可以按上层格架的相同方式与导向管相连接。
压水反应堆结构与材料

二.因为铀-锆合金或金属陶瓷都可轧制成很薄的板材, 所以单位堆芯体积中能布置较大的放热面积,这就有 效地提高了反应堆的平均容积比功率。
三.即使采用导热性能较差的二氧化铀为燃料的板状元 件,其中心温度一般也不超过900℃。
虽然板状元件有上述一些重要优点,然而浓缩铀的消耗 相当可观。因此,目前这种类型的板状元件多半还只 能用在要求堆芯体积小、寿命长的舰艇动力堆上。
为了满足反应堆压力壳在高压、高温、受放射性辐照的条件下工作的特殊 要求,要求压力壳材料有较高的机械性能,抗辐照性能及热稳定性。
为了防止高温含硼水对压力壳材料的腐蚀,压力壳的内表面堆焊一层几毫 米厚的不锈钢衬里。反应堆压力壳是一个圆柱形高压容器,压力壳由壳体 和顶盖两部分组成。壳体由圆柱形筒体、半球形底封头、接管和法兰等部 件组焊而成。顶盖由半圆形上封头、法兰和其它附件等组焊而成。
板状燃料元件常用于舰艇动力堆。板状元件通常由铀-锆合金 或弥散型燃料轧制而成,铀的浓度为20%-90%。与UO2陶 瓷棒状元件相比,板状元件有如下一些特点:
三.由于板状元件所用燃料的浓缩度高和弥散型燃料的稳定性 好,因而它的燃耗可以很深,一般在10000兆瓦日/吨铀以 上,这就保证了较高的燃烧元件和堆芯的使用寿命。
燃料芯块的稳定性 在某些因素的影响下,燃料芯块出现 的收缩会导致燃料的密实化,从而造成燃料包壳的塌陷
燃料芯块的含水量 许多反应堆内都曾发生过 锆的氢脆破裂。UO2芯块容易从它的周围吸 收水分。在反应堆启动后,燃料吸收的水分将 释放出来,并在辅照作用下分解为氢和氢氧根。 其中氢被锆合金吸收而生成氢化锆,从而使包 壳氢化变脆。这时包壳即使在很低的应力作用 下也会发生破损。因此,应该注意控制燃料棒 的含水量,通常规定每3.66米不得超过60毫 克或者每块燃料芯块不得超过10ppm。
《核电厂蒸汽供应系统》第2章 AP1000反应堆本体结构(1)

上管座示意图
AP1000燃料组件上管座
• 可拆卸上管座是燃料组件的上 部结构部件,提供对 RCCA、 离散式可燃毒物组件和其它相 关组件的部分保护空间;
• 焊接型上管座的基本组成部件 包括适配板、围板和顶板;
• 上管座包括 4 组压紧板弹簧, 弹簧由因科镍 718 制成,其它 的上管座部件均由 304 不锈钢 制成。
2.2 反应堆堆芯和燃料(3)
➢ 堆芯结构描述 • 堆芯位于压力容器中心,由 157 个几何形状及机械结构完
全相同的燃料组件构成; • 堆芯高 3.65 m,等效直径 3.04 m; • 初始堆芯按燃料组件富集度分为三个区,富集度高的燃料
组件放置在堆芯外区,富集度低的燃料组件以棋盘状排列 在堆芯的内区(目的是展平堆芯功率)。
反应堆堆的基本功能 • 承受运输、操作和堆芯装载中引起的非运行载荷作用; • 可接受控制棒的提升和下插,以便为功率运行和反应性停
堆状态提供所需的反应性控制; • 可为堆芯测量仪表的插入提供通道; • 反应堆压力容器和堆内构件,与燃料组件结构一道,引导
反应堆冷却剂流经堆芯。
系统示意图
2.2 反应堆堆芯和燃料(1)
➢ 堆芯传热过程与特点 • 反应堆压力壳的冷却剂进、出口接管都布置在堆芯顶部以上
,其目的是为了保证在失水事故(LOCA)时,压力壳内仍 能保留一部分冷却剂来冷却堆芯; • 冷却剂从进口接管流入压力壳,沿吊篮与压力壳内壁之间的 环形通道流向堆芯下腔室,然后自下而上流过堆芯,带走堆 芯释出的热量。加热后的冷却剂经堆芯上腔室从出口接管流 出至蒸汽发生器,将热量传给二次侧给水; • 从蒸汽发生器出来的冷却剂通过主泵升压后流回堆芯入口。
大亚湾核电站本体结构

2.3棒束控制组件
棒束控制组件包括一组24根吸 收剂棒和用作吸收剂棒支承结 构的星形架;星形架与安置在 反应堆容器封头上的控制棒驱 动机构的传动轴相啮合。
图2-6展示出一个棒束控制组 件的概貌。
2、星形架
星形架由中心毂环、翼片和下部呈圆筒形的指 状物等组成,它们之间用钎焊相连接。毂环上 端加上多道凹槽,以便与传动轴相啮合并供吊 装用。与毂环底端成整体的圆筒中设置有弹簧 组件,以便在紧急停堆时,当棒束控制组件与 燃料组件上管座的连接板相撞击时吸收冲击能 量。
4、堆芯相关组件
堆芯相关组件包括可燃毒物棒 组件、初级中子源组件、次级 中子源组件和阻力塞组件四种, 每一种组件都包括:
一个压紧组件形成的支承结构。四 种堆芯相关组件的压紧组件结构都 是相同的,它放置在燃料组件上管 座的承接板上; 24根棒束。每根棒的上端塞先用螺 纹拧紧到压紧组件上,然后用销钉 定位,最后将销钉焊接固定。
缓冲段以下在第一层格架的高度处,导向 管扩径至正常管径,使这层格架与上面各 层格架以相同的方式与导向管相连。
图2-4 导向管的缓冲段结构及 其与下管座的连接
6、通量测量管
放在燃料组件中心位置的通量测量管用来容纳堆芯通 量探测仪的钢护套管。通量测量管由锆-4合金制成, 直径上下一致,其在格架中的固定方法与导向管相同。
(1)压紧组件结构
压紧组件由轭板、弹簧导内筒、底板、内外 两圈螺旋弹簧及销钉等组成,零部件全部用 304型不锈钢制造。图2-10展示了压紧组件的 结构。
底板上留有冷却剂流经的通道,钻有插固定 可燃毒物棒、中子源棒和阻力塞的螺纹孔。
底板与弹簧导向筒相焊,导向筒为内外两圈 螺旋形压紧弹簧提供横向支承。底板承放在 燃料组件上管座的承接板上,而在这两块板 之间留有水流通过的空间。
(完整版)反应堆工整理讲解

(完整版)反应堆工整理讲解第一章反应堆简介1. 反应堆概念核反应堆是利用易裂变物质使之发生可控自持链式裂变反应的一种装置。
2. 反应堆的用途生产堆:专门用于生产易裂变或聚变物质的反应堆实验堆:主要用于实验研究动力堆:用于动力或直接发电的反应堆3. 反应堆种类按慢化剂和冷却剂可分为:轻水堆、重水堆、石墨气冷堆和钠冷快堆等其中,动力堆的类型有压水堆(PWR)、沸水堆(BWR)、重水堆(HWR)、气冷堆(HTGR)、快中子增殖堆(LMFBR、GCFR) 第二章核物理基础1. 原子与原子核92种天然元素和12种人工元素;原子核由质子和中子组成(H除外),质子和中子通称为核子,核子数即称质量数2. 原子核的组成及属性(电、质量、尺寸)原子核带正电,半径为121310~10cm--,其中质子带正电,质量为1u,中子不带电,质量为1u3. 同位素及核素的表示符号同位素是指质子数相同而中子数不同的元素,其化学性质相同,在元素周期表中占同一个位置,丰度。
例P有7种同位素,但每一种P均为一种核素。
核素的表示AZX。
4. 原子核的能级状态,激发态原子核内部的能量是量子化的,即非连续,可分为基态和激发态,激发态能级不稳定,易发生跃迁释放能量5. 原子核的稳定性,衰变与衰变规律一般而言,质子数和中子数大致相等时原子核是稳定的,而质子数与中子数差别很大时则原子核不稳定。
衰变:原子核自发地放射出α和β等粒子而发生的转变,常见的有β±衰变、α衰变、γ衰变等。
对单个原子核而言,衰变是不确定的;对大量同类原子核而言,衰变是按指数规律进行的,即0e tN Nλ-=6. Alpha 、Beta 、Gamma 衰变Alpha 衰变是指衰变过程中释放出α粒子(He 核,两个中子和两个质子组成)Beta 衰变是指衰变过程中原子核释放出电子(正/负),内部一质子变为中子Gamma 衰变是原子核从较高的激发态跃迁到较低的激发态或基态,释放出γ射线7. 衰变常数、半衰期、平均寿命一个原子核在某一小段时间间隔内发生衰变的几率即为衰变常数λ,其反应的是原子核本身特性,与外界条件无关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13
由外向内倒料方式的优缺点
优点:
可以展平堆芯功率,获得较高的燃耗深度,提高核燃料的 利用率。从第二循环开始,新装入的燃料组件的富集度为 3.25%,高于首次装料。 因为经过一段时间的运行,堆芯内积累了会吸收中子的裂 变产物,需要增加后备正反应性。
缺点:
中子注量率的泄漏率较高,导致压力容器中子注量率大, 中子利用率较低低,导致换料周期较短,燃料循环成本较 高。
偿因燃耗、氙、钐毒素、冷却剂温度改变等引起的比 较缓慢的反应性变化。 (即调节慢反应)
注:在新的堆芯中,还用可燃毒物棒补偿堆芯寿命初期的 剩余反应性。
18
堆芯组件
1、核燃料组件
现代压水堆普遍采用了无盒、带棒束型核燃料组件。 组件内的燃料元件棒按正方形排列。常用的有14 14, 15 15,16 16和17 17排列等几种栅格型式。
第三讲 反应堆本体结构
1
2
3
4
5
6
(一)反应堆堆芯
7
➢ 反应堆在核电站的作用就象是火电站的锅炉,它
是整个核电站的心脏。它以核燃料在其中发生特 殊形式的“燃烧”产生热量,来加热水使之变成蒸汽。
➢ 反应堆通常是个圆柱体的压力容器,其中裂变
材料所在部分称为反应堆堆芯。
➢ 堆芯结构由核燃料组件、控制棒组件、可燃毒物
➢ 燃料元件是产生核裂变
并释放热量的部件。
➢ 它是由燃料芯块、燃料包
壳管、压紧弹簧和上、下端 塞组成。燃料芯块在包壳内 叠装到所需要的高度,然后 将一个压紧弹簧和三氧化铝 隔热块放在芯块上部,用端 塞压紧,再把端塞焊到包壳 端部。
23
(a)燃料芯块
➢芯块是由富集度为2-3%的UO2 粉末(陶瓷型芯
导向管和1根堆内测量导管,共计289个栅元格。
➢ 测量导管位于组件中央位置,为插入堆芯内测量中子
通量的探测器导向并提供了一个通道。
➢ 控制棒导向管为插入控制棒组件或中子源组件或可燃
毒物组件或阻力塞组件提供了通道。
21
➢从结构上看,
核燃料组件是由 燃料元件棒和组 件的“骨架结构” 两部分组成。
22
(1)燃料元件棒
14
“内-外”式换料策略
CPR1000压水堆(岭澳二期核电厂)采用合理的“内-外” 式换料策略。使得岭澳二期核电厂反应堆在总体性能上比 未采用改进项的岭澳一期核电厂有明显提高。 采用内→外装料方式,通过加大堆芯中235U的装入量,中子价 值高的新燃料组件置于堆芯内区,把内区辐照深度大的燃料 组件移到堆芯的最外层,并改为18个月换料,从而实现低泄
组件,堆芯四周有52个铀-235富集度为3.1%的 燃料组件组成,内区则混合交错布置52个富集 度为2.4%和53个富集度为1.8%的燃料组件。
➢换料时将外区的燃料组件向内区倒换,富集度为
3.25%的新燃料组件则加在外区。经过一个运行周 期后,三区装载的压水堆中,大约有1/3的燃料组件 需要更换,而每个燃料组件在反应堆堆芯内的时间一 般是三个运行周期。
优点:减少了堆芯内的结构材料; 冷却剂可充分交混,改善了燃料棒表面的冷却。
下面看一下17 17型燃料组件的总体图。
19
燃料芯块
燃料组件与燃料元件
20
间距
12.6mm,横截面尺寸214×214mm2,总高为4058mm。
➢ 每个这样的组件共有264根燃料元件棒,24根控制棒
-
-
-
89 Kr 89 Rb 89Sr 89 Y
或 n 235 U U 236 * 140 Xe 94Sr 2n
-
-
-
-
140 Xe 140 Cs 140 Ba 140 La 140 Ce
-
-
94Sr 94 Y 94 Zr
9
现代压水堆的堆芯是由上百个横截面呈正方
命; (2)减少换料大修次数,降低大修成本; (3)增加年发电量,提高电站利用率; (4)降低放射性废物产生量和人员受照量。
16
为了满足电网要求,避免在每年6—9月份用电高峰 期进行大修,18个月的换料方式实际上采取的是长/ 短 循环交替进行的换料方式。即更换72个新组件后,运 行一个长燃料循环(19个月);下次换料则更换68个 新组件,再运行一个短燃料循环(17个月)。
形的无盒燃料组件构成;
燃料组件按一定间距垂直坐放在堆芯下栅格
板上(板上有能定位和定向的对中销),使组成 的堆芯近似于圆柱状;
堆芯的重量通过堆芯下栅格板及吊兰传给压
力壳支持。堆芯的尺寸根据压水堆的功率水平和 燃料组件装载数而定。
10
大亚湾 900 MW 级压水堆第一个堆芯的布置共有
157个横截面呈正方形的无盒燃料组件。
组件、中子源组件和阻力塞组件等组成。
8
堆芯布置
➢ 堆芯又称活性区,是压水堆的心脏,可控的链式
裂变反应在这里进行,同时它也是个强放射源。
n 235 U 236 U* 144 Ba 89 Kr 3n
-
-
-
-
144 Ba 144 La 144 Ce 144 Pr 144 Nd
岭澳核电站则从第二循环开始进入混合堆芯阶段;从 第三循环开始富集度提高到3.7%。循环周期暂维持12 个月。
17
堆芯的反应性控制
1、控制棒调节:依靠棒束型控制棒组件的提升或插
入,来实现电厂启动、停闭、负荷改变等情况下比较 快速的反应性变化。(即调节快反应)
2、硼浓度调节:调整溶解于冷却剂中硼的浓度来补
露燃料管理。
内→外装料方式可以减少中子的径向泄露,增加堆芯的 反应性,提高燃料的卸料燃耗。但该装料方式会使堆芯功 率分布不平坦性增加,功率峰因子增大,因此,需采用 203Gd作可燃毒物来抑制功率峰。
15
对于18个月换料低泄露燃料管理策略,与常规的年换料方
式相比,能够: (1)降低压力容器中子注量率,有利于延长压力容器的寿
53个插有控制棒组件
157个无盒燃料组件
66个装有可燃毒物组件 4个插有中子源组件
34个装有阻力塞组件
大亚湾准圆柱状核反应区高3.65m,等效直径3.04m。 热功率1800MW,堆芯直径约2.5m;3800MW,3.9m。 高度为核燃料的高度,3.6~4.3m.
11
堆芯布置换料策略
➢ 该堆芯首次装料时,由三种不同富集度的燃料