概率统计总复习资料
概率统计试卷复习资料

总复习一、填空题(每题3分)1、已知事件A 与B 独立,且5.0)(=A P ,7.0)(=B P ,则=)(AUB P2、设X 服从正态分布)3.2(2N ,且21C) X (=≤P ,则=C 3、设每次试验中成功的概率为P )1(<<P o ,则在二次重复独立试验中,至少失败一次的概率为 。
4、评价估计量优劣的三条标准是无偏性,一致性和 性。
5、已知随机变量X 服从),(2σμN ,则X 的概率密度函数为6、设X 1,…,X n 是总体X 的一个样本,且X 的期望μ=EX 和方差2σ=DX 均未知,则2σ的无偏估计是=∧2σ7、设X 服从二项分布),(p n B ,则)(X E =8、若X 与Y 独立,且6)(=X D ,3)(=Y D ,则)2(Y X D -=9、设X 服从),(2σμN ,则≤≥-)3(σμX P10、一口袋中装有8只球,在这6只球上分别标有-1,1,1,1,1,3,,3,3这样的数字,现从这只口袋中任取一球,用随机变量X 表示取得的球上标明的数字,求:(1)X 的概率分布律;(2)X 的概率分布函数;(3))34(-X E .11.袋中有4个乒乓球, 其中3个是黄球, 1个是白球. 今有两人依次随机地从袋中各取一球, 取后不放回, 则第2个人取得黄球的概率是 . 12、对事件,A B 和C ,已知1()()()5P A P B P C ,()()0P AB P BC ,1()8P AC ,则,A B ,C 中至少有一个发生的概率是_________.13、已知随机变量X 在区间[ 5,15 ]上服从均匀分布,则EX= .14、中心极限定理告诉我们,若随机变量X 服从参数为1000,0.06的二项分布,则X 也近似服从参数为___ __和______的正态分布.15、设(X 1,X 2,...,X n )是取自正态总体N (μ,σ2)的简单随机样本,统计量∑==n i i X n T 121,则T 的数学期望ET=16、设X 表示独立射击目标10次所击中目标的次数,每次击中的概率为0.3,则X 2的数学期望E(X 2)= .17、设随机变量X 服从正态分布N(2,0.22),已知标准正态分布函数值 Φ(2.5)=0.9938,则P{2<X<2.5}=___ .18、设随机变量X 和Y 满足DX =25, DY =9, ρXY =0.4, 则D (X-Y) =19 、设总体X 的概率密度为,,020)(⎩⎨⎧<<=其它x Ax x f 则A=20、若随机变量X 服从参数为1=λ的分布,则大数定律告诉我们:∑=ni i X n 11依概率收敛于21 ,设总体X 服从),(2σμN 分布,X 1,…,X n 是X 的一个样本,则统计量n / X σμ- 服从分布;)(1_1222X XS nni i-=∑=οο 服从 分布;212)(1μο-∑=ni iX服从 分布二,单选1 .若随机变量X 具有性质)()(X D X E =,则X 服从 分布 a 、正态 b 、二项 c 、泊松 d 、均匀2、若)()(1)(B P A P B A P -=+,则A 与B a 、互不相容 b 、独立c 、为对立事件d 、为任意事件3、设随机变量X 服从)2,1(2N ,12-=X Y ,则Y 服从 分布 a 、)4,2(2N b 、)4,1(2N c 、)4,1(N d 、)4,2(N4、设A 与B 为两个随机事件,若0)(=AB P ,则下列命题正确的是 a 、A 、B 互不相容 b 、AB 未必是不可能事件 c 、A ,B 独立 d 、0)(=A P 或0)(=B P5、从总体X 中抽取样本X ,X 2,若X 服从)1,(θN 分布,则θ的估计量中,最有效的是a 、217671X X + b 、212121X X + c 、215451X X + d 、216561X X +6、“A 、B 、C 三事件恰有一个发生”可表为 a 、C U B U A b 、C B Ac 、ABCd 、C B A C B A C B U U A7、5.0)(=A P ,8.0)(=B P ,9.0)(=AUB P ,则B A 与的关系是 a 、互不相容 b 、独立 c 、B A ⊃ d 、A B ⊃8、设随机变量X 服从分布, 则2)] X [E() X (=D a 、均匀 b 、标准正态 c 、二项 d 、泊松9、设),(y x F 是随机变量Y), X (的分布函数,则下列式子 成立。
概率论与数理统计总复习知识点归纳

概率论与数理统计总复习知识点归纳1.概率论的基础概念-随机事件、样本空间和事件的关系。
-频率和概率的关系,概率的基本性质。
-古典概型和几何概型的概念。
-条件概率和乘法定理。
-全概率公式和贝叶斯公式。
-随机变量和概率分布函数的概念。
-离散型随机变量和连续型随机变量的定义、概率质量函数和概率密度函数的性质。
2.随机变量的数字特征-随机变量的数学期望、方差、标准差和切比雪夫不等式。
-协方差、相关系数和线性变换的数学期望和方差公式。
-两个随机变量的和、差、积的数学期望和方差公式。
3.大数定律和中心极限定理-大数定律的概念和三级强大数定律。
-中心极限定理的概念和中心极限定理的两种形式。
4.数理统计的基本概念和方法-总体、样本和抽样方法的概念。
-样本统计量和抽样分布的概念。
-点估计和区间估计的概念。
-假设检验的基本思想和步骤。
-正态总体的参数的假设检验和区间估计。
5.参数估计和假设检验的方法和推广-极大似然估计的原理和方法。
-矩估计的原理和方法。
-最小二乘估计的原理和方法。
-一般参数的假设检验和区间估计。
6.相关分析和回归分析-相关系数和线性相关的概念和性质。
-回归分析的一般原理。
-简单线性回归的估计和检验。
7.非参数统计方法-秩和检验和符号检验的基本思想和应用。
-秩相关系数的计算和检验。
8.分布拟合检验和贝叶斯统计-卡方拟合检验的原理和方法。
-正态总体参数的拟合优度检验。
-贝叶斯估计的基本思想和方法。
9.时间序列分析和质量控制-时间序列的基本性质和分析方法。
-时间序列预测的方法和模型。
-质量控制的基本概念和控制图的应用。
以上是概率论与数理统计总复习知识点的归纳,希望对你的复习有所帮助。
概率论与数理统计总复习

概率论与数理统计总复习1、研究和揭示随机现象 统计规律性的科学。
随机现象:是在个别试验中结果呈现不确定性,但在大量重复试验中结果又具有统计规律性的现象。
2、互斥的或互不相容的事件:A B φ⋂=3、逆事件或对立事件:φ=⋂=⋃B A S B A 且4、德∙摩根律:B A B A ⋂=⋃,B A B A ⋃=⋂5、在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值/A n n 称为事件A 发生的频率,并记为()n f A 。
6、概率的性质(1)非负性:(A)0P ≥; (2)规范性:(S)1P =;(3)有限可加性:设A 1,A 2,…,A n ,是n 个两两互不相容的事件,即A i A j =φ,(i ≠j), i , j =1, 2, …, n , 则有∑==ni i n A P A A P 11)()...((4)()0P φ=;(5)单调不减性:若事件A ⊂B ,则P(B)≥P(A) (6)对于任一事件A ,P(A)≤1 (7)差事件概率:对于任意两事件A 和B ,()()()P B A P B P AB -=-(8)互补性(逆事件的概率):对于任一事件A ,有 P(A )=1-P(A) (9)加法公式:P(A ⋃B)=P(A)+P(B)-P(AB))()()()()()()()(321323121321321A A A P A A P A A P A A P A P A P A P A A A P +---++=⋃⋃7、古典概型中的概率: ()()()N A P A N S =①乘法原理:设完成一件事需分两步, 第一步有n 1种方法,第二步有n 2种方法, 则完成这件事共有n 1n 2种方法。
例:从甲、乙两班各选一个代表。
②加法原理:设完成一件事可有两类方法,第一类有n 1种方法,第二类有n 2种方法,则完成这件事共有n 1+n 2种方法。
概率论与数理统计总复习参考

定义7 (概率的统计定义) 定义8 (概率的公理化定义) 设试验E的样本
空间为Ω,对任意事件A,赋予一实数 P(A),若
它满足
非负性公理:0≤P(A) ≤1;
规范性公理:P(Ω)=1;
可列可加性公理:若A1, A2, …两两互斥, 则
P ( Ai ) P ( Ai ).
二、随机事件的关系与运算
1. 事件的关系
(1) 包含关系 若事件A发生必然导致事件B发生,则称事件A包含于B,
记为 A B.
(2) 互斥(互不相容): 若两个事件A、B不可能同时发生,则称事件A与B互斥 (互不相容). 必然事件与不可能事件互斥; 基本事件之间是互斥的.
2. 事件的运算
(1) 事件的并(和) 若C表示“事件A与事件B至少有一个发生”这一事件,
fY
(
y)
f
X
[h(
y)] | 0,
h(
y)
|,
y ,
其他.
第三章 二维随机变量及其分布
1. 二维随机变量
(X, Y ):X, Y 是定义在同一样本空间 上的两个随机变量.
2. 联合分布函数、性质 F(x, y) =P{X x, Y y}, (任意实数x, y).
3. 边缘分布函数 FX (x) = F(x, +), FY (y) = F(+, y).
P p1
p2 … pn …
注 :如果 g( xk ) 中有些项相同,则需将它们 作适当并项.
(2) 连续型随机变量函数的分布 (i) 定义法
FY ( y) P{Y y} P{g( X ) y}
{ x|g( x) y} f X ( x)dx.
概率统计公式大全(复习重点)

概率统计公式大全(复习重点)第一章随机事件和概率(1)排列组合公式)!(!nmmP nm-=从m个人中挑出n个人进行排列的可能数。
)!(!!nmnmC nm-=从m个人中挑出n个人进行组合的可能数。
(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。
乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。
(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
试验的可能结果称为随机事件。
在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。
这样一组事件中的每一个事件称为基本事件,用ω来表示。
基本事件的全体,称为试验的样本空间,用Ω表示。
一个事件就是由Ω中的部分点(基本事件ω)组成的集合。
通常用大写字母A,B,C,…表示事件,它们是Ω的子集。
Ω为必然事件,Ø为不可能事件。
不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。
①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):BA⊂如果同时有BB⊃,则称事件A与A⊂,A事件B等价,或称A等于B:A=B。
A、B中至少有一个发生的事件:A Y B,或者A+B。
属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者B A,它表示A发生而B不发生的事件。
概率论与数理统计复习汇总

第二章:随机变量及其相关内容
基本概念:随机变量、分布律、概率密度、分布函数 随机变量:设随机试验的样本空间为 S = {e}, X = X (e) 是定义在样本空间 S 上的
实值单值函数,称 X = X (e) 为随机变量. ( 样本点到数的对应法则) 随机变量的分类:离散型随机变量和连续型随机变量(基于 r.v. 的取值类型) 离散型随机变量 取值为有限个或者无限可列个的随机变量 分布律 若 r.v. X 的取值为 x1, x2 , , xn , 对应概率值为 p1, p2 , , pn , ,即
(1) 任取一件产品为次品的概率是多少? (2) 已知取得的产品为次品,求此次品来自甲厂生产的概率是多少? 2. 人们为了了解一支股票未来一定时期内价格的变化,往往会去分析影响股票 价格的基本因素,比如利率的变化. 现假设人们经分析评估知利率下降的概率为 60%,利率不变的概率为 40%.根据经验,人们估计,在利率下调的情况下,该
一个划分.或者 B1, B2 , , Bn 为一个完备事件组.
全概率公式:设设 S 为随机试验 E 的样本空间, B1, B2, , Bn 为一个完备事件组,
则有 P( A) = P(B1)P( A B1) + P(B2 )P( A B2 ) + + P(Bn )P( A Bn )
Bi 称为原因, A 称为结果;全概率公式由原因找结果; 贝叶斯公式: 由结果找造成的原因
运算规律:德摩根律 AB = A ∪ B; A ∪ B = AB
加法原理: n1 + n2 + + nm (分类),乘法原理: n1 ⋅ n2 ⋅ ⋅ nm (分步)
概率统计总复习

X 0 T ~ T (n 1) S n
接受域
x 0 s n
t
2
( 2未知)
待估参数
枢轴量及其分布 置信区间
T X 0 ~ T (n 1) S n
( x t
2
( 2未知)
s x t ) 2 n
s , n
原假设 备择假设 检验统计量及其在 H0为真时的分布 H0 H1
s s /m s /n
2 0 2 x 2 y
第八章 1. 方差分析 基本概念(因子、水平、指标); 方差分析表; 总均值、各水平均值、误差方差的 点估计; 各水平均值的区间估计。
2. 一元线性回归分析 线性回归模型; 拟合回归方程; 回归方程的显著性; 回归系数的经济含义。
未知 m,n充 分大
1 , 2
1 2 1 2 1 2
1 2 u 1 2 1 2
x y
2 2 sx s y m n
{u u1 } {u u } {| u | u1 / 2 }
近似 t检 验
未知 m,n不 很大
2 2
右侧检验
(V V1 )
根据样本值计算,并作出相应的判断.
1. 正态总体参数的假设检验 单个正态总体 两个正态总体
2. 大样本检验 单个总体 两个总体
假设检验与置信区间对照
原假设 备择假设 检验统计量及其在 H0为真时的分布 H1 H0 接受域
x 0 u1
0
《数理统计》复习
各 章比 重
第 五 章
(20)
第 六 章
(35)
第 七 章
(15)
第 八 章
概率论与数理统计总复习-

一. 二维离散型r.v.
概率统计-总复习-13
1. 联合分布律(2个性质)
P(Xxi,Yyj)pij,
2.联合分布函数(5个性质)
F ( x , y ) P X x , Y y
3.联合分布律与联合分布函数关系
F(x,y)pij, xixyjy
4. 边缘分布律与边缘分布函数
n
Xi
n
E( Xi )
i1 i1
D
n
Xi
n
D( Xi )
i1 i1
X1,,Xn 相互独立
常见离散r.v.的期望与方差
概率统计-总复习-27
分布 概率分布
期望 方差
参数p的 0-1分布
P (X 1 )p ,P (X 0) q
2. 联合分布函数(5个性质)
xy
F(x,y) p(u,v)dvdu
3.联合密度与联合分布函数关系 2F( x,y) p( x,y)
xy
4.边缘密度与边缘分布函数
p (x) p( x,y)dy p ( y) p( x,y)dx
X
Y
FX( x) F(x, ) FY ( y ) F(, y)
5.全概率公式:分解 P(B) P(Ai)P(B|Ai),B
i1
6.贝叶斯公式
P(Aj |B)
P(Aj )P(B| Aj )
,j
P(Ai )P(B|Ai )
i1
四. 概率模型
概率统计-总复习-6
1.古典概型: 摸球、放球、随机取数、配对
2. n重伯努利概型:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率统计总复习资料
1、古典概型中计算概率用到的基本的计数方法。
例1:袋中有4个白球,5个黑球,6个红球,从中任意取出9个球,求取出的9个球中有1 个白球、3个黑球、5个红球的概率、解:设B={取出的9个球中有1个白球、3个黑球、5个红球}样本空间的样本点总数: =5005 事件B包含的样本点:
=240,则 P(B)=240/5005=0、048 例2:在0~9个整数中任取四个,能排成一个四位偶数的概率是多少?
解:考虑次序、基本事件总数为:=5040,设B={能排成一个四位偶数} 。
若允许千位数为0,此时个位数可在0、
2、
4、
6、8这五个数字中任选其一,共有5种选法;其余三位数则在余下的九个数字中任选,有种选法;从而共有5=2520个。
其中,千位数为0的“四位偶数”有多少个?此时个位数只能在2、
4、
6、8这四个数字中任选其一,有4种选法;位数与百位数在余下的八个数字中任选两个,有种选法;从而共有4=224个。
因此=2296/5040=0、456
2、概率的基本性质、条件概率、加法、乘法公式的应用;掌握事件独立性的概念及性质。
例1:事件A与B相互独立,且P(A)=0、5,P(B)=0、6,求:P(AB),P(A-B),P(AB)
解:P(AB)= P(A)P(B)=0、3,P(A-B)= P(A)-P(AB)=0、2,P(AB)= P(A)+P(B)-P(AB)=0、8 例2:若P(A)=0、4,P(B)=0、7,P(AB)=0、3,求: P(A-B),P(AB),,,解:P(A-B)=0、1,P(AB)=0、8,==3/7,==4/7,==2/3
3、准确地选择和运用全概率公式与贝叶斯公式。
例:玻璃杯成箱出售,每箱20只。
假设各箱含0、
1、2只残次品的概率相应为0、
8、0、1和0、1,某顾客欲购买一箱玻璃杯,在购买时,售货员随意取一箱,而顾客随机地察看4只,若无残次品,则买下该箱玻璃杯,否则退回。
试求:(1)顾客买下该箱的概率;(2)在顾客买下的该箱中,没有残次品的概率。
解:设事件表示“顾客买下该箱”,表示“箱中恰好有件次品”,。
则,,,,,。
由全概率公式得;由贝叶斯公式。
4、随机变量及其分布 (1)一维离散型例:随机变量的分布律为、1234 k2k3k4k 确定参数k 求概率P(0<X<3),P(1<X<3) 求分布函数F(x)
求期望E(X),方差D(X)
求函数的分布律及期望解:由,有 k+2 k+3 k+4 k =1
得 k =0、1 P(0<X<3)= P(X=1)+P(X=2)=0、3,P(1<X<3)=
P(X=2)=0、2 =3,=10,D(X)==1 Y 014 P 0、3 0、6 0、1 =1 (2) 一维连续型例:已知随机变量的概率密度为,确定参数k
求概率P(1<X<3)
求分布函数F(x)
求期望E(X),方差D(X)
求函数的密度函数及期望解:由 =1,有 ==1,得 k=3/8
P(1<X<3)===7/
8、 ==3/2,==12/5 D(X)==3/20 === (3)
二维离散型例:已知随机变量(X,Y)的联合分布律为 Y X 0123 0 0、05 0、1 0、15 0、21 0、03 0、05 0、05 0、072
0、02 0、05 0、1 0、13 求概率P(X<Y), P(X=Y)
求边缘分布律P(X=k)
k=0,1,2 和P(Y=k)
k=0,1,2,3 求条件分布律P(X=k|Y=2)
k=0,1,2和P(Y=k|X=1)
k=0,1,2,3 求期望E(X),E(Y),方差D(X),D(Y)
求协方差 cov(X,Y),相关系数,判断是否不相关求Z=X+Y,W=max{X,Y},V=min{X,Y}的分布律解:P(X<Y)=0、7,
P(X=Y)=0、2 X的分布律 X 012 p 0、5 0、2 0、3 Y的分布律 Y 0123 p 0、1 0、2 0、3 0、4 X的条件分布律 X|Y=2 012
p1/21/61/3 Y的条件分布律 Y|X=1 0123 p 0、15 0、25 0、25
0、35 =0、8,=
1、4,D(X)==0、76 =2,=5,D(Y)==1 =
1、64,cov(X,Y)==0、04 ==0、046 相关 Z=X+Y的分布律 Z 012345 p 0、05 0、13 0、22 0、3 0、17 0、13 W=max{X,Y}的分布律 W 0123 p 0、05 0、18 0、37 0、4 V=min{X,Y}的分布
律 V 012 p 0、55 0、22 0、23 (4)
二维连续型例:已知二维随机变量(X,Y)的概率密度为,
确定常数的值;求概率P(X<Y)
求边缘密度,,判断是否相互独立求条件密度,求期望
E(X),E(Y),方差D(X),D(Y)
求协方差 cov(X,Y),相关系数,判断是否不相关解:由
=1,有 ==1,得 c=21/4 P(X<Y)==0、85 X与Y不独立 ==0
==7/15 D(X)==7/15 ==7/9 ==7/11 D(Y)==28/891 ==0
cov(X,Y)=0, =0,X与Y不相关
5、会用中心极限定理解题。
例1:每次射击中,命中目标的炮弹数的均值为2,方差为,求在100次射击中有180到220发炮弹命中目标的概率、例2:设从大批发芽率为0、9的种子中随意抽取1000粒,试求这1000粒种子中至少有880粒发芽的概率。
解:设这批种子发芽数为,则,由中心极限定理得所求概率为。
数理统计部分必须要掌握的内容以及题型
1、统计量的判断。
2、计算样本均值与样本方差及样本矩。
3、熟记正态总体样本均值与样本方差的抽样分布定理。
4、会求未知参数的矩估计、极大似然估计。
例:设总体的概率密度为,是来自总体的一个样本,求未知参数的矩估计量与极大似然估计量、
5、掌握无偏性与有效性的判断方法。
例:设是来自总体的一个样本,下列统计量是不是总体均值的无偏估计;;;;求出方差,比较哪个更有效。
6、会求正态总体均值与方差的置信区间。
7、理解假设检验的基本思想和原理,明确正态总体均值与方差的假设检验的基本步骤。
例:设,u和未知,(X1,…,Xn)为样本,(x1,…,xn)为样本观察值。
(1)试写出检验u与给定常数u0有无显著差异的步骤;
(2)试写出检验与给定常数比较是否显著偏大的步骤。
解: (1)
1、提出假设
2、选取统计量
3、对给定的显著性水平,查表得
4、计算
5、判断若拒绝反之,接受 (2)
1、提出假设
2、选取统计量
3、对给定的显著性水平,查表得
4、计算
5、判断若拒绝反之,接受。