2020-2021山东省实验中学第三次诊断考试数学试题

合集下载

山东省实验中学2024届高三下学期2月调研考试数学试卷含答案解析

山东省实验中学2024届高三下学期2月调研考试数学试卷含答案解析

山东省实验中学2024届高三调研考试数学试题2024.2说明:本试卷满分150分.试题答案请用2B 铅笔和0.5mm 签字笔填涂到答题卡规定位置上,书写在试题上的答案无效.考试时间120分钟.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的1.设{}{}21,4,2,1,A x B x ==,若B A ⊆,则x =()A.0B.0或2C.0或2- D.2或2-2.若22nx ⎫⎪⎭展开式中只有第6项的二项式系数最大,则n =()A.9B.10C.11D.123.已知向量()()1,3,2,2a b ==,则cos ,a b a b +-= ()A.117B.17C.55D.2554.等差数列{}n a 的首项为1,公差不为0,若236,,a a a 成等比数列,则{}n a 前6项的和为()A.24- B.3- C.3D.85.要得到函数cos 2y x =的图象,只需将函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图象沿x 轴A.向左平移12π个单位 B.向左平移6π个单位C.向右平移6π个单位 D.向右平移12π个单位6.在三棱锥-P ABC 中,点M,N 分别在棱PC,PB 上,且13PM PC =,23PN PB =,则三棱锥P AMN -和三棱锥-P ABC 的体积之比为()A.19B.29C.13D.497.为研究某池塘中水生植物的覆盖水塘面积x (单位:2dm )与水生植物的株数y (单位:株)之间的相关关系,收集了4组数据,用模型e (0)kx y c c =>去拟合x 与y 的关系,设ln ,z y x =与z 的数据如表格所示:得到x 与z 的线性回归方程2ˆˆ 1.z x a=+,则c =()x3467z22.54.57A.-2B.-1C.2e -D.1e -8.双曲线2222:1(0,0)x y M a b a b-=>>的左、右顶点分别为,A B ,曲线M 上的一点C 关于x 轴的对称点为D ,若直线AC 的斜率为m ,直线BD 的斜率为n ,则当9mn mn+取到最小值时,双曲线离心率为()A.3B.4C.D.2二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知复数z 满足210z z ++=,则()A.1i 22z =-+ B.1z =C.2z z= D.2320240z z z z ++++= 10.过线段()404x y x +=≤≤上一点P 作圆22:4O x y +=的两条切线,切点分别为,A B ,直线AB 与,x y 轴分别交于点,M N ,则()A.点O 恒在以线段AB 为直径的圆上B.四边形PAOB 面积的最小值为4C.AB 的最小值为D.OM ON +的最小值为411.已知函数())ln1f x x =+,则()A.()f x 在其定义域上是单调递减函数B.()y f x =的图象关于()0,1对称C.()f x 的值域是()0,∞+D.当0x >时,()()f x f x mx --≥恒成立,则m 的最大值为1-三、填空题:本题共3小题,每小题5分,共15分.12.已知随机变量X 服从二项分布B~(n,p),若E (X)=30,D (X)=20,则P=__________.13.已知抛物线22(0)y px p =>的焦点F 为椭圆22143x y +=的右焦点,直线l 过点F 交抛物线于,A B 两点,且8AB =.直线12,l l 分别过点,A B 且均与x 轴平行,在直线12,l l 上分别取点,M N (,M N 均在点,A B 的右侧),ABN ∠和BAM ∠的角平分线相交于点P ,则PAB 的面积为__________.14.已知正方体1111ABCD A B C D -的棱长为,M N 为体对角线1BD 的三等分点,动点P 在三角形1ACB 内,且三角形PMN 的面积263PMN S =△,则点P 的轨迹长度为___________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.如图所示,圆O 的半径为2,直线AM 与圆O 相切于点,4A AM =,圆O 上的点P 从点A 处逆时针转动到最高点B 处,记(],0,πAOP θθ∠=∈.(1)当2π3θ=时,求APM △的面积;(2)试确定θ的值,使得APM △的面积等于AOP 的面积的2倍.16.如图,直三棱柱111ABC A B C -中,D ,E 分别是AB ,1BB 的中点,12AA AC CB AB ===.(1)证明:1//BC 平面1A CD ;(2)求二面角1D A C E --的正弦值.17.盒中有大小颜色相同的6个乒乓球,其中4个未使用过(称之为新球),2个使用过(称之为旧球).每局比赛从盒中随机取2个球作为比赛用球,比赛结束后放回盒中.使用过的球即成为旧球.(1)求一局比赛后盒中恰有3个新球的概率;(2)设两局比赛后盒中新球的个数为X ,求X 的分布列及数学期望.18.已知函数()()21ln ,,2f x x a x a f x =∈'-R 是()f x 的导函数,()e x g x x =.(1)求()f x 的单调区间;(2)若()f x 有唯一零点.①求实数a 的取值范围;②当0a >时,证明:()()4g x f x >'+.19.已知有穷数列12:n A a a a ,,,(3)n ≥中的每一项都是不大于n 的正整数.对于满足1m n ≤≤的整数m ,令集合(){}12k A m k a m k n === ,,,,.记集合()A m 中元素的个数为()s m (约定空集的元素个数为0).(1)若:63253755A ,,,,,,,,求(5)A 及(5)s ;(2)若12111()()()n n s a s a s a +++= ,求证:12,,,n a a a 互不相同;(3)已知12,a a a b ==,若对任意的正整数()i j i j i j n ≠+≤,,都有()i i j A a +∈或()j i j A a +∈,求12n a a a +++ 的值.山东省实验中学2024届高三调研考试数学试题2024.2说明:本试卷满分150分.试题答案请用2B 铅笔和0.5mm 签字笔填涂到答题卡规定位置上,书写在试题上的答案无效.考试时间120分钟.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的1.设{}{}21,4,2,1,A x B x ==,若B A ⊆,则x =()A.0B.0或2C.0或2- D.2或2-【答案】C 【解析】【分析】根据B A ⊆,可得24x =或22x x =,结合集合元素性质分别求解即可.【详解】由B A ⊆得24x =或22x x =,即0x =或2x =或2x =-,当0x =时,{}{}1,4,0,1,0A B ==,符合题意;当2x =时,{}{}1,4,4,1,4A B ==,不符合元素的互异性,舍去;当2x =-时,{}{}1,4,4,1,4A B =-=,符合题意;综上,0x =或2x =-.故选:C .2.若22nx ⎫⎪⎭展开式中只有第6项的二项式系数最大,则n =()A.9B.10C.11D.12【答案】B 【解析】【分析】利用二项式系数的性质直接求解即可.【详解】因为22nx ⎫+⎪⎭的展开式中只有第6项的二项式系数最大,所以展开式一共有11项,即10n =.故选:B3.已知向量()()1,3,2,2a b ==,则cos ,a b a b +-= ()A.117B.1717C.D.【答案】B 【解析】【分析】根据向量的坐标运算即可求解.【详解】因为()()1,3,2,2a b ==,所以()()3,5,1,1a b a b +=-=-,所以()()·cos ,17a b a b a b a b a b a b+-+-==+-.故选:B.4.等差数列{}n a 的首项为1,公差不为0,若236,,a a a 成等比数列,则{}n a 前6项的和为()A.24-B.3- C.3D.8【答案】A【解析】【分析】设等差数列{}n a 的公差()0d d ≠,由236,,a a a 成等比数列求出d ,代入6S 可得答案.【详解】设等差数列{}n a 的公差()0d d ≠,∵等差数列{}n a 的首项为1,236,,a a a 成等比数列,∴2326a a a =⋅,∴()()()211125+=++a d a d a d ,且11a =,0d ≠,解得2d =-,∴{}n a 前6项的和为61656566122422()⨯⨯=+=⨯+-=-S a d .故选:A.5.要得到函数cos 2y x =的图象,只需将函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图象沿x 轴A.向左平移12π个单位 B.向左平移6π个单位C.向右平移6π个单位 D.向右平移12π个单位【答案】A 【解析】【分析】先用诱导公式把正弦型函数化为余弦型函数,然后根据图象的平移变换的解析式的特征变化,得到答案.【详解】sin 2sin 2cos 2cos[2(326612y x x x x πππππ⎛⎫⎛⎫⎛⎫=+=+-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因此该函数图象向左平移12π个单位,得到函数cos 2y x =的图象,故本题选A.【点睛】本题考查了已知变化前后的函数解析式,求变换过程的问题,考查了余弦函数图象变换特点.6.在三棱锥-P ABC 中,点M,N 分别在棱PC,PB 上,且13PM PC =,23PN PB =,则三棱锥P AMN -和三棱锥-P ABC 的体积之比为()A.19B.29C.13D.49【答案】B 【解析】【分析】分别过,M C 作,MM PA CC PA ''⊥⊥,垂足分别为,M C ''.过B 作BB '⊥平面PAC ,垂足为B ',连接PB ',过N 作NN PB ''⊥,垂足为N '.先证NN '⊥平面PAC ,则可得到//BB NN '',再证//MM CC ''.由三角形相似得到13MM CC ''=,'2'3NN BB =,再由P AMN N PAMP ABC B PACV V V V ----=即可求出体积比.【详解】如图,分别过,M C 作,MM PA CC PA ''⊥⊥,垂足分别为,M C ''.过B 作BB '⊥平面PAC ,垂足为B ',连接PB ',过N 作NN PB ''⊥,垂足为N '.因为BB '⊥平面PAC ,BB '⊂平面PBB ',所以平面PBB '⊥平面PAC .又因为平面PBB ' 平面PAC PB '=,NN PB ''⊥,NN '⊂平面PBB ',所以NN '⊥平面PAC ,且//BB NN ''.在PCC '△中,因为,MM PA CC PA ''⊥⊥,所以//MM CC '',所以13PM MM PC CC '==',在PBB '△中,因为//BB NN '',所以23PN NN PB BB '==',所以11123231119332PAM P AMN N PAMP ABC B PACPAC PA MM NN S NN V V V V S BB PA CC BB ----⎛⎫'''⋅⋅⋅⋅ ⎪⎝⎭====⎛⎫'''⋅⋅⋅⋅ ⎪⎝⎭.故选:B7.为研究某池塘中水生植物的覆盖水塘面积x (单位:2dm )与水生植物的株数y (单位:株)之间的相关关系,收集了4组数据,用模型e (0)kx y c c =>去拟合x 与y 的关系,设ln ,z y x =与z 的数据如表格所示:得到x 与z 的线性回归方程2ˆˆ 1.z x a=+,则c =()x3467z22.54.57A.-2B.-1C.2e -D.1e -【答案】C 【解析】【分析】根据已知条件,求得5,4x z ==,进而代入回归方程可求得ˆ2a=-,从而得出ˆ 1.22zx =-,联立ln z y =,即可求得本题答案.【详解】由已知可得,346754x +++==,2 2.5 4.5744z +++==,所以,有ˆ4 1.25a =⨯+,解得ˆ2a =-,所以,ˆ 1.22zx =-,由ln z y =,得ln 1.22y x =-,所以, 1.222 1.2e e e x x y --==⋅,则2e c -=.故选:C .8.双曲线2222:1(0,0)x y M a b a b-=>>的左、右顶点分别为,A B ,曲线M 上的一点C 关于x 轴的对称点为D ,若直线AC 的斜率为m ,直线BD 的斜率为n ,则当9mn mn+取到最小值时,双曲线离心率为()A.3B.4C.D.2【答案】D【解析】【分析】由题意9mn mn+利用均值定理可得3mn =,再利用双曲线的几何性质求解即可.【详解】设(,0),(,0),(,),(,)A a B a C x y D x y --,则ACy m k x a ==+,BD y n k x a -==-,所以222y mn x a-=-,将曲线方程22222x a y a b -=代入得22b mn a=-,又由均值定理得996mn mn mn mn +=+≥,当且仅当9mn mn =,即223bmn a==时等号成立,所以离心率2e ==,故选:D.【点睛】方法点睛:求圆锥曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,a c ,代入公式ce a=;②只需要根据一个条件得到关于,,a b c 的齐次式,结合222b a c =-转化为,a c 的齐次式,然后等式(不等式)两边分别除以a 或2a 转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知复数z 满足210z z ++=,则()A.1i 22z =-+ B.1z =C.2z z = D.2320240z z z z ++++= 【答案】BC【解析】【分析】设()i ,z a b a b =+∈R ,代入题干方程求解判断A ,求复数的模判断B ,根据复数乘方运算及共轭复数的定义判断C ,利用复数的周期性求和判断D.【详解】设()i ,z a b a b =+∈R ,由210z z ++=得()()2i i 10a b a b ++++=,即()()2212i 0a b a ab b -++++=,所以221020a b a ab b ⎧-++=⎨+=⎩,解得1232a b ⎧=-⎪⎪⎨⎪=⎪⎩或1232a b ⎧=-⎪⎪⎨⎪=-⎪⎩,所以1i 22z =-+或122z =--,故选项A 错误;由13i 22z =-+,所以1z ==,由122z =--,所以1z ==,故选项B 正确;当13i 22z =-+时,所以2211i 2222z ⎛⎫=-+=-- ⎪ ⎪⎝⎭,13i 22z =--,所以2z z =,当122z =--时,所以221313i i 2222z ⎛⎫=--=-+ ⎪ ⎪⎝⎭,13i 22z =-+,所以2z z =,故选项C 正确;因为321(1)(1)0z z z z -=-++=,所以31z =,所以()()()2320242345620202021202220232024z z z z z z z z z z z z z z z ++++=+++++++++++ ()()()232201722111z z z z z z z z z z =+++++++++++ ()00011=++++-=- ,故选项D 错误.故选:BC10.过线段()404x y x +=≤≤上一点P 作圆22:4O x y +=的两条切线,切点分别为,A B ,直线AB 与,x y 轴分别交于点,M N ,则()A.点O 恒在以线段AB 为直径的圆上B.四边形PAOB 面积的最小值为4C.AB 的最小值为D.OM ON +的最小值为4【答案】BCD 【解析】【分析】设(),4P a a -,则可求AB 的方程为(4)40ax a y +--=.结合,,,O A P B 四点共圆可判断A 的正误,求出OP 的最小值后可判断B 的正误,求出AB 所过的定点后可判断C 的正误,结合AB 的方程可求OM ON +,利用二次函数的性质可求其最小值,故可判断D 的正误.【详解】设(),4P a a -,因为AB 与,x y 轴均相交,故04a <<,连接,OA OB ,设线段:4(04)l x y x +=<<,则,,,O A P B 四点共圆,且此圆以OP 为直径,而以OP 为直径的圆的方程为:()()40x x a y y a -+-+=,整理得到:22(4)0x y ax a y +---=,故AB 的方程为:4(4)0ax a y ---=,整理得到:(4)40ax a y +--=.对于A ,若O 在以线段AB 为直径的圆上,则90AOB ∠=︒,由,,,O A P B 四点共圆可得90APB ∠=︒,而90∠=∠=︒PAO PBO ,2AO BO ==,故四边形OAPB 为正方形,故OP =,但P 为动点且OP 长度变化,故O 不恒在以线段AB 为直径的圆上,故A 错误.对于B ,四边形PAOB 面积为122S OA AP =⨯⨯⨯=而PO ≥=,当且仅当OP ⊥l 即()2,2P 时等号成立,故S 的最小值为4,故B 成立.对于C ,因为AB 的方程为:(4)40ax a y +--=,整理得到:()440a x y y -+-=,令0440x y y -=⎧⎨-=⎩得11x y =⎧⎨=⎩,故AB 过定点()1,1Q ,设O 到AB 的距离为d ,则d OQ ≤=故AB =≥,当且仅当d =OQ AB ⊥时等号成立,故AB 的最小值为,故C 成立.对于D ,由AB 的方程为(4)40ax a y +--=可得44,0,0,4M N a a ⎛⎫⎛⎫⎪ ⎪-⎝⎭⎝⎭,故()24416,04424OM ON a a a a +=+=<<---+,而20(2)44a <--+≤,故4OM ON +≥,当且仅当2a =等号成立,故OM ON +的最小值为4,故D 成立.故选:BCD .11.已知函数())ln1f x x =+,则()A.()f x 在其定义域上是单调递减函数B.()y f x =的图象关于()0,1对称C.()f x 的值域是()0,∞+D.当0x >时,()()f x f x mx --≥恒成立,则m 的最大值为1-【答案】ACD 【解析】【分析】选项A ,先求原函数的导函数,再判断其导函数的符号即可;选项B ,取譬如“点(1,(1))f --和点(1,(1))f ”的特殊值判断即可;选项C ,||x x >=≥,11x +>,进而判断即可;选线D ,先构造函数()()()F x f x f x mx =---,将不等式的恒成立问题转化为函数的最值,即可判断.【详解】已知函数())ln 1f x x =+,||x x >=≥0x ->,故函数()f x 的定义域为R ,对于选项A ,函数()f x 的导函数为:()f x '=,0x ->,得()0f x '<,所以()f x 在其定义域上是单调递减函数,选项A 正确;对于选项B ,取特值:(1)ln f =(1)2)f -=+,且(1)(1)ln 2ln(22)ln(222)1222f f +-++==≠,即函数图象上存在点(1,(1))f --和点(1,(1))f 不关于()0,1对称,选项B 错误;对于选项C 0x ->11x -+>,得())ln1ln10f x x =-+>=,当x →+∞111x -+=+→,当x →-∞1x -+→+∞,同时()f x 在其定义域上是单调递减函数,故()f x 的值域是()0,∞+选项C 正确;对于选项D ,定义()()()F x f x f x mx =---,0x >,则))()ln1ln1F x x x mx =-+-++-,)()ln 1ln1F x x mx ⎛⎫=-++-⎪⎭,)()ln ln1F x x mx ⎛⎫=-+-,故)()lnF x x mx =-+-,其导函数()F x m m'==-,若,()0x ∈+∞,()()f x f x mx --≥恒成立,即函数()0F x ≥恒成立,由于(0)0F =,则(0)0F '≥在()0,x ∈+∞上恒成立,即(0)10F m '=--≥,得1m ≤-,当1m =-时,)()lnG x x x =-++,,()0x ∈+∞()1G x '=+,由于,()0x ∈+∞,则1>1<,()10G x '=+>,所以函数()G x 在区间(0,)+∞上单调递增,且(0)ln100G =-+=,则,()0x ∈+∞时,()0G x >恒成立,同时,()0x ∈+∞,由于1m ≤-,mx x -≥则))()lnln()0F x x mx x x G x =--≥-++=>,显然()0F x >恒成立,,()0x ∈+∞时,()()f x f x mx --≥恒成立,则m 的最大值为1-正确;选项D 正确;故选:ACD.【点睛】关键点点睛:本题D 选项的关键是转化为(0)0F '≥在()0,x ∈+∞上恒成立,从而得到1m ≤-,最后验证得到1m =-时符合题意即可.三、填空题:本题共3小题,每小题5分,共15分.12.已知随机变量X 服从二项分布B~(n,p),若E (X)=30,D (X)=20,则P=__________.【答案】13【解析】【详解】试题分析:直接利用二项分布的期望与方差列出方程求解即可.解:随机变量X 服从二项分布B (n ,p ),若E (X )=30,D (X )=20,可得np=30,npq=20,q=,则p=,故答案为.点评:本题考查离散型随机变量的分布列的期望以及方差的求法,考查计算能力.13.已知抛物线22(0)y px p =>的焦点F 为椭圆22143x y +=的右焦点,直线l 过点F 交抛物线于,A B 两点,且8AB =.直线12,l l 分别过点,A B 且均与x 轴平行,在直线12,l l 上分别取点,M N (,M N 均在点,A B 的右侧),ABN ∠和BAM ∠的角平分线相交于点P ,则PAB 的面积为__________.【答案】【解析】【分析】当直线l 的斜率不存在时,写出直线l 的方程,求出||4AB =,不合题意;当直线l 的斜率存在时,设直线l 的方程为(1)y k x =-,1(A x ,1)y ,2(B x ,2)y ,联立抛物线的方程,由12||8AB x x p =+=+,求出k ,根据锐角三角函数表达边长,再进一步求出PAB 的面积.【详解】由22143x y +=的右焦点为()1,0,所以抛物线的焦点为(1,0)F ,故12p=,则2p =,因此抛物线24y x =,当直线l 的斜率不存在时,直线l 的方程为1x =,代入抛物线的方程,得2y =±,所以(1,2)A ,(1,2)B -,所以||4AB =,不合题意,当直线l 的斜率存在时,设直线l 的方程为(1)y k x =-,1(A x ,1)y ,2(B x ,2)y ,联立2(1)4y k x y x =-⎧⎨=⎩,得2222(24)0k x k x k -++=,所以212224k x x k ++=,所以221212222444||2822p p k k AB x x x x p k k ++=+++=++=+==,所以1k =±,由对称性不妨设1k =,则45AFx ∠=︒,因为ABN ∠和BAM ∠的平分线相交于点P ,//AM BN ,所以PA PB ⊥,45ABN ∠=︒,22.5ABP ∠=︒,所以在Rt ABP 中,sin 22.58sin 22.5AP AB =︒=︒,cos 22.58cos 22.5BP AB =︒=︒,所以18sin 22.58cos 22.52ABP S =⋅︒⋅︒ 32sin 22.58cos 22.516sin 45=︒︒=︒=,故答案为:14.已知正方体1111ABCD A B C D -的棱长为,M N 为体对角线1BD 的三等分点,动点P 在三角形1ACB 内,且三角形PMN 的面积3PMN S =△,则点P 的轨迹长度为___________.【答案】263π【解析】【分析】由题意求出P 到MN 的距离,又易证1BD ⊥面1AB C ,进而得到P 点在1AB C V 所在平面的轨迹是以263为半径的圆,因为1AB C V 3<,所以该圆一部分位于三角形外,作出图形即可求解.【详解】因为正方体的棱长为16BD =,所以123BD MN ==,设P 到MN 的距离为d ,由1||2PMN S d MN ==263d =,11A D ⊥平面11ABB A ,1AB ⊂平面11ABB A ,∴111A D AB ⊥,又11AB A B ⊥,1111A D A B A = ,∴1AB ⊥平面11A D B ,11BD AB ∴⊥,同理可证1BD AC ⊥,又1AB AC A = ,1BD ∴⊥面1AB C ,P ∴点在1AB C V 所在平面的轨迹是以263为半径的圆,1AB C V内切圆的半径为123=,∴该圆一部分位于三角形外,如图有22226(2)()3x +=,解得63x =,∴6HOB π∠=,∴圆在三角形内的圆弧为圆周长的一半,∴1262622l π=⋅⋅,故答案为:263π.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.如图所示,圆O 的半径为2,直线AM 与圆O 相切于点,4A AM =,圆O 上的点P 从点A 处逆时针转动到最高点B 处,记(],0,πAOP θθ∠=∈.(1)当2π3θ=时,求APM △的面积;(2)试确定θ的值,使得APM △的面积等于AOP 的面积的2倍.【答案】(1)6(2)π2θ=【解析】【分析】(1)过点P 作PQ AM ⊥,利用圆的性质求得PQ ,代入面积公式直接求解即可;(2)设AOP 的面积为1,S APM 的面积为2S ,结合三角形面积公式建立方程,利用辅助角公式化简求解即可.【小问1详解】过点P 作PQ AM ⊥交AM 于点Q ,如图:因为圆O 的半径为2,由题意π2π22sin 22cos 22cos 323PQ θθ⎛⎫=+-=-=-= ⎪⎝⎭,又4AM =,所以APM △的面积为14362⨯⨯=.【小问2详解】连接AP ,设AOP 的面积为1,S APM 的面积为2S ,又1122sin 2sin 2S θθ=⨯⨯⨯=,()()211421cos 41cos 22S AM PQ θθ=⋅=⨯⨯⨯-=-,由题意212S S =,所以()41cos 4sin θθ-=,即sin cos 1θθ+=,所以π2sin 42θ⎛⎫+= ⎪⎝⎭,因为()0,πθ∈,所以ππ5π,444θ⎛⎫+∈ ⎪⎝⎭,所以π3π44θ+=,所以π2θ=,所以当π2θ=时,使得APM △的面积等于AOP 的面积的2倍.16.如图,直三棱柱111ABC A B C -中,D ,E 分别是AB ,1BB 的中点,122AA AC CB AB ===.(1)证明:1//BC 平面1A CD ;(2)求二面角1D A C E --的正弦值.【答案】(Ⅰ)见解析(Ⅱ)63【解析】【分析】(Ⅰ)利用三角形中位线定理可得1//DF BC ,由线面平行的判定定理可得结果;(Ⅱ)由122AA AC CB AB ===,可设:AB=2a ,可得AC BC ⊥,以点C 为坐标原点,分别以直线1,,CA CB CC 为x 轴、y 轴、z 轴,建立空间直角坐标系如图,利用向量垂直数量积为零列方程分别求出平面1A CD 的法向量、平面1A CE 的一个法向量,再由空间向量夹角余弦公式可得结果.【详解】(Ⅰ)如图,连结1AC ,交1AC 于点F ,连结DF ,因为D 是AB 的中点,所以在1ABC 中,DF 是中位线,所以1DF / / BC ,因为DF ⊂平面1A CD ,1BC ⊄平面1A CD ,所以1//BC 平面1A CD ;(Ⅱ)因为2AC CB AB ==,所以90ACB ︒∠=,即ACBC ⊥,则以C 为坐标原点,分别以1,,CA CB CC为,,x y z 轴的正方向,建立如图所示的空间直角坐标系,设1AA =AC=CB=2,则1(0,0,0),(1,1,0),(0,2,1),(2,0,2)C D E A ,则1(1,1,0),(0,2,1),(2,0,2)CD CE CA ===,设()111,,m x y z =r是平面1DA C 的一个法向量,则,即11110220x y x z +=⎧⎨+=⎩,取11x =,则111,1=-=-y z ,则(1,1,1)n =--同理可得平面1EA C 的一个法向量,则(2,1,2)n =-,所以,3cos ,3m n 〈〉=,所以sin ,3m n 〈〉=,即二面角D AC E --的正弦值为.63【点睛】本题主要考查线面平行的判定定理、利用空间向量求二面角,属于难题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.17.盒中有大小颜色相同的6个乒乓球,其中4个未使用过(称之为新球),2个使用过(称之为旧球).每局比赛从盒中随机取2个球作为比赛用球,比赛结束后放回盒中.使用过的球即成为旧球.(1)求一局比赛后盒中恰有3个新球的概率;(2)设两局比赛后盒中新球的个数为X ,求X 的分布列及数学期望.【答案】(1)815(2)分布列见解析,169【解析】【分析】(1)根据超几何分布概率公式求解即可;(2)根据超几何分布概率公式求得分布列,进而求得数学期望即可.【小问1详解】由题意可知当比赛使用1个新球,1个旧球时,盒中恰有3个新球,使用一局比赛后盒中恰有3个新球的概率112642C C 8C 15P ==.【小问2详解】由题意可知X 的可能取值为0,1,2,3,4,()22422266C C 60C C 225P X ==⋅=,()22111134424222226666C C C C C C 721+C C C C 225P X ==⋅⋅=,()1122112233444224222222666666C C C C C C C C 1142++C C C C C C 225P X ==⋅⋅⋅=,()22111132424222226666C C C C C C 323+C C C C 225P X ==⋅⋅=,()22222266C C 14C C 225P X ==⋅=,所以X 的分布列为X01234P622572225114225322251225()67211432116012342252252252252259E X =⨯+⨯+⨯+⨯+⨯=.18.已知函数()()21ln ,,2f x x a x a f x =∈'-R 是()f x 的导函数,()e xg x x =.(1)求()f x 的单调区间;(2)若()f x 有唯一零点.①求实数a 的取值范围;②当0a >时,证明:()()4g x f x >'+.【答案】(1)答案见解析(2)①(){},0e -∞ ;②证明见解析【解析】【分析】(1)对()f x 求导得到()2x a f x x='-,根据导数与函数单调性间的关系,对a 分类讨论,即可得出结果;(2)①法一:直接对a 进行分类讨论,利用(1)的结果,即可得出结果;法二:分离常量得到21ln 2x a x=,构造函数()2ln xx x ϕ=,将问题转化成函数图象交点个数来解决问题;②构造函数()1e 2e (0)2xh x x x x ⎛⎫=--> ⎪⎝⎭,通过求导,利用导数与函数单调性间的关系,得到()h x 的最小值,从而得出()1e 2e 2xg x x x ⎛⎫=≥-⎪⎝⎭,从而将问题转化成证明()()22e 1e 4e 0x x --++>,即可证明结果.【小问1详解】()f x 的定义域为()0,∞+,()2a x af x x x x='-=-,当0a ≤时,()0f x '>恒成立,此时()f x 的单调递增区间是()0,∞+,无单调递减区间,当0a >时,令()0f x '>得x >()0f x '<得0x <<;此时()f x 单调递减区间为(;单调递增区间为)∞+,综上,当0a ≤时,()f x 的单调递增区间是()0,∞+,无单调递减区间,当0a >时,()f x 单调递减区间为(,单调递增区间为)∞+.【小问2详解】①法一;当0a =时,()f x 没有零点,不符合题意;当a<0时,由(1)知函数()f x 在()0,∞+单调递增,因为()()2211ln 122f x x a x x a x =-<--,取0m a =>,则()21((1)(3)02f m a a a a a <+-+-=++<,又()1102f =>,故存在唯一()0,1x m ∈,使得()00f x =,符合题意;当0a >时,由(1)可知,()f x 有唯一零点只需0f =,即ln 022a aa -=,解得e a =,综上,a 的取值范围为(){},0e ∞-⋃.法二:当0a =时,()f x 没有零点,不符合题意;由()0f x =,得到21ln 2x a x =,令()2ln x x x ϕ=,则()312ln xx x ϕ-'=,当(x ∈时,()0x ϕ'>,则()x ϕ在区间(单调递增,当)x ∞∈+时,()0x ϕ'<,则()x ϕ在区间)∞+单调递减,又lim ()0x x ϕ→+∞=,()0lim x x ϕ∞+→=-,所以102a <或1122ea ϕ==,即a<0或e a =,综上,a 的取值范围为(){},0e ∞-⋃.②由①得出e a =,令()1e 2e (0)2xh x x x x ⎛⎫=--> ⎪⎝⎭,则()()1e 2e xh x x '=+-,令()()1e 2e xg x x =+-,则()()2e 0xg x x =+>'恒成立,所以()h x '单调递增,又()10h '=,故当()0,1x ∈时,()0h x '<,则()h x 在区间()0,1上单调递减,当()1,x ∞∈+时,()0h x '>,则()h x 在区间()1,∞+上单调递增;故()()10h x h ≥=,所以()1e 2e 2xg x x x ⎛⎫=≥-⎪⎝⎭,要证()()4g x f x >'+,只需证明()1e2e 442x f x x x⎛⎫->+=-⎪'+ ⎝⎭,即证()()22e 1e 4e 0x x --++>,由22229595Δ12e 167e 12e e 16e e 12e 16e 2222⎛⎫=+-=-+-=-+- ⎪⎝⎭95e 12 2.7167.2022⎛⎫<-⨯+-⨯< ⎪⎝⎭,所以()()22e 1e 4e 0x x --++>成立,故不等式得证.【点睛】关键点点晴:本题的关键在于第(2)问中的②,构造函数()1e 2e (0)2x h x x x x ⎛⎫=--> ⎪⎝⎭,通过求导,利用导数与函数单调性间的关系,得到()h x 的最小值,从而得出()1e 2e 2xg x x x ⎛⎫=≥-⎪⎝⎭,通过放缩,将问题转化成证明()()22e 1e 4e 0x x --++>,从而解决问题.19.已知有穷数列12:n A a a a ,,,(3)n ≥中的每一项都是不大于n 的正整数.对于满足1m n ≤≤的整数m ,令集合(){}12k A m k a m k n === ,,,,.记集合()A m 中元素的个数为()s m (约定空集的元素个数为0).(1)若:63253755A ,,,,,,,,求(5)A 及(5)s ;(2)若12111()()()n n s a s a s a +++= ,求证:12,,,n a a a 互不相同;(3)已知12,a a a b ==,若对任意的正整数()i j i j i j n ≠+≤,,都有()i i j A a +∈或()j i j A a +∈,求12n a a a +++ 的值.【答案】(1)(5){478}A =,,,(5)=3s .(2)证明见解析(3)答案见解析【解析】【分析】(1)观察数列,结合题意得到(5)A 及(5)s ;(2)先得到11()i s a ≤,故12111()()()n n s a s a s a +++≤ ,再由12111()()()n n s a s a s a +++= 得到()1i s a =,从而证明出结论;(3)由题意得i j i a a +=或i j j a a +=,令1j =,得到32a a =或31a a =,当a b =时得到12n a a a na +++= ,当a b ¹时,考虑3a a =或3a b =两种情况,求出答案.【小问1详解】因为4785a a a ===,所以{}(5)4,7,8A =,则(5)=3s ;【小问2详解】依题意()1,12i s a i n ≥=,,, ,则有11()i s a ≤,因此12111()()()n n s a s a s a +++≤ ,又因为12111()()()n n s a s a s a +++= ,所以()1i s a =所以12,,,n a a a 互不相同.【小问3详解】依题意12,.a a ab ==由()i i j A a +∈或()j i j A a +∈,知i j i a a +=或i j j a a +=.令1j =,可得1i i a a +=或11i a a +=,对于2,3,...1i n =-成立,故32a a =或31a a =.①当a b =时,34n a a a a ==== ,所以12n a a a na +++= .②当a b ¹时,3a a =或3a b =.当3a a =时,由43a a =或41a a =,有4a a =,同理56n a a a a ==== ,所以12(1)n a a a n a b +++=-+ .当3a b =时,此时有23a a b ==,令13i j ==,,可得4()A a ∈或4()A b ∈,即4a a =或4a b =.令14i j ==,,可得5()A a ∈或5()A b ∈.令23i j ==,,可得5()A b ∈.所以5a b =.若4a a =,则令14i j ==,,可得5a a =,与5a b =矛盾.所以有4a b =.不妨设23(5)k a a a b k ====≥ ,令1(2,3,,1)i t j k t t k ==+-=-, ,可得1()k A b +∈,因此1k a b +=.令1,i j k ==,则1k a a +=或1k a b +=.故1k a b +=.所以12(1)n a a a n b a +++=-+ .综上,a b =时,12n a a a na +++= .3a a b =≠时,12(1)n a a a n a b +++=-+ .3a b a =≠时,12(1)n a a a n b a +++=-+ .【点睛】数列新定义问题的方法和技巧:(1)可通过举例子的方式,将抽象的定义转化为具体的简单的应用,从而加深对信息的理解;(2)可用自己的语言转述新信息所表达的内容,如果能清晰描述,那么说明对此信息理解的较为透彻;(3)发现新信息与所学知识的联系,并从描述中体会信息的本质特征与规律;(4)如果新信息是课本知识的推广,则要关注此信息与课本中概念的不同之处,以及什么情况下可以使用书上的概念,要将“新”性质有机地应用到“旧”性质上,创造性的解决问题.。

2020-2021学年山东省实验中学高二(上)期中数学试卷 (解析版)

2020-2021学年山东省实验中学高二(上)期中数学试卷 (解析版)

2020-2021学年山东省实验中学高二(上)期中数学试卷一、选择题(共8小题).1.直线3x+2y﹣1=0的一个方向向量是()A.(2,﹣3)B.(2,3)C.(﹣3,2)D.(3,2)2.椭圆+=1的离心率是()A.B.C.D.3.两条平行直线2x﹣y+3=0和ax﹣3y+4=0间的距离为d,则a,d分别为()A.a=6,B.a=﹣6=﹣6,C.a=﹣6,D.a=6,4.如图,四棱锥P﹣OABC的底面是矩形,设,,,E是PC的中点,则()A.B.C.D.5.空间直角坐标系O﹣xyz中,经过点P(x0,y0,z0)且法向量为的平面方程为A(x﹣x0)+B(y﹣y0)+C(z﹣z0)=0,经过点P(x0,y0,z0)且一个方向向量为的直线l的方程为,阅读上面的材料并解决下面问题:现给出平面α的方程为3x﹣5y+z﹣7=0,经过(0,0,0)直线l 的方程为,则直线1与平面α所成角的正弦值为()A.B.C.D.6.已知圆x2+y2﹣6x=0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A.1B.2C.3D.47.已知l,m是异面直线,A,B∈l,C,D∈m,AC⊥m,BD⊥m,AB=2,CD=1,则异面直线l,m所成的角等于()A.30°B.45°C.60°D.90°8.已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,A是C的左顶点,点P 在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为()A.B.C.D.二.多选题(共4小题).9.过点P(2,3),并且在两轴上的截距相等的直线方程为()A.x+y﹣5=0B.2x+y﹣4=0C.3x﹣2y=0D.4x﹣2y+5=0 10.已知曲线C:mx2+ny2=1.()A.若m>n>0,则C是椭圆,其焦点在y轴上B.若m>n>0,则C是椭圆,其焦点在x轴上C.若m=n>0,则C是圆,其半径为D.若m=0,n>0,则C是两条直线11.已知圆C:(x﹣3)2+(y﹣4)2=1和两点A(﹣m,0),B(m,0)(m>0)若圆C 上存在点P,使得∠APB=90°,则m的可能取值为()A.7B.6C.5D.812.已知F1,F2是椭圆的左、右焦点,动点在椭圆上,∠F1PF2的平分线与x轴交于点M(m,0),则m的可能取值为()A.1B.2C.0D.﹣1三、填空题(共4小题,每小题5分,共20分)13.已知平面α的一个法向量,平面β的一个法向量,若α⊥β,则y﹣x=.14.在棱长为1的正方体ABCD﹣A1B1C1D1中,E是线段DD1的中点,F是线段BB1的中点,则直线FC1到平面AB1E的距离为.15.已知F1,F2是椭圆的左、右焦点,弦AB过点F1,若△ABF2的内切圆的周长为2π,A,B两点的坐标是(x1,y1)(x2,y2),则|y1﹣y2|=.16.2020年是中国传统的农历“鼠年”,有人用3个圆构成“卡通鼠”的形象,如图:Q (0,﹣3)是圆Q的圆心,圆Q过坐标原点O;点L、S均在x轴上,圆L与圆S的半径都等于2,圆S、圆L均与圆Q外切.已知直线l过点O.(1)若直线l与圆L、圆S均相切,则l截圆Q所得弦长为;(2)若直线l截圆L、圆S、圆Q所得弦长均等于d,则d=.四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知平行四边形ABCD的三个顶点的坐标为A(﹣1,4),B(﹣2,﹣1),C(2,3).(Ⅰ)在△ABC中,求边AC中线所在直线方程;(Ⅱ)求平行四边形ABCD的顶点D的坐标及边BC的长度;(Ⅲ)求△ABC的面积.18.(12分)已知△ABC的边AB边所在直线的方程为x﹣3y﹣6=0,M(2,0)满足,点T(﹣1,1)在AC边所在直线上且满足.(1)求AC边所在直线的方程;(2)求△ABC外接圆的方程;(3)若动圆P过点N(﹣2,0),且与△ABC的外接圆外切,求动圆P的圆心的轨迹方程.19.(12分)在如图所示的试验装置中,两个正方形框架ABCD,ABEF的边长都是1,且它们所在的平面互相垂直,活动弹子M,N分别在正方形对角线AC和BF上移动,且CM和BN的长度保持相等,记CM=BN=a(0<a<).(Ⅰ)求MN的长;(Ⅱ)a为何值时,MN的长最小并求出最小值;(Ⅲ)当MN的长最小时,求平面MNA与平面MNB夹角的余弦值.20.(12分)椭圆C1:的长轴长等于圆C2:x2+y2=4的直径,且C1的离心率等于,已知直线l:x﹣y﹣1=0交C1于A、B两点.(Ⅰ)求C1的标准方程;(Ⅱ)求弦AB的长.21.(12分)如图所示,在三棱柱ABC﹣A1B1C1中,四边形ABB1A1为菱形,∠AA1B1=,平面ABB1A1⊥平面ABC,AB=BC,AC=,E为AC的中点.(Ⅰ)求证:B1C1⊥平面ABB1A1;(Ⅱ)求平面EB1C1与平面BB1C1C所成角的大小.22.(12分)已知点A(1,0),点P是圆C:(x+1)2+y2=8上的任意一点,线段PA的垂直平分线与直线CP交于点E.(Ⅰ)求点E的轨迹方程;(Ⅱ)过点A的直线l与轨迹E交于不同的两点M,N,则△CMN的面积是否存在最大值?若存在,求出这个最大值及直线l的方程;若不存在,请说明理由.参考答案一、单选题(共8小题).1.直线3x+2y﹣1=0的一个方向向量是()A.(2,﹣3)B.(2,3)C.(﹣3,2)D.(3,2)解:依题意,(3,2)为直线的一个法向量,∴则直线的一个方向向量为(2,﹣3),故选:A.2.椭圆+=1的离心率是()A.B.C.D.解:椭圆+=1,可得a=3,b=2,则c==,所以椭圆的离心率为:=.故选:B.3.两条平行直线2x﹣y+3=0和ax﹣3y+4=0间的距离为d,则a,d分别为()A.a=6,B.a=﹣6=﹣6,C.a=﹣6,D.a=6,解:根据两条平行直线2x﹣y+3=0和ax﹣3y+4=0,可得=≠,可得a=6,可得两条平行直线即6x﹣3y+9=0和6x﹣3y+4=0,故它们间的距离为d==,故选:D.4.如图,四棱锥P﹣OABC的底面是矩形,设,,,E是PC的中点,则()A.B.C.D.解:∵四棱锥P﹣OABC的底面是矩形,,,,E是PC的中点,∴=+=﹣+=﹣+(+)=﹣+(﹣+)=﹣﹣+,故选:B.5.空间直角坐标系O﹣xyz中,经过点P(x0,y0,z0)且法向量为的平面方程为A(x﹣x0)+B(y﹣y0)+C(z﹣z0)=0,经过点P(x0,y0,z0)且一个方向向量为的直线l的方程为,阅读上面的材料并解决下面问题:现给出平面α的方程为3x﹣5y+z﹣7=0,经过(0,0,0)直线l 的方程为,则直线1与平面α所成角的正弦值为()A.B.C.D.解:∵平面α的方程为3x﹣5y+z﹣7=0,∴平面α的一个法向量为=(3,﹣5,1),∵经过(0,0,0)直线l的方程为,∴直线l的一个方向向量为=(3,2,﹣1),设直线1与平面α所成角为θ,则sinθ=|cos<,>|=||=||=,∴直线1与平面α所成角的正弦值为.故选:B.6.已知圆x2+y2﹣6x=0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A.1B.2C.3D.4解:由圆的方程可得圆心坐标C(3,0),半径r=3;设圆心到直线的距离为d,则过D(1,2)的直线与圆的相交弦长|AB|=2,当d最大时弦长|AB|最小,当直线与CD所在的直线垂直时d最大,这时d=|CD|==2,所以最小的弦长|AB|=2=2,故选:B.7.已知l,m是异面直线,A,B∈l,C,D∈m,AC⊥m,BD⊥m,AB=2,CD=1,则异面直线l,m所成的角等于()A.30°B.45°C.60°D.90°解:由AC⊥m,BD⊥m,可得AC⊥CD,BD⊥CD,故可得=0,=0,∴=()•=+||2+=0+12+0=1,∴cos<,>==,∵与夹角的取值范围为[0,π],故向量的夹角为60°,∴异面直线l,m所成的角等于60°.故选:C.8.已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,A是C的左顶点,点P 在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为()A.B.C.D.解:由题意可知:A(﹣a,0),F1(﹣c,0),F2(c,0),直线AP的方程为:y=(x+a),由∠F1F2P=120°,|PF2|=|F1F2|=2c,则P(2c,c),代入直线AP:c=(2c+a),整理得:a=4c,∴题意的离心率e==.故选:D.二.多选题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.)9.过点P(2,3),并且在两轴上的截距相等的直线方程为()A.x+y﹣5=0B.2x+y﹣4=0C.3x﹣2y=0D.4x﹣2y+5=0解:当直线经过原点时,直线的斜率为k=,所以直线的方程为y=x,即3x﹣2y=0;当直线不过原点时,设直线的方程为x+y=a,代入点P(2,3)可得a=5,所以所求直线方程为x+y=5,即x+y﹣5=0.综上可得,所求直线方程为:x+y﹣5=0或3x﹣2y=0.故选:AC.10.已知曲线C:mx2+ny2=1.()A.若m>n>0,则C是椭圆,其焦点在y轴上B.若m>n>0,则C是椭圆,其焦点在x轴上C.若m=n>0,则C是圆,其半径为D.若m=0,n>0,则C是两条直线解:曲线C:mx2+ny2=1.若m>n>0,方程化为,得>0,则C是椭圆,其焦点在y轴上,故A 正确;B错误;若m=n>0,方程化为,则C是圆,其半径为,故C错误;若m=0,n>0,方程化为,即y=,则C是两条直线,故D正确.故选:AD.11.已知圆C:(x﹣3)2+(y﹣4)2=1和两点A(﹣m,0),B(m,0)(m>0)若圆C 上存在点P,使得∠APB=90°,则m的可能取值为()A.7B.6C.5D.8解:圆C:(x﹣3)2+(y﹣4)2=1的圆心C(3,4),半径为1,∵圆心C到O(0,0)的距离为5,∴圆C上的点到点O的距离的最大值为6,最小值为4,再由∠APB=90°,可得以AB为直径的圆和圆C有交点,得PO=|AB|=m,即4≤m≤6,结合选项可得,m的值可能取6和5.故选:BC.12.已知F1,F2是椭圆的左、右焦点,动点在椭圆上,∠F1PF2的平分线与x轴交于点M(m,0),则m的可能取值为()A.1B.2C.0D.﹣1解:由椭圆方程可得F1(,0),F2(),由y1>,可得<x1<,则直线PF1的方程为,即,直线PF2的方程为,即.∵M(m,0)在∠F1PF2的平分线,∴,①∵=,=,﹣<m<,∴①式转化为,即m=,又<x1<,∴<m<.结合选项可得m的可能取值为1,0,﹣1,故选:ACD.三、填空题(本题共4小题,每小题5分,共20分)13.已知平面α的一个法向量,平面β的一个法向量,若α⊥β,则y﹣x=1.解:∵平面α的一个法向量,平面β的一个法向量,α⊥β,∴=﹣x+y﹣1=0,解得y﹣x=1.故答案为:1.14.在棱长为1的正方体ABCD﹣A1B1C1D1中,E是线段DD1的中点,F是线段BB1的中点,则直线FC1到平面AB1E的距离为.解:如图,取C1C的中点G,连接BG,可得BF∥C1G,BF=C1G,则四边形BGC1F为平行四边形,∴C1F∥BG.连接EG,得EG∥CD∥AB,EG=CD=AB,则四边形ABGE为平行四边形,得BG∥AE,则FC1∥AE,∵AE⊂平面AB1E,FC1⊄平面AB1E,∴FC1∥平面AB1E,∴直线FC1到平面AB1E的距离等于F到平面AB1E的距离,∵正方体ABCD﹣A1B1C1D1中的棱长为1,∴,AE=,,则cos∠EAB1=,∴sin,则=.设F到平面AB1E的距离为h,由,得,即h=.∴直线FC1到平面AB1E的距离为.故答案为:.15.已知F1,F2是椭圆的左、右焦点,弦AB过点F1,若△ABF2的内切圆的周长为2π,A,B两点的坐标是(x1,y1)(x2,y2),则|y1﹣y2|=.解:由椭圆,得a2=25,b2=16,∴a=5,b=4,c==3,∴椭圆的焦点分别为F1(﹣3,0)、F2(3,0),设△ABF2的内切圆半径为r,∵△ABF2的内切圆周长为2π,∴r=1,根据椭圆的定义,得|AB|+|AF2|+|BF2|=(|AF1|+|AF2|)+(|BF1|+|BF2|)=4a=20.∴△ABF2的面积S=(|AB|+|AF2|+|BF2|)×r=×20×1=10,又∵△ABF2的面积S=+=×|y1|×|F1F2|+×|y2|×|F1F2|=×(|y1|+|y2|)×|F1F2|=3|y2﹣y1|(A、B在x轴的两侧),∴3|y1﹣y2|=10,解得|y1﹣y2|=.故答案为:.16.2020年是中国传统的农历“鼠年”,有人用3个圆构成“卡通鼠”的形象,如图:Q (0,﹣3)是圆Q的圆心,圆Q过坐标原点O;点L、S均在x轴上,圆L与圆S的半径都等于2,圆S、圆L均与圆Q外切.已知直线l过点O.(1)若直线l与圆L、圆S均相切,则l截圆Q所得弦长为3;(2)若直线l截圆L、圆S、圆Q所得弦长均等于d,则d=.解:(1)根据条件得到两圆的圆心坐标分别为(﹣4,0),(4,0),设公切线方程为y=kx+m(k≠0)且k存在,则,解得k=±,m=0,故公切线方程为y=±x,则Q到直线l的距离d=,故l截圆Q的弦长=2=3;(2)设方程为y=kx+m(k≠0)且k存在,则三个圆心到该直线的距离分别为:d1=,d2=,d3=,则d2=4(4﹣d12)=4(4﹣d22)=4(9﹣d32),即有()2=()2,①4﹣()2=9﹣()2,②解①得m=0,代入②得k2=,则d2=4(4﹣)=,即d=,故答案为:3;.四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知平行四边形ABCD的三个顶点的坐标为A(﹣1,4),B(﹣2,﹣1),C(2,3).(Ⅰ)在△ABC中,求边AC中线所在直线方程;(Ⅱ)求平行四边形ABCD的顶点D的坐标及边BC的长度;(Ⅲ)求△ABC的面积.解:(1)设AC边的中点为M,则M(,),∴直线BM斜率k==,∴直线BM的方程为y+1=(x+2),化为一般式可得9x﹣5y+13=0,∴AC边中线所在直线的方程为:9x﹣5y+13=0(2)设点D坐标为(x,y),由已知得M为线段BD中点,∴有,解得,∴D(3,8),∵B(﹣2,﹣1),C(2,3)∴;(3)由B(﹣2,﹣1),C(2,3)可得直线BC的方程为x﹣y+1=0,∴点A到直线BC的距离d==2,∴△ABC的面积S=×4×2=8.18.(12分)已知△ABC的边AB边所在直线的方程为x﹣3y﹣6=0,M(2,0)满足,点T(﹣1,1)在AC边所在直线上且满足.(1)求AC边所在直线的方程;(2)求△ABC外接圆的方程;(3)若动圆P过点N(﹣2,0),且与△ABC的外接圆外切,求动圆P的圆心的轨迹方程.解:(1)∵∴AT⊥AB,又T在AC上∴AC⊥AB,△ABC为Rt△ABC,又AB边所在直线的方程为x﹣3y﹣6=0,所以直线AC的斜率为﹣3.又因为点T(﹣1,1)在直线AC上,所以AC边所在直线的方程为y﹣1=﹣3(x+1).即3x+y+2=0.(2)AC与AB的交点为A,所以由解得点A的坐标为(0,﹣2),∵∴M(2,0)为Rt△ABC的外接圆的圆心又r=.从△ABC外接圆的方程为:(x﹣2)2+y2=8.(3)因为动圆P过点N,所以|PN|是该圆的半径,又因为动圆P与圆M外切,所以,即.故点P的轨迹是以M,N为焦点,实轴长为的双曲线的左支.因为实半轴长,半焦距c=2.所以虚半轴长.从而动圆P的圆心的轨迹方程为.19.(12分)在如图所示的试验装置中,两个正方形框架ABCD,ABEF的边长都是1,且它们所在的平面互相垂直,活动弹子M,N分别在正方形对角线AC和BF上移动,且CM和BN的长度保持相等,记CM=BN=a(0<a<).(Ⅰ)求MN的长;(Ⅱ)a为何值时,MN的长最小并求出最小值;(Ⅲ)当MN的长最小时,求平面MNA与平面MNB夹角的余弦值.解:如图建立空间直角坐标系,A(1,0,0),C(0,0,1),F(1,1,0),E(0,1,0),∵CM=BN=a,∴M(,0,1﹣),N(,,0).(Ⅰ)=;(Ⅱ)=,当a=时,|MN|最小,最小值为;(Ⅲ)由(Ⅱ)可知,当M,N为中点时,MN最短,则M(,0,),N(,,0),取MN的中点G,连接AG,BG,则G(,,),∵AM=AN,BM=BN,∴AG⊥MN,BG⊥MN,∴∠AGB是平面MNA与平面MNB的夹角或其补角.∵,,∴cos<>==.∴平面MNA与平面MNB夹角的余弦值是.20.(12分)椭圆C1:的长轴长等于圆C2:x2+y2=4的直径,且C1的离心率等于,已知直线l:x﹣y﹣1=0交C1于A、B两点.(Ⅰ)求C1的标准方程;(Ⅱ)求弦AB的长.解:(Ⅰ)由题意可得2a=4,∴a=2,∵,∴c=1,∴b=,∴椭圆C1的标准方程为:.(Ⅱ)联立直线l与椭圆方程,消去y得:7x2﹣8x﹣8=0,设A(x1,y1),B(x2,y2),则,,∴|AB|===.21.(12分)如图所示,在三棱柱ABC﹣A1B1C1中,四边形ABB1A1为菱形,∠AA1B1=,平面ABB1A1⊥平面ABC,AB=BC,AC=,E为AC的中点.(Ⅰ)求证:B1C1⊥平面ABB1A1;(Ⅱ)求平面EB1C1与平面BB1C1C所成角的大小.【解答】(Ⅰ)证明:∵四边形ABB1A1为菱形,AB=BC,AC=,∴AC2=AB2+BC2,得AB⊥BC,又平面ABB1A1⊥平面ABC,平面ABB1A1∩平面ABC=AB,∴BC⊥平面ABB1A1,又B1C1∥BC,∴B1C1⊥平面ABB1A1;(Ⅱ)取A1B1的中点O,A1C1的中点N,连接OA,ON,∵B1C1⊥平面ABB1A1,∴ON⊥平面ABB1A1,得ON⊥OA1,ON⊥OA,又四边形ABB1A1为菱形,,O是A1B1的中点,∴OA⊥A1B1,故OA1,ON,OA两两互相垂直.以O为坐标原点,分别以OA1、ON、OA所在直线为x、y、z轴建立空间直角坐标系,∴B1(﹣1,0,0),C1(﹣1,2,0),E1(﹣1,1,),B(﹣2,0,),由图可知,平面EB1C1的一个法向量为,设平面BB1C1C的一个法向量为,则,取z=1,得.设平面EB1C1与平面BB1C1C所成角的大小为θ,则cosθ=|cos<>|=||=,又∵θ∈(0,],∴,故平面EB1C1与平面BB1C1C所成角的大小为.22.(12分)已知点A(1,0),点P是圆C:(x+1)2+y2=8上的任意一点,线段PA的垂直平分线与直线CP交于点E.(Ⅰ)求点E的轨迹方程;(Ⅱ)过点A的直线l与轨迹E交于不同的两点M,N,则△CMN的面积是否存在最大值?若存在,求出这个最大值及直线l的方程;若不存在,请说明理由.解:(Ⅰ)由题意可知:|EP|=|EA|,|CE|+|EP|=2,∴|CE|+|EA|=2>|CA|=2,∴点E的轨迹是以C,A为焦点的椭圆,且2a=2,c=1,∴其轨迹方程为.(Ⅱ)设M(x1,y1),N(x2,y2),不妨设y1>0,y2<0,由题意可知,直线l的斜率不为零,可设直线l的方程为x=my+1,联立方程,消去x得:(m2+2)y2+2my﹣1=0,则,,∴=,∴===,当且仅当即m=0时,△CMN的面积取得最大值,此时直线l的方程为x=1.。

2024学年山东省济宁市实验中学招生全国统一考试考试说明跟踪卷(三)数学试题

2024学年山东省济宁市实验中学招生全国统一考试考试说明跟踪卷(三)数学试题

2024学年山东省济宁市实验中学招生全国统一考试考试说明跟踪卷(三)数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若θ是第二象限角且sin θ =1213,则tan()4πθ+= A .177- B .717- C .177 D .7172.数列{}n a 满足:3111,25n n n n a a a a a ++=-=,则数列1{}n n a a +前10项的和为A .1021B .2021C .919D .18193.如图,设P 为ABC ∆内一点,且1134AP AB AC =+,则ABP ∆与ABC ∆的面积之比为A .14 B .13 C .23D .164.已知数列{}n a 为等差数列,n S 为其前n 项和,6353a a a +-=,则7S =( ) A .42B .21C .7D .35.设全集()(){}130U x Z x x =∈+-≤,集合{}0,1,2A =,则U C A =( ) A .{}1,3-B .{}1,0-C .{}0,3D .{}1,0,3-6.如图,这是某校高三年级甲、乙两班在上学期的5次数学测试的班级平均分的茎叶图,则下列说法不正确的是( )A .甲班的数学成绩平均分的平均水平高于乙班B .甲班的数学成绩的平均分比乙班稳定C .甲班的数学成绩平均分的中位数高于乙班D .甲、乙两班这5次数学测试的总平均分是1037.中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“乐”不排在第一节,“射”和“御”两门课程不相邻,则“六艺”课程讲座不同的排课顺序共有( )种. A .408 B .120 C .156D .2408.如图,在中,点M 是边的中点,将沿着AM 翻折成,且点不在平面内,点是线段上一点.若二面角与二面角的平面角相等,则直线经过的( )A .重心B .垂心C .内心D .外心9.甲在微信群中发了一个6元“拼手气”红包,被乙、丙、丁三人抢完,若三人均领到整数元,且每人至少领到1元,则乙获得“最佳手气”(即乙领到的钱数多于其他任何人)的概率是( ) A .13B .310C .25D .3410.若点(3,4)P -是角α的终边上一点,则sin 2α=( ) A .2425-B .725-C .1625D .8511.点M 在曲线:3ln G y x =上,过M 作x 轴垂线l ,设l 与曲线1y x =交于点N ,3OM ON OP +=,且P 点的纵坐标始终为0,则称M 点为曲线G 上的“水平黄金点”,则曲线G 上的“水平黄金点”的个数为( ) A .0B .1C .2D .312.生活中人们常用“通五经贯六艺”形容一个人才识技艺过人,这里的“六艺”其实源于中国周朝的贵族教育体系,具体包括“礼、乐、射、御、书、数”.为弘扬中国传统文化,某校在周末学生业余兴趣活动中开展了“六艺”知识讲座,每艺安排一节,连排六节,则满足“数”必须排在前两节,“礼”和“乐”必须分开安排的概率为( ) A .760B .16C .1360D .14二、填空题:本题共4小题,每小题5分,共20分。

山东省实验中学2020-2021学年高一上学期1月阶段性教学质量检测数学试题含答案

山东省实验中学2020-2021学年高一上学期1月阶段性教学质量检测数学试题含答案

山东省实验中学2020级高一上学期阶段性教学质量检测数学试题第一部分(选择题,共60分)一、单项选择题:本大题共有8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,请把它选出后在答题卡规定的位置上用铅笔涂黑. 1.-315°化为弧度是( )A .-43πB .-5π3C .-7π4D .-76π2.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:o C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据()i i x y ,(i=1,2,…,20)得到下面的散点图:由此散点图,在10o C 至40o C 之间,下面四个函数模型中最适宜作为发芽率y 和温度x 的函数的是( ) A .y a bx =+ B .2y a bx =+ C .x y a be =+D .ln y a b x =+3.已知点P (4,-3)是角α终边上一点,则下列三角函数值中正确的是( )A .tan α=-43B .tan α=-34C .sin α=-45D .cos α=354.下面诱导公式使用正确的是( )A .sin ⎝⎛⎭⎫θ-π2=cos θB .cos ⎝⎛⎭⎫3π2+θ=-sin θ C .sin ⎝⎛⎭⎫3π2-θ=-cos θ D .cos ⎝⎛⎭⎫θ-π2=-sin θ5.在平面直角坐标系xOy 中,若角α的顶点在坐标原点,始边与x 非负半轴重合,终边与单位圆交于点P (m ,n ),且33cos()25πα-=,3,2παπ⎛⎫∈ ⎪⎝⎭,则m =( )A .-45B .45C .-35D .356.已知函数2()log f x x =的反函数为()g x ,则()1g x -的图像为( )A .B .C .D .7.已知0.3a e =,5log b =sin 4c =,则( )A .c b a <<B .b c a <<C .b a c <<D .c a b <<8.在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间,并构成一般不动点定理的基石,布劳威尔不动点定理得名于荷兰数学家鲁伊兹·布劳威尔(L .E .J .Brouwer ),简单的讲就是对于满足一定条件的连续函数()f x ,存在点0x ,使得()00f x x =,那么我们称该函数为“不动点”函数,下列为“不动点”函数的是( )A .()2x f x x =+B .2()3g x x x =-+C .21,1()2,1xx f x x x ⎧-≤⎪=⎨->⎪⎩D .1()2g x x x=+ 二、多项选择题(本题共 4 小题,每小题 5 分,共 20 分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得 5 分,部分选对的得 3 分,有选错的得 0 分) 9. 下列给出的各角中,与53π-终边相同的角有( ) A.3π B. 133πC. 23π-D. 173π-10.下列函数中,与y x =是同一个函数的是( )A .3log 3xy =B .3log 3xy =C .y =D .2y =11.已知全集为R ,集合112xA x ⎧⎫⎪⎪⎛⎫=≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,{}2680B x xx =-+≤,则下列结论正确的有( )A .(,0]A =-∞B .{|2RB x x =<或}4x >C .{}02RA B x x ⋂=≤<D .{|02RA B x x ⋂=≤<或}4x >12.已知函数e 1()e 1x x f x -=+(e 为自然对数的底数),则( )A .f (x )为奇函数B .方程f (x )=12的实数解为x =ln3 C .f (x )的图象关于y 轴对称 D .∀x 1,x 2∈R ,且x 1≠x 2,都有()()12120f x f x x x ->-第二部分(非选择题,共90分)三、填空题(本题共4小题,每小题5分,共20分.)13.已知函数22x y a +=-()0,1a a >≠的图象恒过定点A ,则定点A 的坐标为______. 14. 已知扇形的圆心角为23π,扇形的面积为3π,则该扇形的弧长为____________. 15.十六、十七世纪之交,随着天文、航海、工程、贸易及军事的发展,改进数字计算方法成了当务之急,约翰•纳皮尔正是在研究天文学的过程中,为了简化其中的计算而发明了对数,后来天才数学家欧拉发现了对数与指数的关系,即log ba a Nb N =⇔=,现已知2log 6,336b a ==,则12a b+=____,2=ab _____.(第一空2分,第二空3分)16. 已知函数2log ,04()6,4x x f x x x ⎧<<⎪=⎨-≥⎪⎩,存在三个互不相等的正实数a ,b ,c 且a b c<<时有()()()f a f b f c ==,则()a b c f a ⋅⋅⋅取值范围是________.四、解答题:本大题共6小题,共70分。

2024届山东省实验中学高三上学期第三次诊断考试数学及答案

2024届山东省实验中学高三上学期第三次诊断考试数学及答案

山东省实验中学2024届高三第三次诊断考试数学试题注意事项:1.答卷前,先将自己的考生号等信息填写在试卷和答题纸上,并在答题纸规定位置贴条形2.本试卷满分150分,分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷为第1页至第3页,第Ⅱ卷为第3页至第4页.3.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.4.非选择题的作答:用0.m 加黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.第Ⅰ卷(共60分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}220M x x x =--<,{210}N x x =∈+>Z ,则M N ⋂=()A. 13,22⎛⎤-⎥⎝⎦ B. 1,12⎛⎤-⎥⎝⎦C. {0,1,2}D. {0,1}2. 已知复数z 满足()12i 32i z +=-,则复数z 的实部为( )A.85B. 85-C.15D. 15-3. 数列{}n a 满足21n n a a +=,*n ∈N ,则“12a =”是“{}n a 为单调递增数列”( )A 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4. 把一个正方体各面上均涂上颜色,并将各棱三等分,然后沿等分线把正方体切开.若从所得小正方体中任取一个,恰好抽到2个面有颜色的小正方体的概率为( )A.29B.827C.49D.125. 如图在正方体1111ABCD A B C D -中,点O 为线段BD 的中点. 设点P 在线段1CC 上,直线OP 与平面1A BD 所成的角为α,则sin α的取值范围是的.的A.B.C.D. 6. 如图,1F 、2F 是双曲线C :()222210,0x y a b a b-=>>的左、右焦点,过2F 的直线与双曲线C 交于A 、B 两点.若A 是2BF 中点且12BF BF ⊥则该双曲线的渐近线方程为( )A. y =±B. y =±C. y =D. y =7. 已知函数()()3222,1131122,1326ax x f x x ax a x x -≤⎧⎪=⎨-++->⎪⎩,若对任意12x x <都有()()121222f x f x x x -<-,则实数a 的取值范围是( )A. (),2-∞- B. [)1,+∞ C. 12,2⎛⎤- ⎥⎝⎦D.3,4⎛⎤-∞-⎥⎝⎦8. 棱长为2的正四面体内切一球,然后在正四面体和该球形成的空隙处各放入一个小球,则这些小球的最大半径为()A.B.C.D.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 一组数据1220231232023(),,,a a a a a a a ⋯<<<⋯<,记其中位数为k ,均值为m ,标准差为1s ,由其得到新数据123202321,21,21,,21a a a a +++⋯+的标准差为2s ,下列结论正确的是( )A. 1012k a = B. 10111012a m a << C. m k≥ D. 212s s =10. 已知函数()()12πsin 0,,,2f x x x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭为()f x 的两个极值点,且12x x -的最小值为π2,直线π3x =为()f x 图象的一条对称轴,将()f x 的图象向右平移π12个单位长度后得到函数()g x 的图象,下列结论正确的是( )A 4ω= B.π6ϕ=-C. ()f x 在间π,06⎡⎤-⎢⎥⎣⎦上单调递增D. ()g x 图象关于点π,06⎛⎫⎪⎝⎭对称11. 已知函数()()2sin π,0212,22x x f x f x x ≤≤⎧⎪=⎨->⎪⎩,下列说正确的是( )A. 当[]()*2,22x n n n ∈+∈N 时,()()1sin π22nf x x n =-B. 函数()f x 在()*12,22n n n ⎡⎤+∈⎢⎥⎣⎦N 上单调递增C. 方程()()lg 2f x x =+有4个相异实根D. 若关于x 的不等式()()2f x k x ≤-在[]2,4恒成立,则1k ≥12. 圆柱1OO 高为1,下底面圆O 的直径AB 长为2,1BB 是圆柱1OO 的一条母线,点,P Q 分别在上、下底面内(包含边界),下列说法正确的有( ).A. 若+=PA PB 3,则P 点的轨迹为圆B. 若直线OP 与直线1OB 成45︒,则P 的轨迹是抛物线的一部分C. 存在唯一一组点,P Q ,使得AP PQ⊥.的D. 1AP PQ QB ++的取值范围是第Ⅱ卷(共90分)三、填空题:本题共4小题,每小题5分,共20分.13. 已知点()1,1A -,()3,B y ,向量()1,2a = ,若AB 与a成锐角,则y 的取值范围为________.14. 如果圆台的上底面半径为5,下底面半径为R ,中截面(与上、下底面平行且等距的平面)把圆台分为上、下两个部分,其侧面积的比为1:2,则R =_______.15. 若关于x 的不等式()221e xx ax ≥+在()0,∞+恒成立,则实数a 的取值范围是______.16. 已知椭圆()2222:10x y C a b a b+=>>,过C 中心的直线交C 于M ,N 两点,点P 在x 轴上其横坐标是点M 横坐标的3倍,直线NP 交C 于点Q ,若直线QM 恰好是以MN 为直径的圆的切线,则C 的离心率为_________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知()()()sin sin sin sin C B c b a A B +-=-.(1)求角C 的大小(2)若ACB ∠的平分线交AB 于点D ,且2CD =,2AD DB =,求ABC 的面积.18. 如图,三棱锥–S ABC 的底面ABC 和侧面SBC 都是等边三角形,且平面SBC ⊥平面ABC ,点P 在侧棱SA 上.(1)当P 为侧棱SA 的中点时,求证:SA ⊥平面PBC ;(2)若二面角P BC A ––的大小为60°,求PASA的值.19. 已知在数列{}n a 中,()()*11211,n n n a a a n n++==⋅∈N (1)求数列{}n a 的通项公式;(2)若数列{}n b 的通项公式nn a b n=在k b 和1k b +之间插入k 个数,使这2k +个数组成等差数列,将插入的k 个数之和记为k c ,其中1k =,2,…,n ,求数列{}n c 的前n 项和.20. 某中学有A ,B 两个餐厅为老师与学生们提供午餐与晚餐服务,王同学、张老师两人每天午餐和晚餐都在学校就餐,近一个月(30天)选择餐厅就餐情况统计如下:选择餐厅情况(午餐,晚餐)(),A A (),A B (),B A (),B B 王同学9天6天12天3天张老师6天6天6天12天假设王同学、张老师选择餐厅相互独立,用频率估计概率.(1)估计一天中王同学午餐和晚餐选择不同餐厅就餐的概率;(2)记X 为王同学、张老师在一天中就餐餐厅的个数,求X 的分布列和数学期望()E X ;(3)假设M 表示事件“A 餐厅推出优惠套餐”,N 表示事件“某学生去A 餐厅就餐”,()0P M >,已知推出优惠套餐的情况下学生去该餐厅就餐的概率会比不推出优惠套餐的情况下去该餐厅就餐的概率要大,证明.()()РP M N M N >.21. 已知函数()ln f x x =,()xg x e =.(1)若函数()()11x x f x x ϕ+=--,求函数()x ϕ的单调区间;(2)设直线l 为函数()f x 的图象上一点()()00,A x f x 处的切线.证明:在区间()1,+∞上存在唯一的0x ,使得直线l 与曲线()y g x =相切.22. 已知动圆过点(0,1)F ,且与直线:1l y =-相切,设动圆圆心D 的轨迹为曲线C .(1)求曲线C 的方程;(2)过l 上一点P 作曲线C 的两条切线,PA PB ,,A B 为切点,,PA PB 与x 轴分别交于M ,N 两点.记AFM △,PMN ,BFN 的面积分别为1S 、2S 、3S .(ⅰ)证明:四边形FNPM 为平行四边形;(ⅱ)求2213S S S 的值.山东省实验中学2024届高三第三次诊断考试数学试题注意事项:1.答卷前,先将自己的考生号等信息填写在试卷和答题纸上,并在答题纸规定位置贴条形2.本试卷满分150分,分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷为第1页至第3页,第Ⅱ卷为第3页至第4页.3.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.4.非选择题的作答:用0.m 加黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.第Ⅰ卷(共60分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}220M x x x =--<,{210}N x x =∈+>Z ,则M N ⋂=()A. 13,22⎛⎤-⎥⎝⎦ B. 1,12⎛⎤-⎥⎝⎦C. {0,1,2}D. {0,1}【答案】D 【解析】【分析】化简集合M,N ,根据交集运算得解.【详解】因为{}220{12}M x x x x x =--<=-<<,12N x x ⎧⎫=∈>-⎨⎬⎩⎭Z ,所以{0,1}M N ⋂=.故选:D .2. 已知复数z 满足()12i 32i z +=-,则复数z 的实部为( )A.85B. 85-C.15D. 15-【答案】D 【解析】【分析】根据复数的除法运算求出复数z ,即可得答案.【详解】由()12i 32i z +=-可得()32i (12i)32i 18i 18i 12i 5555z -----====--+,故复数z 的实部为15-,故选:D3. 数列{}n a 满足21n n a a +=,*n ∈N ,则“12a =”是“{}n a 为单调递增数列”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A 【解析】【分析】利用充分条件和必要条件的定义判断.【详解】解:由()2110n n n n n n a a a a a a +-=-=->,解得0n a <或1n a >,所以“12a =”是“{}n a 为单调递增数列”的充分不必要条件,故选:A4. 把一个正方体各面上均涂上颜色,并将各棱三等分,然后沿等分线把正方体切开.若从所得的小正方体中任取一个,恰好抽到2个面有颜色的小正方体的概率为( )A.29B.827C.49D.12【答案】C 【解析】【分析】根据古典概型概率计算公式求得正确答案.【详解】一共有33327⨯⨯=个小正方体,其中2个面有颜色的小正方体有12个,(每条棱上有1个)所以恰好抽到2个面有颜色小正方体的概率为124279=.故选:C5. 如图在正方体1111ABCD A B C D -中,点O 为线段BD 的中点. 设点P 在线段1CC 上,直线OP 与平面1A BD 所成的角为α,则sin α的取值范围是的A.B.C.D.【答案】B 【解析】【详解】设正方体的棱长为1,则11111AC AC AO OC OC======所以11111cos,sin3A OC A OC∠==∠=11cos A OC A OC∠==∠=又直线与平面所成的角小于等于90 ,而1A OC∠为钝角,所以sinα的范围为,选B.【考点定位】空间直线与平面所成的角.6. 如图,1F、2F是双曲线C:()222210,0x ya ba b-=>>的左、右焦点,过2F的直线与双曲线C交于A、B两点.若A是2BF中点且12BF BF⊥则该双曲线的渐近线方程为()A. y=±B. y=±C. y =D. y =【答案】A 【解析】【分析】设2AB AF m ==,利用双曲线的定义得121222,222AF AF a m a BF BF a m a =+=+=-=-,再利用勾股定理建立方程组,消去m ,得到2213a c =,进而得到b a的值,由by x a =±得到双曲线的渐近线方程.【详解】设21212,22,222AB AF m AF AF a m a BF BF a m a ===+=+=-=-, 222222111212,BF BA AF BF BF F F +=+=,()()222222m a m m a -+=+①,()2222244m a m c -+=②,由①可得3,m a =代入②式化简得:2213a c =,∴2212a b =,∴ba=,所以双曲线的渐近线方程为by x a=±=±.故选:A【点睛】本题考查双曲线的定义、渐近线方程,解题时要注意如果题干出现焦半径,一般会用到双曲线的定义.7. 已知函数()()3222,1131122,1326ax x f x x ax a x x -≤⎧⎪=⎨-++->⎪⎩,若对任意12x x <都有()()121222f x f x x x -<-,则实数a 的取值范围是( )A. (),2-∞-B. [)1,+∞ C. 12,2⎛⎤- ⎥⎝⎦D.3,4⎛⎤-∞-⎥⎝⎦【答案】A 【解析】【分析】转化为任意12x x <都有()()112222f x x f x x -<-,令 ()()2g x f x x =-,得到 ()g x 在R 上递增求解.【详解】解:因为若对任意12x x <都有()()121222f x f x x x -<-,所以对任意12x x <都有()()112222f x x f x x -<-,令 ()()2g x f x x =-,则 ()g x 在R 上递增,当1x ≤时, ()()22g x a x =-+,则20a +<,即 2a <-成立;当1x >时, ()322213112326g x x ax a x =-+-,则 ()2232g x x ax a '=-+,当312a ≤,即23a ≤时,()211320g a a '=-+≥,解得 12a ≤;当312a >,即23a >时, 231024a g a ⎛⎫'=-≥ ⎪⎝⎭,无解;又()21311222326a a a -+≤-+-,即2430a a --≥,解得34a ≤-或1a ≥,综上:2a <-,故选:A.8. 棱长为2的正四面体内切一球,然后在正四面体和该球形成的空隙处各放入一个小球,则这些小球的最大半径为( )A.B.C.D.【答案】C 【解析】【分析】先求出正四面体的体积及表面积,利用A BCD O BCD O ABC O ACD O ABD V V V V V -----=+++求出内切球的半径,再通过11AO O HAO OF=求出空隙处球的最大半径即可.【详解】由题,当球和正四面体A BCD -的三个侧面以及内切球都相切时半径最大,设内切球的球心为O ,半径为R ,空隙处最大球的球心为1O ,半径为r ,G 为BCD △的中心,得AG ⊥平面BCD ,E 为CD 中点,球O 和球1O 分别和平面ACD 相切于F ,H ,在底面正三角形BCD 中,易求BE =,23BG BE ==AG∴===,又4ABC ABD ACD BCDS S S S=====,由A BCD O BCD O ABC O ACD O ABDV V V V V-----=+++,即得3A BCDBCD ABC ABD ACDVRS S S S-=+++,又13A BCDV-==,R∴==,AO AG GO=-==,12AO AG R r r r=--=-=-,又1AHO AFO,可得11AO O HAO OF=即r=.故选:C.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 一组数据1220231232023(),,,a a a a a a a⋯<<<⋯<,记其中位数为k,均值为m,标准差为1s,由其得到新数据123202321,21,21,,21a a a a+++⋯+的标准差为2s,下列结论正确的是()A. 1012k a= B.10111012a m a<< C. m k≥ D. 212s s=【答案】AD【解析】【分析】利用中位数的定义可判断A选项;举反例可判断B选项C;利用均值和方差公式可判断D选项.【详解】对于A选项,因1232023a a a a<<<<,样本数据最中间项为1012a ,由中位数的定义可知,1012k a =,A 正确;对于B ,不妨令n a n =()820231,2,,2022,100n a =⋯=,则81012122022100122023101220232023m a +++++++=>== ,B 错误;对于C ,不妨令n a n =()20231,2,,2022,12022.n a =⋯=,则10121220222022.11220222023101220232023m k a ++++++===<= ,C 错误;对于D ,数据123202421,21,21,,21a a a a ++++ 的均值为:()202420241121212120242024iii i a a m ==+=+=+∑∑,其方差为122s s ===,D 对.故选:AD 10. 已知函数()()12πsin 0,,,2f x x x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭为()f x 的两个极值点,且12x x -的最小值为π2,直线π3x =为()f x 图象的一条对称轴,将()f x 的图象向右平移π12个单位长度后得到函数()g x 的图象,下列结论正确的是( )A. 4ω= B.π6ϕ=-C. ()f x 在间π,06⎡⎤-⎢⎥⎣⎦上单调递增 D. ()g x 图象关于点π,06⎛⎫⎪⎝⎭对称【答案】BCD 【解析】【分析】由题意可得π22T =,即可求出ω,再根据正弦函数的对称性即可求出ϕ,根据正弦函数的单调性和对称性即可判断CD .【详解】因为12,x x 为()f x 的两个极值点,且12x x -的最小值为π2,的所以π2π222T ω==,所以2ω=,故A 错误;则()()sin 2f x x ϕ=+,又直线π3x =为()f x 图象的一条对称轴,所以2πππ32k ϕ+=+,所以ππ,Z 6k k ϕ=-+∈,又π2ϕ<,所以π6ϕ=-,故B 正确;所以()πsin 26f x x ⎛⎫=-⎪⎝⎭,由π,06x ⎡⎤∈-⎢⎥⎣⎦,得πππ2,626x ⎡⎤-∈--⎢⎥⎣⎦,所以()f x 在间π,06⎡⎤-⎢⎥⎣⎦上单调递增,故C 正确;将()f x 的图象向右平移π12个单位长度后得到函数()g x 的图象,则()πππsin 2sin 21263g x x x ⎡⎤⎛⎫⎛⎫=--=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,因为πππsin 0633g ⎛⎫⎛⎫=-=⎪ ⎪⎝⎭⎝⎭,所以()g x 图象关于点π,06⎛⎫⎪⎝⎭对称,故D 正确.故选:BCD .11. 已知函数()()2sin π,0212,22x x f x f x x ≤≤⎧⎪=⎨->⎪⎩,下列说正确的是( )A. 当[]()*2,22x n n n ∈+∈N 时,()()1sin π22nf x x n =-B. 函数()f x 在()*12,22n n n ⎡⎤+∈⎢⎥⎣⎦N 上单调递增C. 方程()()lg 2f x x =+有4个相异实根D. 若关于x 的不等式()()2f x k x ≤-在[]2,4恒成立,则1k ≥【答案】BC【解析】【分析】A 、B 项利用函数的周期性和单调性求解;C 项,利用函数图象交点解决方程根的问题;D 项,利用切线性质解决不等式问题.【详解】A 项,()()2sin π,0212,22x x f x f x x ≤≤⎧⎪=⎨->⎪⎩,表示当[]0,2x ∈时,()f x 向右平移2个单位长度时,y 值变为原来的12倍,所以当[]()*2,22x n n n ∈+∈N ,()()11sin π22n f x x n -=-,A 项错误;B 项,当[]0,2x ∈时,()2sin πf x x =,增区间为10,2⎡⎤⎢⎥⎣⎦和3,22⎡⎤⎢⎥⎣⎦,当[]2,4x ∈时,增区间为52,2⎡⎤⎢⎥⎣⎦和7,42⎡⎤⎢⎥⎣⎦,同理可得,所以()f x 在()*12,22n n n ⎡⎤+∈⎢⎥⎣⎦N 上单调递增,B 项正确;C 项,如图所示,()y f x =与()()lg 2g x x =+的图象,满足5522f g ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭,9922f g ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,两图象共有4个交点,所以方程()()lg 2f x x =+有4个相异实根,C 项正确;D 项,当[]2,4x ∈时,()()sin π2f x x =-,所以()()()()2sin π22f x k x x k x ≤--≤-⇒,当两函数相切时,k 有最小值,()()πcos π2f x x '=-,所以()2πf '=,所以πk ≥,D 项错误.故选:BC.12. 圆柱1OO 高为1,下底面圆O 的直径AB 长为2,1BB 是圆柱1OO 的一条母线,点,P Q 分别在上、下底面内(包含边界),下列说法正确的有( ).A. 若+=PA PB 3,则P 点的轨迹为圆B. 若直线OP 与直线1OB 成45︒,则P 的轨迹是抛物线的一部分C. 存在唯一的一组点,P Q ,使得AP PQ ⊥D. 1AP PQ QB ++的取值范围是【答案】BC 【解析】【分析】建立空间直角坐标系,利用两点间距离公式以及向量夹角公式列式计算可得点P 的轨迹方程判断选项A 和选项B ,假设AP PQ ⊥,根据勾股定理列式结合均值不等式计算最值,即可判断选项C ,计算1AP PQ QB ++的最大值3AP 判断选项D.【详解】对B ,如图,不妨以O 为原点,以AB 的垂直平分线,1,OA OO 分别为,,x y z 轴建立空间直角坐标系,则()0,0,0,(0,1,0),(0,1,0)OA B -,()10,1,1B -,设(),,1P x y ,则()()10,1,1,,,1OB OP x y =-=,=212y x =-,由于P 点在上底面内,所以P 的轨迹是抛物线的一部分,故B 正确;对A , 3PA PB +=+=,化简得22119420x y +=,即P 点的轨迹为椭圆,故A 错误;对C ,设点P 在下平面投影为1P ,若AP PQ ⊥,则222AP PQ AQ +=,则222221111AP PQ AQ +++=,当1P 在线段AQ 上时,2211AP PQ +可取最小值,由均值不等式,222211242AQ AQ AP PQ +≥⨯=,当且仅当112AQAP PQ ==时等号成立,所以2222112()2AQ AQ AP PQ =-+≤,即24AQ ≥,而点Q 只有在与点B 重合时,2A Q 才能取到4,此时点B 与点Q 重合,点P 与点1O 重合,故C 正确;对D ,当点P 与点1B ,点A 与点Q 重合,1AP PQ QB ++的值为3AP ==>,故D 错误.故选:BC【点睛】判断本题选项B 时,利用定义法计算线线所成的角不好计算时,可通过建立空间直角坐标系,利用向量夹角的计算公式列式计算.第Ⅱ卷(共90分)三、填空题:本题共4小题,每小题5分,共20分.13. 已知点()1,1A -,()3,B y ,向量()1,2a = ,若AB 与a成锐角,则y 的取值范围为________.【答案】(1,9)(9,)-+∞ 【解析】【分析】根据向量夹角为锐角利用数量积求解.【详解】因为(4,1)AB y =- ,()1,2a = ,AB 与a成锐角,的所以422220AB a y y ⋅=+-=+>,解得1y >-,当AB 与a同向时,(4,1)(1,2)(0)y λλ-=>,即412y λλ=⎧⎨-=⎩,解得9y =,此时满足0AB a ⋅> ,但AB 与a所成角为0,不满足题意,综上,AB 与a成锐角时,y 的取值范围为(1,9)(9,)-+∞ .故答案为:(1,9)(9,)-+∞ 14. 如果圆台的上底面半径为5,下底面半径为R ,中截面(与上、下底面平行且等距的平面)把圆台分为上、下两个部分,其侧面积的比为1:2,则R =_______.【答案】25【解析】【分析】中截面把圆台分为上、下两个圆台,则两个圆台的侧高相等,且中截面半径等于两底面半径和的一半,根据中截面把圆台分为上、下两个圆台的侧面积的比为1:2,我们易构造出关于R 的方程,解方程即可求出R 的值.【详解】设中截面的半径为r ,则52R r +=①,记中截面把圆台分为上、下两个圆台的侧面积分别为1S 、2S ,母线长均为l ,1 2 π(),π()S r l S R r l =+=+5,又 1 2 ::S S =12 ,(5):()1:2r R r ∴++=②,将①代入②整理得:25R =.故答案为:2515. 若关于x 的不等式()221e xx ax ≥+在()0,∞+恒成立,则实数a 的取值范围是______.【答案】(],2e -∞【解析】【分析】利用分离参数法,通过构造函数以及利用导数来求得a 的取值范围.【详解】依题意,不等式()221e xx ax ≥+()0,∞+恒成立,在即()221e x x a x+≤在()0,∞+恒成立,设()()()221e 0x x f x x x+=>,()()()23333312211e e ex x x x x x x x x x f x x x x -+++--+==='-,其中232e 0xx x x++>,所以()f x 在区间()0,1上,()()0,f x f x '<单调递减;在区间()1,+∞上,()()0,f x f x '>单调递增,所以()()12e f x f ≥=,所以2e a ≤,所以a 的取值范围是(],2e -∞. 故答案为:(],2e -∞16. 已知椭圆()2222:10x y C a b a b+=>>,过C 中心的直线交C 于M ,N 两点,点P 在x 轴上其横坐标是点M 横坐标的3倍,直线NP 交C 于点Q ,若直线QM 恰好是以MN 为直径的圆的切线,则C 的离心率为_________.【解析】【分析】利用三条直线的斜率关系,结合点差法可得.【详解】设()11,M x y ,()22,Q x y ,则()11,N x y --,()13,0P x ,设1k 、2k 、3k ,分别为直线MN 、QM 、NP 的斜率,则111y k x =,21221y y k x x -=-,()113111101344y y k k x x x +===--,因直线QM 是以MN 为直径的圆的切线所以QM MN ⊥,121k k =-,所以2314k k =-,又Q 在直线NP 上,所以21321y y k x x +=+,因M 、Q 在()222210x ya b a b+=>>上,所以2211221x y a b +=,2222221x y a b+=,两式相减得22221212220x x y y a b--+=,整理得2212122121y y y y b x x x x a+-⋅=-+-,故223214b k k a =-=-,即2214b a =,222131144b e a =-=-=,故e =四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知()()()sin sin sin sin C B c b a A B +-=-.(1)求角C 的大小(2)若ACB ∠的平分线交AB 于点D ,且2CD =,2AD DB =,求ABC 的面积.【答案】(1)π3C =(2【解析】【分析】(1)由(sin sin )()(sin sin )C B c b a A B +-=-,利用正弦定理转化为222a b c ab +-=,再利用余弦定理求解;(2)方法一 根据CD 平分ACB ∠,且2AD DB =,利用角平分线定理得到2b a =,23AD c =,13BD c =,再由1cos 2C =,cos ACD ∠=,求得边长,再利用三角形面积公式求解. 方法二根据CD 平分ACB ∠,且2AD DB =,得到2b a =,然后由+= ACD BCD ABC S S S ,求得边a ,再利用三角形面积公式求解.【小问1详解】解:由(sin sin )()(sin sin )C B c b a A B +-=-及正弦定理,得()()()c b c b a a b +-=-,即222a b c ab +-=,所以2221cos 22a b c C ab +-==.因为(0,π)C ∈,所以π3C =.【小问2详解】方法一 因为CD 平分ACB ∠,且2AD DB =,所以由角平分线定理,得2CA ADCB DB==,则有2b a =,23AD c =,13BD c =.由222214cos 24a a c C a +-==,得c =.又224449cos 8a c ACD a+-∠==,将c =代入,可得a =a =当a =时,32c =,则122DB CB +=+<,故舍去,所以a =所以11sin 22ABC S ab C ===△方法二 因为CD 平分ACB ∠,且2AD DB =,所以2CA ADCB DB==,则有2b a =.因为+= ACD BCD ABC S S S ,所以1π1π1π2sin 2sin sin 262623b a ab ⨯⨯⨯+⨯⨯⨯=,则有232a =,所以a =所以21πsin 23ABC S ab ===△18. 如图,三棱锥–S ABC 的底面ABC 和侧面SBC 都是等边三角形,且平面SBC ⊥平面ABC ,点P 在侧棱SA 上.(1)当P 为侧棱SA 的中点时,求证:SA ⊥平面PBC ;(2)若二面角P BC A ––的大小为60°,求PA SA的值.【答案】(1)证明见解析;(2)PA SA =.【解析】【分析】(1)通过证明SA BP ⊥和SA CP ⊥即可得证;(2)取BC 的中点O ,连接SO ,AO ,以点O 为坐标原点,OB ,AO ,OS 所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,利用向量法建立关系可求解.【详解】(1)证明:因为ABC 为等边三角形,所以AB AC BC ==.因为SBC △为等边三角形,所以SB SC BC ==,所以AB SB =,AC SC =.在等腰BAS △和等腰CAS △中,因为P 为SA 的中点,所以SA BP ⊥,SA CP ⊥.又因为BP CP P = ,BP ,CP ⊂平面PBC ,所以SA ⊥平面PBC .(2)如图,取BC 的中点O ,连接SO ,AO ,则在等边ABC 和等边SBC △中,有BC AO ⊥,BC SO ⊥,所以AOS ∠为二面角S BC A --的平面角.因为平面SBC ⊥平面ABC ,所以90AOS ∠=︒,即AO SO ⊥.所以OA ,OB ,OS 两两垂直.以点O 为坐标原点,OB ,AO ,OS 所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系.设AB a =,则0,,0A ⎛⎫ ⎪ ⎪⎝⎭,1,0,02B a ⎛⎫ ⎪⎝⎭,1,0,02C a ⎛⎫- ⎪⎝⎭,S ⎛⎫ ⎪ ⎪⎝⎭.因为P 在SA 上,设AP AS λ=()01λ<<,()0,,P y z ,则0,,AP y z ⎛⎫=+ ⎪ ⎪⎝⎭,AS ⎛⎫= ⎪ ⎪⎝⎭,解得)1y a λ=-,z a =,即)1P a a λ⎛⎫- ⎪ ⎪⎝⎭.显然平面ABC 的一个法向量(0,0,1)n = .设平面PBC 的一个法向量为()111,,m x y z = ,因为)112BP a a a λ⎛⎫=-- ⎪ ⎪⎝⎭ ,(),0,0CB a = .所以00m BP m CB ⎧⋅=⎨⋅=⎩ ,即()111010x y z λλ=⎧⎨-+=⎩,令1y λ=,则11z λ=-,所以()0,,1m λλ=- .因为二面角P BC A --的大小为60°,所以cos ,cos 60m n m n m n ⋅〈〉===︒,所以22630λλ-+=.又01λ<<,解得λ=,即PA SA =【点睛】本题考查线面垂直的证明,考查向量法求空间中线段比例,属于中档题.19. 已知在数列{}n a 中,()()*11211,n n n a a a n n ++==⋅∈N (1)求数列{}n a 的通项公式;(2)若数列{}n b 的通项公式n n a b n=在k b 和1k b +之间插入k 个数,使这2k +个数组成等差数列,将插入的k 个数之和记为k c ,其中1k =,2,…,n ,求数列{}n c 的前n 项和.【答案】(1)()1*2n na n n -=⋅∈N (2)()31212n n T n ⎡⎤=-⋅+⎣⎦【解析】【分析】(1)方法1:根据递推关系式,先变形;再采用累积法求数列通项公式;方法2:根据递推关系式,先构造出等比数列,再求数列通项公式.(2)先求出数列{}n c 的通项公式,再根据通项公式的特点利用错位相减法求前n 项和.【小问1详解】方法1:()()*121n n n a a n n++=⋅∈N ,∴()121n n n a a n ++=,∴当2n ≥时,132112112232121n n n n n n n a a a a a a a n a ---⨯⋅⨯⨯⨯==-=⋅⋅⋅ ∴12,2n n a n n -=⋅≥又 1n =也适合上式,∴()1*2n na n n -=⋅∈N ;方法2:∵()()*121n n n a a n n ++=⋅∈N ,∴121n n a a n n +=+,又111a =,故0n a n≠,∴n a n ⎧⎫⎨⎬⎩⎭为公比为2,首项为1的等比数列.∴12n n a n -=,∴()1*2n n a n n -=⋅∈N .【小问2详解】 ()1*2n n a n n -=⋅∈N ,n n a b n =,∴12n n b -=.由题知,()()1112232222k k k k k k k b b k c k -+-++===⋅设数列{}n c 的前n 项和为n T ﹐则()012213333312223212222222n n n T n n --=⨯⨯+⨯⨯+⨯⨯++-⋅+⋅ ()123133333212223212222222n nn T n n -=⨯⨯+⨯⨯+⨯⨯++-⋅+⋅ 所以012213333331222222222222n n nn T n ---=⨯⨯+⨯+⨯++⨯+⨯-⋅ ()021********n n n -=⋅-⋅-()31122n n ⎡⎤=-+-⋅⎣⎦,故()31212n n T n ⎡⎤=-⋅+⎣⎦.20. 某中学有A ,B 两个餐厅为老师与学生们提供午餐与晚餐服务,王同学、张老师两人每天午餐和晚餐都在学校就餐,近一个月(30天)选择餐厅就餐情况统计如下:选择餐厅情况(午餐,晚餐)(),A A (),A B (),B A (),B B 王同学9天6天12天3天张老师6天6天6天12天假设王同学、张老师选择餐厅相互独立,用频率估计概率.(1)估计一天中王同学午餐和晚餐选择不同餐厅就餐的概率;(2)记X 为王同学、张老师在一天中就餐餐厅的个数,求X 的分布列和数学期望()E X ;(3)假设M 表示事件“A 餐厅推出优惠套餐”,N 表示事件“某学生去A 餐厅就餐”,()0P M >,已知推出优惠套餐的情况下学生去该餐厅就餐的概率会比不推出优惠套餐的情况下去该餐厅就餐的概率要大,证明.()()РP M N M N >.【答案】(1)0.6 (2)分布列见解析,1.9(3)证明见解析【解析】【分析】(1)由频率估计概率,按古典概型进行求解;(2)先确定随机变量的可能取值,再求出各值所对应的概率,列出分布列,根据期望的定义求期望;(3)用条件概率公式进行推理证明.【详解】(1)设事件C 为“一天中王同学午餐和晚餐选择不同餐厅就餐”,因为30天中王同学午餐和晚餐选择不同餐厅就餐的天数为61218+=,所以()180.630P C ==.(2)记X 为王同学、张老师在一天中就餐餐厅的个数,则X 的所有可能取值为1和2,所以()10.30.20.10.40.1P X ==⨯+⨯=,()()2110.9P X P X ==-==,所以X 的分布列为所以X 的数学期望()10.120.9 1.9E X =⨯+⨯=.(3)由题知()()|P N M P N M >,所以()()()()()()()1P NM P NM P N P NM P M P M P M ->=-所以()()()P NM P N P M >⋅,所以()()()()()()()P NM P N P NM P N P M P N P NM ->⋅-,即()()()()P NM P N P N P NM ⋅>⋅,所以()()()()P NM P NM P N P N >,即()()||P M N P M N >21. 已知函数()ln f x x =,()xg x e =.(1)若函数()()11x x f x x ϕ+=--,求函数()x ϕ的单调区间;(2)设直线l 为函数()f x 的图象上一点()()00,A x f x 处的切线.证明:在区间()1,+∞上存在唯一的0x ,使得直线l 与曲线()y g x =相切.【答案】(1)增区间()0,1和()1,+∞;(2)证明见解析.【解析】【分析】(1)求得函数()y x ϕ=定义域和导数,分析导数的符号变化,即可得出函数()y x ϕ=的单调递增区间和递减区间;(2)求得直线l 的方程为001ln 1y x x x =+-,设直线l 与函数()y g x =相切于点()(),t g t ,可得出0ln t x =-,进而可将直线l 的方程表示为0001ln 1x y x x x +=+,可得0001ln 1x x x +=-,然后利用(1)中的函数()1ln 1x x x x ϕ+=--在区间()1,+∞上的单调性结合零点存在定理可证得结论成立.【详解】(1)()()11ln 11x x x f x x x x ϕ++=-=---,定义域为()()0,11,+∞ ,()()()222121011x x x x x x ϕ+'=+=>--,所以,函数()y x ϕ=的单调递增区间为()0,1,()1,+∞;(2)()ln f x x =Q ,()001f x x '∴=,所以,直线l 的方程为()0001ln y x x x x -=-,即001ln 1y x x x =+-,()x g x e = ,则()x g x e '=,设直线l 与函数()y g x =相切于点()(),t g t ,则()01t g t e x '==,得0ln t x =-,则切点坐标为001ln ,x x ⎛⎫- ⎪⎝⎭,所以,直线l 的方程可表示为()00011ln y x x x x -=+,即0001ln 1x y x x x +=+,由题意可得000ln 1ln 1x x x +-=,则0001ln 1x x x +=-,下面证明:存在唯一的()01,x ∈+∞使得0001ln 1x x x +=-.由(1)知,函数()1ln 1x x x x ϕ+=--在区间()1,+∞上单调递增,()2ln 230ϕ=-< ,()22222132011e e e e e ϕ+-=-=>--,的由零点存在定理可知,存在唯一的()202,x e ∈,使得()00x ϕ=,即0001ln 1x x x +=-.所以,存在唯一的()01,x ∈+∞使得0001ln 1x x x +=-.因此,在区间()1,+∞上存在唯一的0x ,使得直线l 与与曲线()y g x =相切.【点睛】本题考查利用导数求解函数的单调区间,同时也考查了利用导数证明直线与曲线相切,考查了零点存在定理的应用,考查推理能力与计算能力,属于难题.22. 已知动圆过点(0,1)F ,且与直线:1l y =-相切,设动圆圆心D 的轨迹为曲线C .(1)求曲线C 的方程;(2)过l 上一点P 作曲线C 的两条切线,PA PB ,,A B 为切点,,PA PB 与x 轴分别交于M ,N 两点.记AFM △,PMN ,BFN 的面积分别为1S 、2S 、3S .(ⅰ)证明:四边形FNPM 为平行四边形;(ⅱ)求2213S S S 的值.【答案】(1)24x y =(2)(ⅰ)证明见解析(ⅱ)1【解析】【分析】(1)设出圆心(,)D x y ,利用条件建立方程,再化简即可得出结果;(2)(ⅰ)设出两条切线方程,从而求出,,M N P 的坐标,再利用向量的加法法则即可得出证明;(ⅱ)利用(ⅰ)中条件,找出边角间的关系,再利用面积公式即可求出结果.【小问1详解】设圆心(,)D x y|1|y =+,化简整理得:24x y =,所以曲线C 的方程为:24x y =.【小问2详解】(ⅰ)设()11,A x y ,()22,B x y ,因为24x y =,所以2x y '=,∴直线PA 的方程为:()1112x y x x y =-+,即2111124y x x x =-,令0y =,得到12x x =,同理可得直线PB 的方程为:2221124y x x x =-,令0y =,得到22x x =,∴1,02x M ⎛⎫ ⎪⎝⎭,2,02x N ⎛⎫ ⎪⎝⎭,联立21122211241124y x x x y x x x ⎧=-⎪⎪⎨⎪=-⎪⎩,消y 解得122x x x +=,所以12,12x x P +⎛⎫- ⎪⎝⎭, 又(0,1)F ,∴1212,1,1,2222x x x x FM FN FP +⎛⎫⎛⎫⎛⎫+=-+-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以四边形FNPM 为平行四边形;(ⅱ)由(ⅰ)知直线PA 的方程为2111124y x x x =-,又2114x y =,所以11102x x y y --=,即11220x x y y --=,同理可知直线PB 的方程为22220x x y y --=,又因为P 在直线PA ,PB 上,设()0,1P x -,则有101202220220x x y x x y -+=⎧⎨-+=⎩,所以直线AB 的方程为:0220x x y -+=,故直线AB 过点(0,1)F ,∵四边形FNPM 为平行四边形,∴//FM BP ,//FN AP ,∴AMF MPN BNF ∠=∠=∠,FN PM =,PN MF =,BN BF MP NP FA MA ==,∴MP NP MA BN ⋅=⋅, ∵11sin 2S MA MF AMF =∠,21sin 2S PM PN MPN =∠,31||sin 2S NB NF BNF =∠‖,∴2222131sin (||||)||||2111||||||||||||sin ||sin 22PM PN MPN S PM PN PM PN S S MA MF NB NF MA NB MA MF AMF NB NF BNF ⎛⎫∠ ⎪⋅⋅⎝⎭====⋅⋅⋅⋅⎛⎫⎛⎫∠⋅∠ ⎪ ⎪⎝⎭⎝⎭‖.【点睛】关键点点睛:(2)中的第(ⅰ)问,关键在于利用向量来证明,从而将问题转化成求出点的坐标,将几何问题代数化;第(ⅰⅰ)问的关键在于求出直线AB恒过定点,再利用几何关系,求出相似比.。

山东省济南市山东实验中学2024-2025学年高一上学期10月检测数学试题

山东省济南市山东实验中学2024-2025学年高一上学期10月检测数学试题

山东省济南市山东实验中学2024-2025学年高一上学期10月检测数学试题一、单选题1.已知{}R,{13},2U A x x B x x ==-<<=≤∣∣,则()U A B ⋃=ð( )A .(](),12,-∞-+∞UB .()[),12,-∞-⋃+∞C .[)3,+∞D .()3,+∞2.命题“20,10x x x ∀≥-+≥”的否定是( ) A .20,10x x x ∃≥-+< B .20,10x x x ∀<-+≥ C .20,10x x x ∀≥-+<D .20,10x x x ∃≥-+≥3.已知a ,b 是实数,则“1a >且1b >”是“1ab a b +>+”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件4.关于x 的一元二次方程2220x mx m m +++=的两个实数根的平方和为12,则m 的值为 A .2m =-B .3m =C .3m =或2m =-D .3m =-或2m =5.设{}28150A xx x=-+=,{}10B x ax =-=,若A B B=I ,则实数a 的值不可以为( )A .15B .0C .3D .136.设0,0a b >>,且3a b +=,则2a bab+的最小值为( )A .B .2C .1D .2+7.已知函数()()()22241,f x mx m x g x mx =--+=,若对于任意的实数(),x f x 与()g x 至少有一个为正数,则实数m 的取值范围是( ) A .()0,2B .()0,8C .[)2,8D .(),0-∞8.设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[]2.13-=-,[]3.13=.已知函数()22(1)112x f x x +=-+,则函数()y f x ⎡⎤=⎣⎦的值域是( )A .{}0,1B .{}0,1,2C .{}1,0,1-D .{}1,0,1,2-二、多选题9.中文“函数”一词,最早是由近代数学家李善兰翻译的,之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,也即函数指一个量随着另一个量的变化而变化,下列选项中是同一个函数的是( )A .01y x =-与0y =B .y yC .||y x =与zD .1y x =+与3211x y x x +=-+10.下列不等式的解集正确的是( )A .2440x x -+-<的解集是{}2x x ≠B .2111x x +≤-的解集是{}21x x -≤< C .2104x x -+<的解集是 4|23x x ⎧⎫⎨⎩<⎬⎭< D .123x x ->-的解集是 4|23x x ⎧⎫⎨⎩<⎬⎭< 11.已知0,0a b >>,且11a b+=,则( ) A .a b 的最大值为14B .a b -的最大值为1-C .1b a+的最小值为4D .221a b +的最小值为12三、填空题12.函数()g x=定义域为. 13.分段函数,0(),0x x f x x x >⎧=⎨-≤⎩可以表示为()||f x x =,分段函数,3()3,3x x f x x ≤⎧=⎨>⎩可表示为1()(33)2f x x x =+--.仿此,分段函数6,6(),6x f x x x <⎧=⎨≥⎩可以表示为()f x =.14.对任意的正实数a ,b ,c ,满足1b c +=,则23121ab a bc a +++的最小值为.四、解答题15.设集合{}{}24,3782A x x B x x x =≤<=-≥-. (1)求,A B A B ⋃⋂;(2)当x ∈N 时,求()N A B ⋃ð的非空真子集个数;16.已知函数()()()211f x x a x a =-++∈R(1)若不等式()1f x b <-的解集为{}13x x -<<,求,a b 的值; (2)若对任意的[]()2,4,30x f x a ∈++≥恒成立,求实数a 的取值范围(3)已知()12g x mx m =+-,当1a =时,若对任意的[]11,4x ∈,总存在[]21,4x ∈,使()()12f x g x =成立,求实数m 的取值范围.17.将全体自然数填入如下表所示的3行无穷列的表格中,每格只填一个数字,不同格内的数字不同.对于正整数a ,b ,如果存在满足上述条件的一种填法,使得对任意n ∈N ,都有n ,n a +,n b +分别在表格的不同行,则称数对(),a b 为自然数集N 的“友好数对”. (Ⅰ)试判断数对()1,2是否是N 的“友好数对”,并说明理由; (Ⅱ)试判断数对()1,3是否是N 的“友好数对”,并说明理由;(Ⅲ)若4b =,请选择一个数a ,使得数对(),a b 是N 的“友好数对”,写出相应的表格填法;并归纳给出使得数对(),a b 是N 的“友好数对”的一个充分条件(结论不要求证明).。

山东省济南市山东省实验中学2024-2025学年高二上学期11月期中考试数学试题(含答案)

山东省济南市山东省实验中学2024-2025学年高二上学期11月期中考试数学试题(含答案)

山东省实验中学2024~2025学年第一学期期中高二数学试题 2024.11(选择性必修—检测)说明:本试卷满分150分,分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷为第1页至第2页,第Ⅱ卷为第3页至第4页.试题答案请用2B 铅笔或0.5mm 签字笔填涂到答题卡规定位置上,书写在试题上的答案无效。

考试时间120分钟。

第Ⅰ卷(共58分)一、单选题(本题包括8小题,每小题5分,共40分。

每小题只有一个选项符合题意)1.已知空间向量,,,若,,共面,则实数( )A.1B.2C.3D.42.“”是“直线与直线平行”的( )A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件3.给出下列说法,其中不正确的是()A.若,则,与空间中其它任何向量都不能构成空间的一个基底向量B.若,则点是线段的中点C.若,则,,,四点共面D.若平面,的法向量分别为,,且,则3.若三条直线,,不能围成三角形,则实数的取值最多有( )A.2个B.3个C.4个D.5个4.实数,满足,则的最小值为( )A. B.7C. D.36.若直线与曲线有两个不同的交点,则实数的取值范围是( )A.()1,2,0a = ()0,1,1b =- ()2,3,c m = a b cm =1m =-()1:2310l mx m y +++=2:30l x my ++=a b ∥a b c2PM PA PB =+M AB 2OA OB OC OD =+-A B C D αβ()12,1,1n =- ()21,,1n t =-αβ⊥3t =1:43l x y +=2:0l x y +=3:2l x my -=m x y 2222x y x y +=-3x y -+3+:20l kx y --=:1C x =-k k >5k <≤k <<1k <≤7.在三棱锥中,为的重心,,,,,,若交平面于点,且,则的最小值为( )A.B.C.1D.8.已知椭圆的左、右焦点分别为,,点在上且位于第一象限,圆与线段的延长线,线段以及轴均相切,的内切圆为圆.若圆与圆外切,且圆与圆的面积之比为4,则的离心率为( )A.C.二.多选题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,部分选对的得部分分.)9.下列说法正确的是()A.若直线的倾斜角越大,则直线的斜率就越大B.圆与直线必有两个交点C.在轴、轴上的截距分别为,的直线方程为D.设,,若直线与线段有交点,则实数的取值范围是10.已知椭圆的离心率为,长轴长为6,,分别是椭圆的左、右焦点,是一个定点,是椭圆上的动点,则下列说法正确的是( )A.焦距为2B.椭圆的标准方程为P ABC -G ABC △PD PA λ= PE PB μ= 12PF PC =λ()0,1μ∈PG DEF M 12PM PG =λμ+122343()2222:10x y C a b a b+=>>1F 2F P C 1O 1F P 2PF x 12PF F △2O 1O 2O 1O 2O C 123522:4O x y +=10mx y m +--=x y a b 1x y a b+=()2,2A -()1,1B :10l ax y ++=AB a (]322⎡⎫-∞-+∞⎪⎢⎣⎭,,()2222:10x y E a b a b +=>>23F F '()1,1A P E E 22195x y +=C.D.的最大值为11.立体几何中有很多立体图形都体现了数学的对称美,其中半正多面体是由两种或两种以上的正多边形围成的多面体,半正多面体因其最早由阿基米德研究发现,故也被称作阿基米德体.如图,这是一个棱数24,棱长为的半正多面体,它所有顶点都在同一个正方体的表面上,可以看成是由一个正方体截去八个一样的四面体所得的,下列结论正确的有()A.平面B.,,,四点共面C.点到平面的距离为D.若为线段上的动点,则直线与直线所成角的余弦值范围为第Ⅱ卷(非选择题,共92分)三、填空题(本题共3小题,每小题5分,共15分,其中14题第一空2分,第二空3分.)12.已知直线的倾斜角,则直线的斜率的取值范围为______.13.如图,已知点,,从点射出的光线经直线反射后再射到直线上,最后经直线反射后又回到点,则光线所经过的路程是______.14.杭州第19届亚运会的主会场——杭州奥体中心体育场,又称“大莲花”(如图1所示).会场造型取意于杭州丝绸纹理与纺织体系,建筑体态源于钱塘江水的动态,其简笔画如图2所示.一同学初学简笔画,先AF '=PA PF +6AG ⊥BCDG A F C D B ACD E BC DE AF 12⎡⎢⎣l 2,43ππθ⎛⎫∈⎪⎝⎭l ()8,0A ()0,4B -()3,0P AB OB OB P画了一个椭圆与圆弧的线稿,如图3所示.若椭圆的方程为,下顶点为,为坐标原点,为圆上任意一点,满足,则点的坐标为______;若为椭圆上一动点,当取最大值时,点恰好有两个,则的取值范围为______.图1 图2 图3四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.(13分)已知两直线和的交点为.(1)直线过点且与直线平行,求直线的一般式方程;(2)圆过点且与相切于点,求圆的一般方程.16.(15分)已知椭圆,且过点.(1)求椭圆的方程;(2)若斜率为的直线与椭圆交于,两点,且点在第一象限,点,分别为椭圆的右顶点和上顶点,求四边形面积的最大值.17.(15分)在梯形中,,,,为的中点,线段与交于点(如图1).将沿折起到位置,使得(如图2).图1 图2(1)求证:平面平面;(2)线段上是否存在点,使得与平面的值;若不存在,请说明理由.E()222210x ya ba b+=>>10,2A⎛⎫-⎪⎝⎭O P C2PO PA=C Q QC Q a1:20l x y++=2:3210l x y-+=Pl P310x y++=lC()1,01l P C()2222:10x yC a ba b+=>>⎛⎝C12l C M N M A B CAMBN SABCD AB CD∥3BADπ∠=224AB AD CD===P AB AC DP O ACD△AC ACD'△D O OP'⊥D AC'⊥ABCPD'Q CQ BCD'PQPD'18.(17分)已知直线,半径为2的圆与相切,圆心在轴上且在直线的右上方.(1)求圆的方程;(2)直线与圆交于不同的,两点,且,求直线的斜率;(3)过点的直线与圆交于,两点(在轴上方),问在轴正半轴上是否存在定点,使得轴平分?若存在,请求出点的坐标:若不存在,请说明理由.19.(17分)已知点,是平面内不同的两点,若点满足(,且),则点的轨迹是以有序点对为“稳点”的-阿波罗尼斯圆.若点满足,则点的轨迹是以为“稳点”的-卡西尼卵形线.已知在平面直角坐标系中,,.(1)若以为“稳点”的-阿波罗尼斯圆的方程为,求,,的值;(2)在(1)的条件下,若点在以为“稳点”的5-卡西尼卵形线上,求(为原点)的取值范围;(3)卡西尼卵形线是中心对称图形,且只有1个对称中心,若,,求证:不存在实数,,使得以—阿波罗尼斯圆与—卡西尼卵形线都关于同一个点对称.:40l x ++=C l C x l C 2y kx =-C M N 120MCN ︒∠=2y kx =-()0,1M C A B A x y N y ANB ∠N A B P PAPBλ=0λ>1λ≠P (),A B λQ ()0QA QB μμ⋅=>Q (),A B μ()2,0A -()(),2B a b a ≠-(),A B λ221240x y x +-+=a b λQ (),A B OQ O 0b =λ=a μ(),A B μ山东省实验中学2024~2025学年第一学期期中高二数学试题参考答案 2024.11选择题1234567891011ABCBDDCCBDBCDABD填空题12..13.,.解答题15.【答案】(1)(2).【详解】(1)直线与直线平行,故设直线为,……1分联立方程组,解得.直线和的交点.……3分又直线过点,则,解得,即直线的方程为.……5分(2)设所求圆的标准方程为,的斜率为,故直线的斜率为1,由题意可得,……8分解得,……11分故所求圆的方程为.(()1,-∞-+∞ ,20,3⎛⎫-⎪⎝⎭a >340x y ++=221140333x y x y +++-=l 310x y ++=l 130x y C ++=203210x y x y ++=⎧⎨-+=⎩11x y =-⎧⎨=-⎩∴1:20l x y ++=2:3210l x y -+=()1,1P --l P 1130C --+=14C =l 340x y ++=()()222x a y b r -+-=1:20l x y ++=1-CP ()()()()2222221110111a b r a b r b a ⎧--+--=⎪⎪-+-=⎨⎪+⎪=+⎩216162518a b r ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩2211256618x y ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭化为一般式:.……13分16.【答案】(1)(2)【详解】(1)由椭圆,解得,……2分由椭圆过点,得,联立解得,,……4分所以椭圆的方程为.……5分(2)由题意可设,点在第一象限,,……6分设,,点,到直线的距离分别为,,由,消可得,,,……8分10分,,直线的一般式方程:,,,,……12分14分当时,有最大值为……15分17.【答案】(1)证明见解析(2)存在,【详解】(1)证明:在梯形中,,22114333x y x y+++-=2214xy+=2222:1x yCa b+==2a b= C⎛⎝221314a b+=2a=1b=C2214xy+=1:2l y x m=+M11m∴-<<()11,M x y()22,N x y A B l1d2d221412xyy x m⎧+=⎪⎪⎨⎪=+⎪⎩y222220x mx m++-=122x x m∴+=-21222x x m=-MN∴===()2,0A()0,1B l220x y m-+=1d∴=2d=12d d∴+=()121122AMN BMNS S S MN d d∴=+=⋅+==△△m=S13ABCD AB CD∥,,为的中点,,,,……1分是正三角形,四边形为菱形,,,……3分,,又,,平面,平面,……5分平面,平面平面.……6分(2)存在,,理由如下:……8分平面,,,,两两互相垂直,如图,以点为坐标原点,,,所在直线为,,轴建立空间直角坐标系.则,,,,,,设平面的一个法向量为,则,即,令,则,,,……11分设,,,, (12)分设与平面所成角为,则,即,,解得,224AB AD CD ===3BAD π∠=P AB CD PB ∴∥CD PB =BC DP =ADP ∴△DPBC AC BC ∴⊥AC DP ⊥AC D O ⊥' D O OP '⊥AC OP O = AC OP ⊂ABC D O ∴'⊥ABC D O ⊂' D AC '∴D AC '⊥ABC 13PQ PD '=D O ⊥' BAC OP AC ⊥OA ∴OP OD 'O OA OP OD 'x y z ()C ()2,0B ()0,0,1D '()0,1,0P )2,1BD ∴'=- )CD '=CBD '(),,n x y z =00n BD n CD ⎧⋅=⎪⎨⋅=⎪⎩'' 200y z z -+=+=⎪⎩1x =0y =z =(1,0,n ∴=()01PQ PD λλ'=≤≤)CP =()0,1,1PD =-'),CQ CP PQ CP PD λλλ∴=+=+=- CQ BCD 'θsin cos ,CQ n CQ n CQ n θ⋅====23720λλ-+=01λ≤≤ 13λ=线段上存在点,且,使得与平面……15分18.【答案】(1)(2)(3)【详解】(1)设圆心,则,……2分解得或(舍),故圆的方程为.……4分(2)由题意可知圆心到直线的距离为,……6分,解得.……8分(3)当直线的斜率存在时,设直线的方程为,,,,由得,……10分,……12分若轴平分,则,即,即,即,即,即,……14分当时,上式恒成立,即;……15分当直线的斜率不存在或斜率为0时,易知满足题意;综上,当点的坐标为时,轴平分.……17分19.【答案】(1),,(2)(3)证明见解析【详解】(1)因为以为“稳点”的—阿波罗尼斯圆的方程为,设是该圆上任意一点,则,……1分所以,……3分∴PD 'Q 13PQ PD '=CQ BCD '224x y +=k =()0,4N ()(),04C a a >-422a +=0a =8a =-C 224x y +=C 2y kx =-2sin 301︒=1=k =AB AB ()10y kx k =+≠()()0,0N t t >()11,A x y ()22,B x y 224,1x y y kx ⎧+=⎨=+⎩()221230k x kx ++-=12221k x x k -∴+=+12231x x k -=+y ANB ∠AN BN k k =-12120y t y t x x --+=1212110kx t kx tx x +-+-+=()()1212210kx x t x x +-+=()()22126011t k k k k -⨯--+=++40k kt -+=4t =()0,4N AB ()0,4N N ()0,4y ANB ∠2a =0b =λ=[]1,3(),A B λ221240x y x +-+=(),P x y 22124x y x +=-()()()()22222222222222244162212224PA x y x y x x x y ax by a b a x by a bx a y b PB+++++===+--++--+-+-+-因为为常数,所以,,且,……5分所以,,.……6分(2)解:由(1)知,,设,由,所以,……7分,整理得,即,所以,……9分,……10分由,得,即的取值范围是.……12分(3)证明:若,则以—阿波罗尼斯圆的方程为,整理得,该圆关于点对称.……15分由点,关于点对称及,可得—卡西尼卵形线关于点对称,令,解得,与矛盾,所以不存在实数,,使得以—阿波罗尼斯圆与—卡西尼卵形线都关于同一个点对称……17分22PA PB2λ2240a b -+=0b =2a ≠-2a =0b =λ==()2,0A -()2,0B (),Q x y 5QA QB ⋅=5=()222242516x y x ++=+2240y x =--≥42890x x --≤()()22190x x +-≤209x ≤≤OQ ==209x ≤≤13OQ ≤≤OQ []1,30b =(),A B ()()222222x y x a y ⎡⎤++=-+⎣⎦()22244240x y a x a +-++-=()22,0a +()2,0A -(),0B a 2,02a -⎛⎫⎪⎝⎭QA QB μ⋅=μ2,02a -⎛⎫⎪⎝⎭2222a a -+=2a =-2a ≠=-a μ(),A B μ。

实验中学高二数学0月月考试题

实验中学高二数学0月月考试题

山东省济宁市实验中学2020-2021学年高二数学10月月考试题考试时间:120分钟 总分:150分一、单项选择题(本大题共8小题,每小题5分,共40分。

在每小题所给的四个选项中,只有一项是符合题目要求的) 1。

直线320x y +-=的倾斜角是( )A.30° B 。

60° C.120° D.150° 2.经过(0,2)A ,(1,0)B 两点的直线的方向向量为(1,)k ,则k 的值是( )A 。

1B.-1C.-2D 。

23。

如右图,在四面体OABC 中,D 是BC 的中点,G 是AD 的中点,则OG 等于( )A. 111333OA OB OC ++ B 。

111244OA OB OC ++ C.111234OA OB OC ++ D.111446OA OB OC ++ 4.设x y R ∈,,向量(),1,1a x =,()1,,1b y =,()2,2,2c =-,且a c ⊥,//b c ,则a b +()A.22B.35 D.45.在空间直角坐标系中,点2,1,3A -()关于Oxy 平面的对称点为B ,则·=OA OB ( ) A 。

-4 B.-10 C 。

4 D.106.在正方体ABCD —A 1B 1C 1D 1中,棱AB ,A 1D 1的中点分别为E ,F ,则直线EF 与平面AA 1D 1D 所成角的正弦值为( )A 。

306B.255C 。

66D.557。

在一平面直角坐标系中,已知1,6A -(),2,6B -(),现沿x 轴将坐标平面折成60°的二面角,则折叠后A ,B 两点间的距离为( ) A.27B 。

41C 。

17D 。

358.如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 为BC 的中点,点P 在底面ABCD 上(包括边界....)移动,且满足11B P D E⊥,则线段B 1P 的长度的最大值为( )A 65B.5C 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省实验中学2021届高三第三次诊断性考试数学试题 2020.12注意事项:1. 答卷前,考生务必将自己的姓名、考生号填写在答题卡和试卷指定位置上。

2. 回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上.写在试卷上无效。

3. 考试结束后,将本试卷和答题卡一并收回。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 复数23i ()1i-=+ A . 34i -- B . 34i -+ C . 34i - D . 34i + 2.若集合{}1213A x x =-+≤≤,20,x B xx -⎧⎫=⎨⎬⎩⎭≤则A B = A .{}10x x -<≤ B .{}01x x <≤ C .{}02x x ≤≤ D .{}01x x ≤≤ 3. 命题“∀x ∈R ,∃n ∈N *,使得n ≥x 2”的否定形式是( )A .∀x ∈R ,∃n ∈N *,使得n <x 2B .∀x ∈R ,∀n ∈N *,使得n <x 2C .∃x ∈R ,∃n ∈N *,使得n <x 2D .∃x ∈R ,∀n ∈N *,使得n <x 2 4.定义在R 上的奇函数f (x )满足f (x +2)=-f (x ),且在[0,1]上是减函数,则有 A .311244f f f ⎛⎫⎛⎫⎛⎫<-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ B .113442f f f ⎛⎫⎛⎫⎛⎫<-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C .311244f f f ⎛⎫⎛⎫⎛⎫<<-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .131424f f f ⎛⎫⎛⎫⎛⎫-<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭5.在△ABC 中,AB =2,BC =3,∠ABC =60°,AD 为BC 边上的高,O 为AD 的中点,若AO AB BC λμ=+,则=λμ+A .1B .12C.13D .236.已知数列{}n a ,2sin2n na n π=,则数列{}n a 的前100项和为 A .5000 B .5000-C .5050D .5050-7. 设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为A .2B .3C .312+ D .512+ 8.已知函数2()ln f x x x =-和22()g x x m x=--的图象上存在关于原点对称的点,则实 数m 的取值范围是A .(],1ln 2-∞- B .[)0,1ln 2-C .]2ln 1,2ln -1+(D .[)1ln 2,++∞二、选择题:本题共4小题,每小题5分,共20分。

在每小题给出的四个选项中,有多项符合题目要求。

全部选对的得5分,有选错的得0分,部分选对的得3分。

9.AQI 是表示空气质量的指数,AQI 指数值越小,表明空气质量越好,当AQI 指数值不大于100时称空气质量为“优良”.如图是某地4月1日到12日AQI 指数值的统计数据,图中点A 表示4月1日的AQI 指数值为201,则下列叙述正确的是A .这12天中有6天空气质量为“优良”B .这12天中空气质量最好的是4月9日C .这12天的AQI 指数值的中位数是90D .从4日到9日,空气质量越来越好10.设函数()2sin()0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭的图象关于直线23x π=对称,它的周期为π,则下列说法正确的是A .()f x 的图象过点()0,1;B .()f x 在2,123ππ⎡⎤⎢⎥⎣⎦上单调递减;C .()f x 的一个对称中心是5,012π⎛⎫⎪⎝⎭; D .将()f x 的图象向右平移ϕ个单位长度得到函数2sin 2y x =的图象.11.如果一个棱锥的底面是正方形,且顶点在底面内的射影是底面的中心,那么这样的棱锥叫正四棱锥.若一正四棱锥的体积为18,则该正四棱锥的侧面积最小时,以下结论正确的是A .棱锥的高与底边长的比为2B .侧棱与底面所成的角为4πCD .侧棱与底面所成的角为3π 12.设12n P P P ⋯,,,为平面α内的n 个点,在平面α内的所有点中,若点P 到点n P P P ,,,⋯⋯21的距离之和最小,则称点P 为点12n P P P ⋯,,,的一个“中位点”.例如,线段AB 上的任意点都是端点,A B 的中位点. 则下列结论正确的是A .若三个点,,ABC 共线,C 在线段AB 上,则C 是,,A B C 的中位点; B .直角三角形斜边的中点是该直角三角形三个顶点的中位点; C .若四个点,,,A B CD 共线,则它们的中位点存在且唯一; D .梯形对角线的交点是该梯形四个顶点的唯一中位点.三、填空题:本题共4小题,每小题5分,共20分。

13.已知直线0x y a -+=与圆222O x y +=:相交于A B 、两点(O 为坐标原点),且AOB ∆为等腰直角三角形,则实数a 的值为__________;14. 已知O 为坐标原点,F 为抛物线2:42C y x =的焦点,P 为C 上一点,若||42PF =,则POF ∆的面积为.15.植树造林,绿化祖国.某班级义务劳动志愿者小组参加植树活动,准备在一抛物线形地块上的ABCDGFG 七点处各种植一棵树苗,如图所示,其中A 、B 、C 分别与E 、F 、G 关于抛物线的对称轴对称.现有三种树苗,要求每种树苗至少种植一棵,且关于抛物线的对称轴对称的两点处必须种植同一种树苗,则共有不同的种植方法是_________.(用数字作答) 16.3()31f x ax x =-+,对于[]1,1x ∈-总有()f x ≥0 成立,则a = .四、解答题:本题包括6小题,共70分。

解答应写出文字说明、证明过程或演算步骤。

17.(10分)设数列{}n a 的前n 项和为n S ,11a =,__________.给出以下三个条件:①数列{}n a 为等比数列,数列1{}n S a +也为等比数列;②点1(,)n n S a +在直线1y x =+上;③1121222n n n n a a a na -++++=在这三个条件中任选一个,补充在下面的问题中,并解答.(1)求数列{}n a 的通项公式; (2)设21231log log n n n b a a ++=⋅,求数列{}n b 的前n 项和n T18.(12分)如图, ,,a b c 分别为ABC ∆中角,,A B C 的对边,D 为BC 边上的点, 23=BD DC 1,cos 37ABC ADC π∠=∠=, 8=c . (1)求a 的值;(2)求ADC ∆的外接圆的半径R .19.(12分)如图,在多面体ABCDEF 中,四边形ABCD 是边长为43的菱形,60BCD ∠=︒,AC 与BD 交于点O ,平面FBC ⊥平面ABCD ,//EF AB ,FB FC =,23EF =. (1)求证:OE ⊥平面ABCD ;(2)若FBC ∆为等边三角形,点Q 为AE 的中点,求二面角Q BC A --的余弦值.20.(12分)某快递公司收取快递费用的标准是:重量不超过1kg 的包裹收费10元;重量超过1kg 的包裹,除1kg 收费10元之外,超过1kg 的部分,每超出1kg(不足1kg 时按1kg 计算)需再收5元.公司从承揽过的包裹中,随机抽取100件,其重量统计如下:包裹重量 (单位:kg) (0,1] (1,2] (2,3] (3,4] (4,5] 包裹件数43301584公司又随机抽取了60天的揽件数,得到频数分布表如下:揽件数 [0,100) [100,200) [200,300) [300,400) [400,500] 天数6630126DCBA以记录的60天的揽件数的频率作为各揽件数发生的概率.(1)计算该公司3天中恰有2天揽件数在[100,400)的概率; (2)估计该公司对每件包裹收取的快递费的平均值;(3)公司将快递费的三分之一作为前台工作人员的工资和公司利润,剩余的用做其他 费用,目前前台有工作人员3人,每人每天揽件不超过150件,每人每天工资100元,公司正在考虑是否将前台工作人员裁减1人,试计算裁员前后公司每日利润的数学期望,并判断裁员是否对提高公司利润有利?(同一组中的揽件数以这组数据所在区间中点值作代表)21.(12分)设函数()ln mf x x x=+, R m ∈. (1)当1m =时,求函数()f x 的极值; (2)若函数()()3xg x f x -'=有两个零点,求实数m 取值范围; (3)若对任意的0b a >>, ()()1f b f a b a-<-恒成立,求实数m 的取值范围.22.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的左右焦点分别为F 1,F 2,左顶点为A ,且满足1122F F AF =,椭圆C 上的点到焦点距离的最大值为3.(1)求椭圆的标准方程;(2)若P 是椭圆上的任意一点,求1PF PA ⋅的取值范围;(3)已知直线:l y kx m =+与椭圆相交于不同的两点M ,N (均不是长轴的端点), AH ⊥MN ,垂足为H 且2AH MH HN =⋅,求证:直线l 恒过定点.山东省实验中学2021届高三第三次诊断性考试数学参考答案及评分标准选择题填空题13. ; 14. ; 15.36; 16. 4 四、解答题 17.解:(1)若选①,则22,2,2q q q +++成等比 ----------------2分2q = ----------------4分12n n a -= ----------------5分若选②,111,1(2)n n n n a S a S n +-=+=+≥,两式相减化简得 12(2)n n a a n +=≥ --------------2分 验证212a a = ----------------4分12n n a -= ----------------5分若选③,121111222n n n n n a a a a +-+++=,12121111(2)222n nn n n a a a a n ----+++=≥,两式相减化简得12(2)n nan a +=≥ ----------------2分验证212a a = ----------------4分12n n a -= ----------------5分以下选①②③相同. (2)由(1)知12n n a -=则1(2)n b n n =+=11122n n ⎛⎫- ⎪+⎝⎭----------------7分则121111111112324352n n T b b b n n ⎛⎫=+++=-+-+-+- ⎪+⎝⎭111112212n n ⎛⎫=+-- ⎪++⎝⎭()()3234212n n n +=-++ ----------------10分18.解(1)∵1cos 7ADC ∠=,∴sin sin 7ADC ADB ∠=∠=1分∴()11sin sin 27BAD ADC ABC ∠=∠-∠=-=,----------------3分 在ABD ∆中,由正弦定理得sin 3sin c BADBD ADB⋅∠==∠,----------------5分232=∴=BD DC DC∴325a =+=----------------6分(2)在ABC ∆中, 7b =.----------------9分在ADC ∆中, 12sin 24b R ADC =⋅=∠.----------------12分 19.(1)证明:如图,取BC 中点G ,连接FG ,OG ,因为FB FC =,所以FG BC ⊥, -----------------------------1分 又因为平面FBC ⊥平面ABCD ,平面FBC ⋂平面ABCD BC =,FG ⊂平面FBC , 所以FG ⊥平面ABCD , --------------------------3分 O ,G 分别为BD ,BC 中点,所以//OG AB ,12OG AB =,因为12EF AB ==,//EF AB , 所以四边形EFGO 为平行四边形,所以//OE FG ,所以OE ⊥平面ABCD . -----------------------------------------6分(2)如图,以AC 所在直线为x 轴,BD 所在直线为y 轴,OE 所在直线为z 轴建立空间坐标系,----------------------------------------7分显然二面角Q BC A --为锐二面角,设该二面角为θ,向量(0n =,0,1)是平面ABC 的法向量,----------------------------------------8分 设平面QBC 的法向量(v x =,y ,1), 由题意可知sin602FG OE BF ==︒=, 所以(2C -,0,0),(0B ,233,0),(0E ,0,2),(1Q ,0,1) 所以(1BQ =,233-,1),(3CQ =,0,1), 则00v BQ vCQ ⎧=⎪⎨=⎪⎩,即23103310x y x ⎧-+=⎪⎨⎪+=⎩, 所以1(3v =-,33,1),----------------------------------------10分所以||1313cos ||||131313n v n v θ===⨯.--------------------------------12分 20.解:样本中包裹件数在内的天数为48,频率为,可估计概率为, -----------------------2分 未来3天中,包裹件数在间的天数X 服从二项分布,即,故所求概率为; -----------------------4分样本中快递费用频数分布如下表: 包裹重量单位:快递费单位:元 10 15 20 25 30 包裹件数43 30 15 84-----------------------6分故样本中每件快递收取的费用的平均值为元,故该公司对每件快递收取的费用的平均值可估计为15元; -----------------------8分 根据题意及,揽件数每增加1,可使前台工资和公司利润增加元,每天揽件数为随机变量,若不裁员,该公司每天时即揽件数可能取值为50,150,250,350,450, 其分布列为50 150 250 350 450 P 0.10.10.50.20.1则,故公司平均每日利润的期望值为元; -----------------------10分若裁员1人,则每天可揽件的上限为300件,实际揽件数为可能取值为50,150,250,300, 其分布列为50 150 250 300 P 0.10.10.50.3,故公司平均每日利润的期望值为元.因,故公司将前台工作人员裁员1人对提高公司利润不利.----------------12分21.解:(1)因为()21'(0)-=>x f x x x所以当()0,1∈x 时, ()0f x '<, ()f x 在()0,1上单调递减;当()1,∈+∞x 时, ()0f x '>, ()f x 在()1,+∞上单调递增;-----------------------2分 所以当1=x 时, ()f x 取得极小值()1ln1111=+=f .-----------------------3分 无极大值-----------------------4分 (2)()()3x g x f x -'== 213m x x x -- (0)x >, 令()0g x =,得31(0)3m x x x =-+>. 设()31(0)3x x x x ϕ=-+>,则()21x x φ-'=+= ()()11x x --+. 所以当()0,1x ∈时, ()0x φ'>, ()x φ在()0,1上单调递增;当()1,x ∈+∞时, ()0x φ'<, ()x φ在()1,+∞上单调递减;-----------------------6分 所以()x φ的最大值为()121133φ=-+=,又()00φ=,()360φ=-<,可知: 当203m <<时,函数()g x 有2个零点. -----------------------8分 (3)原命题等价于()()-<-f b b f a a 恒成立-----------------------9分()()ln (0)=-=+->m h x f x x x x x x 则等价于()h x 在()0,+∞上单调递减,()()21100,在恒成立'=--≤+∞m h x x x ……10分所以2m x x ≥-+= 21124x ⎛⎫--+ ⎪⎝⎭ (0)x >恒成立,所以14m ≥. 即m 的取值范围是1,4⎡⎫+∞⎪⎢⎣⎭. -----------------------12分22.解:(1)由已知32()2a c a c c+=⎧⎨-=⎩,解得2,1a c ==,椭圆方程为22143x y +=。

相关文档
最新文档