算法设计与分析学习总结
算法期末总结与反思

算法期末总结与反思本学期的算法课程已经接近尾声,回想起来,这一学期对于我来说是非常充实和有收获的。
在这门课上,我学习了许多经典的算法和数据结构、解决问题的方法以及算法设计的技巧。
同时,在实践中,我也提高了编程能力和解决实际问题的能力。
下面是我对本学期算法课程的总结与反思。
一、学到的知识和技能1. 数据结构:在本学期的算法课程中,我学习了很多重要的数据结构,包括链表、栈、队列、树、图等。
了解每种数据结构的特点、操作和应用场景,并能够根据实际问题选择合适的数据结构。
2. 算法基础:掌握了常见的算法基础知识,例如递归、分治、动态规划、贪心算法等。
能够运用这些算法模板解决复杂的问题,并能够分析算法的时间复杂度和空间复杂度。
3. 排序算法:学习了常见的排序算法,包括冒泡排序、选择排序、插入排序、归并排序、快速排序等。
了解每种排序算法的原理和实现方式,同时也熟悉了排序算法的性能比较和优化技巧。
4. 图算法:学习了图的表示方法和常见的图算法,例如深度优先搜索(DFS)、广度优先搜索(BFS)、最短路径算法(Dijkstra算法、Floyd算法)和最小生成树算法(Prim算法、Kruskal算法)等。
这些图算法在实际问题中有广泛的应用,对于解决一些复杂的问题非常有帮助。
5. 动态规划:通过学习动态规划的基本思想和常见的解决方法,我掌握了动态规划算法的设计和实现。
动态规划算法在解决一些具有重叠子问题的问题时非常有效,能够大大提高问题的求解效率。
6. 算法设计模式:学习了几种常见的算法设计模式,例如分治法、贪心法和动态规划等。
了解这些算法设计模式的思想和应用场景,并能够灵活运用到实际问题中。
7. 编程实践:通过课堂上的编程实践和作业练习,我提高了编程的能力和灵活运用算法的能力。
通过编写代码实现算法思想和解决具体问题,我深刻理解了算法的思想和实现过程。
二、收获和体会1. 提高了问题解决能力:在这门课程中,我学会了如何分析和解决实际问题。
算法分析与设计

表中有些数字已经显露出来,还有些用?和*代替。 请你计算出? 和 * 所代表的数字。并把 * 所代表的数字作为本题答 案提交。
素数环问题
素数环是一个计算机程序问题,指的是将从1到n这n个整数围成一 个圆环,若其中任意2个相邻的数字相加,结果均为素数,那么这个环 就成为素数环。现在要求输入一个n,求n个数围成一圈有多少种素数 环,规定第一个数字是1。 143256 165234
例如当n=5,m=4时,面值为1,3,11,15,32的5种邮票可以贴 出邮资的最大连续区间是1到70。
➢ 通用的解题法 ➢ 核心在于构造解空间树:
➢ 子集树 ➢ 排列树 ➢ 回溯法是优化的暴力搜索: ➢ 不满足限制条件; ➢ 当前解与最优解进行预计算; ➢ 学习回溯法:心中有树
回溯法
总结
➢ 动态规划适合两个连续步骤之间有联系的问题; ➢ 回溯法几乎适用于所有的问题,但问题之间最好有明确的层次。
总结
➢ 构造心中的解空间树是关键; ➢ 回溯法与函数的局部变量; ➢ 访问解空间树的优化处理;
迷宫问题中的回溯法
➢ 四邻域 ➢ 八邻域
图论问题
无向图: ➢ 连通 ➢ 不连通
有向图: ➢ 弱连通 ➢ 单向连通 ➢ 强连通
最大团问题
连通子图(分支)
最大团问题
给定无向图G=(V,E),如果UV,且对任意的u,vU, 都有(u,v)E,则称U是G的完全子图。G的完全子图U是G 的一个团当且仅当U不包含在G的更大的完全子图中。G中 的最大团是指G中所含顶点数最多的团。
yes no yes
➢ 通用的解题法 ➢ 核心在于构造解空间树:
贪心算法实验报告心得

贪心算法实验报告心得前言贪心算法是一种常见且重要的算法设计思想,通过每一步都选择当下最优的解决方案,以期望最终得到全局最优解。
在学习与实践贪心算法的过程中,我有了许多心得与体会。
什么是贪心算法?贪心算法是一种求解问题的算法思想,它的特点是每一步都选择当前最优的解决方案,而不考虑该选择对以后步骤的影响。
贪心算法通常适用于可以将问题分解为若干个子问题,并且通过每次选择当前最优解来得到整体最优解的情况。
贪心算法的基本步骤贪心算法的基本步骤可以总结为以下几个方面:1.确定问题的解空间,并找到问题的最优解。
贪心算法通常通过穷举法或者利用问题的特殊性质来确定解空间。
2.制定贪心策略。
贪心算法的核心是确定每一步选择的贪心策略,即选择当前最优解。
3.确定贪心策略的正确性。
贪心算法的一个关键问题是如何证明贪心策略的正确性。
可以通过数学证明、反证法或者举反例等方式来进行证明。
4.实现贪心算法。
将贪心策略转化为实际可执行的算法步骤,编写代码来求解问题。
贪心算法实验结果分析在本次实验中,我使用贪心算法解决了一个经典问题:找零钱问题(Change-Making Problem)。
给定一定面额的硬币和需找的金额,我们的目标是使用最少的硬币来完成找零钱。
贪心算法的思路是每次选择面额最大的硬币进行找零。
实验设计1.实验输入:我设计了多组输入来测试贪心算法的性能。
每组输入包括一个需找的金额和一个硬币集合。
2.实验输出:对于每组输入,贪心算法输出一个最优的硬币找零方案,以及使用的硬币数量。
3.实验评价:我使用了实际需找金额与贪心算法计算得到的找零金额的差值来评估算法的准确性,并统计了算法的时间复杂度。
实验结果从多组实验结果中可以观察到,贪心算法在大部分情况下给出了正确的找零金额,并且算法的时间复杂度较低。
结果分析贪心算法在找零钱问题中的应用是合理的。
每次选择面额最大的硬币进行找零,可以快速接近最优解,并且相对其他算法具有较低的时间复杂度。
算法设计实训报告

一、实训背景随着计算机科学技术的飞速发展,算法作为计算机科学的核心,其设计与应用越来越受到重视。
为了提高我们的算法设计能力,培养解决实际问题的能力,我们开展了为期一个月的算法设计实训。
本次实训以《算法设计与分析》课程为基础,通过理论学习、实验操作和实践应用,使我们深入理解了算法的基本概念、设计方法和分析技巧。
二、实训内容1. 理论学习(1)回顾了算法的基本概念,包括算法、算法复杂度、时间复杂度和空间复杂度等。
(2)学习了常用的算法设计方法,如分治法、动态规划、贪心算法、回溯法等。
(3)了解了不同算法的应用场景和适用范围。
2. 实验操作(1)使用C++语言实现了多种算法,如快速排序、归并排序、二分查找、插入排序等。
(2)针对实际问题,设计了相应的算法,如矩阵链相乘、背包问题、最小生成树等。
(3)对实验结果进行了分析,对比了不同算法的性能。
3. 实践应用(1)以小组为单位,针对实际问题进行算法设计,如数字三角形、投资问题等。
(2)编写程序代码,实现所设计的算法。
(3)对程序进行调试和优化,提高算法效率。
三、实训成果1. 提高了算法设计能力:通过实训,我们掌握了多种算法设计方法,能够根据实际问题选择合适的算法。
2. 增强了编程能力:实训过程中,我们熟练掌握了C++编程语言,提高了编程技巧。
3. 深化了算法分析能力:通过对算法复杂度的分析,我们能够更好地理解算法性能。
4. 培养了团队合作精神:在实训过程中,我们学会了与他人沟通、协作,共同完成任务。
四、实训总结1. 实训过程中,我们遇到了许多困难,如算法设计思路不明确、编程错误等。
通过查阅资料、请教老师和同学,我们逐步克服了这些问题。
2. 实训过程中,我们认识到算法设计的重要性。
一个好的算法可以显著提高程序运行效率,解决实际问题。
3. 实训过程中,我们学会了如何将实际问题转化为数学模型,并设计相应的算法。
4. 实训过程中,我们提高了自己的自学能力和解决问题的能力。
高等代数中的算法设计与分析 基本概念与方法

高等代数中的算法设计与分析基本概念与方法高等代数中的算法设计与分析基本概念与方法高等代数作为一门重要的数学学科,研究了向量空间、线性变换、矩阵理论等内容。
在实际应用中,算法设计与分析是高等代数的一个重要组成部分。
本文将介绍高等代数中的算法设计与分析的基本概念与方法。
一、算法设计的基本概念在高等代数中,算法是指解决某一问题的具体步骤或方法。
算法设计是根据问题的性质和要求,选择合适的数学工具,编制出能够高效解决问题的步骤。
算法设计中的关键概念包括输入、输出和流程控制。
输入是指算法需要接受的数据或条件,而输出则是算法根据输入通过一系列步骤所得到的结果。
流程控制指的是算法中各个步骤之间的顺序和循环结构。
算法设计的目标是使得算法具有可行性和高效性。
可行性是指算法能够正确地解决问题,高效性则是指算法在解决问题过程中所需要的时间和空间开销尽可能小。
二、算法设计的基本方法1. 分治法分治法是一种将问题分解为更小、更简单的子问题,并通过递归的方式解决的方法。
在高等代数中,可以将复杂的运算或推导过程分解为简单的子问题,然后逐步求解,最终得到整体的解答。
2. 贪心法贪心法是一种在每一步选择中都采取当前状态下最优解的方法。
在高等代数中,贪心法可以应用于选择合适的运算或操作顺序,以达到简化推导过程、减少计算次数的目的。
3. 动态规划动态规划是一种通过将问题分解为多个重叠子问题,并利用子问题的解来求解整体的方法。
在高等代数中,动态规划可以用于求解最优化问题或求解概率问题。
4. 线性规划线性规划是一种在线性约束条件下求取目标函数最大或最小值的方法。
在高等代数中,线性规划可以应用于求解多元方程组、线性变换等问题。
5. 迭代法迭代法是一种通过多次迭代逼近解的方法。
在高等代数中,迭代法可以用于求解矩阵的特征值、特征向量等问题。
三、算法分析的基本方法算法分析是对算法进行理论上的评估和分析,以评判算法的可行性和效率。
常见的算法分析方法主要有时间复杂度和空间复杂度的评估。
小学数学_乘法和连除的简便算法教学设计学情分析教材分析课后反思

乘法和连除的简便算法教学设计教学内容:人教版小学数学四年级下册29页例8教学目标:1、理解一个数乘一个数转化为一个数连续乘以两个数的算理,及利用乘法分配律转化为一个数分别乘以两个数再相加的算理。
2、使学生懂得一个数连续除以两个数,可以用这个数除以这两个除数的积,并会用规律进行简便计算,并会用来解决实际问题。
3、培养学生灵活解题的能力。
教学重点1、使学生理解连乘和连除的简便算法。
2、乘、除法计算的灵活运用。
教学难点:选择合理的简便算法。
教学准备:多媒体课件教学过程一、复习导入,感知思想1、我能很快地口算。
25×4×6 = 7×8×125= 4×7×25 =订正时问学生:计算时你是怎么想的?引导学生说:运用乘法的运算定律可以使计算简便。
师总结:几个数相乘,有时运用乘法的运算定律计算可以简便。
我来试一试。
25×28 125×56 24×125师:联系上题,你能想办法很快的得到结果吗?生1:25×28=25×4×7=700生2:25×28=25×(20+8)=……生3:…………师:大家真不错,很有创新精神。
在乘法中有时可以利用拆分的方法把一个因数拆分成可以简便计算的几个因数,从而使计算更加简便。
二、探究新知1、出示题目,理解题意。
(1)多媒体课件出示课本29页主题图。
(2)学生口述题意,分清已知条件提出问题,培养学生审题的技巧和意识。
2、展示并整理问题。
生1:每副羽毛球拍多少钱?生2:每支羽毛球拍多少钱?生3:一共买了多少个羽毛球?生4:……师:同学们提出的问题都非常好,下面我们先来共同解决“一共买了多少个羽毛球”和“每支羽毛球拍多少钱”这两个问题。
3、学生尝试,汇报交流,解决问题。
生1:12×25= 3×4×25= 3×(4×25)= 3×100= 300(个)师:你们是怎么想的?(运用乘法结合律可以使计算简便)师:还有不同的算法吗?生2:12×25= 12×(20+5)= 12×20+12×5= 240+60= 300(个)师:你们是怎么想的?(运用乘法分配律可以使计算简便)师:还有不同的算法吗?(师提示)生3:12×25= 12×100÷4= 1200÷4= 300(个)师:想法真好,真了不起,说一说你是怎样想的?(把25扩大4倍变成100,要使积不变,应该把乘得的积缩小4倍)。
算法设计与分析实训课程学习总结

算法设计与分析实训课程学习总结在算法设计与分析实训课程的学习过程中,我深入了解了算法的设计原理、分析方法和实际应用,并通过实际操作和实践来进一步提升了自己的算法设计与分析能力。
下面将对我在这门课上所学到的知识和经验进行总结。
一、课程简介算法设计与分析实训课程是计算机科学与技术专业中的一门重要课程,旨在培养学生解决实际问题的能力。
本课程内容涵盖了基本的算法设计与分析方法,包括贪心算法、动态规划、回溯算法等。
通过实际案例和练习题的训练,学生可以学习到如何应用这些算法来解决实际问题,并提高算法的效率和优化。
二、课程收获1. 算法设计原理在课程中,我学习到了不同种类的算法设计原理,如贪心算法、动态规划、分治算法等。
这些原理对于解决不同类型的问题提供了思路和方法。
我学会了根据问题的特性选择合适的算法设计原理,并进行相应的实现和优化。
2. 算法分析方法在课程中,我学习到了如何对算法进行分析和评估,了解了时间复杂度和空间复杂度的计算方法。
通过学习和实践,我对算法的效率有了更深入的认识,并且能够根据问题的规模和要求来选择合适的算法,以提高程序的运行效率。
3. 实际应用通过实际案例和练习题的训练,我学会了将所学的算法应用于实际问题的解决。
例如,在图论中,我学会了如何使用深度优先搜索和广度优先搜索来求解最短路径和最小生成树问题;在动态规划中,我学会了如何通过建立状态转移方程来解决背包问题和最长公共子序列问题;在贪心算法中,我学会了如何选择局部最优解以达到全局最优解。
这些实际应用的训练,增强了我的实际问题解决能力和算法设计思维。
三、学习心得与体会1. 善用工具在课程学习中,我发现利用合适的编程工具,如IDE、调试器等,能够提高算法设计与分析的效率和准确性。
同时,我也学会了如何利用在线资源、论坛和社区来解决在算法实现过程中遇到的问题和困难,这对于自己的学习和成长非常有帮助。
2. 实践与总结算法设计与分析实训课程注重实践操作和实际问题的解决,而不仅仅是理论知识的学习。
动态规划算法实现多段图的最短路径问题算法设计与分析实验报告

动态规划算法实现多段图的最短路径问题算法设计与分析实验报告算法设计与分析实验报告实验名称 动态规划算法实现多段图的最短路径问题 评分 实验日期 年 月 日 指导教师 姓名 专业班级 学号一.实验要求1. 理解最优子结构的问题。
有一类问题的活动过程可以分成若干个阶段,而且在任一阶段后的行为依赖于该阶段的状态,与该阶段之前的过程如何达到这种状态的方式无关。
这类问题的解决是多阶段的决策过程。
在50年代,贝尔曼(Richard Bellman )等人提出了解决这类问题的“最优化原理”,从而创建了最优化问题的一种新的算法设计方法-动态规划。
对于一个多阶段过程问题,是否可以分段实现最优决策,依赖于该问题是否有最优子结构性质,能否采用动态规划的方法,还要看该问题的子问题是否具有重叠性质。
最优子结构性质:原问题的最优解包含了其子问题的最优解。
子问题重叠性质:每次产生的子问题并不总是新问题,有些子问题被反复计算多次。
问题的最优子结构性质和子问题重叠性质是采用动态规划算法的两个基本要素。
2.理解分段决策Bellman 方程。
每一点最优都是上一点最优加上这段长度。
即当前最优只与上一步有关。
U s 初始值,u j 第j 段的最优值。
⎪⎩⎪⎨⎧+==≠}.{min ,0ijiji js w u u u3.一般方法1)找出最优解的性质,并刻画其结构特征;2)递归地定义最优值(写出动态规划方程);3)以自底向上的方式计算出最优值;4)根据计算最优值时得到的信息,构造一个最优解。
步骤1-3是动态规划算法的基本步骤。
在只需要求出最优值的情形,步骤4可以省略,步骤3中记录的信息也较少;若需要求出问题的一个最优解,则必须执行步骤4,步骤3中记录的信息必须足够多以便构造最优解。
二.实验内容1.编程实现多段图的最短路径问题的动态规划算法。
2.图的数据结构采用邻接表。
3.要求用文件装入5个多段图数据,编写从文件到邻接表的函数。
4.验证算法的时间复杂性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
算法分析与设计学习总结题目:算法分析与设计学习总结学院信息科学与工程学院专业2013级计算机应用技术届次学生姓名学号2013110657二○一三年一月十五日算法分析与设计学习总结本学期通过学习算法分析与设计课程,了解到:算法是一系列解决问题的清晰指令,代表着用系统的方法描述解决问题的策略机制。
算法能够对一定规范的输入,在有限时间内获得所要求的输出。
如果一个算法有缺陷,或不适合某个问题,执行这个算法将不会解决这个问题。
不同的算法可能用不同的时间、空间或效率来完成同样的任务。
一个算法的优劣可以用空间复杂性和时间复杂度来衡量。
算法可以使用自然语言、伪代码、流程图等多种不同的方法来描述。
计算机系统中的操作系统、语言编译系统、数据库管理系统以及各种各样的计算机应用系统中的软件,都必须使用具体的算法来实现。
算法设计与分析是计算机科学与技术的一个核心问题。
设计的算法要具有以下的特征才能有效的完成设计要求,算法的特征有:(1)有穷性。
算法在执行有限步后必须终止。
(2)确定性。
算法的每一个步骤必须有确切的定义。
(3)输入。
一个算法有0个或多个输入,作为算法开始执行前的初始值,或初始状态。
(4)输出。
一个算法有一个或多个输出,以反映对输入数据加工后的结果。
没有输出的算法是毫无意义的。
(5)可行性。
在有限时间内完成计算过程。
算法设计的整个过程,可以包含对问题需求的说明、数学模型的拟制、算法的详细设计、算法的正确性验证、算法的实现、算法分析、程序测试和文档资料的编制。
算法可大致分为基本算法、数据结构的算法、数论与代数算法、计算几何的算法、图论的算法、动态规划以及数值分析、加密算法、排序算法、检索算法和并行算法。
经典的算法主要有:1、穷举搜索法穷举搜索法是对可能是解的众多候选解按某种顺序进行逐一枚举和检验,bing从中找出那些符合要求的候选解作为问题的解。
穷举算法特点是算法简单,但运行时所花费的时间量大。
有些问题所列举书来的情况数目会大得惊人,就是用高速计算机运行,其等待运行结果的时间也将使人无法忍受。
我们在用穷举算法解决问题是,应尽可能将明显不符合条件的情况排除在外,以尽快取得问题的解。
2、迭代算法迭代法是数值分析中通过从一个初始估计出发寻找一系列近似解来解决问题(一般是解方程或方程组)的过程,为实现这一过程所使用的方法统称为迭代法。
迭代法是用于求方程或方程组近似根的一种常用的算法设计方法。
设方程为f(x)=0,用某种数学方法导出等价的形式x=g(x),然后按以下步骤执行:(1)选一个方程的近似根,赋给变量x0。
(2) 将x0的值保存于变量x1,然后计算g(x1),并将结果存于变量x0。
(3)当x0与x1的差的绝对值还小于指定的精度要求时,重复步骤(2)的计算。
若方程有根,并且用上述方法计算出来的近似根序列收敛,则按上述方法求得的x0就认为是方程的根。
3、递推算法递推算法是利用问题本身所具有的一种递推关系求问题解的一种方法。
它把问题分成若干步,找出相邻几步的关系,从而达到目的。
4、递归算法递归算法是一种直接或间接的调用自身的算法。
能采用递归描述的算法通常有这样的特征:为求解规模为n的问题,设法将它分解成规模较小的问题,然后从这些小问题的解方便地构造出大问题的解,并且这些规模较小的问题也能采用同样的分解和综合方法,分解成规模更小的问题,并从这些更小问题的解构造出规模较大问题的解。
特别的,当规模n=0或1时,能直接得解。
递归算法解决问题的特点有:(1)递归就是在过程或函数里调用自身(2)在使用递归策略时,必须有一个明确的递归结束条件,称为递归出口(3)递归算法解题通常显得很简洁,但递归算法解题的运行效率较低(4)在递归调用的过程中系统为每一层的返回点、局部变量等开辟堆栈来存储。
举例如下:Fibonacci数列int fib[50]; //采用数组保存中间结果void fibonacci(int n){fib[0] = 1;fib[1] = 1;for (int i=2; i<=n; i++)fib[i] = fib[i-1]+fib[i-2];}5、分治算法分治算法是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题,直到最后子问题可以简单地直接求解,原问题的解即子问题解的合并。
如果原问题可分割成k个子问题,且这些子问题都可解,并可利用这些子问题的解求出原问题的解,那么这种分治法就是可行的。
由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。
在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。
这自然导致递归过程的产生。
分治与递归像一对孪生兄弟,经常同时应用在算法设计之中,并由此产生许多高效算法。
分治策略的算法设计模式Divide_and_Conquer(P){if (|P|<=n0 ) return adhoc(P);divide P into smaller substances P1,P2,…,Pk;for (i=1; i<=k; k++)yi=Divide-and-Conquer(Pi)//递归解决PiReturn merge(y1,y2,…,yk)//合并子问题}6、贪心算法贪心算法也称贪婪算法。
它在对问题求解时,总是做出在当前看来是最好的选择。
它不从整体最优上考虑,所得出的仅是在某种意义上的局部最优解。
贪心算法的基本思路如下:(1)建立数学模型来描述问题(2)把求解的问题分成若干个子问题(3)对每一子问题求解,得到子问题的局部最优解(4)把子问题的局部最优解合成原来问题的一个解贪心算法的一般流程:Greedy(A){S={ }; //初始解集合为空集while (not solution(S)) //集合S没有构成问题的一个解{x = select(A); //在候选集合A中做贪心选择if feasible(S, x) //判断集合S中加入x后的解是否可行S = S+{x};A = A-{x};}return S;}(1)候选集合A:问题的最终解均取自于候选集合A。
(2)解集合S:解集合S不断扩展,直到构成满足问题的完整解。
(3)解决函数solution:检查解集合S是否构成问题的完整解。
(4)选择函数select:贪心策略,这是贪心算法的关键。
(5)可行函数feasible:解集合扩展后是否满足约束条件。
7、动态规划算法动态规划算法是一种在数学和计算机科学中用于求解包含重叠子问题的最优化问题的方法。
其基本思想是,将原问题分解为相似的子问题,在求解的过程中通过子问题的解求出原问题的解。
动态规划算法的步骤(1)找出最优解的性质,并刻画其结构特征;(2)递归地定义最优值(写出动态规划方程);(3)以自底向上的方式计算出最优值;(4)根据算法最优值时得到的信息,构造一个最优值。
动态规划算法的有效性依赖于问题本身所具有的两个重要的性质:最优子结构性质和子问题重叠性质。
(1)最优子结构:当问题的最优解包含了其子问题的最优解时,称该问题具有最优子结构性质。
(2)重叠子问题:在用递归算法自顶向下解问题时,每次产生的子问题并不总是新问题,有些子问题被反复计算多次。
8、回溯算法回溯法是一种选优搜索法,按选优条件向前搜索,以达到目标。
当探索到某一步时,发现原先的选择并不优或达不到目标,就回退一步重新选择,这种走不通就退回再走的技术成为回溯法,满足回溯条件的某个状态的点称为“回溯点”。
迷宫问题算法所采用的就是回溯算法。
回溯算法解决问题的过程是先选择某一可能的线索进行试探,每一步试探都有多种方式,将每一方式都一一试探,如有问题就返回纠正,反复进行这种试探在反复纠正,直到得出全部符合条件的答案或是问题无解为止。
由于回溯方法的本质是深度优先的方法在解的空间树中搜索,就要从堆栈中找到回溯的前一个位置继续试探。
装载问题回溯算法数据结构#define NUM 100int n; //集装箱的数量int c; //轮船的载重量int w[NUM]; //集装箱的重量数组int x[NUM]; //当前搜索的解向量int r; //剩余集装箱的重量int cw; //当前轮船的载重量int bestw; //当前最优载重量int bestx[NUM]; //当前最优解算法实现//形参表示搜索第t层结点void Backtrack(int t){//到达叶子结点if(t>n){//更新最优解if(cw>bestw){for(int i=1; i<=n; i++)bestx[i] = x[i];bestw = cw;}return;}//更新剩余集装箱的重量r -= w[t];//搜索左子树if(cw+w[t]<=c){x[t] = 1;cw += w[t];Backtrack(t+1);cw -= w[t];}//搜索右子树if(cw+r>bestw){x[t]=0;Backtrack(t+1);}r += w[t]; //恢复状态}9、分支限界算法分支限界算法是一种在表示问题解空间的树上进行系统搜索的方法。
该方法使用了广度优先策略,同时采用最大收益(或最小损耗)策略来控制搜索的分支。
分支限界法的基本思想是对包含具有约束条件的最优化问题的所有可行解的解(数目有限)空间进行搜索。
该算法在具体执行时,把全部可行的解空间不断分割为越来越小的子集,并为每个子集内的解计算一个下界或上界。
在每次分支后,对所有界限超出已知可行解的那些子集不再做进一步分支,解的许多子集可不予考虑,从而缩小了搜索的范围。
这一过程一直进行到找出可行解的值不大于任何子集的界限为止。
这种算法一般可以求得最优解。
分支结点的选择从活结点表中选择下一个活结点作为新的扩展结点,分支限界算法通常可以分为两种形式:1、FIFO(First In First Out)分支限界算法按照先进先出(FIFO)原则选择下一个活结点作为扩展结点,即从活结点表中取出结点的顺序与加入结点的顺序相同。
2、最小耗费或最大收益分支限界算法在这种情况下,每个结点都有一个耗费或收益。
根据问题的需要,可能是要查找一个具有最小耗费的解,或者是查找一个具有最大收益的解。
提高分支限界算法的效率实现分支限界算法时,首先确定目标值的上下界,边搜索边减掉搜索树的某些分支,提高搜索效率。
在搜索时,绝大部分需要用到剪枝。
“剪枝”是搜索算法中优化程序的一种基本方法,需要通过设计出合理的判断方法,以决定某一分支的取舍。
若我们把搜索的过程看成是对一棵树的遍历,那么剪枝就是将树中的一些“死结点”,不能到达最优解的枝条“剪”掉,以减少搜索的时间。