_七年级数学上册3.2代数式教学设计(新版)北师大版【精品教案】

合集下载

七年级数学上册第3章《代数式(2)》名师教学设计(北师大版)

七年级数学上册第3章《代数式(2)》名师教学设计(北师大版)
本活动的设计意1.使学生感受代数式求值可以理解为一个转换过程或某种算法.进一步巩固了求代数式值的方法就是用数值代替代数式里的字母,在进行计算时必须按代数式指明的运算顺序进行计算.
2.通过填表,学生进一步感受到求代数式值的过程和方法,并感知字母的取值的变化与代数式的值之间的联系,能利用代数式的值推断一些代数式所反应的规律,从而揭示目标.
通过解决问题,教师鼓励学生能发现什么规律,从而引入本课:代数式的值。
学生通过游戏,思考问题从而代数式的值概念
教师以游戏为载体,激发学生的积极性,成功引入了新课
讲授新课
2、出示课件
做一做:教师引导学生认识数值转换机:
(1)下面是一对“数值转换机”,写出图①的输出结果;写出图②的运算过程及输出结果.
输入
北师大版数学七年级3.
课题
单元
第三单元
学科
数学
年级

学习
目标
1.在具体情境中,进一步理解字母表示数的意义.
2.能解释一些简单代数式的实际背景或几何意义,发展符号感.
3.在具体情境中,能求出代数式的值,并解释它的实际意义.
4.初步培养学生观察、分析和抽象思维能力,感受数学与日常生活的密切联系,感受数学模型的思想.
2、例题:
例1 当x=0,y=-1时,求代数式-5x2y+4x-y的值.
例2 已知a2-a-4=0,
求4a2-2(a2-a+3)-(a2-a-4)-4a的值.
3、小结:
教师追问学生不知道a的值,如何求代数式的值?这时,我们就要考虑特殊的求值方法:
根据已知可得a2-a=4, 所以化简后利用整体代入解决.
解:因为a2-a-4=0,所以a2-a=4,
所以4a2-2(a2-a+3)-(a2-a-4)-4a

北师大版七年级上册3.2.2代数式教学设计

北师大版七年级上册3.2.2代数式教学设计
是同类项,则m=,n=。
2、同类项的合并法则:
把同类项的系数相加,所得的结果作为系数,字母和字母的指数保持不变。
特别提醒:
①同类项与系数无关,与字母的排列顺序也无关;
②不是同类项不能合并
板书设计
教学反思
(优点、不足、改进措施)
时间:年月日
•顺序排列起来,叫做把这个多项式按这个字母降幂排列。
•把一个多项式按某个字母的指数从低到高的
•顺序排列起来,叫做把这个多项式按这个字母的升幂排列。
5、整式:
单项式与多项式统称整式。(分母含有字母的代数式不是整式)
考点3同类项
1、同类项:所含字母相同,并且相同字母的指数也分别相同的项,叫做同类项。
练习:2、若与
a, , , Π,
3、多项式:
几个单项式的和叫多项式。
多项式的项及次数:组成多项式中的单项式的个数叫多项式的项,多项式中次数最高项的次数叫多项式的次数。
特别注意,多项式的次数不是组成多项式的所有字母指数和!
练习:下面多项式是几次几项式?指出它的各项
4、降幂排列及升幂排列。
•把一个多项式按某个字母的指数从高到低的
教学过程
第一课时
个性子,称为代数式。即,用运算符号把数或表示数的字母连接而成的式子,叫代数式
特别地:单独的一个数或字母也是代数式
注意:代数式的书写要求(略)
2、列代数式:把问题中与数量有关的词语,用含有字母或运算符号的式子表示出来。
3、代数式的值:用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果,叫做代数式的值
课题
第3课时 代数式
教学目标
1、理解字母表示数及代数式的含义,能根据简单的数量关系列代数式,会求代数式的值。

北师大版七年级上册3.2代数式第三章:3.2代数式教学设计

北师大版七年级上册3.2代数式第三章:3.2代数式教学设计

北师大版七年级上册3.2代数式第三章:3.2代数式教学设计
一、教学目标
1.了解什么是代数式;
2.掌握代数式的基本概念和性质;
3.学会化简代数式。

二、教学重点难点
•代数式的基本概念和性质;
•代数式的化简。

三、教学过程及设计
1.引入环节
•引出“代数式”这一概念,懂得什么是代数式;
•对学生进行背景介绍,介绍代数式的产生和重要性。

2.讲授环节
•讲解代数式的基本概念和性质;
•讲解代数式的加减乘除问题;
•给学生提供一些例子,让学生理解代数式。

3.实践环节
•给学生一些例题进行练习;
•学生可以互相交流思路,帮助对方思考。

4.总结环节
•师生共同对这一章节所学内容进行总结;
•学生提出疑问,进行答疑解惑。

四、教学评价
•针对学生的学习能力以及对代数式的理解情况进行课堂测验和测试;
•学生之间进行互评,提高学生之间的互动性。

五、教学反思
•教学环节设计不够充分,需要更好的思考和准备;
•学生对代数式的基本概念还不够理解,需要加强练习。

六、教学资源
•北师大版七年级上册数学教材;
•学习资料、课堂测验、测试。

七、教学总结
•通过这节课的学习,学生了解了什么是代数式,掌握了代数式的基本概念和性质,学会了化简代数式;
•在教学中,我也意识到了自己的不足并及时进行反思和改进,希望在后续的教学中,能够更好的提高学生的学习效果。

北师大版-数学-七年级上册-3.2 代数式 教案2

北师大版-数学-七年级上册-3.2 代数式 教案2

代数式(二)一、素质教育目标(一)知识教学点1.了解代数式的意义2.知道一个代数式所表示的数量关系。

(二)能力训练点:初步培养学生的独立分析问题、解决问题的能力和语言表达能力。

(三)德育渗透点:培养学生实事求是、精益求精的科学态度和工作作风。

二、教学重点、难点和疑点1.重点:代数式的意义及简单代数式所反映的数量关系。

2.难点:准确说出代数式的意义及简单代数式的表示。

3.疑点:同一代数式的意义的不同说法。

三、教学方法采用尝试指导、效果回授、引导发现法,注意学生的主体性、参与性和问题的开放性。

四、教具准备投影仪或电脑、自制胶片五、教学步骤(一)创设情境,复习导入(出示投影1)1.张强比王华大3岁,当张强8岁时,王华的年龄是_________岁。

当张强a岁时,王华的年龄是__________岁。

2.黑板的长为a米,宽为b米,则它的面积为____________,周长为___________米。

3.m千克大米售价8元,1千克大米售_____________元。

4.1千克苹果a元,5千克苹果_____________元。

学生活动:四名同学板演,其他同学练习本上写。

答案:(1)5,a –3;(2)a×b, 2×(a+b); (3)8÷m; (4)5×a。

联系学生熟悉的实际问题,一是激发兴趣,二是可使学生认识到数学知识来源于实践又反过来指导实践的辩证关系。

(二)探索新知,讲授新课师:上面出现的5,a –3,a×b, 2×(a+b),5×a,8÷m等这样的式子都是代数式。

实际上,代数式就是由数字、字母和基本运算符号(+、-、×、÷等)连接而成的式子,特殊的如一个数、一个字母也是代数式。

以前学习中遇到的式子都是代数式,只是未提出这一概念。

现在提出这一概念后就有它的新规定,需要同学们注意:(1)在代数式中出现的乘号,通常简写成“·”,或者省略不写;乘号要居中,否则与小数点混淆,且只有乘号可这样处理,其他运算符号不行,如2×(a+b)可写成2·(a+b)或2(a+b)。

最新北师大版初中数学七年级上册《3.2 代数式》精品教案 (2)

最新北师大版初中数学七年级上册《3.2 代数式》精品教案 (2)

课题3.2.1代数式教学目标1.进一步理解字母表示数的意义,能结合具体情景给字母赋于实际意义;理解代数式和代数式的值的意义,能解释一些简单代数式的实际背景或几何意义,在具体情景中能求出代数式的值.2.通过创设实际背景和引用符号,经历观察、体验、验算、猜想、归纳等数学过程,体会数学与现实世界的联系,增强符号感,发展运用符号解决问题和数学探究意识.3.在解决问题的过程中体验类比、联想等思维,体验数学美,增强学习自信心。

教材分析重点列代数式。

难点正确列出代数式表示现实问题中的数量关系;从不同的角度给代数式赋予实际意义。

教具电脑、投影仪教学过程一、旧知归纳,直奔主题学生在通过上一节知识的回顾,知道像4+3(x-1),x+x+(x-1),a+b,ab,2(m+n),ts,a3 ……这样一些式子都具有一定的实际意义,而探求当x=200时4+3(x-1)的代数式的值,不仅理解了代数式和代数式的值的意义,而且了解到学习这些知识的重要性,极大地调动了学生学习数学的积极性.同时滲透了把实际问题抽象成数学问题的一般思想方法.讲解教材中的例1 列代数式,并求值.二、创设背景,理解概念承接上面的例子,继续提出问题:前面10x+5y表示的是x个成人、y个学生进公园的门票费,那么它还可以表示什么呢?请大家想一想后,写出一种或两种表示的内容.根据讨论结果,共同归纳:字母可以表示任何数,或者任何一个量,“10x+5y”可以赋于很多的实际的意义。

教学过程三、反设探究,意义升华展示出学生生活中非常熟悉的小动物――蟋蟀的图片,从而提出蟋蟀每分钟叫的次数与当时温度的关系的问题,目的是刺激学生的感官,引发学生的求知欲望.对第(1)中的蟋蟀1分所叫的次数探求或变式,目的在于帮助学生自设字母来表示有关的量,为学生列代数式铺平道路,同时让学生体会数学建模的思想加深对蟋蟀1分叫的次数与当时温度的关系的体会.四、趣题滋润,建模感悟解决教材中的随堂练习等。

北师大初中数学七年级上册《3.2 代数式》word教案 (5)

北师大初中数学七年级上册《3.2 代数式》word教案 (5)

3.2代数式【学习目标】课标要求:1.在代数式求值过程中,初步感受函数的对应思想;2.感受字母取值的变化与代数式的值的变化之间的联系,能利用代数式的值推断一些代数式所反映的规律。

目标达成:当字母取具体数字时,对应的代数式的值的求法及正确地书写格式.正确地求出代数式的值.学习流程:【课前展示】回顾上节课所学习代数式和代数式值的概念,介绍数值转换机。

【创境激趣】讲解教材中的议一议,填表,看谁算的又快有准。

【自学导航】【合作探究】经过这个填表问题,学生进一步感受到求代数式值的过程和方法,进一步理解代数式值的概念,并感知字母和代数式值之间的对应思想。

通过比一比,看谁算得又快有准极大地调动学生学习的主动性、积极性。

【展示提升】典例分析知识迁移内容:课后习题3.3的第2题。

【强化训练】解决教材中的随堂练习等。

同学之间交流本节课的学习收获和体会.教师帮助学生归纳必要的内容。

【归纳总结】1、2、【板书设计】【教学反思】《代数式》是义务教育课程标准实验教科书(北师大版)七年级上学期的内容。

本节课一开始就直奔主题,提出数值转换机,并要求学生根据两个不同的数值转换机列出不同的代数式,并求相同字母下代数式的值。

进而引出议一议,让学生通过表格中大量的计算,熟练掌握求代数式值的方法,升华学生对概念的理解,并锻炼学生的计算能力。

通过表后面的设问,以及老师的设问,让学生感受到学习的兴趣,感受到这题并不是简单的计算问题,还要从中发现一些规律,老师的设问更是和生活联系在一起,培养学生的分析能力、渗透分类讨论的数学思想。

通过习题选讲,学生进一步理解求代数式值含义,并对后面的合并同类项充满了好奇和兴趣。

在课堂练习中,给出了不同层次的问题,分层次对学生提出要求,做到了让每个学生都有成就感,让每个学生都能学到不同的数学。

回顾本节课的教学,有以下几点作的比较成功:第一,根据课程标准把握教材.新的课程标准要求,淡化格式化计算程序,注重知识的形成过程和学生对概念的感知和理解,如通过学生的表格计算,让学生熟练掌握代数式值的概念,通过习题选讲,让学生对后面的学习充满好奇。

北师大七年级上3.2《代数式》公开课教案

北师大七年级上3.2《代数式》公开课教案

3.2《代数式》教学目标:1、了解代数式的概念,并在具体情境中,进一步理解字母表示数的意义。

2、能解释一些简单代数式的实际背景或几何意义,发展符号感。

3、在具体情境中,能求出代数式的值,并解释它的实际意义。

教学重点:1、解释一些简单代数式的实际背景或几何意义,发展符号感。

2、在具体情境中,能求出代数式的值,并解释它的实际意义。

教学难点:解释一些简单代数式的实际背景或几何意义。

教学过程:一、引入: 复习上节课的内容二、学习代数式的概念像前面出现过的4+3(x -1),x +x +(x -1),a +b ,ab ,2(m +n ),ts ,a 3 ……等式子,都称它为代数式。

单独一个数或一个字母也是代数式。

注意:1、代数式是数字与字母用一些运算符号连结而成的。

2、单独一个数或一个字母也是代数式。

练习一1、判断下列各式哪是代数式: mn 31, 4x+(x -1), 5, 2x+1=3, 31+-x y , 0, b , 2510=, x -1>4 2、用代数式表示① f 的11倍再加上2可以表示为______________② 数a 与它的18的和可以表示为_________ ③ 一个教室有2扇门和4扇窗户,n 个这样的教室共有___________扇门和_________扇窗户④ 产量由m 千克增长15%后,达到_________千克3、某班共有x 个学生,其中女生人数占45%,那么男生人数是_________(A )x %45(B )x %)451(-(C )%45x (D )%451-x 书写代数式时要注意以下几点: (1)代数式中出现的乘号,通常不写“×”,而用“∙”,或者省略不写。

如h a ⨯⨯21,写作h a ⋅⋅21,或者ah 21 (2)字母与数相乘时,如省略乘号,数字应写在字母的前面。

如21⨯a 写作a 21 。

(3)数与数相乘时,仍用“×”表示,不能用“∙”,以免与小数点“∙”混淆。

七年级数学上册3.2.2代数式教案新版北师大版

七年级数学上册3.2.2代数式教案新版北师大版

课题:3.2代数式(2)教学目标1.能熟练地求代数式的值,感受代数式求值可以理解为一个转换过程.2.在代数式的求值过程中,初步感受函数的对应思想,即字母的取值的变化与代数式的值之间的联系,能利用代数式的值推断一些代数式所反应的规律.3.掌握代数式求值的方法和步骤,能解释代数式值的实际意义.教学重点与难点重点:代数式求值的方法和步骤.难点:利用代数式求值推断代数式或所反映的规律.课前准备PPT课件.教学过程一、温故知新,导入新课1.用代数式表示:(1)a与b的和的平方;(2) a,b两数的平方和;(3)a与b的和的50% ;(4)x的平方与y的立方差;(5)一个三位数,个位是a,十位是b,百位是c,则这个三位数是.2.填空:某商店购进一批茶杯,每个1.5元,则买n个茶杯需付款元.如果茶杯的零售价为每个2元,则售完茶杯得款元.当n=300时,该商店的利润为元.处理方式:第1题由学生独立完成后说出答案,然后教师加以矫正,第2题学生认真审题教师引导学生分析题目,首先正确书写代数式再进行代入计算.设计意图:复习旧知与引入新知有效的结合起来了达到了温故而知新的效果,为下面的学习做好铺垫.二、互动探究,学习新知活动一:认识数值转换机课件出示:(1)下面是一对“数值转换机”,写出图(1)的输出结果;写出图(2)的运算过程.处理方式:小组合作来完成图1输出的数据,可以引导学生直接代入运算,也可以写出代数式之后代入计算.一般地,对于同一个数值转换机,当输入的字母x的值不同时,输出的结果不相同,对于图2学生可以试着说出“?”表示什么?也可以引导学生直接代入代数式计算.最后观察计算结果是否相同,写出的代数式是否相同,然后总结因为两个数值转换机所表示的代数式不同,所以输出的结果不相同.设计意图:使学生感受代数式求值可以理解为一个转换过程或某种算法.实际上是进一步巩固了求代数式值的方法就是用数值代替代数式里的字母,在进行计算时必须按代数式指明的运算顺序进行计算.活动二:议一议课件出示:填写下表,并观察下列两个代数式的值的变化情况.(1)随着n的值逐渐变大两个代数式的值如何变化?(2)估计一下,哪个代数式的值先超过100?处理方式:根据求代数式值的方法让学生计算填表,然后观察并分析表中的数据来回答两个代数式的值的变化情况.小组讨论完成第(2)个问题,然后教师引导当底数越来越大时,平方运算的结果增加得越快,所以n2的值先超过100.设计意图:通过填表,学生进一步感受到求代数式值的过程和方法,进一步理解代数式值的概念,并感知字母的取值的变化与代数式的值之间的联系,能利用代数式的值推断一些代数式所反应的规律,从而揭示目标.知识反馈 课件出示:填写下表,并观察下列代数式的值的变化情况.(1)随着n 的值逐渐变大两个代数式的值如何变化? (2)估计一下,哪个代数式的值先小于-100?处理方式:让学生独立完成,利用已有的经验来回答上面的问题.教师巡视,适时点拨.学生完成后及时点评,借助多媒体展示学生出现的问题进行矫正.设计意图:本练习设计在于强化学生求代数式值的过程和方法,进一步理解字母的取值的变化与代数式的值之间的关系.三、例题解析,应用新知 (课件出示)例1 有一数值转换器,原理如图所示,若开始输入x 的值是5,可发现第一次输出的结果是8,第二次输出的结果是4,…,请你探索第2014次输出的结果是 .处理方式:首先让学生认真阅读例题,由小组合作完成.如果学生不理解题意,由教师引导完成.首先由数值转换器,发现第二次输出的结果是4 为偶数,所以第三次输出的结果为2,第四次为1,第五次为4,第六次为2,…,可得出规律从第二次开始每三次一个循环,(2012-1)÷3=670…1,所以第2014次输出的结果是1.设计意图:此题考查了代数式求值,关键是由已知找出规律,从第二次开始每三次一个循环,根据此规律求出第2014次输出的结果.也考查了学生能利用代数式的值推断一些代数式所反应的规律的能力.例2 代数式23++x x 值为7,则代数式2223+-x x 的值为 .处理方式:小组间合作讨论完成,此题对于学生来说有一定的难度.所以教师要逐步引导,若用常规的办法求代数式的值,必须由条件求出x 的值,而目前并不能由23++x x =7求出x 的值,但可以考虑整体代入求值,这样将十分简捷.设计意图:此题主要考查了利用等式的性质求代数式的值,做题过程中要不断利用等式的性质进行变形,注意把已知条件与结论要有效的结合,渗透了整体代入的思想.四、总结反思,知识内化通过本节课的学习,会求代数式的值,对于一个代数式,它所含的字母取不同的值时,所得代数式的值,一般也不同,所以在求代数式的值时,用具体数值代替代数式中字母进行计算必须按照代数式指明的运算顺序.其次会利用“数值转换机”写出代数式或进行计算.最后要会用整体代入法求代数式的值.处理方式:学生能够互相点评,共同归纳,并做进一步反思,最后教师进行总结,这样既发展了学生自主学习能力,又强化了协作精神,同时使知识得到了进一步完善与升华.五、当堂检测,及时反馈课件出示:A组:1.填空(1)已知a,b互为倒数,c,d互为相反数,则2(a+b)—3cd的值为.(2)当a=3,b=1时,代数式2a b的值为.3.人体血液的质量约占人体体重的6%-7.5%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

代数式第1课时代数式【教学目标】知识与技能1.了解代数式的概念.2.能分析简单问题的数量关系,并用代数式表示,会正确书写代数式.过程与方法1.在探索现实世界数量关系的过程中,建立符号意识.2.初步体会数学中抽象概括的思维方法.情感、态度与价值观1.激发学生从事探索性活动的积极性.2.培养学生自主学习的习惯.【教学重难点】重点:1.根据实际问题列出代数式.2.解释代数式的意义.难点:根据实际问题列出代数式并解释代数式的意义.【教学过程】一、创设情境,引入新课如图为一阶梯的纵截面,一只老鼠沿长方形的两边A-B-D的路线逃跑,一只猫同时沿阶梯(折线)A-C-D的路线去追,结果在距离C点0.6m的D处,猫捉住老鼠,已知老鼠的速度是猫的,你能求出阶梯A-C的长度吗?要想解决这个问题,让我们先来学习本节课的内容——代数式.师:请同学们自主探究,完成下面的问题:1.今日大米x元/千克,食用油y元/千克,妈妈买10千克大米、2千克食用油共需元.【答案】10x+2y2.一隧道长s米,一列火车长180米,如果该火车穿过隧道所花的时间为t分,则列车的速度可表示为米/分.【答案】3.将三个边长为acm的正方体拼成一个长方体,则这个长方体的体积为cm3.【答案】3a34.某瓜子的价格为3千克16元,买n千克需要元.【答案】n学生解答.教师点评、分析:像这样把数和字母用运算符号连接而成的式子,我们称为代数式.注:1.单独一个数或一个字母也是代数式.2.运算符号是指加、减、乘、除、乘方、开方.代数式书写格式的规定,请同学们阅读课本.二、讲授新课1.指出下列各式中哪些是代数式,哪些不是代数式.(1)x-1;(2)-2x=1;(3)π;(4)5<7;(5)m.2.在式子xy+a,-3,abc,3÷a,a·5,(a+b)2中符合代数式书写要求的有个.学生思考,举手回答.师:通过以上练习,同学们进一步了解了代数式的概念,那么它与等式、不等式的区别是什么?书写时要注意哪些要求?学生讨论交流,教师指导、评价.三、例题讲解【例1】用代数式表示:(1)x的3倍与3的差;(2)x的2倍与y的的和;(3)a与b的和的平方;(4)2a的立方根.教师讲解:(1)先理解题目中表示运算关系的词,理清关系;(2)分清运算顺序.补充书写规范:(1)带分数与字母相乘时,应把带分数化为假分数;(2)实际问题中含有单位时,如果运算结果是加或减时,用括号把代数式整个括起来,再写单位.【例2】一辆汽车以80km/h的速度行驶,从A城到B城需t(h).如果该车的行驶速度增加v(km/h),那么从A城到B城需多少时间?解:由题意得,A,B两城之间的路程为80t(km).如果该车的行驶速度增加v(km/h),那么汽车的行驶速度为(80+v)km/h,此时从A城到B城需(h).答:当该车行驶速度增加v(km/h)时,从A城到B城需(h).四、随堂小结用代数式表示:1.比a的倒数多8的数是.2.x的倒数与m除n的商的和.3.与a+b的和是30的数是.4.m、n两个数平方和的3倍是.学生解答:1.+82.+3.30-(a+b)4.3(m2+n2)教师指导、评价.列代数式的一般方法有:(1)依据公式(关系)列代数式;(2)依据实际问题列代数式;(3)依据式子或图形探索规律列代数式.五、巩固练习1.甲、乙两数差的平方与甲、乙两数平方的和的积.2.a与b的和除以a与b的差.3.x千克含盐为10%的盐水中含水千克.4.图形阴影部分的面积为.5.观察下列等式:39×41=402-1,48×52=502-22,56×64=602-42,65×75=702-52,83×97=902-72,……请你把发现的规律用字母表示出来:m·n= .生:()2-()2.师:你能用语言表述3a+5b的意义吗?学生思考,举手回答.教师示范,从两方面考虑:①根据运算顺序的要求去表述,如可以说“a的3倍与b的5倍的和”;②结合具体的实例去表述,如一本笔记本的价格为a元,一支铅笔的价格为b元,3a+5b表示3本笔记本与5支铅笔的价格.六、变式训练用语言表述下列代数式的意义:1.2(a+b)2.ab学生思考,举手回答,教师指导、点评.七、课堂小结师:通过本节课的学习,你获得了哪些新的知识?你认为自己有哪些方面的进步?学生发言,教师予以点评.第2课时代数式的值【教学目标】知识与技能1.会求代数式的值,感受代数式求值可以理解成一个转换过程或某种算法.2.能解释代数式值的实际意义.3.根据代数式求值推断代数式所反映的规律.过程与方法学会从数学的角度提出问题、理解问题,能综合运用所学的知识和技能解决问题.情感、态度与价值观初步认识数学与人类生活的密切联系,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的正确性.【教学重难点】重点:会求代数式的值.难点:利用代数式求值推断代数式所反映的规律.【教学过程】一、创设情境,引入新课据报道,一位医生研究得出由父母身高预测子女身高的公式:若父亲的身高为a米,母亲的身高为b米,则儿子成年的身高为×1.08米,女儿的身高为米.七年级男生张小华父亲的身高为1.76米,母亲的身高为1.60米,请你预测张小华成年后的身高是多少.你能通过你父母的身高预测自己成年后的身高吗?学生计算.师:本节课我们来学习如何求代数式的值.活动(一) 代数式的值问题展示:请同学们回答下列问题:1.下图是一组数值转换机,请写出输出的结果.2.你能写出下图的转换步骤吗?学生举手回答.师:我们知道,表示数的字母具有任意性和确定性,如6x-3中x可取任何有理数,当给出未知数(字母)的值时,如x=5,则6x-3就是一个确定的值.一般地,用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果,叫做代数式的值.二、讲授新课1.按图(1),输入-2,0,0.26,输出的结果分别为多少?按图(2),输入-2,0,0.26,输出的结果又分别为多少?2.根据所给的x的值,求-5x+1的值.(1)x=4;(2)x=-2.学生解答:(1)当x=4时,原式=-5×4+1=-19;(2)当x=-2时,原式=-5×(-2)+1=11.师评:当代入负值时,要用括号把负数括起来.3.一项调查研究显示:一个10岁~50岁的人,每天所需的睡眠时间th与他的年龄n岁之间的关系为t=h,如30岁的人每天所需的睡眠时间为t==8(h).算一算,你每天需要多少睡眠时间?学生计算回答.活动(二) 巩固新知【例1】堤坝的横截面是梯形,如图,测得梯形上底a=18m,下底b=36m,高h=20m,求这个横截面的面积.解:梯形的面积公式S=(a+b)h.将a=18,b=36,h=20代入上面的公式,得S=×(18+36)×20=540(m2)答:堤坝的横截面面积是540m2.师评:求代数式的值的第一步是“代入”,即用数值替代代数式里的字母,其他的运算符号,原来的数字都不能改变.第二步是“求值”,即按照代数式指明的运算计算出结果.【例2】当n分别取下列值时,求代数式的值.(1)n=-1;(2)n=4;(3)n=0.6.解:(1)当n=-1时,==1.(2)当n=4时,==6.(3)当n=0.6时,==-0.12.【例3】圆柱的体积等于底面积乘高.若用h表示圆柱的高,r表示底面半径(如图),V表示圆柱的体积.(1)请用字母h、r、V写出圆柱的体积公式;(2)求底面半径为50cm、高为20cm的圆柱的体积.解:(1)V=πr2h.(2)∵r=50,h=20,∴V=π×502×20=50000π(cm3).答:所求圆柱的体积为50000πcm3.三、变式训练一辆卡车在行驶时平均每小时耗油8L,行驶前油箱中有油80L.1.用代数式表示行驶xh后,油箱中的剩余油量Q= .2.计算行驶2h,5h,8h后,油箱中的剩余油量.3.这里,能求x=12h时剩余油量Q的值吗?学生解答:师评:代数式的值是由所含字母的值确定的,随代数式中字母的取值的变化而变化的,字母取不同的值,代数式的值可能不同,也可能相同.代数式中字母的取值不能使代数式和它表示的实际问题失去意义.活动(三) 合作探究(1)通过观察计算结果,随着n的值逐渐变大,两个代数式的值如何变化?(2)估计一下,哪个代数式的值先超过100?学生计算,回答.师评:求出代数式的值后,根据值的变代趋势还可以进行预测,推断代数式所反映的规律.四、课堂小结1.某市为鼓励市民节约用水,对自来水用户按如下标准收费,若每月用户用水不超过15m3,则每立方米水价按a元收费;若超过15m3,则超过部分每立方米按2a元收费.(1)某户居民在一个月内用水n(n≥15)立方米,那么他该月应缴水费多少元?(2)该户居民在10月份用水35m3,11月份用水28m3,12月份用水40m3.他在这三个月中各缴水费多少元?【答案】(1)15a+2a(n-15) (2)55a 41a 65a2.已知m2+n-1=3,求m2+n-6的值.【答案】-23.如图所示,边长分别为a、b的两个正方形拼在一起,试用含a、b的代数式表示阴影部分的面积,并求出当a=5cm,b=3cm时,阴影部分的面积.【答案】S阴影=a2+b2+(a-b)b-a2-(a+b)b.当a=5cm,b=3cm时,S阴影=52+32+×(5-3)×3-×52-×(5+3)×3=25+9+3-12.5-12=12.5(cm2).五、课堂小结师:本节课学习了哪些内容?生:(1)“代数式的值”的定义;(2)求代数式的值.师:求代数式的值应分哪几步?应注意哪些问题?生:步骤:(1)代入;(2)计算.注意:(1)格式规范;(2)适当添加括号;(3)灵活运用整体代入.。

相关文档
最新文档