冀教版七年级数学上册《代数式》教案(优质课一等奖教学设计)

合集下载

初中数学冀教版七年级上册《列代数式》优质课公开课比赛获奖课件面试试讲课件

初中数学冀教版七年级上册《列代数式》优质课公开课比赛获奖课件面试试讲课件

X个
1 + 3X
填空:
• (1)今年小明m岁,去年小明( )岁。 • m-1 • (2)小明去鲜花店买花,他买了n枝玫瑰花,每枝a元,m枝康乃馨, 每枝b元,则他共需付( )元。 • na+mb
填空:
• (3)将边长为a的正方形的一组对边的长度各增加b,另一组对边长 度不变,所得到的长方形周长为(),面积为() • 4a+2b a(a+b)
• (1)请用字母m表示偶数和奇数。 • (2)猜想两个偶数之和是什么数,并用字母表示数的方法说明这个 猜想是正确的。 •
回答:
按上图的方 式,每增加一 个正方形需增 3 根火柴 加___ 棒,搭5个这 样的正方形需 16 根火柴棒; 要__ 搭x个这样的 正方形需要多 少根火柴?
X-1个
4+3(X-1)
初中数学冀教版七年级上册 《列代数式》 优质课公开课比赛获奖课件面试试讲课件
3.1用字母表示数
数青蛙
• 1只青蛙1张嘴,2只眼睛4条腿,扑通1声跳下水。 • 2只青蛙2张嘴,4只眼睛8条腿,扑通2声跳下水。 • 3只青蛙3张嘴,6只眼睛12条腿,扑通3声跳下水。 …………………….
观察:青蛙的只数与嘴、眼睛、腿、扑通的声音之间有什么 规律?
数青蛙




1只青蛙1张嘴,2只眼睛4条腿,扑通1声跳 下水。 2只青蛙2张嘴,4只眼睛8条腿,扑通2声跳 下水。 3只青蛙3张嘴,6只眼睛12条腿,扑通3声 跳下水。 ……………………. n只青蛙n张嘴,2n只眼睛4n条腿,扑通n声 跳下水。
用字母表示运算规律
• 加法交换律: • •
a+b=b+a
课堂小结
• 体会字母表示数的意义:

冀教版七年级数学上册教学设计 3.2 代数式

冀教版七年级数学上册教学设计 3.2 代数式

冀教版七年级数学上册教学设计 3.2代数式一. 教材分析冀教版七年级数学上册第三单元代数式是学生继小学数学学习之后,第一次系统接触代数知识。

这一部分内容是后续学习方程、不等式等知识的基础,对于学生掌握数学的基本概念和逻辑思维能力具有重要意义。

本节课的教学内容主要包括代数式的概念、代数式的运算以及代数式的应用。

二. 学情分析七年级的学生已经具备了一定的数学基础,对于简单的一元一次方程和几何图形的认识有一定的了解。

但是,对于代数式的概念和运算规则,大部分学生可能较为陌生。

因此,在教学过程中,需要注重对学生基础知识的巩固,并通过生动的例子和实际应用,激发学生的学习兴趣,提高学生的理解能力。

三. 教学目标1.理解代数式的概念,掌握代数式的基本运算规则。

2.能够运用代数式解决实际问题,提高学生的应用能力。

3.培养学生的逻辑思维能力,提高学生的数学素养。

四. 教学重难点1.代数式的概念及其应用。

2.代数式的运算规则。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过设置富有启发性的问题,引导学生主动探究代数式的概念和运算规则;通过具体的案例,让学生了解代数式在实际问题中的应用;通过小组合作学习,激发学生的学习兴趣,提高学生的团队协作能力。

六. 教学准备1.准备相关的教学案例和实际问题,用于引导学生运用代数式解决实际问题。

2.准备PPT课件,用于辅助教学。

七. 教学过程1.导入(5分钟)通过设置一个问题:“小明今年12岁,小红比小明大3岁,请问小红今年几岁?”引导学生思考如何用数学语言来表示这个问题。

从而引出代数式的概念。

2.呈现(10分钟)通过PPT课件,介绍代数式的概念,并举例说明。

同时,讲解代数式的运算规则,包括加减乘除以及指数运算。

3.操练(10分钟)让学生分组进行练习,运用代数式解决实际问题。

教师巡回指导,解答学生疑问。

4.巩固(10分钟)针对学生在操练过程中遇到的问题,进行讲解和巩固。

2024秋七年级数学上册第三章代数式3.2代数式1认识代数式教学设计(新版)冀教版

2024秋七年级数学上册第三章代数式3.2代数式1认识代数式教学设计(新版)冀教版
4x + 6y = 16 和 9x - 6y = 3
然后将两个方程相加,得到:
13x = 19
接着将方程两边都除以13,得到:
x = 19/13
最后将 x 的值代入任一方程中求解 y:
2(19/13) + 3y = 8
3y = 8 - 38/13
3y = (104/13) - (38/13)
3y = 66/13
- 目的明确:板书内容要紧扣代数式的概念、表示方法和基本运算规则
- 结构清晰:板书内容要条理分明,便于学生跟随教学进度
- 简洁明了:板书设计要简洁明了,突出重点,准确精炼
- 艺术性和趣味性:板书设计要具有艺术性和趣味性,激发学生的学习兴趣
典型例题讲解
例1:化简代数式
题目:化简代数式 3x - 2y + 5(x + y)
- 拓展学习:利用老师提供的拓展资源,进行进一步的学习和思考。
- 反思总结:对自己的学习过程和成果进行反思和总结,提出改进建议。
教学方法/手段/资源:
- 自主学习法:引导学生自主完成作业和拓展学习。
- 反思总结法:引导学生对自己的学习过程和成果进行反思和总结。
作用与目的:巩固学生在课堂上学到的代数式的知识点和技能。通过拓展学习,拓宽学生的知识视野和思维方式。通过反思总结,帮助学生发现自己的不足并提出改进建议,促进自我提升。
3. 课后拓展应用
教师活动:
- 布置作业:根据代数式的知识点,布置适量的课后作业,巩固学习效果。
- 提供拓展资源:提供与代数式相关的拓展资源(如书籍、网站、视频等),供学生进一步学习。
- 反馈作业情况:及时批改作业,给予学生反馈和指导。
学生活动:

冀教版七年级数学上册教学设计3.2 代数式

冀教版七年级数学上册教学设计3.2 代数式

冀教版七年级数学上册教学设计 3.2代数式一. 教材分析冀教版七年级数学上册3.2代数式是学生在掌握了数的概念、运算律和方程等基础知识后,进一步抽象和总结数的运算规律的重要内容。

这部分内容主要包括代数式的定义、代数式的运算和代数式的应用。

通过这部分的学习,使学生能够理解和掌握代数式的基本概念和运算方法,培养学生的抽象思维能力和解决问题的能力。

二. 学情分析七年级的学生已经具备了一定的数学基础,对于数的概念、运算律和方程等知识有一定的了解和掌握。

但是,学生对于代数式的理解和运用还需要进一步的引导和培养。

因此,在教学过程中,需要结合学生的实际情况,从学生的认知水平出发,设计适当的教学活动和环节,激发学生的学习兴趣,提高学生的学习效果。

三. 教学目标1.理解代数式的定义和基本概念。

2.掌握代数式的运算方法和规则。

3.能够运用代数式解决实际问题。

四. 教学重难点1.代数式的定义和概念。

2.代数式的运算方法和规则。

3.代数式在实际问题中的应用。

五. 教学方法1.情境教学法:通过设计丰富的教学情境,让学生在实际情境中感受和理解代数式的概念和运算方法。

2.案例教学法:通过分析具体的案例,让学生理解和掌握代数式的运算规则和应用。

3.小组合作学习:通过小组合作讨论,培养学生的团队协作能力和解决问题的能力。

六. 教学准备1.教学课件:设计精美的教学课件,配合多媒体教学,提高学生的学习兴趣和效果。

2.教学案例:准备相关的案例,用于分析和讲解代数式的运算和应用。

3.练习题:设计一定数量的练习题,用于巩固和检验学生的学习效果。

七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,引导学生思考如何用数学语言来表示这些问题。

例如,小明买了3本书和2支笔,一共花了多少钱?让学生尝试用数学语言来表达这个问题,从而引出代数式的概念。

2.呈现(10分钟)介绍代数式的定义和基本概念,如代数式的组成、字母表示数的方法等。

通过示例,让学生理解和掌握代数式的基本概念和表示方法。

冀教版-数学-七年级上册-3.2 代数式第1课时 教案

冀教版-数学-七年级上册-3.2 代数式第1课时 教案

3.2 代数式第1课时一、教学目标知识目标:①了解代数式的概念.②掌握如何利用代数式来表示简单的数量关系.能力目标:培养学生基本的分析、比较能力和抽象思维能力.情感目标:①通过从数到式的飞跃,体会代数式概念的重要性,体验从特殊到一般的过程.②鼓励学生积极主动参与教学过程,激发求知欲,体验成功,增强学习的兴趣和信心.二、教学重点与难点教学重点:代数式的概念和根据数量关系列代数式教学难点:列代数式三、教学过程1.创设情景,引起思考一隧道长l米,一列火车长180米,如果该列火车穿过隧道所花的时间为t分,那么列车的速度怎么表示呢?2.类比结果,展示新知首先学生指出后者与前者的区别在于后者是由数和表示数的字母及运算符号组成的表达式,再举个例子大米的单价为a元/千克,食油的单价为b元/千克,买了10千克大米、2千克食油共需几元,从而给出定义,像900a+500b+600c,10a+2b这样含有字母的数学表达式称为代数式.注意两点:①代数式由数、表示数的字母和运算符号组成,运算符号除上面几个代数式出现的加,减,乘外,还包括除,开方和乘方运算;②单独的一个数或一个字母也称为代数式.同时可以发现,通过代数式可以简明普遍地表示实际问题中的量.3.范例练习,师生互动例1 指出下列各代数式的意义:(1)2a+5;(2)2(a+5);(3)a2+b2; (4)(a+b)2.解:(1)2a+5表示的是a的2倍与5的和.(2)2(a+5)表示的是a与5的和的2倍.(3)a2+b2表示的是a的平方与b的平方的和.(4)(a+b)2表示的是a与b的和的平方.例2 用代数式表示:(1)a与b的差与c的平方的和.(2)百位数字是a,十位数字是b,个位数字是c的三位数.(3)三个连续的整数(用同一个字母表示),以及它们的和.解:(1)(a-b)+c2.(2)100a+10b+c(其中,a,b,c是0到9之间的整数,且a≠0).(3)设m是整数,三个连续整数可表示为m-1,m,m+1.它们的和为(m-1)+m+(m+1). 练习:1.在下列的代数式的写法中,表示正确的一个是()A.“负x的平方”记作﹣x2 B.“x的3倍”记作x3C.“a除以2b的商”记作D.“y与的积”记作【解析】解:A.“负x的平方”记作(﹣x)2,故本选项错误.B.x的3倍”记作3x,故本选项错误.C.a除以2b的商”记作,故本选项正确.D.“y与1的积”记作y,故本选项错误.故选:C.【答案】C2.下列代数式错误的是()A.数x与数y的平方和:x2+y2B.三个数A.B.c的积的2倍再减去3:2abc﹣3C. x的3倍与y的4倍的和:3x+4yD. x除以3的商与4的和的平方:【解析】解:A.B.C正确;D.根据“x除以3的商与4的和的平方”,可列代数式为.故选D.【答案】D四、归纳小结,整理知识让学生从知识点、注意点及思想方法等方面,对本节课所学的进行归纳整理,老师再适当补充的方法,并在小结过程中指出以下几点:(1)要理清运算的顺序,注意代数式的书写;(2)要咬文嚼字,仔细斟酌某些关键词;(3)要善于分析实际情景中的数量关系.五、自我检测,布置作业:教材练习题。

32024年冀教版七年级上册教学设计第三章.2 代数式

32024年冀教版七年级上册教学设计第三章.2  代数式

第1课时代数式课时目标1.掌握代数式的概念,在具体情境中,能列出代数式.体会代数式是表示数量和数量关系的数学模型.2.掌握代数式的书写规范,建立符号意识,发现数学符号的美.3.理解代数式的意义,会把代数式表示的数量关系用文字语言表述,会把用文字语言表述的数量关系用代数式表示.学习重点理解代数式的概念,列代数式并理解代数式的意义.学习难点理解描述数量关系的语句,正确列出代数式,培养学生的数学抽象意识.课时活动设计复习引入通过上节课的学习,请同学们回忆一下,字母可以表示什么?设计意图:以提问的形式回顾上节课的内容,为本节课的学习作铺垫.探究新知探究1代数式的概念及意义1.如果甲数为x,乙数为y,那么甲、乙两数的差是x-y.2.如果长方形的长和宽分别为a和b,那么它的周长是2(a+b).3.某种瓜子的单价为16元/千克,则n千克需16n元.4.钢笔每支a元,铅笔每支b元,买2支钢笔和3支铅笔共需(2a+3b)元.问题:你能分析这些式子的共同特征,试着说一说代数式的概念吗?小组合作交流.解:这些式子中,都含有数字或表示数字的字母;它们都是用运算符号连接起来的.归纳:用运算符号连接数和字母的式子,叫作代数式.(注意:单独一个数或一个表示数的字母也是代数式.)说明:(1)这里的运算是指加、减、乘、除、乘方、开方运算,其中开方将在以后学到.(2)强调代数式仅指用运算符号连接数或字母而得到的算式,代数式中不含有等号或不等号,如S=ab是等式,但不是代数式.练习:举出三个代数式(每个代数式至少含有两种运算).学生回答,教师点评.解:4a-1,a2+1,3(a-5).追问:请同学们小组讨论,指出这三个代数式的意义.解:4a-1表示的是a的4倍与1的差;a2+1表示的是a的平方与1的和;3(a-5)表示的是a与5的差的3倍.探究2列代数式观察下面代数式(a+8)(b-c)的生成过程,请用恰当的语言说出代数式(a+8)(b-c)的意义.学生组内讨论交流,派学生代表进行回答.解:代数式(a+8)(b-c)可表示a,8两数之和与b,c两数之差的和.师生活动:师生共同总结代数式的书写规范要求.代数式书写规范:(1)在同一个问题中,不同的量要用不同的字母表示.如用a表示长方形的长,那么就不能再用a表示长方形的宽了.(2)代数式中涉及乘法运算,若是数字与数字相乘,要写成“×”;若是数字与字母相乘或字母与字母相乘,可用小圆点代替“×”,如“a·b”,此时,小圆点应写在中间,避免与小数点混淆,也可以省略不写.(3)如果数字因数、字母因数都有时,要把数字因数写在字母因数前边,如a 的2倍应写成2a ,而不能写成a 2;而数字与数字相乘,则不能省略乘号,如2×5不能写成25.(4)代数式中出现除法运算时,一般按照分数的写法来写,如m ÷n 一般写成m n .(5)代数式有单位时,要将代数式加括号后再写单位,如甲的身高a cm,乙比甲矮b cm,那么乙的身高应写成(a -b )cm,而不能写成a -b cm .(6)带分数与字母相乘时,一般把带分数化成假分数,如a 的312倍应写成72a ,而不能写成312a.(7)遇有小数因数,一般应将其化成分数形式.如a 与0.1的积常写成110a. 设计意图:代数式的概念是本章学习的基础,从多个生活情境引入,让学生感受到代数式的必要性和广泛性,再组织学生观察、讨论代数式的意义与特征,发现共同本质,归纳概念,培养学生善于思考,勇于表达的学习品质.典例精讲例1 指出下列代数式的意义:(1)2a +5; (2)2(a +5); (3)a 2+b 2;(4)(a +b )2; (5)1x ; (6)x +1x .解:(1)2a +5表示的是a 的2倍与5的和.(2)2(a +5)表示的是a 与5的和的2倍.(3)a 2+b 2表示的是a 的平方与b 的平方的和.(4)(a +b )2表示的是a 与b 的和的平方.(5)1x 表示的是x 的倒数. (6)x +1x 表示的是x 与它的倒数的和.例2 用代数式表示:(1)a 与b 的差与c 的平方的和;(2)百位数字是a ,十位数字是b ,个位数字是c 的三位数;(3)用含同一个字母的代数式表示三个连续的整数,并写出它们的和.解:(1)(a-b)+c2.(2)100a+10b+c(其中,a,b,c是0到9之间的整数,且a≠0).(3)设m是整数,三个连续整数可表示为m-1,m,m+1,它们的和为(m-1)+m+(m+1),即3m.设计意图:例题围绕两种语言之间的互相转化展开,让学生充分体会用代数式表示数量关系的简明性和一般性.巩固训练1.请指出下列各代数式的意义:(1)a2+2; (2)a(b+1)-1.解:(1)a的平方与2的和.(2)b与1的和的a倍与1的差.2.请用代数式表示:(1)a,b两数之积与2的和;3(2)a与比a大2的数的积;(3)a,b两数和的平方与它们的积的差..(2)a(a+2).(3)(a+b)2-ab.解:(1)ab+23设计意图:通过练习巩固本节课所学知识,查漏补缺.课堂小结1.本节课我们学习的内容是什么?2.通过本节课的探究活动,你有什么收获和感受?设计意图:通过小结,及时梳理所学知识,培养学生养成及时复习的好习惯.课堂8分钟.1.教材第107,108页习题A组第1,2题,B组第3题,C组第4,5题.2.七彩作业.教学反思第2课时列代数式解决简单的实际问题课时目标1.能分析简单问题中的数量关系,并用代数式表示出来,进一步发展符号意识,提高数学应用意识.2.通过列代数式,进一步发展符号感;初步学会从数学的角度提出问题和分析问题,体验解决问题的多样性.学习重点根据题意正确列出代数式,解决实际问题.学习难点分析较简单情境中的数量关系,并用代数式正确表示.课时活动设计复习引入上节课我们学习了代数式的哪些知识?学生回答:代数式的概念,代数式的意义,列代数式.代数式可以刻画实际问题中的数量关系,在实际情境中,如何列代数式呢?设计意图:开门见山,引出本节课的内容,为本节的学习奠定基础.探究新知探究1用代数式表示含有和、差关系的实际应用问题:已知参加甲、乙两地植树的同学分别为52人和23人,现从甲、乙两地共抽调12人到丙地植树.如果从甲地抽调x人,请用含x的代数式分别表示甲、乙两地剩下的人数.师生活动:教师先展示问题,让学生独立思考,学生展示不同的解法,教师给予鼓励.教师引导使用表格,通过对比让学生体会列表格法的优越性,最后教师进行总结归纳.分析:将表示甲、乙两地剩下人数的代数式填入下表:解:由题意,从乙地抽调(12-x)人.所以,甲地剩下的人数为(52-x)人,乙地剩下的人数为[23-(12-x)]人.归纳:用代数式表示实际问题中的数量关系的步骤:(1)要认真审题,弄清问题中的数量关系和运算顺序;(2)按代数式书写格式的规范书写.探究2kx形式的代数式(1)如果汽车以85 km/h的速度在高速公路上行驶,那么x h行驶的路程为85x km.(2)如果某工程队平均每天修路0.8 km,那么x天可以修路0.8x km.(3)如果一套学生桌椅的价格是380元,那么买x套这种学生桌椅需要380x 元.(4)如果某期5年期国债的年利率是5.6%,小颖的爷爷买了这期国债x元,那么到期后可得利息5.6%x元,本息共为(1+5.6%)x元.x.(5)如果一项工程要求30天完成,那么工作x天后完成了工程量的130上面列出的这些代数式都具有kx的形式.请你再举出两个类似的例子.设计意图:让学生体会实际问题中的数量可以用代数式来表示;同一个式子可以表示不同的含义,这与具体情境相关.典例精讲例如图所示,已知装满油时,桶和油的质量一共是a kg;当油用去一半时,桶和油的质量一共是b kg.(1)当桶里装满油时,写出表示油的质量的代数式.(2)写出表示桶的质量的代数式.学生先根据题意,独立列代数式,并举手回答问题,教师针对学生的回答给予评价.解:(1)由题意,一半油的质量为(a-b)kg.所以,当桶里装满油时,油的质量为2(a-b)kg.(2)桶的质量为[a-2(a-b)]kg.设计意图:通过例题,加强学生对知识的掌握和理解.巩固训练1.填空:(1)已知一批小麦的出粉率是85%.a kg小麦可磨出面粉85%a kg.要磨出kg.面粉b kg,需要小麦b85%(2)一个两位数,十位上的数与个位上的数的和为9.①如果设这个两位数的十位数字为a,那么这个数用a可以表示为10a+(9-a).②如果设这个两位数的个位数字为b,那么这个数用b可以表示为10(9-b)+b.2.甲、乙两个口袋中分别装有a kg和b kg(a>b)的大豆.要想使两个口袋中装的大豆一样多,应从甲袋向乙袋倒入多少千克大豆?)千克的大豆.解:应从甲袋向乙袋倒入(a-a+b2设计意图:通过练习进一步巩固所学知识,查漏补缺.课堂小结1.本节课我们学习的内容是什么?2.通过本节课的探究活动,你有什么收获和感受?设计意图:通过小结,学生梳理本节所学内容,同学们互帮互助,解决困惑.充分发挥学生的主体意识,培养学生的语言概括能力和发散思维能力.课堂8分钟.1.教材第109,110页习题A组第1,2,3题,B组第4题,C组第5题.2.七彩作业.教学反思第3课时列代数式解决较复杂的实际问题课时目标1.能分析较复杂问题中的数量关系,并用代数式表示出来,体会数学与现实的联系,提高数学应用意识.2.通过列代数式,进一步发展符号感;初步学会从数学的角度提出问题和分析问题,体验解决问题的多样性.学习重点分析较复杂情境中的数量关系,列出代数式.学习难点用代数式解决复杂的实际问题.课时活动设计复习引入通过上节课的学习,请同学们回忆一下,如何根据题意正确列出代数式,以解决简单的实际问题?设计意图:以提问的形式回顾上节课的内容,为本节课的学习作铺垫.探究新知问题:经过练习,小亮和大华的打字速度都有了提高,小亮的打字速度达到80个/分,大华比小亮每分钟多打10个字.(1)小亮和大华a min分别能打多少个字?(2)b min大华比小亮多打多少个字?(3)将同为c个字的两篇文章分别交给小亮和大华打,如果要求他们同时完成任务,那么小亮比大华要提前多少分钟开始打字?(4)根据以上问题情境,请你自己提出一个问题并予以解决.问题中涉及三个基本的量:打字速度、时间、打字的个数,这些量之间具有怎样的关系?对于上面的问题,可以这样思考和解答:(1)小亮a min 打的字数就等于80与a 的积,即80a 个字;大华a min 打的字数就等于(80+10)与a 的积,即90a 个字.(2)b min 大华比小亮多打的字数就等于b 与10的积,即10b 个字(3)求小亮要比大华提前多少分钟开始打字,就是求小亮打c 个字比大华打c 个字多用的时间,也就是求“c 除以80的商与c 除以(80+10)的商的差”,即(c 80-c 80+10)min .师生互动:让学生先自主理解题目中的数量和数量关系,思考之后,老师对每个问题,要表示的是哪个量,用哪些量来表示,怎样表示,进行追问.引导学生思考面对较复杂的情景时,如何分析问题,分析数量和数量关系,如何用代数式进行表达.设计意图:发展学生的符号意识和分析问题的能力.典例精讲例 从A 地乘火车到北京,普通票价格为40元/人,学生票价格为20元/人.星期日,A 地育才学校组织部分师生到天安门广场观看升旗仪式.(1)如果有教师14人,学生180人,那么买单程车票共需多少元?(2)如果有教师x 人,学生y 人,那么买单程车票共需多少元?(3)如果教师的人数是学生的人数的112,那么买单程车票共需要多少元?(将教师的人数或学生的人数用字母表示)解:(1)40×14+20×180=4 160(元).(2)(40x +20y )元.(3)如果设教师有x 人,那么学生有12x 人,买单程车票共需(40x +20×12x )元;如果设学生有y 人,那么教师有y 12人,买单程车票共需(40×y 12+20y )元. 师生活动:需要学生先自主理解题意,思考之后,小组合作,一起分析里面的数量和数量关系,并将自己的思考过程表达出来,学生之间互评,理解用不同的代数式表示同一个量的含义.设计意图:例题的情境相对复杂,尤其最后一小问,需要学生真正理解里面的数量关系,才能正确地用代数式表达.培养学生学会从数学的角度提出问题和分析问题,体验解决问题的多样性.巩固训练1.已知甲、乙、丙三个数的比为1∶2∶3.如果设甲数为x ,请表示出甲、乙两数的和减去丙数后的差;如果设丙数为z ,请表示出甲、丙两数的和减去乙数后的差.解:设甲数为x ,则乙数为2x ,丙数为3x ,甲、乙两数的和减去丙数后的差为x +2x -3x.设丙数为z ,则甲数为z 3,乙数为2z 3,甲、丙两数的和减去乙数后的差为z 3+z -2z 3.2.为了预防流感,某校积极为校园环境进行消毒,购买了甲、乙两种消毒液共100瓶,其中甲种6元/瓶,乙种9元/瓶.如果设购买了甲种消毒液x 瓶,那么购买这两种消毒液共花了多少元?解:已知购买了甲种消毒液x 瓶,则购买了乙种消毒液(100-x )瓶,那么购买这两种消毒液共花了6x +9(100-x )=(900-3x )元.3. 如图,从边长为m +3的正方形纸片上剪下一个边长为m 的正方形后,剩余部分又剪拼成一个长方形(不重叠无缝隙).如果拼成的长方形一边长为3,那么另一边长是多少?解:由题意,得另一边长为m +3+m.归纳:列代数式的关键是分析数量关系,能准确地把文字语言翻译成数学语言.认真分析问题中的有关术语的含义,如和、差、积、商、多、少、几倍、几分之一、增加了、增加到、减少、减少到、扩大、缩小等.设计意图:同学们独立思考,再一起研讨,通过多情境的练习,不断培养学生有意识地分析数量和数量关系,提高学生分析问题的能力;进一步理解代数式的意义,掌握列代数式的方法.课堂小结1.本节课我们学习的内容是什么?2.通过本节课的探究活动,你有什么收获和感受?设计意图:通过小结,学生梳理本节所学内容,同学们互帮互助,解决困惑.充分发挥学生的主体意识,培养学生的语言概括能力和发散思维能力.课堂8分钟.1.教材第112页习题A组第1,2题,B组第3,4题,C组第5题.2.七彩作业.教学反思。

代数式—教学设计及专家点评(获奖版)

代数式—教学设计及专家点评(获奖版)

全国第十一届初中数学优质课教学设计课题:3.2代数式(四)教材:冀教版七年级上册授课教师:目录Contents教学内容解析 (01)教学目标解析 (01)学生学情解析 (01)教学策略解析 (02)教学过程设计 (02)教学反思 (07)3.2 代数式(四)教学设计一、教学内容解析1.内容用代数式表示数阵、点阵中的规律.2.内容解析本节课是河北教育版《义务教育教科书•数学》七年级上册第三章第3节“代数式”第4课时的内容.代数式是初等数学的重要基础,小学学习了在具体问题情境中能用字母表示数,但数的运算伴随着数的扩充和发展不断丰富,用字母表示数后用加、减、乘、除、乘方和开方等运算符号连接数和字母形成了代数式.用代数式表示数量关系是数学的抽象,是建立数感和符号意识的重要过程.本节课主要学习用由特殊到一般的归纳方法,寻找一般规律,列出代数式,前面学习的代数式的意义和用代数式表示实际问题中的数量关系为本节课的学习做好铺垫,而列代数式又为以后学习方程、不等式、函数等内容奠定了基础.基于以上分析,确立本节课的教学重点是通过观察数阵、点阵,发现其中的规律,并用代数式表示,体会用不同的代数式可以表示同一量.二、教学目标解析课程目标中要求能分析具体问题中的简单数量关系,并用代数式表示,结合这一目标确立了本节课的教学目标.1.会用代数式表示数阵、点阵中的规律.会从不同角度分析和解决问题,进一步体会同一个量可以用不同代数式表示;2.经历观察、分析、思考、发现、概括的过程,体会从具体到抽象、特殊到一般的归纳方法,渗透分类、转化、数形结合及模型的数学思想,进一步发展学生的数感和符号意识,培养学生的创新意识,积累数学活动经验;3.培养学生独立思考解决问题的能力,在解决问题的过程中体验成功的快乐;通过小组合作,共享方法,及时修正错误,增强合作与交流的意识,培养学生严谨求实的科学态度.三、学生学情解析知识结构方面:在前几节中,学生已经学习了用字母表示数,会用代数式表示数量的和、差、倍、分关系,也能把实际问题中的数量关系抽象为数学的和、差、倍、分关系,熟悉了文字语言和符号语言之间的转换,理解了代数式可以作为一个模型,即同一代数式可以表示不同实际问题中的数量关系.能力水平方面,七年级学生年龄小,热情高,感性思维较好,但理性思维较弱,孩子们的积极性很容易被调动,但通过对具体对象的观察、分析、发现、归纳出一般规律,进而用代数式表示出发现的规律对于很多学生来说是一个不小的挑战.基于以上分析,确立了本节课的教学难点是用代数式表示数阵、点阵中的规律.四、教学策略解析为了突出重点、突破难点,本节课尽可能合理、有效地使用多媒体视频、课件、实物展台等设备,使课堂更加生动灵活,更好的激发学生的学习兴趣,使学生展示交流更加方便,提高了教学效益;本节课我以教材上的两个问题为依托,问题设置由具体到抽象,引导学生层层递进地展开学习。

七年级上册数学冀教版【教案】第三章 代数式

七年级上册数学冀教版【教案】第三章  代数式

一、单元学习主题本单元是“数与代数”领域“数与式”主题中的“代数式”.二、单元学习内容分析1.课标分析《标准2022》指出数与代数领域包括“数与式”“方程与不等式”和“函数”三个主题,是学生理解数学符号,以及感悟用数学符号表达事物的性质、关系和规律的关键内容,是学生初步形成抽象能力和推理能力、感悟用数学的语言表达现实世界的重要载体.“数与式”是代数的基本语言,初中阶段关注用字母表述代数式以及代数式的运算,字母可以像数一样进行运算和推理,通过对字母的运算和推理得到的结论具有一般性.通过代数式和代数式运算的教学,让学生进一步理解字母表示数的意义,通过基于符号的运算和推理,建立符号意识,感悟数学结论的一般性,理解运算方法与运算律的关系,提升运算能力.本单元“代数式”是学生学习代数式及其运算的第一阶段,是在完成了实数数集的扩充后,学生经历的数到式认识上“质”的飞跃,是研究方程、不等式、函数等数学知识的基础.本单元用字母表示数,使客观世界中的数学规律变得简洁明了;用代数式表示具体问题中简单的数量关系,体验用数学符号表达简单数量关系的过程,使数量关系变得清晰;会选择适当的方法求代数式的值,运用到转化、整体代入等数学方法,体现了化繁为简的数学思想;通过代数式求值的学习,理解代数式的值随字母取值的变化而变化,为今后函数的学习做好铺垫;在应用代数式知识解决实际问题的过程中,经历数学建模的基本过程,培养学生学会用数学的眼光观察现实世界,用数学的思维思考现实世界,用数学的语言表达现实世界.同时,本单元所渗透的由特殊到一般的辩证思想和数学建模的思想方法,对学生今后的数学学习和发展都有非常重要的意义.2.本单元教学内容分析冀教版教材七年级上册第三章“代数式”,本章包括四个小节:3.1用字母表示数;3.2代数式;3.3数量之间的关系;3.4代数式的值.“数与式”是代数的基本语言,初中阶段关注用字母表示代数式以及代数式的运算,字母可以像数一样进行运算和推理,通过对字母的运算和推理得到的结论具有一般性.数与代数领域的学习,有助于学生形成抽象能力、推理能力和模型观念,发展几何直观和运算能力.本章“代数式”的学习按三个层次展开.第一个层次:理解代数式的意义,把数量的和、差、倍、分关系表示为代数式,熟悉文字语言和符号语言之间的转换,理解代数式可以作为一个模型,即同一个代数式可以表示不同实际问题中的数量关系;第二个层次:把实际问题中的数量关系抽象为数的和、差、倍、分关系,再用代数式表示;第三个层次:用由特殊到一般的归纳方法,寻找一般规律,列代数式.“代数式的值”的学习,解决更广泛的具体问题,按由特殊到一般再到特殊的过程设计,渗透模型的思想,感受代数式的值随字母的变化而变化,为将来函数的学习作铺垫.学习丰富多样的问题情境,通过分析数量关系,列代数式,实现文字语言和符号语言的转化,逐步渗透抽象和模型化思想.三、单元学情分析本单元内容是冀教版教材数学七年级上册第三章代数式,学生在小学阶段,学习过“数量关系”,主要是用符号或含有符号的式子表达数量之间的关系或规律.学生虽然已初步接触过用字母表示数,但学生对用字母表示数的意义和认识是非常肤浅的.本单元不仅要使学生进一步认识用字母表示数的意义,还要理解字母可以与数一起参与运算,可以用数、字母、运算符号组成的代数式表示具有某种普遍意义的数量关系.本单元可以说是“代数”之始,学习内容多而抽象,在认知上会产生“质”的飞跃,又因学生学习起点参差不齐,进而对教学工作有了一定的难度与困扰,但也因此学生更对新知识充满了好奇和强烈的求知欲望.而对于式的研究,更有许多颇有思考价值的问题和方法有待学习和研究,因此教师在组织教学时,多提供丰富的问题情境,让学生自主探索新知,经历独立思考、合作交流、勇于表达的学习过程.老师耐心指导学生,增强学生学习的信心,使学生学习数学的综合能力得到检验和再提升,不断促进分析问题和解决问题的发展.四、单元学习目标1.让学生经历用字母表示数的抽象过程,理解用字母表示数的意义,初步建立符号意识.2.能够分析简单问题中的数量关系,会列代数式,体会模型的思想.3.能解释一些简单代数式的实际背景或几何意义,体会数学与现实的联系.4.会求代数式的值,能够根据特定的问题查阅资料,找到所需要的公式,并会代入字母的具体值,进行计算.五、单元学习内容及学习方法概览六、单元评价与课后作业建议本单元课后作业整体设计体现以下原则:针对性原则:每课时课后作业严格按照《标准2022》设定针对性的课后作业,及时反馈学生的学业质量情况.层次性原则:教师注意将课后作业分层进行,注重知识的层次性和学生的层次性.知识由易到难,由浅入深,循序渐进,突出基础知识,基本技能,渗透人人学习数学,人人有所获.重视过程与方法,发展数学的应用意识和创新意识.自主性原则:学生可以根据自己的学习能力自主选择,每课时留下拓展性练习或自主编写自己的易错题类型.生活性原则:本节课的知识来源于生活,应回归于生活,体现数学的应用价值.根据以上建议,本单元课后作业设置为两部分,基础性课后作业和拓展性课后作业.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《代数式》教案
教学目标
一.知识目标.
1.在具体情景中进一步理解字母表示数的意义.
2.能解释一些简单代数式的实际背景或几何意义,发展符号感.
3.在具体情景中,能求出代数式的值,并解释它的实际意义.
二.能力目标.
经历语言与代数式相互转化的过程,发展学生联想、类比能力,培养学生用数学语言进行表达和交流的能力. 教学重点
对代数式意义的理解,分析问题中的数量关系,列出代数式.
教学难点
正确规范书写代数式和叙述代数式的意义.
教学过程
一.情境创设:
1.小明去买苹果,苹果每千克1.5元,他买了a千克,一共用去多少钱?
2.请学生模仿列举日常生活中的例子,其他学生给以解答.
二.探索新知:
观察:n -2、5s 、0.8a 、2n +500、2ab +2bc +2ac 、abc …
(1)引入代数式定义:像n 、-2、5s 、0.8a 、a m 、2n +50
0、abc 、2ab +2bc +2ac
等式子都是代数式.单独一个数或一个字母也是代数式.
(2)议一议.
①薯片每袋a 元,9折优惠,虾条每袋b 元8折优惠,两种食品各买一袋共需几元?
②一个长方形的宽是a m ,长是宽的2倍,这个长方形的长是多少?面积是多少?
③小明的爸爸携带了35kg 的行李乘飞机,他的机票价是m 元,需付多少元行李费?
④环形花坛铺草坪,大圆半径为R m ,小圆半径为r m ,需要草皮多少平方米?
3.让学生先观察:30a 、9b 、5s
…你发现了什么?它们r
35kg 每位旅客免费携带20kg 行李,
超重部分每千克按飞机票价
格的1.5%付行李费.
有什么共同的特征?
1)引入单项式定义:
像0.9a,0.8b,2a,2a2,15×1.5%m等都是数与字母的,这样的代数式叫 .单独一个数或一个字母也是 .
2)单项式中的数字因数叫做这个单项式的 .
3)单项式中所有字母的指数的和叫做它的 . (举例)
4.观察2ab+2bc+2ac,n-2…你发现了什么?它们有什么共同的特征?
1)几个单项式的和叫做 .其中的每个单项式叫做 .
2)次数最高项的次数叫做 .(举例)
5.小结.
通过观察我们知道单项式和多项式都是
.
单项式和多项式统称 .
6.例题欣赏.
(1)某超市8月份营业额为m万元,9月份营业额比8月份
1,该超市9月份营业额为多少万元?
增加了
4
(2)林老师用分期付款的方法购买汽车:首期付款a元,以后每月付款1500元,直至付清欠款,x个月后,林老师共
付款多少元?
(3)如图:直角三角形三边长分别为6,x,10(单位:c m)
1)三角形ABC的面积是多少?斜边上的高是多少?
2)P是AC边上的一个动点,P从A到C以2cm/s运动,
t秒后,AP的长为多少?PC长为多少?
此时,三角形PBC面积是多少?(引导学生自己完成)
注意:列代数式时,数字与字母、字母与字母相乘,乘号通常用·表示或省略不写,并且把数字写在字母的前面,除法运算通常写成分数的形式.
7.做一做.
列代数式:
1)苹果a元/kg,橘子b元/kg,买5kg苹果、8kg橘子应付多少元?
2)小明每步走a m,小亮每步走b m,小明、小亮从小桥的两端相向而行,小明走5步、小亮走8步两人相遇,小桥长多少?
3)a个三棱柱,b个六棱柱共多少个面?
8.议一议
1)从上面的“做一做“中你能发现什么?并与同学交流.
2)你能举例说明代数式2(x+y)表示的实际意义吗?
三.课堂练习:
1.n箱苹果重p千克,每箱重________千克.
2.甲同学身高a厘米,乙同学比甲同学高6厘米,则乙同学身高为______厘米.
3.全校学生总数是x,其中女生占40%,则女生人数是________.。

相关文档
最新文档