超声波发射接收电路图
超声波的多普勒测管道流速流量的发射接收电路以及其信号处理等设计

超声波多普勒测流速流量设计核心超声波传感器收发装置1.1超声波传感器超声波的发射与接收都是通过换能器实现的,换能器的材质、工作频率、晶片直径极大的影响了发射的效率及回波接收的质量,因此选择合适的换能器对于整个系统能否按预期目标工作来说是至关重要的。
1)换能器材质的确定压电换能器,使用的材料有压电单晶体、压电陶瓷、压电半导体、压电高分子聚合物和复合压电材料。
压电换能器以介电损耗小、机电耦合系数比较大和足够高的机械强度优于石英晶体、镍和一些合金材料,已日趋广泛地用于超声波换能器。
课题选用其中的压电陶瓷超声换能器,有压电性能好,生产和机械加工方便等优点,在各种超声检测中都有广泛的应用。
2)超声波换能器工作频率的选择工作频率的选择需考虑以下因素:●工作频率高,分辨力高,有利于增大信噪比及提取所需信号;●工作频率高,波长短,半扩散角小,声束指向性好,声能集中,有利于接收回波;●工作频率增加,声能急剧衰减。
工作频率高,灵敏度和分辨力高,指向性好,对测量有利;但工作频率高时,能力衰减大,又对检测不利。
因此,应综合考虑,选择适中的频率。
本课题选择的超声换能器工作频率为1MHz。
3)超声波换能器晶片直径的确定超声波换能器直径D一般为毫米,晶片大小对超声检测具有一定的影响。
晶片直径的选择需考虑以下因素:●晶片直径D增加,半扩散角减小,声束指向性变好,声能集中,对检测有利;●晶片直径D增加,辐射的声能大,换能器扩散区扫查范围大,远距离扫查范围相对变小;如上所述,换能器晶片直径对声束指向性、远距离扫查范围都有较大的影响。
经过考虑,本课题选择晶片直径D为。
综合考虑,本课题最终确定选用压电陶瓷换能器,其工作频率为1MHz,晶片直径为。
2多普勒法测量原理多普勒法测量原理,是依据声波中的多普勒效应,检测其多普勒频率差。
超声波发生器为一固定声源,随流体以同速度运动的固体颗粒与声源有相对运动,该固体颗粒可把入射的超声波反射回接收器。
超声波发射电路设计

中北大学课程设计说明书学生姓名:杨胜华学号:**********学院:信息与通信工程学院专业:电子信息科学与技术题目:超声波发射电路设计指导教师:程耀瑜职称: 教授李文强职称:讲师2011 年 1 月 7 日中北大学课程设计任务书2010/2011学年第一学期学院:信息与通信工程学院专业:电子信息科学与技术学生姓名:杨胜华学号:0805014137 课程设计题目:超声波发射电路设计起迄日期:12月26日~1月7日课程设计地点:中北大学指导教师:程耀瑜,李文强系主任:程耀瑜下达任务书日期: 2010 年 12 月 26 日目录一.绪论----------------------------------------------------------------1页1.1课程设计的目的及意义-------------------------------------1页1.2 超声波发射电路的设计思路------------------------------3页1.3 课程设计的任务及要求------------------------------------ 3页二.课程的方案设计与选取---------------------------------------- 4页2.1 课程的方案设计--------------------------------------------- 4页2.2 课程的方案选取--------------------------------------------- 6页三.系统的硬件结构------------------------------------------------- 6页3.1 触发脉冲产生电路------------------------------------------ 7页3.2发射脉冲产生电路------------------------------------------- 8页3.3 换能器部分--------------------------------------------------- 9页四.Protel 99 SE 简介及原理图绘制4.1Protel 99 SE 相关介绍及原理图绘制--------------------11页五.总结----------------------------------------------------------------12页六.参考文献----------------------------------------------------------14页附录一:超声波发射电路仿真-------------------------------------15页附录二:超声波发射电路原理图----------------------------------17页绪论1.1课程设计的目的及意义1.1.1目的科学家们将每秒钟振动的次数称为声音的频率,它的单位是赫兹。
超声波气泡检测传感器

超声波气泡检测传感器一、摘要介绍了一种广泛应用于血液净化设备中的超声波气泡监测传感器,此传感器在血液净化过程中,当血液在体外循环时,对整个回路系统起监控作用;简述超声波及其检测电路工作原理,并对其结构特性作了说明;对传感器在血液净化技术中的临床应用原理、工作条件和安全监测功能进行了深入的分析,并给出了详细的电路原理图。
结合设备临床操作与应用情况,提出了自适应算法来自动确立报警阈值,克服了环境温度、现场操作等差异,有效地避免了误报和漏报现象。
二、产品介绍1、超声波空气传感器的设计原理超声波是在脉冲电压激励下,由换能晶片发生振动而产生的一种波,其振动频率大于20 kHz以上,每秒的振动次数(频率)很高,超出了人耳听觉的上限(20kHz)。
超声和可闻声都是一种机械振动,通常以纵波的方式在弹性介质内传播,是一种能量的传播形式。
超声波具有频率高,波长短,绕射现象小,在一定距离内沿直线传播具有良好的束射性和方向性等特点。
并且超声波能在空气、水、液体及金属等固体中传播。
超声波在不同的传播介质中的声阻抗是不同的,同一种超声波传感器一般不能用于不同的介质。
例如,空气与水和钢的声阻抗比分别为1∶3.4×103、1∶1×105,它们的声阻抗差别非常大。
因此利用超声波的这一特性,设计了一种监测空气气泡的传感器,此传感器用于血液体外循环时,检测液体管路中的空气气泡。
超声波传感器对被测物的检测通常有3种方式(如图1 所示),超声波传感器可发射、接收。
考虑到医疗设备中液体(如血液等)流通管路的形状结构一般为圆柱形,选用透过方式较好。
这种方式下,发射的超声波将直线传播到接收端换能器。
气泡监测传感器的构造如图2。
图2中,发射端与接收端的超声波换能器芯片封装在一个内空为圆柱形的壳体中,为保证接收端接收效率更高,其发射面与接收面中心应尽量保持在一个水平面上。
此外,还要尽可能减小传感器靠近管壁的壳体与管路管壁间的空气隙。
超声波换能器的结构及原理

超声波换能器的结构及原理超声波的发射和接收,需要一种电-声之间的能量转换装置,这就是换能器。
超声换能器,也即超声传感器,是超声波流量计中的重要组成部分。
通常所说的超声换能器一般是指电声换能器,它是一种既可以把电能转化为声能、又可以把声能转化为电能的器件或装置。
换能器处在发射状态时,将电能转换为机械能,再将机械能转换为声能;反之,当换能器处在接收状态时,将声能转换为机械能,再转换为电能。
超声换能器通常都有一个电的储能元件和一个机械振动系统。
人们为研究和应用超声波,己发明设计并制成了许多类型的超声波发生器,目前使用较多的是压电型超声波发生器,而压电材料有单晶体的、多晶体复合的,如石英单晶体,钛酸钡压电陶瓷、锆钛酸铅压电陶瓷复合晶体(PZT)、PVDF等。
压电型超声波换能器是借助压电晶体的谐振来工作的,即晶体的压电效应和逆压电效应。
其结构原理如图3所示:图3超声波换能器结构原理图超声波换能器是一个超声频电子振荡器,当把振荡器产生的超声频电压加到超声换能器的压电晶体上时,压电晶体组件就在电场作用下产生纵运动。
压电组件振荡时,仿佛是一个小活塞,其振幅很小,约为(1~10) m ,但这种振动的加速度很大,约(10~10 3 ) g,这样就可以把电磁振荡能量转化为机械振动量,若这种能量沿一定方向传播出去,就形成超声波。
当在超声换能器的两电极施加脉冲信号时,压电晶片就会发生共振,并带动谐振子振动,并推动周围介质振动,从而产生超声波。
相反,电极间未加电压,则当共振板接收到回波信号时,由逆压电效应,将压迫两压电晶片振动,从而将机械能转换为电信号,此时的传感器就成了超声波接收器。
通常压电型超声波换能器可以等效地看作一个电压源和一个电容器的串联电路,如图 4(a)所示,也可以等效为一个电流源和一个电容器地并联电路,如图4(b)所示。
如果用导线将压电换能器和测量仪器连接时,则应考虑连接导线地等效电容、等效电阻、前置放大器地输入电阻、输入电容。
用51单片机设计超声波测距系统的设计原理和电路(附源程序)

---------------------------------------------------------------最新资料推荐------------------------------------------------------用51单片机设计超声波测距系统的设计原理和电路(附源程序)基于51单片机的超声波测距仪说明书引言超声波测距仪,可使用于汽车倒车、建筑施工工地以及一些工业现场的位置监控,也可用于如液位、井深、管道长度的测量等场合。
利用超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量。
利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制。
一、性能要求该超声波测距仪,要求测量范围在0.08-3.00m,测量精度1cm,测量时和被测物体无直接接触,能够清晰稳定地显示测量结果。
二、工作原理及方案论证超声波传感器及其测距原理超声波是指频率高于20KHz 的机械波。
用超声波传感器产生超声波和接收超声波,习惯上称为超声波换能器或超声波探头。
超声波传感器有发送器和接收器.超声波传感器是利用压电效应的原理将电能和超声波相互转化,即在发射超声波的时候,将电能转换,发射超声波;而在收到回波的时候,则将超声振动转换成电信号。
超声波测距的原理一般采用渡越时间法 TOF(timeofflight)。
1/ 14首先测出超声波从发射到遇到障碍物返回所经历的时间,再乘以超声波的速度就得到二倍的声源和障碍物之间的距离。
根据要求并综合各方面因素,采用 AT89C52单片机作为主控制---------------------------------------------------------------最新资料推荐------------------------------------------------------ 器,用动态扫描法实现 LED 数字显示,超声波驱动信号用单片机的定时器完成,超声波测距仪的系统框图如下图所示:图1 超声波测距仪系统设计框图三、系统硬件部分硬件部分主要由单片机系统及显示电路、超声波发射电路和超声波检测接收电路三部分组成。
HC-SR04超声波测距模块

H C-S R04超声波测距模块
1、产品特点:
HC-SR04 超声波测距模块可提供2cm-400cm 的非接触式距离感测功能,测距精度可达高到3mm;模块包括超声波发射器、接收器与控制电路。
基本工作原理:
(1)采用 IO 口 TRIG 触发测距,给至少 10us 的高电平信号; (2)模块自动发送 8 个 40khz 的方波,自动检测是否有信号返回; (3)有信号返回,通过IO 口 ECHO 输出一个高电平,高电平持续的时间就是超声
波从发射到返回的时间。
测试距离=(高电平时间*声速(340M/S))/2;
2、实物图:
如右图接线,VCC 供
5V 电源,GND 为地
线,TRIG 触发控制信
号输入,ECHO 回响信
号输出等四支线。
图一实物图
3、电气参数:
4、超声波时序图:
图二、 超声波时序图 以上时序图表明你只需要提供
一个 10uS 以上脉冲触发信号,该模块内部将
发出 8 个 40kHz 周期电平,即输出超声波,并检测回波。
一旦检测到有回波信号则输出回响信号
回响信号的脉冲宽度与所测的距离成正比。
由此通过发射信号到收到的回响信号 时间间隔可以计算得到距离。
公式:uS/58=厘米或者 uS/148=英寸;或是:距离 =高电平时间*声速(340M/S )/2;建议测量周期为 60ms 以上,以防止发射信号 对回响信号的影响。
注:1、此模块不宜带电连接,若要带电连接,则先让模块的 GND 端先连接,否则会影响 模块的正常工作。
2、测距时,被测物体的面积不少于 0.5 平方米且平面尽量要求平整,否则影响测量的
结果
5、实物规格:。
基于单片机的汽车倒车防撞报警系统设计
警系统由控制系统 、测距子系统 (超声波发送接收系 统 )和显示报警子系统组成 。 系统电路的实现简单 , 成本低 , 功耗低 , 体积小 。 系统主要 功能是当汽车挂 入倒车挡位后 , 在显示屏上显示车距 ;在汽车距障碍 物距离小于 0.50m时 , 蜂鸣器报警 。
1 超声波及其工作原理
1.1 超声波和超声波传感器 人耳的听音范围是 20Hz~ 20kHz, 超声波是一种
的低电压 、高性能 CMOS8位单片机 , 采用高密度 、非 易失性存储技术生产 , 兼容 MCS51指令系统 , 片内置 通用 8 位 中央 处理器 和 FLASH存 储单 元 。 片 内含 4kB的可反复擦写的程序存储器和随机存储器 , 随机 存储器用于存取数据 。 2.1 控制部分的设计
控制系统方框图如图 1所示 。该系统全部由单片 机控制 , 超声波发射电路能在单片机的控制下发出超 声波 。接收电路 接收到信号之后送入单片机进行处 理 , 算出车尾与障碍物之间的距离 , 将处理结果送入 显示电路进行显示 , 再按照技术指标的要求由声光报 警电路进行报警 。
外部中断子程序流程如图 7所示 。
图 6 主程序流程 图 7 外部中断子 12期
仪器仪表 /检测 /监控
3.2 仿真验证 Proteus的 ISIS是一款 Labcenter公司研制的电路
超声波测距原理及影响测距精度的因素
超声波测距原理及影响测距精度的因素1 测距原理分析 (1)2 影响测距精度的因素 (2)3 信号传输过程分析及斜入射影响分析 (3)①接收超声脉冲信号波形的数学模型 (3)②发射角和入射角对接收信号的影响 (4)1 测距原理分析目前,超声波传感器广泛用作测距传感器,常作为一种辅助视觉手段与其他视觉工具(如CCD图像传感器)配合使用,可有效提高机器的视觉功能。
超声波发生器可分为两大类:一类是用电气方式产生超声波;一类是用机械方式产生超声波。
电气类包括压电型、磁致伸缩型和电动型等;机械类包括加尔统笛、液哨和气流旋笛等。
它们所产生的超声波的频率、功率和声波特性各不相同,因而用途也有所不同,目前常用的是压电式超声波发生器。
压电式超声波发生器实际上是利用压电晶体的谐振来工作的,其外观结构与内部结构如图1和图2所示。
图1 超声波接收、发射头图2 超声波传感器内部结构该传感器有两个压电晶片和一个共振板,当其两极外加脉冲信号,且频率从等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板震动产生超声波。
反之,如果两电极间未外加电压,当共振板接受到超声波时,将迫使压电晶片振动,将机械能转换为电信号,这时它就成为超声波接收器了。
超声波发射器向某一方向发射超声波,在发射的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回,超声波接收器收到反射波就立即停止计时,超声波在空气中的传播速度为340m/s,根据计时器记录的时间t,就可以计算出发射点距障碍物的距离S,即:S (1)2/340t2 影响测距精度的因素除声速变化、噪声等影响因素外,声波在空气介质中声速的变化及散射,衰减的随机不均匀性,引起接受信号在幅度和时间轴上的起伏,是造成测距误差的一个主要原因。
图3所示为固定门限电平检测下由幅度起伏引起触发电路的信号前沿不同,所产生飞行时间(Time of flight)检测误差,起伏变化越大引起的误差就越大。
基于IAP15W4K58S4单片机超声波测距系统的设计与实现
[3] 赵小强,赵连玉.超声波测距系统中的温度补偿[J].组合 机床与自动化加工技术.2008(12):62-64.
(上接第30页)
[6] 王书洋,杨冠鲁.一种智能节能型多功能水龙头的设计[J], 科技创新导报,2017,14(25):102- 103.
収列起插2・20
峰值检波器,输出成近似平滑的水平信号,
3脚接检波器的检波电容,再经积分整形, 输出成倾斜信号,6脚接积分电容,最后经 比较器7脚输出一下降沿信号,触发单片机
的外部中断处理。
2.4 DS18B20温度采集电路和LCD显示
电路
以超声波在空气中传播为例,常温下超
声波速度v为340m/s,但其易受到空气中
与温度的拟合公式:v=331. 5+0. 607T,需按此式对波速进行
C1,具体表达式为 f=l/[ln2X (R1+2(R2+RW1)) XC1]O调节电
温度修正。
位器RW1,使输出方波的频率为40KHz,等于超声波发射探头
内压电晶片的固有谐振频率,以使压电晶片达到共振,产生
超声波。超声波发射控制端INC(接单片机控制10 口)输出低
Abstract:Ultrasonic is commonly used in the measurement of distance and displacement due to its strong directivity, slow energy consumption and long transmission distance in the medium. Based on IAP15W4K58S4 microcontroller, a simple, portable and low cost ultrasonic ranging system is designed. The design of ultrasonic transmitting circuit, ultrasonic receiving circuit, temperature compensation and system software are mainly introduced. After testing, the system can achieve stable, reliable and accurate distance measurement. Keywords; Ultrasonic; distance measurement; IAP15W4K58S4; piezoelectrie effect
超声波测距原理
超声波测距原理:超声波传感器分机械方式和电气方式两类,它实际上是一种换能器,在发射端它把电能或机械能转换成声能,接收端则反之。
本次设计超声波传感器采用电气方式中的压电式超声波换能器,它是利用压电晶体的谐振来工作的。
它有两个压电晶片和一个共振板。
当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,产生超声波。
反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,就成为超声波接收器。
在超声波电路中,发射端输出一系列脉冲方波,脉冲宽度越大,输出的个数越多,能量越大,所能测的距离也越远。
超声波发射换能器与接收换能器其结构上稍有不同,使用时应分清器件上的标志。
超声波测距的方法有多种:如往返时间检测法、相位检测法、声波幅值检测法。
本设计采用往返时间检测法测距。
其原理是超声波传感器发射一定频率的超声波,借助空气媒质传播,到达测量目标或障碍物后反射回来,经反射后由超声波接收器接收脉冲,其所经历的时间即往返时间,往返时间与超声波传播的路程的远近有关。
测试传输时间可以得出距离。
假定s为被测物体到测距仪之间的距离,测得的时间为t/s,超声波传播速度为v/m·s-1表示,则有关系式s=vt/2 在精度要求较高的情况下,需要考虑温度对超声波传播速度的影响,按式(2)对超声波传播速度加以修正,以减小误差。
v=331.4+0.607T(2)式中,T为实际温度单位为℃,v为超声波在介质中的传播速度单位为m/s。
2 系统总体设计方案本系统由超声波发射、回波信号接收、温度测量、显示和报警、电源等硬件电路部分以及相应的软件部分构成。
系统原理框图,如图1所示。
整个系统由单片机AT89S52控制,超声波传感器采用收发分体式,分别是一支超声波发射换能器TCT40-16T和一支超声波接收换能器TCT40-16R。
超声波信号通过超声波发射换能器发射至空气中,遇被测物反射后回波被超声波接收换能器接收。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
40kHZ超声波发射/接收电路综述
40kHZ超声波发射电路(1)
40kHZ超声波发射电路之一,由F1~F3三门振荡器在F3的输出为40kHZ方波,工作频率主要由C1、R1和RP决定,用RP可调电阻来调节频率。
F3的输出激励换能器T40-16的一端和反向器F4,F4输出激励换能器T40-16的另一端,因此,加入F4使激励电压提高了一倍。
电容C3、C2平衡F3和F4的输出,使波形稳定。
电路中反向器F1~F4用CC4069六反向器中的四个反向器,剩余两个不用(输入端应接地)。
电源用9V叠层电池。
测量F3输出频率应为40kHZ±2kHZ,否则应调节RP。
发射超声波信号大于8m。
40kHZ超声波发射电路(2)
40kHZ超声波发射电路之二,电路中晶体管VT1、VT2组成强反馈稳频振荡器,振荡频率等于超声波换能器T40-16的共振频率。
T40-16是反馈耦合元件,对于电路来说又是输出换能器。
T40-16两端的振荡波形近似于方波,电压振幅接近电源电压。
S是电源开关,按一下S,便能驱动T40-16发射出一串40kHZ超声波信号。
电路工作电压9V,工作电流约25mA。
发射超声波信号大于8m。
电路不需调试即可工作。
40kHZ超声波发射电路(3)
40kHZ超声波发射电路之三,由VT1、VT2组成正反馈回授振荡器。
电路的振荡频率决定于反馈元件的T40-16,其谐振频率为40kHZ±2kHZ。
频率稳定性好,不需作任何调整,并由T40-16作为换能器发出40kHZ的超声波信号。
电感L1与电容C2调谐在40kHZ起作谐振作
用。
本电路适应电压较宽(3~12V),且频率不变。
电感采用固定式,电感量5.1mH。
整机工作电流约25mA。
发射超声波信号大于8m。
40kHZ超声波发射电路(4)
40kHZ超声波发射电路之四,它主要由四与非门电路CC4011完成振荡及驱动功能,通过超声换能器T40-16辐射出超声波去控制接收机。
其中门YF1与门YF2组成可控振荡器,当S按下时,振荡器起振,调整RP改变振荡频率,应为40kHZ。
振荡信号分别控制由YF4、YF3组成的差相驱动器工作,当YF3输出高电平时,YF4一定输出低电平;YF3输出低电平时,YF4输出高电平。
此电平控制T40-16换能器发出40kHZ超声波。
电路中YF1~YF4采用高速CMOS电路74HC00四与非门电路,该电路特点是输出驱动电流大(大于15mA),效率高等。
电路工作电压9V,工作电流大于35mA,发射超声波信号大于10m。
40kHZ超声波发射电路(5)
40kHZ超声波发射电路之五,由LM555时基电路及外围元件构成40kHZ多谐振荡器电路,调节电阻器RP阻值,可以改变振荡频率。
由LM555第3脚输出端驱动超声波换能器T40-16,使之发射出超声波信号。
电路简单易制。
电路工作电压9V,工作电流40~50mA。
发射超声波信号大于8m。
LM555可用NE555直接替代,效果一样。
双稳态超声波接收机电路
由于单稳态接收机无记忆功能,所以不能用在家用电器的开与关中,适用面不宽。
是一种双稳态超声波接收机电路,它的前级电路同图2-186电路完全一样,只是执行电路不同。
电路中,由VT5、VT6及相关辅助元件构成双稳态电路,当VT4每导通一次(发射机工作一次),触发信号经C7、C8向双稳电路送进一个触发脉冲,VT5、VT6状态翻转一次,当VT6从截止状态转变成导通状态时,VD5截止,VT7截止,继电器K释放;当再来一个触发
信号时,VT6由导通转变为截止状态,VD5导通,VT7导通,继电器K吸合......由于增加了双稳电路,使之用于电灯、电扇、电视等电器遥控成为现实。
调试时,在a点与+6V(电源)之间用导线快速短路一下后松开,继电器应吸合(或释放),再短路一下松开,继电器应释放(或吸合),如果继电器无反应,请检查双稳电路元件焊接质量和元件参数。
一般情况下一次即可成功。
单稳式超声波接收器电路
单稳式超声波接收器电路原理图,超声波换能器R40-16谐振频率为40KHZ,经R40-16选频后,将40kHZ以外的干扰信号衰减,只有谐振于40kHZ的有用信号(发射机信号)送入VT1~VT3组成的高通放大器放大,经C5、VD1检出直流分量,控制VT4、VT5组成的电子开关带动继电器K工作。
由于该电路仅作单路信号放大,当发射机每发射一次超声波信号时,接收机的继电器吸合一次(吸合时间同发射机发射信号时间相同),无记忆保持功能。
可用作无线遥控摄象机快门控制、儿童玩具控制、窗帘控制等。
电路中VT1β≥200,VT2β≥150,其他元件自定。
电路不需调试即可工作。
如灵敏度和抗干扰不够,可检查三极管的β值与电容C4的容量是否偏差太大。
经实测,配合相应的发射机,遥控距离可达8m以上。
在室内因墙壁反射,故没有方向性。
电路工作电压3V,静态电流小于10mA。