最新初二数学课外辅导资料:分式方程
八年级数学分式方程

工程优化问题
通过设定工程目标函数和 约束条件,建立分式方程 求解最优方案或最大效益。
行程问题
相遇问题
根据两物体相对运动的速 度、时间和距离,建立分 式方程求解相遇时间或相 对速度。
追及问题
根据两物体同向运动的速 度、时间和距离,建立分 式方程求解追及时间或速 度差。
航行问题
根据船在静水和流水中的 速度、时间和距离,建立 分式方程求解船速、水速 或航行时间。
预测未来情况
通过建立分式方程模型并求解,可以预测未来某些情况的 发生或变化趋势,为决策提供依据。
实际问题中分式方程解的意义
1 2
解释现象
通过求解分式方程得到的解可以解释实际问题的 现象或结果,如相遇时间、工作效率等。
指导实践
根据分式方程的解可以指导实践操作或决策制定, 如合理安排工作时间、选择最佳方案等。
利用高次方程的判别式,判断方程的根的情况,从而求解方程。
多元分式方程组解法
消元法
通过消去一个或多个未知数,将多元分式方程组转化为一元或低 元方程求解。
代入法
将一个方程的解代入另一个方程,逐步求解出所有未知数的值。
整体法
将方程组中的某些项看作一个整体,通过整体代入或整体消元的 方法求解方程组。
分式方程与函数关系探讨
分式函数定义域与值域
分析分式函数的定义域和值域,理解函数的基本性质。
分式函数图像与性质
通过绘制分式函数的图像,探讨函数的单调性、奇偶性等性质。
分式方程与函数零点
利用分式方程的解,确定分式函数的零点,进一步分析函数的性质。
分式方程在数学竞赛中应用
复杂分式方程求解
在数学竞赛中,常常遇到复杂的分式方程,需要灵活运用各种方法求解。
八年级数学《分式方程》知识点

分式方程是中学数学的重要内容,它是求解方程的一类特殊方法。
因此,分式方程的知识点有以下几方面:
一、分式方程的概念
分式方程是指用一个分式的方式表示方程的一种方法,它是一种由分式组成的等式,它的左右两端都是分式,从而把求根的问题转换成分式的比较,并设法确定方程的根。
二、求解分式方程的步骤
1.将分式方程中的项相同的分式化简,并且把等式的左右两端分别化简成分数或最简分式。
2.将分式方程中间,求解未知数的方法就是将分式的左右两端乘以分母,使之成为整式,然后使整式等于0,再解出未知数。
3.有时会出现分式方程中的未知数不能解出的情况,此时可以将此分式方程化为一元一次不等式来求解。
三、分式方程的应用
分式方程在解决一些实际问题时有着重要作用,如求解收益、组成比例、比较等。
由此可见,掌握分式方程的方法对解决实际问题有着重要意义。
四、注意事项
1.求解分式方程时需要注意把等式的左右两端分别化简成分数或最简分式。
2.使用分式方程时,要注意看清题干的字眼,要分清求解的是方程还是不等式,然后采取不同的方法
3.求解分式方程时还要注意确保所求解的方程或不等式有解。
4.分式方程的解可以使用数学软件得出。
八年级下册数学分式方程

八年级下册数学分式方程一、分式方程1、分式方程:含分式,并且分母中含未知数的方程——分式方程。
2、解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。
解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。
3、解分式方程的步骤:(1)能化简的先化简;(2)方程两边同乘以最简公分母,化为整式方程;(3)解整式方程;(4)验根:增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根。
(验根:把整式方程的根代入最简公分母,看结果是否等于零,使最简公分母等于零的根是原方程的增根,必须舍去,但对于含有字母系数的分式方程,一般不要求检验。
)4、分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。
例题详解1、甲、乙两人准备整理一批资料,甲单独整理需要40分完工;若甲、乙共同整理20分钟后,乙需要再单独整理20分才能完工。
问:乙单独整理需多少分钟完工?解:由题知:工作量=工作时间×工作效率设甲的工作效率为x 甲,乙的工作效率为x 乙,则x 甲=401,根据题意可得如下方程:1/40*20+x 乙*40=1,x 乙=1/80则乙单独整理需80分钟。
2、有两块面积相同的试验田,分别收获蔬菜900千克和1500千克,已知第一块试验田每亩收获蔬菜比第二块少300千克,求第一块试验田每亩收获蔬菜多少千克?解:设第一块试验田每亩收获蔬菜x 千克,则第二块试验田每亩收获蔬菜(x+300)千克。
通过总产量=每亩产量*面积,由于量试验田面积相同,则3001500900+=x x ,解得x=450 既第一块试验田每亩收获蔬菜450千克.3、甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地。
八年级数学暑假专题辅导-分式方程及其应用

暑假专题——分式方程及其应用知识要点:1. 分式方程:分母中含有未知数的方程叫做分式方程。
2. 分式方程的解:使分式方程的最简公分母不为零的根是分式方程的根,使最简公分母等于零的根是原方程的增根,原方程无解。
3。
解分式方程的步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)系数化为1(6)检验4. 分式方程的应用——列分式方程解应用题步骤:(1)审题;(2)设未知数(3)找相等关系列分式方程(4)解分式方程(5)验根(6)写答案【典型例题】例1. 填空题:(1)下列方程中是分式方程的是_________(填序号)()①②③④⑤ax b x x m x a m x ax x x x x +=++=+++=--+=+=-251432431221121122 答案:③④⑤()()如果方程的解是,则22135a x x a -===.答案:16 解(一):()方程去分母得:231=-a x233=-ax a323ax a =+x a a=+233把代入得:x 5=+=2335a a 2315+=a a122a =a =16解(二):243a= 212=aa =16()分式方程去分母时,方程两边都乘以31111112x x x --+=-. 答案:()()x x +-11()如果与互为倒数,则,如果与互为相445424314x x x x x x x ----=- 反数,那么x 的值是_________.答案:3;47解:①·x x x x ----=454241 ∴--=4251x x 去分母得:425-=-x x -=-39xx =3②3140x x-+= ()去分母得:3410x x +-= 3440x x +-=74x =x =47检验:与是所列方程的根。
x x ==347(5)学校包车到企业参观生产线,按原定人数估计共需车费400元,后因部分学生另有任务,少去20人,如果设原定人数为x 人,那么原来每人平均车费_________元,减少20人后,每人平均车费__________元.答案:400x ;40020x -(6)某商场降价销售一批服装,打8折后的售价是120元,则这种服装原来的售价是_________元。
人教版八年级数学 15.3 分式方程(学习、上课课件)

感悟新知
(2)2x--x3=3-1 x-2; 解:方程两边乘(x-3),得2-x=-1-2(x-3). 解得x=3. 检验:当x=3 时,x-3=0, 因此 x=3不是原分式方程的解. 所以原分式方程无解.
知2-练
感悟新知
(3)43xx+-63-5xx--14=1; 解:方程两边乘3(x-1), 得4x+6-3(5x-4)=3(x-1). 解得x=32. 检验:当x=32时,3(x-1)≠ 0. ∴原分式方程的解为x=32.
知1-练
解题秘方:利用判别分式方程的依据——分母中含有 未知数进行识别.
感悟新知
知1-练
解:(1)不是分式方程,因为分母中不含有未知数. (2)是分式方程,因为分母中含有未知数. (3)是分式方程,因为分母中含有未知数. (4)是分式方程,因为分母中含有未知数. (5)不是分式方程,因为分母中虽然含有字母a,但a为 非零常数,不是未知数.
感悟新知
知1-讲
2. 判断一个方程是分式方程的条件
(1)是方程; (2)含有分母; (3)分母中含有未知数. 以上三者缺一不可.
特别提醒 1. 识别分式方程时,不能对方程进
行约分或通分变形,更不能用等 式的性质变形. 2.分母中有字母,但字母不是未知
数的方程也不是分式方程.
感悟新知
例 1 判断下列方程是不是分式方程,并说明理由. (1)2x+2 3=8; (2)4-3 x=x+4 2;(3)xx2=1; (4)x+1 2=y-1 3;(5)xa-2=x(a为非零常数).
知2-讲
4. 一般情况下,解关于哪个字母的分式方程,则哪个字母表示 未知数,其余字母都作为常数存在.
感悟新知
例 2 解下列方程:
知2-练
八年级分式方程数学知识点

八年级分式方程数学知识点一、基本概念分式方程是指未知量中包含分数表达式的方程,可用一组数值解求出未知量的值。
如:\frac{x+1}{2}=3,其中x为未知量。
二、分式方程的解法1. 化简分式,使其成为整式方程。
如:\frac{x+1}{2}=3化简为x+1=6。
2. 通分,消去分母。
如:\frac{3}{x-2}=\frac{1}{x+1}通分后为3(x+1)=x-2。
3. 变形化简后求解。
如:\frac{2}{2x+3}-\frac{3}{x-1}=\frac{4}{x^2-x-3}变形化简后得到x=-1或x=\frac{5}{2}。
三、分式方程的注意事项1. 化简前应检查分母是否有值为0的情况。
如:\frac{x}{x^2-4x+4}=1化简前需考虑x^2-4x+4=0的情况,即x=2。
2. 通分时应注意分母因式分解。
如:\frac{x}{2x-4}-\frac{2}{x+1}=\frac{3x}{x^2-3x+2}通分前需分解(x-1)(x-2)。
3. 将解代回原分式方程检验。
如:\frac{4}{x+3}-\frac{5}{x-1}=\frac{1}{x-2}解得x=5/2,代入原式验证是否成立。
四、分式方程的应用例题1. 甲、乙两地的距离为480km,两地之间有一辆车和一辆自行车相向而行,行至中途时,车停下了,自行车继续前进,最后到达乙地时,车和自行车的距离为40km。
已知车行驶的速度比自行车快20km/h,求车和自行车的速度各是多少。
设自行车的速度为x km/h,车的速度为x+20 km/h,时间为t,车行驶的距离为(x+20)×t,自行车行驶的距离为x×(t+2)。
由题意可得(x+20)t+x(t+2)=480及(x+20)t-x(t+2)=40,解得x=20,车速为40km/h,自行车速度为20km/h。
2. 一条河流的宽度为200m,在河岸的A、B两处浅滩的位置分别离河口12km、18km处。
人教版八年级下册15.3 分式方程

15.3 分式方程1. 分式方程:含分式,并且分母中含未知数的方程——分式方程。
2. 解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。
解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。
3. 解分式方程的步骤 :(1)能化简的先化简; (2)方程两边同乘以最简公分母,化为整式方程;(3)解整式方程;(4)验根例1.方程2053x x -=-的解是( ) A .x=3 B .x=-2 C .x=2 D .x=5 例2.分式方程1123-=x x 的解为( ) A. x=1 B. x=2 C. x=3 D. x=4例3.解方程:33122x x x-+=--. 例4.解分式方程:21124x x x -=--. 分式方程的增根问题:(1)增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所得整式方程的根。
(2)分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。
例1:分式方程313-=+-x m x x 有增根,则m= 例2:当k 的值等于时,关于x 的方程3423--=+-x x x k 不会产生增根; 例3:若解关于x 的分式方程234222+=-+-x x m x 会产生增根,求m 的值。
例4:m 取时,方程323-=--x m x x 会产生增根; 分式方程的无解问题:分式方程无解则是指不论未知数取何值,都不能使方程两边的值相等.它包含两种情形:(一)原方程化去分母后的整式方程无解;(二)原方程化去分母后的整式方程有解,但这个解却使原方程的分母为0,它是原方程的增根,从而原方程无解.例1:解方程2344222+=---x x x x例2:若方程223--=--x m x x 无解,则m=. 例3:当a 为何值时,关于x 的方程234222+=-+-x x ax x 无解?分式的应用题:(1)列方程应用题的步骤是什么? (1)审;(2)设;(3)列;(4)解;(5)答.(2)应用题有几种类型;基本公式是什么?基本上有四种:a. 行程问题:基本公式:路程=速度×时间,而行程问题中又分相遇问题、追及问题.b. 数字问题: 在数字问题中要掌握十进制数的表示法.c. 工程问题: 基本公式:工作量=工时×工效.d. 顺水逆水问题: v 顺水=v 静水+v 水. v 逆水=v 静水-v 水工程问题:例1:一项工程,甲需x 小时完成,乙需y 小时完成,则两人一起完成这项工程需要______ 小时。
人教版八年级上册数学《 分式方程》(优质教案)

人教版八年级上册数学《分式方程》(优质教案)一. 教材分析人教版八年级上册数学《分式方程》这一章节是在学生已经掌握了分式的基础知识,如分式的概念、分式的运算等基础上进行讲解的。
本章主要内容是让学生了解分式方程的定义、解法以及应用。
通过本章的学习,学生应能理解分式方程的概念,掌握解分式方程的基本方法,并能够将分式方程应用于解决实际问题。
二. 学情分析学生在学习本章内容之前,已经掌握了分式的基本知识,具备了一定的逻辑思维能力和问题解决能力。
但学生在解分式方程时,可能会遇到理解上的困难,如分式方程的转化、求解过程中的运算等。
因此,在教学过程中,教师需要关注学生的学习情况,及时进行引导和帮助。
三. 教学目标1.了解分式方程的定义,理解分式方程与一般方程的区别。
2.掌握解分式方程的基本方法,能够熟练地求解分式方程。
3.能够将分式方程应用于解决实际问题,提高解决实际问题的能力。
四. 教学重难点1.分式方程的定义及其与一般方程的区别。
2.分式方程的解法及其应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题,引导学生思考和探索,从而掌握分式方程的知识;通过案例分析,让学生了解分式方程在实际问题中的应用;通过小组合作学习,培养学生的团队协作能力和解决问题的能力。
六. 教学准备1.教学PPT:制作有关分式方程的PPT,内容包括:分式方程的定义、解法及应用。
2.案例材料:收集一些实际问题,用于教学过程中的案例分析。
3.练习题:准备一些分式方程的练习题,用于课堂练习和课后作业。
七. 教学过程1.导入(5分钟)利用PPT展示分式方程的定义,引导学生思考:什么是分式方程?分式方程与一般方程有什么区别?2.呈现(15分钟)通过PPT呈现分式方程的解法,主要包括:去分母、去括号、移项、合并同类项、化简等步骤。
同时,结合实际问题,让学生了解分式方程在生活中的应用。
3.操练(15分钟)让学生独立完成PPT上的练习题,教师巡回指导,解答学生的疑问。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新初二数学课外辅导资料:分式方程
方程解法
折叠步骤
去分母,去括号,移项,合并同类项,系数化为1,验根。
折叠去分母
方程两边同时乘以最简公分母(最简公分母:①系数取最小公倍数;②出现的字母取最高次幂;③出现的因式取最高次幂),将分式方程化为整式方程;若遇到相反数时,别忘了变号。
折叠验根
求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根。
验根时把整式方程的根代入最简公分母,如果最简公分母等于0,这个根就是原方程的增根。
否则这个根就是原分式方程的根。
若解出的根是增根,则原方程无解。
如果分式本身约分了,也要代入原方程检验。
在列分式方程解应用题时,不仅要检验所得解的是否满足方程式,还要检验是否符合题意。
一般的,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为零,因此要将整式方程的解代入最简公分母,如果最简公分母的值不为零,则是方程的解。
折叠注意
(1)去分母时,不要漏乘整式项。
(2)増根是分式方程去分母后化成的整式方程的根,但不是原分式方程的解。
(3)増根使最简公分母等于0。
希望上文提供的初二数学课外辅导资能够对大家有所帮助,请及时关注。
八年级数学上册《二次根式的性质》辅导资料
初二必备:不等式的基本性质知识点辅导。