北师大版高中数学必修一 第三章 指数函数与对数函数 测试题

合集下载

新北师大版高中数学必修一第三单元《指数函数和对数函数》测试卷(有答案解析)(1)

新北师大版高中数学必修一第三单元《指数函数和对数函数》测试卷(有答案解析)(1)

一、选择题1.函数12xy ⎛⎫= ⎪⎝⎭的大致图象是( ). A . B .C .D .2.定义:若函数()y f x =的图像上有不同的两点,A B ,且,A B 两点关于原点对称,则称点对(),A B 是函数()y f x =的一对“镜像”,点对(),A B 与(),B A 看作同一对“镜像点对”,已知函数()23,02,0x x f x x x x ⎧-<⎪=⎨-≥⎪⎩,则该函数的“镜像点对”有( )对.A .1B .2C .3D .43.已知函数2()log x f x =,在[116,m ]上的值域为[0,4],2m f ⎛⎫⎪⎝⎭的取值范围是( ) A .[1,2]B .[0,2]C .[1,3]D .[0,3]4.已知定义在R 上的函数()f x 满足()()2f x f x +=,且当[)1,1x ∈-时,()2f x x =,若函数()log 1a g x x =+图象与()f x 的图象恰有10个不同的公共点,则实数a 的取值范围为( ) A .()4,+∞ B .()6,+∞ C .()1,4D .()4,65.已知函数222,1()log (1),1x x f x x x ⎧-≤=⎨->⎩,则52f f ⎡⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦( ) A .12-B .-1C .-5D .126.已知实数1212a ⎛⎫= ⎪⎝⎭,2log 3b =,4log 7c =,则a 、b 、c 的大小关系是( )A .c b a <<B .c a b <<C .b a c <<D .a c b <<7.设函数()ln |31|ln |31|f x x x =+--,则()f x ( ) A .是偶函数,且在11(,)33-单调递增 B .是偶函数,且在1(,)3-∞-单调递增 C .是奇函数,且在11(,)33-单调递减 D .是奇函数,且在1(,)3-∞-单调递减8.如图是指数函数①y =x a ;②y =x b ;③y =c x ;④y =d x 的图象,则a ,b ,c ,d 与1的大小关系是( )A .a <b <1<c <dB .b <a <1<d <cC .1<a <b <c <dD .a <b <1<d <c9.函数2y 34x x =--+ )A .(41)--,B .(41)-,C .(11)-,D .(11]-, 10.函数()log (2)a f x ax =-(0a >且1a ≠)在[]0,3上为增函数,则实数a 的取值范围是( ) A .2,13⎛⎫⎪⎝⎭B .(0,1)C .20,3⎛⎫ ⎪⎝⎭D .[)3,+∞ 11.已知()243,1log 2,1a x ax x f x x a x ⎧-+<=⎨+≥⎩满足对任意12x x ≠,都有()()12120f x f x x x -<-成立,那么a 的取值范围是( )A .10,2⎛⎤ ⎥⎝⎦B .1,12⎡⎫⎪⎢⎣⎭C .12,23⎡⎤⎢⎥⎣⎦D .2,13⎡⎫⎪⎢⎣⎭12.若函数()()212log 45f x x x =-++在区间()32,2m m -+内单调递增,则实数m 的取值范围为( ) A .4,33⎡⎤⎢⎥⎣⎦B .4,23⎡⎤⎢⎥⎣⎦C .4,23⎡⎫⎪⎢⎣⎭D .4,3⎡⎫+∞⎪⎢⎣⎭二、填空题13.现有下列四个结论:①若25a b m ==且a b =时,则1m =; ②若236log log log a b c ==,则c ab =;③对函数()3xf x =定义域内任意的1x ,都存在唯一的2x ,使得()()121f x f x ⋅=成立;④存在实数a ,使得函数()()2ln g x x ax a =++的定义域和值域均为R .其中所有正确结论的序号是_________. 14.已知()(3),1log ,1aa x a x f x x x --<⎧=⎨≥⎩的值域为R ,那么实数a 的取值范围是_________.15.已知函数()212log y x ax a =-+在()3,+∞上是减函数,则a 的取值范围是______.16.函数()()12log 13y x x =-+的递增区间为______.17.已知函数log (3)a y ax =-在(1,2)上单调递减,则实数a 的取值范围为___________. 18.若幂函数()2()57m f x m m x =-+在R上为增函数则1log 2log 2lg5lg4mm m+-=_____.19.已知函数()f x 满足()()1f x f x =-+,当()0,1x ∈时,函数()3xf x =,则13log 19f ⎛⎫= ⎪⎝⎭______. 20.已知2336m n ==,则11m n+=______. 三、解答题21.计算下列各式的值: (1)1100.753270.064()160.258---++;(2)53log 425log lg lg 4522++-.22.已知函数()22x x f x k -=+. (1)若()f x 为偶函数,求实数k 的值;(2)若()4f x 在2[log x m ∈,2log (2)](m m +为大于0的常数)上恒成立,求实数k 的最小值.23.分别计算下列数值:(1)1lg3lg94lg81lg 27+--; (2)已知()1401x xx -+=<<,求221122x x x x---+.24.(1)若223a a -+=,求1a a --和33a a --的值;(2)计算33(lg 2)3lg 2lg 5(lg 5)+⋅+的值.25.(1)160.25371.586-⨯-+-⎫⎛ ⎪⎝⎭(2)1324lg lg82493-+26.设函数()log (1)a f x ax =-,其中01a << (1)证明()f x 是1(,)a-∞上的增函数; (2)解不等式()1f x >.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】去绝对值符号后根据指数函数的图象与性质判断. 【详解】由函数解析式可得:1,022,0xx x y x ⎧⎛⎫≥⎪ ⎪=⎨⎝⎭⎪<⎩可得值域为:01y <≤, 由指数函数的性质知:在(),0-∞上单调递增;在()0,∞+上单调递减. 故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.2.C解析:C 【分析】由新定义可知探究y 轴左侧部分图像关于原点中心对称的图像与y 轴右侧部分图像的交点个数即得结果. 【详解】由题意可知,函数()y f x =的图像上有不同的两点,A B ,且,A B 两点关于原点对称,则称点对(),A B 是函数()y f x =的一对“镜像”,因为()23,02,0xx f x x x x ⎧-<⎪=⎨-≥⎪⎩,由y 轴左侧部分()3,0xy x =-<图像关于原点中心对称的图像3x y --=-,即3xy -=,()0x >,作函数3xy -=,()0x >和()22,0y x x x =-≥的图象如下:由图像可知两图象有三个公共点,即该函数有3对“镜像点对”. 故选:C. 【点睛】本题解题关键是理解新定义,寻找对称点对,探究y 轴左侧部分图像关于原点中心对称的图像与y 轴右侧部分图像的交点个数,通过数形结合,即突破难点.3.D解析:D 【分析】由对数函数的单调性可得[]1,16m ∈,再结合对数函数的性质即可得解. 【详解】由题意,函数2()log x f x =在(]0,1上单调递减,在[)1,+∞上单调递增, 且()116416f f ⎛⎫==⎪⎝⎭,()10f =, 结合该函数在1,16m ⎡⎤⎢⎥⎣⎦上的值域为[0,4]可得[]1,16m ∈,所以1,8 22m⎡⎤∈⎢⎥⎣⎦,[]2lo2g0,32m mf⎛⎫=⎪⎝∈⎭.故选:D.【点睛】关键点点睛:解决本题的关键是由对数函数的图象变换及单调性确定[]1,16m∈,即可得解.4.D解析:D【分析】转化条件为函数()f x是周期为2的周期函数,且函数()g x、()f x的图象均关于1x=-对称,由函数的对称性可得两图象在1x=-右侧有5个交点,画出图象后,数形结合即可得解.【详解】因为函数()f x满足()()2f x f x+=,所以函数()f x是周期为2的周期函数,又函数()log1ag x x=+的图象可由函数logay x=的图象向左平移一个单位可得,所以函数()log1ag x x=+的图象的对称轴为1x=-,当[)1,1x∈-时,()2f x x=,所以函数()f x的图象也关于1x=-对称,在平面直角坐标系中作出函数()y f x=与()y g x=在1x=-右侧的图象,数形结合可得,若函数()log1ag x x=+图象与()f x的图象恰有10个不同的公共点,则由函数图象的对称性可得两图象在1x=-右侧有5个交点,则()()13log415log61aaagg⎧>⎪=<⎨⎪=>⎩,解得()4,6a∈.故选:D.【点睛】关键点点睛:解决本题的关键是函数的周期性、对称性及数形结合思想的应用.5.A解析:A 【分析】根据分段函数解析式,依次计算255log 122f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,23log 2f ⎛⎫ ⎪⎝⎭,即可得选项.【详解】因为函数222,1()log (1),1x x f x x x ⎧-≤=⎨->⎩,所以2253log log 2122f ⎛⎫=<= ⎪⎝⎭,23log 2531222222f f⎡⎤⎛⎫∴=-=-=- ⎪⎢⎥⎝⎭⎣⎦. 故选:A. 【点睛】本题考查根据分段函数求解函数值,关键在于根据解析式分段求解,由内到外,准确认清自变量的所在的范围和适用的解析式.6.D解析:D 【分析】本题首先可根据2log 3b =以及2log c =得出b c >,然后根据1a <以及1c >得出c a >,即可得出结果.【详解】 因为2log 3b =,42log 7log 7c ,函数2log y x =在()0,∞+上是增函数,所以b c >,因为01211122a <⎛⎫⎛⎫= ⎪ ⎪⎝⎝⎭=⎭,44log 7log 41c , 所以c a >, 综上所述,a c b <<, 故选:D. 【点睛】指数、对数的大小比较,可通过寻找合适的单调函数来构建大小关系,不同类型的数比较大小,应找一个中间数,通过它实现大小关系的传递,考查计算能力,是中档题.7.D解析:D 【分析】根据奇偶性定义判断奇偶性,然后判断单调性,排除错误选项得正确结论. 【详解】函数定义域是1{|}3x x ≠±,()ln 31ln 31ln 31ln 31()f x x x x x f x -=-+---=--+=-,()f x 是奇函数,排除AB ,312()lnln 13131x f x x x +==+--,11,33x ⎛⎫∈- ⎪⎝⎭时,2310x -<-<,2231x <--,即21031x +<-,而131u x =-是减函数,∴2131v x =+-是增函数,∴()f x 在11,33⎛⎫- ⎪⎝⎭上是增函数,排除C .只有D 可选. 故选:D . 【点睛】结论点睛:本题考查函数的单调性与奇偶性,判断函数的奇偶性与单调性后用排除法确定正确选项,掌握复合函数的单调性是解题关键.()y f x =与()y f x =-的单调性相反, 在()f x 恒为正或恒为负时,()y f x =与1()y f x =的单调性相反,若()0f x <,则()y f x =与()y f x =的单调性相反.0a >时,()y af x =与()y f x =的单调性相同.8.B解析:B 【分析】根据指数函数的图象与性质可求解. 【详解】根据函数图象可知函数①y =x a ;②y =x b 为减函数,且1x =时,②y =1b <①y =1a , 所以1b a <<,根据函数图象可知函数③y =c x ;④y =d x 为增函数,且1x =时,③y =c 1>④y =d 1, 所以1c d >> 故选:B 【点睛】本题主要考查了指数函数的单调性,指数函数的图象,数形结合的思想,属于中档题.9.C解析:C 【解析】要使函数有意义,需使210{340x x x +>--+>,即1{41x x >--<<,所以1 1.x -<< 故选C10.C解析:C 【分析】根据对数函数性质与复合函数的单调性求解. 【详解】因为0a >且1a ≠,令2t ax =-,所以函数2t ax =-在[]0,3上为减函数, 所以函数log a y t =应是减函数,()f x 才可能是增函数, ∴01a <<,因为函数()f x 在[]0,3上为增函数, 由对数函数性质知230a ->,即23<a , 综上023a <<. 故选:C . 【点睛】本题考查复合函数的单调性,掌握对数函数性质是解题关键,考查逻辑思维能力和计算能力,属于常考题.11.C解析:C 【分析】判断函数的单调性.利用分段函数解析式,结合单调性列出不等式组求解即可. 【详解】解:243,1log 2,1a x ax x f x x a x ⎧-+<=⎨+≥⎩()满足对任意12x x ≠,都有()()12120f x f x x x --<成立, 所以分段函数是减函数,所以:0121442a a a a<<⎧⎪≥⎨⎪-≥⎩,解得12,23a ⎡⎤∈⎢⎥⎣⎦.故选C . 【点睛】本题考查分段函数的单调性的应用,函数的单调性的定义的理解,考查转化思想以及计算能力.12.C解析:C 【分析】求得函数()y f x =的定义域,利用复合函数法求得函数()y f x =的单调递增区间,根据题意可得出区间的包含关系,由此可求得实数m 的取值范围. 【详解】解不等式2450x x -++>,即2450x x --<,解得15x -<<,内层函数245u x x =-++在区间()1,2-上单调递增,在区间()2,5上单调递减,而外层函数12log y u =在定义域上为减函数,由复合函数法可知,函数()()212log 45f x x x =-++的单调递增区间为()2,5, 由于函数()()212log 45f x x x =-++在区间()32,2m m -+上单调递增,所以,32232225m m m m -≥⎧⎪-<+⎨⎪+≤⎩,解得423m ≤<. 因此,实数m 的取值范围是4,23⎡⎫⎪⎢⎣⎭.故选:C. 【点睛】本题考查利用对数型复合函数在区间上的单调性求参数,考查计算能力,属于中等题.二、填空题13.①②③【分析】利用换底公式结合求得的值可判断①的正误;设利用对数与指数的互化以及指数的运算性质可判断②的正误;由求得可判断③的正误;求出函数的定义域值域分别为时对应的实数的取值范围可判断④的正误【详解析:①②③ 【分析】利用换底公式结合a b =,求得m 的值,可判断①的正误;设236log log log a b c t ===,利用对数与指数的互化以及指数的运算性质可判断②的正误;由()()121f x f x ⋅=求得21x x =-,可判断③的正误;求出函数()g x 的定义域、值域分别为R 时,对应的实数a 的取值范围,可判断④的正误. 【详解】对于①,由于250abm ==>,可得2lg log lg 2m a m ==,5lg log lg 5mb m ==, 由于a b =可得lg lg lg 2lg 5m m=,则lg 0m =,解得1m =,①正确; 对于②,设236log log log a b c t ===,可得2t a =,3t b =,6t c =,则236t t t ab c =⋅==,②正确;对于③,对任意的1x R ∈,则()()1212123331xxx x f x f x +⋅=⋅==,120x x ∴+=,可得21x x =-,③正确;对于④,若函数()()2ln g x x ax a =++的定义域为R ,对于函数2y x ax a =++,240a a ∆=-<,解得01a <<;若函数()()2ln g x x ax a =++的值域为R ,则函数2y x ax a =++的值域包含()0,∞+,则240a a ∆=-≥,解得0a ≤或1a ≥.所以,不存在实数a ,使得函数()()2ln g x x ax a =++的定义域和值域均为R ,④错误.故答案为:①②③. 【点睛】关键点点睛:解本题第④问的关键点在于找到函数()()2ln g x x ax a =++的定义域为R的等价条件∆<0;函数()()2ln g x x ax a =++的值域为R 的等价条件0∆≥.14.【分析】分类讨论和结合已知和对数函数及一次函数的单调性得a 的不等式组求解即可【详解】解:若当时当时此时的值域不为R 不符合题意;若当时当时要使函数的值域为R 需使解得综上所述故答案为:【点睛】本题考查分解析:31,2⎛⎤⎥⎝⎦【分析】分类讨论01a <<和1a >,结合已知和对数函数及一次函数的单调性,得a 的不等式组求解即可. 【详解】 解:若01a <<, 当1≥x 时,log 0a x ≤,当1x <时,()3332a x a a a a --<--=-,此时f x ()的值域不为R ,不符合题意;若1a >,当1≥x 时,log 0a x ≥,当1x <时,要使函数f x ()的值域为R ,需使30log 13a a a a ->⎧⎨≤--⎩,解得332a a <⎧⎪⎨≤⎪⎩,312a ∴<≤, 综上所述,312a <≤, 故答案为:31,2⎛⎤ ⎥⎝⎦.【点睛】本题考查分段函数的值域及对数函数的性质,考查分类讨论思想与数学运算能力,是中档题.15.【分析】函数为复合函数且原函数为减函数根据题意需要满足一元二次函数在上是增函数且在上恒大于或等于零然后求解关于a 的不等式即可得到结果【详解】令则原函数化为此函数为定义域内的减函数要使函数在上是减函数解析:9,2⎛⎤-∞ ⎥⎝⎦ 【分析】函数为复合函数,且原函数为减函数,根据题意需要满足一元二次函数2x ax a -+在()3,+∞上是增函数,且在()3,+∞上恒大于或等于零,然后求解关于a 的不等式即可得到结果. 【详解】令2t x ax a =-+,则原函数化为12()log g t t =,此函数为定义域内的减函数,要使函数()212log y x ax a =-+在()3,+∞上是减函数,则函数2t x ax a =-+在()3,+∞上是增函数,且在()3,+∞上恒大于或等于零,即有232330aa a ⎧≤⎪⎨⎪-+≥⎩,解得92a ≤. 故答案为:9,2⎛⎤-∞ ⎥⎝⎦【点睛】本题考查了复合函数的单调性,需要掌握复合函数的同增异减,本题还要注意对数函数的定义域是求解的前提,这里容易漏掉,需要掌握此类题目的解题方法.16.【分析】首先求出函数的定义域再根据复合函数的单调性计算可得【详解】解:则解得即函数的定义域为令则因为在上单调递增在上单调递减;在定义域上单调递减根据复合函数的单调性同增异减可知函数在上单调递增故答案 解析:()1,1-【分析】首先求出函数的定义域,再根据复合函数的单调性计算可得. 【详解】 解:()()12log 13y x x =-+则()()130x x -+>解得31x -<<即函数的定义域为()3,1- 令()()()()21314t x x x x =-+=-++,()3,1x ∈-,则12logy t =因为()t x 在()3,1--上单调递增,在()1,1-上单调递减;12log y t =在定义域上单调递减根据复合函数的单调性“同增异减”可知函数()()12log 13y x x =-+在()1,1-上单调递增故答案为:()1,1- 【点睛】本题考查复合函数的单调区间的计算,属于基础题.17.【分析】由复合函数的单调性:同增异减由于递减因此必须递增即有还要考虑函数定义域即在时恒成立【详解】∵∴是减函数又在上是减函数所以且∴故答案为:【点睛】本题考查对数型复合函数的单调性掌握复合函数单调性 解析:3(1,]2【分析】由复合函数的单调性:同增异减,由于3u ax =-递减,因此log a y u =必须递增,即有1a >,还要考虑函数定义域,即在(1,2)x ∈时,30ax ->恒成立.【详解】∵0a >,∴3u ax =-是减函数,又log (3)a y ax =-在(1,2)上是减函数,所以1a >, 且320a -≥,∴312a <≤. 故答案为:3(1,]2.【点睛】本题考查对数型复合函数的单调性,掌握复合函数单调性是解题关键,同时要考虑函数的定义域.18.3【分析】利用幂函数的定义与性质求得将代入利用对数的运算法则化简得解【详解】在上为增函数解得(舍去)故答案为:3【点睛】正确理解幂函数的定义求得的值和熟练运用对数恒等式是关键解析:3 【分析】利用幂函数的定义与性质求得3m =,将3m =代入,利用对数的运算法则化简得解. 【详解】()()257m f x m m x =-+在R 上为增函数,25710m m m ⎧-+=∴⎨>⎩,解得3,2m m ==(舍去), 1log2log 2lg 5lg 4mm m∴+-=31log 23l l og 3g1003+=故答案为:3. 【点睛】正确理解幂函数的定义求得m 的值和熟练运用对数恒等式是关键.19.【分析】由满足得到函数是以2为周期的周期函数结合对数的运算性质即可求解【详解】由题意函数满足化简可得所以函数是以2为周期的周期函数又由时函数且则故答案为:【点睛】函数的周期性有关问题的求解策略:求解 解析:2719-【分析】由()f x 满足()()1f x f x =-+,得到函数()f x 是以2为周期的周期函数,结合对数的运算性质,即可求解. 【详解】由题意,函数()f x 满足()()1f x f x =-+,化简可得()()2f x f x =+, 所以函数()f x 是以2为周期的周期函数,又由()0,1x ∈时,函数()3xf x =,且()()1f x f x =-+,则133339(log 19)(log 19)(log 192)(log )19f f f f =-=-+= 327log 193392727(log 1)(log )3191919f f =-+=-=-=-.故答案为:2719- 【点睛】函数的周期性有关问题的求解策略:求解与函数的周期性有关问题,应根据题目特征及周期定义,求出函数的周期; 解决函数周期性、奇偶性和单调性结合问题,通常先利用周期性中为自变量所在区间,再利用奇偶性和单调性求解.20.【分析】根据对数的定义和运算法则即可求解【详解】由可得所以所以故答案为:【点睛】本题主要考查对数的运算法则的应用考查了学生的计算能力属于中档题 解析:12【分析】根据对数的定义和运算法则即可求解. 【详解】由2336m n ==可得23log 36,log 36m n == 所以361log 2m =,361log 3n=, 所以363636111log 2log 3log 62m n +=+==, 故答案为:12【点睛】本题主要考查对数的运算法则的应用,考查了学生的计算能力,属于中档题.三、解答题21.(1)10 (2)0 【分析】(1)利用指数幂的运算性质求解即可; (2)利用对数的运算性质求解即可. 【详解】 解:(1)1100.753270.064()160.258---++()11333244211254-⎡⎤⎛⎫⎛⎫=-++⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦51182210=(2)53log 425log lg lg 4522++-34223log 2log 2lg 5lg 22lg 24=-+-+- ()331lg5lg 244=-++- 331144=-+- 0=【点睛】本题考查指数幂的运算,考查对数的运算.22.(1)1k =;(2)当02m <<时,k 的最小值为4,当2m 时,k 的最小值为24m m -+. 【分析】(1)根据函数是偶函数,利用偶函数的定义求解. (2)将()4f x ,转化为2(2)42x x k-+⨯,令2[x t m =∈,2]m +,构造函数2()4g t t t =-+,利用二次函数的性质求得其最大值即可..【详解】 (1)()f x 为偶函数,()()f x f x ∴=-, 2?22?2x x x x k k --∴+=+,即(1)(22)0x x k ---=,对任意的x 恒成立,1k ∴=.(2)由()4f x ,可得2?24x x k -+,即2(2)42x x k -+⨯,令2[xt m =∈,2]m +,2()4g t t t ∴=-+,当02m <<时,对称轴2[t m =∈,2]m +, 则()max g t g =(2)4244=-+⨯=, 当2m 时,对称轴2t m =,则2()()4max g t g m m m ==-+,故当02m <<时,k 的最小值为4,当2m 时,k 的最小值为24m m -+. 【点睛】本题主要考查函数的奇偶性的和不等式恒成立的问题,还考查了分类讨论的思想和运算求解的能力,属于中档题. 23.(1)32;(2)-. 【分析】(1)利用对数的运算性质化简可求得所求代数式的值;(2)由已知条件可求得1x x --的值,可求得22x x -+,并求得1122x x -+的值,代入计算可求得所求代数式的值. 【详解】(1)原式11lg3lg3lg3111lg3322lg5lg 2lg1081222lg32lg 27+-=++=+=; (2)因为()()()221114x x x x x x x x -----=+-=-,所以()()2211412x xx x ---=+-=,因为01x <<,则1x x -<,所以1x x --=-22x x --=-,又因为21112226x x x x --⎛⎫+=++= ⎪⎝⎭,所以1122x x -+=所以221122x x x x---=-+【点睛】本题考查指数式与对数式的计算,考查了平方关系以及对数运算性质的应用,考查计算能力,属于基础题.24.(1)1,4±±;(2)1.【分析】(1)利用完全平方公式和立方差公式计算. (2)由对数的运算法则计算. 【详解】(1)1222()2321a a a a ---=-+=-=,所以11a a --=±,33122()(1)1(31)4a a a a a a ----=-++=±⨯+=±;(2)lg 2lg5lg(25)1+=⨯=.3322(lg 2)3lg 2lg5(lg5)(lg 2lg5)(lg 2lg 2lg5lg 5)3lg 2lg5+⋅+=+-++ 2222lg 2lg 2lg5lg 53lg 2lg5lg 22lg 2lg5lg 5=-++=++2(lg 2lg 5)1=+=.【点睛】本题考查幂的运算法则和对数的运算法则,掌握幂与对数运算法则是解题基础. 25.(1)110;(2)13lg5lg 222- 【分析】(1)利用指数幂的运算法则即得解; (2)利用对数的运算法则即得解. 【详解】(1)原式1111323334422()12223()33⨯=⨯+⨯+⨯-2108110=+=(2)原式153222124lg lg 2lg(57)273=-+⨯11(5lg 22lg 7)4lg 2(lg5+2lg7)22=--+ 11(5lg 22lg 7)4lg 2(lg5+2lg7)22=--+ 31lg 2lg522=-+【点睛】本题考查了指数与对数运算,考查了学生概念理解,数学运算能力,属于基础题. 26.(1)见解析;(2)11{|}a x x a a-<< 【分析】(1)根据函数单调性的定义及对数函数的性质,即可证出结果;(2)根据函数()f x 的单调性,可将不等式()1f x >转化为一元一次不等式,即可得到原不等式的解集. 【详解】(1)由10ax ->,01a <<得1x a<,所以()f x 的定义域为1(,)a -∞,设1x ,2x 为区间1(,)a -∞的任意两个值,且211x x a<<,则 211ax ax ->->-,所以21110ax ax ->->,又01a <<,所以21log (1)log (1)a a ax ax -<-,即21()()f x f x <, 所以()f x 是1(,)a-∞上的增函数.(2)由()1f x >得log (1)1log a a ax a ->=,又01a <<, 所以01ax a <-<,所以11ax a -<-<-,所以11a x a a-<<, 所以不等式()1f x >的解集为11{|}a x x a a-<<. 【点睛】本题主要考查对数型复合函数单调性的证明及对数不等式的解法,属于中档题.。

(常考题)北师大版高中数学必修一第三单元《指数函数和对数函数》测试(包含答案解析)(4)

(常考题)北师大版高中数学必修一第三单元《指数函数和对数函数》测试(包含答案解析)(4)

一、选择题1.下列各组函数中,表示同一个函数的是( )A .211x y x -=-与1y x =+B .y x =与log xa y a =(0a >且1a ≠)C .21y x =-与1y x =-D .lg y x =与21lg 2y x =2.函数12xy ⎛⎫= ⎪⎝⎭的大致图象是( ). A . B .C .D .3.若lg 2a =,lg3b =,则5log 12等于( )A .21a b a++B .21a b a+C .21a b aD .21a b a-4.形如221n+(n 是非负整数)的数称为费马数,记为F n 数学家费马根据F 0,F 1,F 2,F 3,F 4都是质数提出了猜想:费马数都是质数.多年之后,数学家欧拉计算出F 5不是质数,请你估算F 5是( )位数(参考数据:lg2≈0.3010). A .8B .9C .10D .115.专家对某地区新冠肺炎爆发趋势进行研究发现,从确诊第一名患者开始累计时间t (单位:天)与病情爆发系数()f t 之间,满足函数模型:0.22(50)11()t f t e --=+,当()0.1f t =时,标志着疫情将要大面积爆发,则此时t 约为( )(参考数据: 1.13e ≈) A .38B .40C .45D .476.已知定义在R 上的函数()f x 满足()()2f x f x +=,且当[)1,1x ∈-时,()2f x x =,若函数()log 1a g x x =+图象与()f x 的图象恰有10个不同的公共点,则实数a 的取值范围为( )A .()4,+∞B .()6,+∞C .()1,4D .()4,67.已知函数3()22x f x =+,则111357(1)432234f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭( ) A .212B .214C .7D .1528.若13log 2a =,131()2b =,2log 3c =,则,,a b c 的大小关系是( ) A .b a c << B .b c a << C .a b c << D .c b a <<9.在数学史上,一般认为对数的发明者是苏格兰数学家——纳皮尔(Napier ,1550-1617年).在纳皮尔所处的年代,哥白尼的“太阳中心说”刚刚开始流行,这导致天文学成为当时的热门学科.可是由于当时常量数学的局限性,天文学家们不得不花费很大的精力去计算那些繁杂的“天文数字”,因此浪费了若干年甚至毕生的宝贵时间.纳皮尔也是当时的一位天文爱好者,为了简化计算,他多年潜心研究大数字的计算技术,终于独立发明了对数.在那个时代,计算多位数之间的乘积,还是十分复杂的运算,因此纳皮尔首先发明了一种计算特殊多位数之间乘积的方法.让我们来看看下面这个例子:这两行数字之间的关系是极为明确的:第一行表示2的指数,第二行表示2的对应幂.如果我们要计算第二行中两个数的乘积,可以通过第一行对应数字的和来实现. 比如,计算64×256的值,就可以先查第一行的对应数字:64对应6,256对应8,然后再把第一行中的对应数字加和起来:6+8=14;第一行中的14,对应第二行中的16384,所以有:64×256=16384,按照这样的方法计算:16384×32768=( ) A .134217728B .268435356C .536870912D .51376580210.若函数()()212log 45f x x x =-++在区间()32,2m m -+内单调递增,则实数m 的取值范围为( ) A .4,33⎡⎤⎢⎥⎣⎦B .4,23⎡⎤⎢⎥⎣⎦C .4,23⎡⎫⎪⎢⎣⎭D .4,3⎡⎫+∞⎪⎢⎣⎭11.已知1()44x f x x -=+-e ,若正实数a 满足3(log )14a f <,则a 的取值范围为( )A .34a >B .304a <<或43a >C .304a <<或1a > D .1a >12.设()lg (21)f xx a =-+是奇函数,则使f(x)<0的x 的取值范围是( ). A .(-1,0) B .(0, 1)C .(-∞,0)D .(-∞,0)∪(1,+∞)二、填空题13.下列命题中所有正确的序号是_____________.①函数1()3x f x a -=+(0a >且1)a ≠的图像一定过定点(1,4)P ; ②函数(1)f x -的定义域是(1,3),则函数()f x 的定义域为(2,4);③若1log 12a >,则a 的取值范围是112⎛⎫⎪⎝⎭,; ④若22ln ln()x y x y -->-- (0x >,0y <),则0x y +<. 14.已知0a >,函数()y f x =,其中21()log f x a x ⎛⎫=+⎪⎝⎭,若对任意1,12t ⎡⎤∈⎢⎥⎣⎦,函数()y f x =在区间[,1]t t +上的最大值与最小值的差不超过1,则a 的取值范围为_______.15.定义{},,max ,,x x y x y y x y≥⎧=⎨<⎩,设{}()max ,log xa f x a a x=--(),1x R a +∈>.则不等式()2f x ≥的解集是_____________.16.函数()()cos1log sin f x x =的单调递增区间是____________. 17.方程()()22log 972log 31xx+=++的解为______. 18.有以下结论:①将函数xy e =的图象向右平移1个单位得到1x y e -=的图象; ②函数()x f x e =与()g x lnx =的图象关于直线y =x 对称③对于函数()xf x a =(a >0,且1a ≠),一定有()()121222f x f x x x f ++⎛⎫≤⎪⎝⎭④函数()22log (2)f x x x =-+的图象恒在x 轴上方.其中正确结论的序号为_________.19.已知奇函数()()y f x x R =∈满足:对一切x ∈R ,()()11f x f x +=-且[]0,1x ∈时,()1xf x e =-,则()2019f f =⎡⎤⎣⎦__________.20.如果()231log 2log 9log 64x x x f x =-+-,则使()0f x <的x 的取值范围是______.三、解答题21.已知函数()23x x f x a b =⋅+⋅,其中常数,a b 满足0ab ≠.(1)若0ab >,判断函数()f x 的单调性; (2)若0ab <,求(1)()f x f x +>时x 的取值范围.22.计算11213321(4()40.1()ab a b ----⋅(其中0a >,0b >)23.已知函数()12,012,0m x x x f x x n x x ⎧⎛⎫+-> ⎪⎪⎪⎝⎭=⎨⎛⎫⎪++< ⎪⎪⎝⎭⎩是奇函数.(1)求实数m ,n 的值;(2)若对任意实数x ,都有()()420xxf f λ+≥成立.求实数λ的取值范围.24.设函数()log (0,1)a f x x a a =>≠. (1)解不等式(26)(5)f a f a +; (2)已知对任意的实数()23,14m f m m f ⎛⎫++ ⎪⎝⎭恒成立,是否存在实数k ,使得对任意的[1,0]x ∈-,不等式()()142240x x xf f k ++--⋅>恒成立,若存在,求出k 的范围;若不存在,请说明理由.25.已知222log ()log log x y x y +=+,则x y +的取值范围是__________. 26.已知函数11()ln 12f x x x ⎛⎫=+ ⎪-⎝⎭. (1)先求1(2)2f f ⎛⎫-⎪⎝⎭的值,再求[]1111(11)(12)(29)(66)11122966f f f f f f f f ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+++-+++⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦的值; (2)求()f x 的定义域,并证明()f x 在定义域上恒正.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】分析各个选项中每组函数的定义域和对应关系,若定义域和对应关系均相同则为同一个函数,由此判断出正确选项.【详解】A .211x y x -=-的定义域为{}1x x ≠,1y x =+的定义域为R ,所以不是同一个函数;B .y x =与log xa y a =的定义域均为R ,且log xa y a =即为y x =,所以是同一个函数; C.y =(][),11,-∞-+∞,1y x =-的定义域为R ,所以不是同一个函数;D .lg y x =的定义域为()0,∞+,21lg 2y x =的定义域为{}0x x ≠,所以不是同一个函数, 故选:B. 【点睛】思路点睛:同一函数的判断步骤:(1)先判断函数定义域,若定义域不相同,则不是同一函数;若定义域相同,再判断对应关系;(2)若对应关系不相同,则不是同一函数;若对应关系相同,则是同一函数.2.A解析:A 【分析】去绝对值符号后根据指数函数的图象与性质判断. 【详解】由函数解析式可得:1,022,0xx x y x ⎧⎛⎫≥⎪ ⎪=⎨⎝⎭⎪<⎩可得值域为:01y <≤, 由指数函数的性质知:在(),0-∞上单调递增;在()0,∞+上单调递减. 故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.3.C解析:C 【分析】利用对数的换底公式可将5log 12用a 、b 表示. 【详解】根据对数的换底公式得,5lg12lg3lg 4lg32lg 22log 12lg5lg10lg 21lg 21a ba+++====---, 故选:C . 【点睛】关键点点睛:该题考查的是有关对数的运算,解答本题的关键是熟记换底公式以及对数的运算性质,利用运算性质化简、运算,其中lg5lg10lg 2=-是题目的一个难点和易错点.4.C解析:C 【分析】根据所给定义表示出9.632951010F =⨯,进而即可判断出其位数. 【详解】 根据题意,53223232lg232lg2320.30109.6320.6329521212101010101010F ⨯=+=+≈==≈==⨯,因为0.63211010<<,所以5F 的位数是10. 故选:C 【点睛】关键点睛:解答本题的关键是转化成对数运算,即3232lg 2210=.5.B解析:B 【分析】 根据()0.1f t =列式求解即可得答案.【详解】 解:因为()0.1f t =,0.22(50)11()t f t e --=+,所以0.22(50)()0.111t f t e--==+,即0.22(50)011t e --=+,所以0.22(50)9t e --=,由于 1.13e ≈,故()21.12.29e e =≈,所以0.222().250t e e --=,所以()0.2250 2.2t --=,解得40t =. 故选:B. 【点睛】本题解题的关键在于根据题意得0.22(50)9t e --=,再结合已知 1.13e ≈得()21.12.29e e =≈,进而根据0.222().250t e e --=解方程即可得答案,是基础题.6.D解析:D【分析】转化条件为函数()f x 是周期为2的周期函数,且函数()g x 、()f x 的图象均关于1x =-对称,由函数的对称性可得两图象在1x =-右侧有5个交点,画出图象后,数形结合即可得解. 【详解】因为函数()f x 满足()()2f x f x +=,所以函数()f x 是周期为2的周期函数, 又函数()log 1a g x x=+的图象可由函数log a y x =的图象向左平移一个单位可得, 所以函数()log 1a g x x =+的图象的对称轴为1x =-,当[)1,1x ∈-时,()2f x x =,所以函数()f x 的图象也关于1x =-对称,在平面直角坐标系中作出函数()y f x =与()y g x =在1x =-右侧的图象,数形结合可得,若函数()log 1a g x x =+图象与()f x 的图象恰有10个不同的公共点, 则由函数图象的对称性可得两图象在1x =-右侧有5个交点,则()()13log 415log 61a a a g g ⎧>⎪=<⎨⎪=>⎩,解得()4,6a ∈. 故选:D. 【点睛】关键点点睛:解决本题的关键是函数的周期性、对称性及数形结合思想的应用.7.B解析:B 【分析】先利用解析式计算3()(2)2f x f x +-=,再计算和式即可得到结果. 【详解】 因为3()22xf x =+,所以2332(2)22224xx x f x -⋅-==+⋅+,()3323()(2)222222x x x f x f x ⋅+-=+=++. 故1113573321(1)34322342224f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++=⨯+=⎪ ⎪ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. 故选:B. 【点睛】本题解题关键是通过指数式运算计算3()(2)2f x f x +-=,再配对求和即解决问题. 8.C解析:C 【分析】由题容易看出,0a <, 01b <<,2log 31c =>,便得出,,a b c 的大小关系. 【详解】1133log 2log 10a =<=,310110122b ⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,22log 3log 21c =>=,因此a b c <<. 故选:C. 【点睛】本题考查指数函数和对数函数的比较大小,常与中间值0-1,1,来比较,再结合函数的单调性即可求解,属于中档题.9.C解析:C 【分析】先找到16384与32768在第一行中的对应数字,进行相加运算,再找和对应第二行中的数字即可. 【详解】由已知可知,要计算16384×32768,先查第一行的对应数字: 16384对应14,32768对应15,然后再把第一行中的对应数字加起来:14+15=29,对应第二行中的536870912, 所以有:16384×32768=536870912, 故选C. 【点睛】本题考查了指数运算的另外一种算法,关键是认真审题,理解题意,属于简单题.10.C解析:C 【分析】求得函数()y f x =的定义域,利用复合函数法求得函数()y f x =的单调递增区间,根据题意可得出区间的包含关系,由此可求得实数m 的取值范围.【详解】解不等式2450x x -++>,即2450x x --<,解得15x -<<,内层函数245u x x =-++在区间()1,2-上单调递增,在区间()2,5上单调递减, 而外层函数12log y u =在定义域上为减函数,由复合函数法可知,函数()()212log 45f x x x =-++的单调递增区间为()2,5,由于函数()()212log 45f x x x =-++在区间()32,2m m -+上单调递增,所以,32232225m m m m -≥⎧⎪-<+⎨⎪+≤⎩,解得423m ≤<. 因此,实数m 的取值范围是4,23⎡⎫⎪⎢⎣⎭. 故选:C. 【点睛】本题考查利用对数型复合函数在区间上的单调性求参数,考查计算能力,属于中等题.11.C解析:C 【分析】 先判断1()44x f x x -=+-e 是R 上的增函数,原不等式等价于3log 14a <,分类讨论,利用对数函数的单调性求解即可. 【详解】 因为1x y e -=与44y x =-都是R 上的增函数,所以1()44x f x x -=+-e 是R 上的增函数,又因为11(1)441f e -=+-=所以()3(log )114af f <=等价于3log 14a <, 由1log a a =,知3log log 4a a a <,当01a <<时,log a y x =在()0,∞+上单调递减,故34a <,从而304a <<; 当1a >时,log ay x =在()0,∞+上单调递增,故34a >,从而1a >, 综上所述, a 的取值范围是304a <<或1a >,故选C. 【点睛】解决抽象不等式()()f a f b <时,切勿将自变量代入函数解析式进行求解,首先应该注意考查函数()f x 的单调性.若函数()f x 为增函数,则a b <;若函数()f x 为减函数,则a b >.12.A解析:A 【解析】 试题分析:由()lg (21)fxx a =-+为奇函数,则()()f xf x -=-,可得1a =-,即()lg11f xxx =+-,又()0f x <,即lg110xx+-<,可变为0111x x <+-<,解得10x -<<.考点:函数的奇偶性,对数函数性质,分式不等式.二、填空题13.①③④【分析】由指数函数的图象函数的定义域对数函数的性质判断各命题①令代入判断②利用函数的定义求出的定义域判断③由对数函数的单调性判断④引入新函数由它的单调性判断【详解】①令则即图象过点①正确;②则解析:①③④ 【分析】由指数函数的图象,函数的定义域,对数函数的性质判断各命题.①,令1x =代入判断,②利用函数的定义求出()f x 的定义域判断,③由对数函数的单调性判断,④引入新函数1()ln 2ln 2xxg x x x -⎛⎫=-=- ⎪⎝⎭,由它的单调性判断.【详解】①令1x =,则(1)4f =,即()f x 图象过点(1,4),①正确; ②13x <<,则012x <-<,∴()f x 的定义域是(0,2),②错;③1log 1log 2a a a ,∴0112a a <<⎧⎪⎨>⎪⎩,∴112a <<.③正确; ④由22ln ln()x y x y -->-- (0x >,0y <),得ln 2ln()2x y x y --<--,又1()ln 2ln 2xx g x x x -⎛⎫=-=- ⎪⎝⎭是(0,)+∞上的增函数, ∴由ln 2ln()2x y x y --<--,得x y <-,即0x y +<,④正确. 故答案为:①③④【点睛】关键点点睛:本题考查指数函数的图象,对数函数的单调性,函数的定义域问题,定点问题:(1)指数函数(0x y a a =>且1)a ≠的图象恒过定点(0,1);(2)对数函数log (0a y x a =>且1)a ≠的图象恒过定点(1,0),解题时注意整体思想的应用.14.【分析】由函数单调性可得在区间上的最大值最小值则可得对任意恒成立利用二次函数的性质即可求出【详解】因为在区间内单调递减所以函数在区间上的最大值与最小值分别为则得整理得对任意恒成立令则的图象是开口向上 解析:23⎡⎫+∞⎪⎢⎣⎭, 【分析】由函数单调性可得()f x 在区间[1]t t ,+上的最大值()f t ,最小值(1)f t +,则可得2(1)10at a t ++-≥对任意1,12t ⎡⎤∈⎢⎥⎣⎦恒成立,利用二次函数的性质即可求出. 【详解】因为()f x 在区间[1]t t ,+内单调递减, 所以函数()f x 在区间[1]t t ,+上的最大值与最小值分别为()f t ,(1)f t +, 则2211()(1)log log 11f t f t a a t t ⎛⎫⎛⎫-+=+-+≤ ⎪⎪+⎝⎭⎝⎭, 得1121a a t t ⎛⎫+≤+ ⎪+⎝⎭,整理得2(1)10at a t ++-≥对任意1,12t ⎡⎤∈⎢⎥⎣⎦恒成立. 令2()(1)1h t at a t =++-,则()h t 的图象是开口向上,对称轴为11022t a=--<的抛物线,所以()h t 在1,12t ⎡⎤∈⎢⎥⎣⎦上是增函数,2(1)10at a t ++-≥等价于102h ⎛⎫≥ ⎪⎝⎭, 即211(1)1022a a ⎛⎫⨯++⨯-≥ ⎪⎝⎭,解得23a ≥, 所以a 的取值范围为23⎡⎫+∞⎪⎢⎣⎭,. 故答案为:23⎡⎫+∞⎪⎢⎣⎭,.关键点睛:由单调性判断出最大值和最小值,从而转化为2(1)10at a t ++-≥对任意1,12t ⎡⎤∈⎢⎥⎣⎦恒成立,根据二次函数性质求解. 15.【分析】利用分段函数列出不等式求解即可【详解】解:在上为单调递增函数又当时当时不等式或解得或故答案为:【点睛】本题考查分段函数的应用函数值的求法考查转化思想以及计算能力 解析:21(0,][log (2),)a a a++∞ 【分析】利用分段函数列出不等式求解即可.【详解】解:()log log x xa a a a x a a x ---=-+, 1a >,()log x a g x a a x =-+在()0,∞+上为单调递增函数, 又1(1)log 10a g a a =-+=,当()0,1x ∈时,log 0x a a a x -+<, 当()1,x ∈+∞时,log 0xa a a x -+>, ,1()log ,01x a a a x f x x x ⎧->∴=⎨-<<⎩不等式()2f x ≥,21x a a x ⎧-≥∴⎨>⎩或log 201a x x -≥⎧⎨<<⎩, 解得log (2)a x a ≥+或210x a <≤, 故答案为:21(0,][log (2),)a a a++∞. 【点睛】本题考查分段函数的应用,函数值的求法,考查转化思想以及计算能力. 16.【分析】根据对数型复合函数单调性列不等式再根据正弦函数性质得结果【详解】单调递增区间为单调递减区间且所以故答案为:【点睛】本题考查对数型复合函数单调性以及正弦函数性质考查基本分析求解能力属基础题 解析:[2,2),()2k k k Z ππππ++∈ 【分析】根据对数型复合函数单调性列不等式,再根据正弦函数性质得结果.()()cos1cos1(0,1)log sin f x x ∈∴=单调递增区间为sin y x =单调递减区间且sin 0x >, 所以22,()2k x k k Z ππππ+≤<+∈, 故答案为:[2,2),()2k k k Z ππππ++∈【点睛】 本题考查对数型复合函数单调性以及正弦函数性质,考查基本分析求解能力,属基础题. 17.或【分析】由对数的运算性质化对数方程为关于的一元二次方程求得的值进一步求得值得答案【详解】由得即化为解得:或或故答案为:或【点睛】本题主要考查的是对数方程的求解将对数方程转化为指数方程是解决本题的关 解析:0x =或1x =.【分析】由对数的运算性质化对数方程为关于3x 的一元二次方程,求得3x 的值,进一步求得x 值得答案.【详解】由()()22log 972log 31x x +=++,得 ()()22log 97log 431x x +=+, 即()97431x x +=+,化为()234330x x -⋅+=, 解得:31x =或33x =,0x ∴=或1x =.故答案为:0x =或1x =.【点睛】本题主要考查的是对数方程的求解,将对数方程转化为指数方程是解决本题的关键,考查学生的计算能力,是基础题.18.②③④【分析】①根据图象的平移规律直接判断选项;②根据指对函数的对称性直接判断;③根据指数函数的图象特点判断选项;④先求的范围再和0比较大小【详解】①根据平移规律可知的图象向右平移1个单位得到的图象解析:②③④【分析】①根据图象的平移规律,直接判断选项;②根据指对函数的对称性,直接判断;③根据指数函数的图象特点,判断选项;④先求22x x -+的范围,再和0比较大小.①根据平移规律可知x y e =的图象向右平移1个单位得到1x y e -=的图象,所以①不正确;②根据两个函数的对称性可知函数()x f x e =与()g x lnx =的图象关于直线y =x 对称,正确;③如下图,设1a >,122x x f +⎛⎫⎪⎝⎭对应的是曲线上横坐标为122x x +的点C 的纵坐标,()()122f x f x +是线段AB 的中点D 的纵坐标,由图象可知()()121222f x f x x x f ++⎛⎫≤ ⎪⎝⎭,同理,当01a <<时,结论一样,故③正确;④2217721244x x x ⎛⎫-+=-+≥> ⎪⎝⎭ 根据函数的单调性可知()222log 2log 10x x -+>=,所以函数()22log (2)f x x x =-+的图象恒在x 轴上方,故④正确.故答案为:②③④【点睛】思路点睛:1.图象平移规律是“左+右-”,相对于自变量x 来说,2.本题不易判断的就是③,首先理解122x x f +⎛⎫ ⎪⎝⎭和()()122f x f x +的意义,再结合图象判断正误. 19.【分析】根据题意求得的周期性则可求再结合函数解析式求得函数值即可【详解】由题可知:因为对一切故关于对称;又因为是奇函数则可得故可得故函数是周期为的函数则又当故则故答案为:【点睛】本题考查利用函数周期 解析:31e e --【分析】根据题意,求得()f x 的周期性,则()2019f 可求,再结合函数解析式,求得函数值即可.【详解】由题可知:因为对一切x R ∈,()()11f x f x +=-,故()f x 关于1x =对称;又因为()f x 是奇函数,则可得()()()()()21111f x f x f x f x f x +=++=--=-=-,故可得()()()()4222f x f x f x f x +=++=-+=,故函数()f x 是周期为4的函数.则()()()201911f f f =-=-,又当[]0,1x ∈,()1x f x e =-,故()()201911f f e =-=-, 则()()()()()320191131e f f f e f e f e e -=-=--=--=-.故答案为:31e e --.【点睛】本题考查利用函数周期性求函数值,属综合中档题;难点在于求得函数的周期. 20.【分析】可结合对数化简式将化简为再解对数不等式即可【详解】由由得即当时故;当时无解综上所述故答案为:【点睛】本题考查对数化简公式的应用分类讨论求解对数型不等式属于中档题 解析:81,3⎛⎫ ⎪⎝⎭【分析】可结合对数化简式将()f x 化简为()1log 2log 3log 4x x x f x =-+-,再解对数不等式即可【详解】由()2323231log 2log 9log 641log 2log 3log 4x x x x x x f x =-+-=-+- 31log 2log 3log 41log 8x x x x =-+-=+,由()0f x <得81log 03x -<, 即8log log 3x x x >, 当1x >时,83x <,故81,3x ⎛⎫∈ ⎪⎝⎭;当()0,1x ∈时,83x >,无解 综上所述,81,3x ⎛⎫∈ ⎪⎝⎭ 故答案为:81,3⎛⎫ ⎪⎝⎭【点睛】本题考查对数化简公式的应用,分类讨论求解对数型不等式,属于中档题 三、解答题21.(1)当0,0a b >>时,函数()f x 在R 上是增函数,当0,0a b <<时,函数()f x 在R 上是减函数;(2)当0,0a b <>时,则 1.5log ()2a x b>-;当0,0a b ><时,则1.5log ()2a x b<-. 【详解】 (1)当0,0a b >>时,任意1212,,x x R x x ∈<,则121212()()(22)(33)x x x x f x f x a b -=-+- ∵121222,0(22)0x x x x a a ⇒-<,121233,0(33)0x x x xb b ⇒-<,∴12())0(f x f x -<,函数()f x 在R 上是增函数,当0,0a b <<时,同理,函数()f x 在R 上是减函数;(2)(1)()2230x x f x f x a b +-=⋅+⋅> 当0,0a b <>时,3()22x a b >-,则 1.5log ()2a x b >-; 当0,0a b ><时,3()22x a b <-,则 1.5log ()2a x b<-. 22.85【分析】将小数转化为分数,根式转化为分数幂的形式,利用指数幂的运算性质化简求值.【详解】1113132211133133221(4)1(4)()=()4410.1()()()10ab ab a b a b --------⋅⋅ 原式131********()()(4)()410ab a b ----= 原式33333002222211848555a b a b a b --=⨯⨯=⨯⨯= 【点睛】本题考查指数幂的运算,要熟练掌握基本的运算法则和运算性质,小数转化为分数,根式转化为分数幂的形式,更有利于运算.23.(1)22m n =⎧⎨=⎩;(2)1λ≥-. 【分析】(1)根据()f x 是奇函数,即()()f x f x -=-即可求解实数m ,n 的值;(2)利用换元法,转化为二次函数的问题讨论最值恒成立即可求解实数λ的取值范围.【详解】(1)当0x >时,()()()12f x x n x ⎡⎤-=-++⎢⎥-⎣⎦, 因为()f x 为奇函数,()()f x f x ∴-=-,()()()1122f x x n m x x x ⎡⎤⎡⎤⎛⎫∴-=-++=-+-⎢⎥ ⎪⎢⎥-⎝⎭⎣⎦⎣⎦, 即()()1220m x n x ⎛⎫-++-= ⎪⎝⎭总成立. 2020m n -=⎧∴⎨-=⎩,22m n =⎧∴⎨=⎩, 又当0x <时,同理可得22m n =⎧⎨=⎩, 综上:22m n =⎧∴⎨=⎩. (2)40x >,20x >, 原不等式化为11242222042x x x x λλ⎛⎫⎛⎫+-++-≥ ⎪ ⎪⎝⎭⎝⎭, 令122x xt =+,则2t ≥, 原不等式进一步化为230t t λλ+--≥在2t ≥上恒成立. 记()23g t t t λλ=+--,[)2,t ∈+∞ ①当22λ-≤时,即4λ≥-时,()()min 210g t g λ==+≥, 1λ∴≥-合理;②当22λ->时,即4<-λ时,()n 2mi 3024g t g λλλ⎛⎫-=---≥ ⎪⎝⎭=,显然不成立. 综上实数λ的取值范围为:1λ≥-.【点睛】本题考查的知识点是分段函数的应用,指数函数的单调性,奇函数的性质,是函数图象和性质的综合应用,难度中档.24.(1)(0,1)[2,)a ∈⋃+∞(2)实数k 不存在,详见解析【分析】(1)分类讨论,利用对数函数的单调性,将不等式具体化,解不等式即可;(2)判断函数()f x 为增函数,将不等式具体化,再分离参数求最值,即可得出结论.【详解】解:(1)当01a <<时,有2650a a +>,解得02a <≤,即(0,1)∈a ;当1a >时,有0265a a <+,解得2a ,即[2,)a ∈+∞.综上可知,(0,1)[2,)a ∈⋃+∞.(2)由于221331244m m m ⎛⎫++=++ ⎪⎝⎭, 且()2314f m m f ⎛⎫++ ⎪⎝⎭,可知()f x 为增函数. ()()142240x x x f f k ++--⋅>,即()()14224x x x f f k ++>-⋅,则有14224x x x k ++>-⋅在[1,0]-上恒成立, 即1342x x k +<⋅+在[1,0]-上恒成立,令12,12x t ⎡⎤=∈⎢⎥⎣⎦,设2()32,()g t t t g t =+在1,12⎡⎤⎢⎥⎣⎦上单调递增, 则min 17()24g t g ⎛⎫== ⎪⎝⎭,即74k <. 又由于[1,0]x ∈-时,240x k -⋅>恒成立,解得2k >,故符合题意的实数k 不存在.【点睛】本题考查对数函数的单调性、恒成立问题的转化分析、指数函数与二次函数的复合函数的最值问题.25.[4,)+∞【分析】利用对数式的运算性质把给出的等式变形,去掉对数符号后利用基本不等式转化为关于(x +y )的二次不等式,求解后即可得到x +y 的取值范围.【详解】222log ()log log x y x y +=+,x y xy ∴+=,0,0x y >>,2()2x y x y xy +∴+=≤,当且仅当2x y ==时,等号成立。

北师大版高中数学必修一第三单元《指数函数和对数函数》检测题(答案解析)(1)

北师大版高中数学必修一第三单元《指数函数和对数函数》检测题(答案解析)(1)

一、选择题1.若关于x 的不等式34log 2xa x -≤在10,2x ⎛⎤∈ ⎥⎝⎦恒成立,则实数a 的取值范围是( ) A .1,14⎡⎫⎪⎢⎣⎭B .10,4⎛⎤ ⎥⎝⎦C .3,14⎡⎫⎪⎢⎣⎭D .30,4⎛⎤ ⎥⎝⎦2.已知函数()()2log 2xf x m =+,则满足函数()f x 的定义域和值域都是实数集R 的实数m 构成的集合为 ( ) A .{}|0m m =B .{}0|m m ≤C .{}|0m m ≥D .{}|1m m =3.若()()22ln 1f x x x e =+≤≤(e 为自然对数的底数),则函数()()22y f x f x =+⎡⎤⎣⎦的最大值为( ) A .6B .13C .22D .334.已知函数()()2log 23a f x x x =--+,若()00f <,则此函数的单调递增区间是( ) A .(],1-∞-B .[)1,-+∞C .[)1,1-D .(]3,1--5.已知函数)()lnf x x =,则120212020a f ⎛⎫= ⎪⎝⎭,20201log 2021b f ⎛⎫= ⎪⎝⎭,()2021log 2020c f =的大小关系为( )A .a b c >>B .a c b >>C .b a c >>D .b c a >>6.已知函数22()lg[(1)(1)1]f x a x a x =-+++的值域为R .则实数a 的取值范围是( ) A .5[1,]3B .5(1,]3C .(]5,1(,)3-∞-⋃+∞ D .()5,1[1,)3-∞-7.已知函数3()22x f x =+,则111357(1)432234f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭( ) A .212 B .214C .7D .1528.5G 技术的数学原理之一便是著名的香农公式:2log 1S C W N ⎛⎫=+⎪⎝⎭,它表示:在受高斯白噪声干扰的信道中,最大信息传递速率C 取决于信道带宽W 、信道内所传信号的平均功率S 、信道内部的高斯噪声功率N 的大小,其中SN叫做信噪比.按照香农公式,在不改变W 的情况下,将信噪比SN从1999提升至λ,使得C 大约增加了20%,则λ的值约为(参考数据:lg 20.3≈, 3.96109120≈)( ) A .7596B .9119C .11584D .144699.已知()lg(10)lg(10)f x x x =++-,则()f x 是( ) A .偶函数,且在(0,10)是增函数 B .奇函数,且在(0,10)是增函数 C .偶函数,且在(0,10)是减函数 D .奇函数,且在(0,10)是减函数10.函数()22x xxf x -=+的大致图象为( ) A . B .C .D .11.若1a b >>,lg lg P a b ⋅,1(lg lg )2Q a b =+,lg()2a b R +=,则( ) A .R P Q <<B .P Q R <<C .Q P R <<D .P R Q <<12.实数,a b 满足2510a b ==,则下列关系正确的是( ) A .212a b+= B .111a b+= C .122a b+= D .1212a b += 二、填空题13.下列命题中所有正确的序号是___________. ①函数()13x f x a-=+()1a > 在R 上是增函数;②函数(1)f x -的定义域是(1,3),则函数()f x 的定义域为(2,4); ③已知()f x =538x ax bx ++-,且()28f -=,则(2)8f =-; ④11()122x f x =--为奇函数.14.若函数()22log 3y x ax a =-+在[2,)+∞上是单调增函数,则a 的取值范围是____________.15.设函数2()ln(1)fx x x =++,若()23(21)0f a f a +-<,则实数a 的取值范围为_____. 16.若3log 14a>(0a >且1a ≠),则实数a 的取值范围为________ 17.已知函数()4sin 22xx f x π=++,则122019101010101010f f f ⎛⎫⎛⎫⎛⎫+++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭______.18.如图,在面积为2的平行四边形OABC 中,AC CO ⊥,AC 与BO 交于点E .若指数函数()01xy aa a =>≠,经过点E ,B ,则函数()af x x x=-在区间[]1,2上的最小值为________.19.设log c a 、log c b 是方程2530x x +-=的两个实根,则log b ac =______.20.下列结论正确的是____________①1()2(0,1)x f x a a a -=+>≠的图像经过定点(1,3); ②已知28log 3,43yx ==,则2x y +的值为3; ③若3()6f x x ax =+-,且(2)6f -=,则(2)18f =; ④11()()122xf x x =--为偶函数; ⑤已知集合{}{}1,1,|1A B x mx =-==;且B A ⊆,则m 的值为1或-1.三、解答题21.设131()log 1axf x x -=-为奇函数,a 为常数. (1)求a 的值.(2)若[2,4]x ∀∈,不等式1()3xf x x m ⎛⎫+>+ ⎪⎝⎭恒成立,求实数m 的取值范围.22.已知函数()13xf x ⎛⎫= ⎪⎝⎭,函数()13log g x x =.(1)若函数()22y g mx mx =++的定义域为R ,求实数m 的取值范围;(2)是否存在非负实数,m n ,使得函数()2y g f x ⎡⎤=⎣⎦的定义域为[],m n ,值域为[]2,2m n ,若存在,求出,m n 的值;若不存在,则说明理由;(3)当[]1,1x ∈-时,求函数()()223y f x af x =-+⎡⎤⎣⎦的最小值()h a . 23.已知函数()ln(32)f x x =+,()ln(32)g x x =-.设函数()()()F x f x g x =-. (1)求函数()F x 的定义域; (2)判断()F x 奇偶性并证明; (3)若()0F x >成立,求x 的取值范围.24.已知函数()12,012,0m x x x f x x n x x ⎧⎛⎫+-> ⎪⎪⎪⎝⎭=⎨⎛⎫⎪++< ⎪⎪⎝⎭⎩是奇函数.(1)求实数m ,n 的值;(2)若对任意实数x ,都有()()420xxf f λ+≥成立.求实数λ的取值范围. 25.已知集合(){}2log 33A x x =+≤,{}213B x m x m =-<≤+.(1)若2m =-,求A B ;(2)若A B A ⋃=,求实数m 的取值范围.26.化简计算: (1)160.25361.587-⎛⎫⨯-+ ⎪⎝⎭(2)lg5lg 20lg 2lg50lg 25⋅-⋅-.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】转化为当10,2x ⎛⎤∈ ⎥⎝⎦时,函数342xy =-的图象不在log a y x =的图象的上方,根据图象列式可解得结果.【详解】由题意知关于x的不等式34log2xax-≤在10,2x⎛⎤∈ ⎥⎝⎦恒成立,所以当10,2x⎛⎤∈ ⎥⎝⎦时,函数342xy=-的图象不在log ay x=的图象的上方,由图可知0111log22aa<<⎧⎪⎨≥⎪⎩,解得114a≤<.故选:A【点睛】关键点点睛:利用函数342xy=-的图象与函数log ay x=的图象求解是解题关键. 2.A解析:A【分析】若定义域为实数集R,则20x m+>对于x∈R恒成立,可得0m≥,若值域为实数集R,令2xt m=+,则2logy t=此时需满足2xt m=+的值域包括()0,∞+,可得0m≤,再求交集即可.【详解】若()()2log2xf x m=+定义域为实数集R,则20x m+>对于x∈R恒成立,即2xm>-对于x∈R恒成立,因为20x>,所以20x-<,所以0m≥,令2xt m=+,则2logy t=若()()2log2xf x m=+值域为实数集R,则2xt m=+的值域包括()0,∞+,因为t m>,所以0m≤,所以0m=,故选:A【点睛】关键点点睛:本题的关键点是要找到定义域为R 的等价条件即20x m +>对于x ∈R 恒成立,分离参数m 求其范围,值域为R 的等价条件即2x t m =+可以取遍所有大于0的数,由t m >,所以0m ≤,再求交集.3.B解析:B 【分析】先依题意求函数定义域,再化简函数,进行换元后求二次函数在区间上的最大值即可. 【详解】由21x e ≤≤及()2f x知221x e ≤≤,故定义域为[]1,e ,又()()()()()222222ln 2ln ln 6ln 61y f x f x x x x x x e =+=+++=++≤≤⎡⎤⎣⎦令[]ln 0,1t x =∈,则266y t t =++,易见y 在[]0,1t ∈上单调递增, 故当1t =时,即x e =时,max 16613y =++=. 故选:B. 【点睛】易错点睛:利用换元法求函数最值时,要注意函数的定义域,否则求得的易出错.4.C解析:C 【分析】由()00f <求得01a <<,求出函数()f x 的定义域,利用复合函数法可求得函数()f x 的单调递增区间. 【详解】由题意可得()0log 30log 1a a f =<=,01a ∴<<.对于函数()()2log 23a f x x x =--+,2230x x --+>,可得2230x x +-<,解得31x -<<.所以,函数()f x 的定义域为()3,1-.由于内层函数223u x x =--+在区间(]3,1--单调递增,在区间[)1,1-单调递减. 外层函数log a y u =单调递减,由复合函数法可知,函数()f x 的单调递增区间为[)1,1-. 故选:C. 【点睛】方法点睛:函数单调性的判定方法与策略:(1)定义法:一般步骤:设元→作差→变形→判断符号→得出结论;(2)图象法:如果函数()f x 是以图象的形式给出或者函数()f x 的图象易作出,结合图象可得出函数的单调区间;(3)导数法:先求出函数的导数,利用导数值的正负确定函数的单调区间; (4)复合函数法:先将函数()y f g x ⎡⎤=⎣⎦分解为内层函数()u g x =和外层函数()y f u =,再讨论这两个函数的单调性,然后根据复合函数法“同增异减”的规则进行判定. 5.D解析:D 【分析】先判断出()f x 在R 上单调递减,再利用指数对数函数的单调性求出120212020,20201log 2021, 2021log 2020的范围,即可根据单调性比较大小.【详解】210x x +->恒成立,()f x ∴定义域为R ,))()lnlnf x x x ===-,其中y x 单调递增,则()f x 单调递减,102021202020120>=,202020201log log 102021<=,2021202120210log 1log 2020log 20211=<<=,b c a ∴>>. 故选:D. 【点睛】关键点睛:本题考查利用函数的单调性比较大小,解题的关键是判断出)()ln f x x =在R 上单调递减,进而可利用单调性比较.6.A解析:A 【分析】当函数的值域为R 时,命题等价于函数()()22111y a x a x =-+++的值域必须包含区间()0+∞,得解 【详解】22()lg[(1)(1)1]f x a x a x =-+++的值域为R令()()22111y a x a x =-+++,则()()22111y a x a x =-+++的值域必须包含区间()0+∞,当210a -=时,则1a =± 当1a =时,21y x =+符合题意; 当1a =-时,1y =不符合题意;当1a ≠±时,()()222101410a a a ⎧->⎪⎨∆=+--≥⎪⎩,解得513a <≤ 513a ∴≤≤,即实数a 的取值范围是5[1,]3故选:A 【点睛】转化命题的等价命题是解题关键.7.B解析:B 【分析】先利用解析式计算3()(2)2f x f x +-=,再计算和式即可得到结果. 【详解】 因为3()22x f x =+, 所以2332(2)22224xx x f x -⋅-==+⋅+,()3323()(2)222222xx x f x f x ⋅+-=+=++. 故1113573321(1)34322342224f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++=⨯+=⎪ ⎪ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. 故选:B. 【点睛】本题解题关键是通过指数式运算计算3()(2)2f x f x +-=,再配对求和即解决问题. 8.B解析:B 【分析】根据题设条件列出方程,计算即可. 【详解】由题可知 ()()()22log 119991+20%log 1W W λ+⨯=+,即()221.2log 2000log 1λ⨯=+,所以()lg 1lg 20001.2lg 2lg 2λ+⨯=,即()()lg 1 1.2lg2000 1.23lg2 3.96λ+=⨯=⨯+≈,所以 3.961109120λ+≈≈,所以9119λ≈.故选:B 【点睛】本题主要考查对属于对数函数,考查学生的运算能力.9.C解析:C 【分析】先判断函数的定义域关于原点对称,再由奇偶性的定义判断奇偶性,根据复合函数的单调判断其单调性,从而可得结论. 【详解】 由100100x x +>⎧⎨->⎩,得(10,10)x ∈-,故函数()f x 的定义域为()10,10-,关于原点对称,又()()lg 10lg(10)()f x x x f x -=-++=,故函数()f x 为偶函数, 而()()2lg(10)lg(10)lg 100f x x x x=++-=-,因为函数2100y x =-在()0,10上单调递减,lg y x =在()0,∞+上单调递增, 故函数()f x 在()0,10上单调递减,故选C. 【点睛】本题主要考查函数的奇偶性与单调性,属于中档题. 判断函数的奇偶性首先要看函数的定义域是否关于原点对称,如果不对称,既不是奇函数又不是偶函数,如果对称常见方法有:(1)直接法, ()()f x f x -=±(正为偶函数,负为减函数);(2)和差法,()()0f x f x -±=(和为零奇函数,差为零偶函数);(3)作商法,()()1f x f x -=±(1 为偶函数,1- 为奇函数) .10.B解析:B 【分析】根据函数为奇函数排除C ,取特殊值排除AD 得到答案. 【详解】当()22x xx f x -=+,()()22x x xf x f x ---==-+,函数为奇函数,排除C ; 2221(2)22242f -=<=+,排除A ;3324(3)22536f -==+,4464(4)224257f -==+,故()()34f f >,排除D.故选:B. 【点睛】本题考查了函数图象的识别,意在考查学生的计算能力和识图能力,取特殊值排除是解题的关键.11.B解析:B 【分析】利用对数函数lg y x =,结合基本不等式即可确定P 、Q 、R 的大小关系 【详解】由于函数lg y x =在(0,)+∞上是增函数1a b >>,则lg lg 0a b >>由基本不等式可得11(lg lg )lg()lg 222a bP a b ab R +=<+==<=因此,P Q R <<故选:B 【点睛】本题考查了利用对数函数的单调性比较大小,应用函数思想构造对数函数,并利用其单调性和基本不等式比较大小12.B解析:B 【分析】根据指数式与对数的互化公式,求得11lg2,lg5a b==,再结合对数的运算公式,即可求解. 【详解】因为2510a b ==,可得25log 10,log 10a b ==,所以11lg2,lg5a b==, 则11lg 2lg5lg101a b +=+==. 故选:B. 【点睛】本题主要考查指数式与对数的互化,以及对数的运算公式的化简、求值,其中解答中熟记指数式与对数的互化公式,以及对数的运算公式,准确运算是解答的关键,着重考查运算与求解能力.二、填空题13.①④【分析】根据指数的运算性质且恒成立求出函数图象所过的定点可判断①;根据抽象函数的定义域的求法可判断②;根据奇函数的图象和性质求出可判断③;根据奇函数的定义及判定方法可判断④【详解】解:当时且恒成解析:①④ 【分析】根据指数的运算性质01(0a a =>且1)a ≠恒成立,求出函数图象所过的定点,可判断①;根据抽象函数的定义域的求法,可判断②;根据奇函数的图象和性质,求出()2f ,可判断③;根据奇函数的定义及判定方法,可判断④ 【详解】解:当1x =时,101(0x a a a -==>且1)a ≠恒成立,故f (1)4=恒成立,故函数1()3(0x f x a a -=+>且1)a ≠的图象一定过定点(1,4)P ,故①正确;函数(1)f x -的定义域是(1,3),则函数()f x 的定义域为(0,2),故②错误;已知53()8f x x ax bx =++-,且(2)8f -=,则()224f =-,故③错误;11()122x f x =--的定义域为{|0}x x ≠, 且112111()()122212212x x x xf x f x ---=-=-=-=----,故()f x 为奇函数,故④正确; 故答案为:①④ 【点睛】本题以命题的真假判断为载体,考查了指数函数的图象和性质,函数的定义域,函数的奇偶性,是函数图象和性质的综合应用,难度不大,属于基础题.14.【分析】利用复合函数单调性的判断方法分内层和外层分别判断解出的取值范围【详解】由题意得设根据对数函数及复合函数单调性可知:在上是单调增函数且所以所以故答案为:【点睛】本题考查复合函数单调性的应用考查 解析:(4,4]-【分析】利用复合函数单调性的判断方法,分内层和外层分别判断,解出a 的取值范围. 【详解】由题意得,设2()3g x x ax a =-+,根据对数函数及复合函数单调性可知:()g x 在[)2,+∞上是单调增函数,且(2)0g >,所以2240aa ⎧≤⎪⎨⎪+>⎩,所以44a -<≤. 故答案为: (4,4]- 【点睛】本题考查复合函数单调性的应用,考查对数函数的性质,考查学生运算求解能力,属于中档题.15.【分析】根据已知可得为奇函数且在上单调递增不等式化为转化为关于自变量的不等式即可求解【详解】的定义域为是奇函数设为增函数在为增函数在为增函数在处连续的所以在上单调递增化为等价于即所以实数的取值范围为解析:1(1,)3-【分析】根据已知可得()f x 为奇函数且在R 上单调递增,不等式化为()23(12)f a f a <-,转化为关于自变量的不等式,即可求解. 【详解】()f x 的定义域为R ,()()))ln10f x f x x x +-=+==,()f x ∴是奇函数,设,[0,)()x u x x =∈+∞为增函数,()f x 在[0,)+∞为增函数,()f x 在(,0)-∞为增函数, ()f x 在0x =处连续的,所以()f x 在R 上单调递增,()23(21)0f a f a +-<,化为()23(12)f a f a <-,等价于2312a a <-,即213210,13a a a +-<-<<, 所以实数a 的取值范围为1(1,)3-. 故答案为: 1(1,)3- 【点睛】本题考查利用函数的单调性和奇偶性解不等式,熟练掌握函数的性质是解题的关键,属于中档题.16.【分析】讨论和两种情况利用函数单调性解不等式得到答案【详解】当时满足不成立;当时综上所述:故答案为:【点睛】本题考查了利用函数单调性解不等式分类讨论是解题的关键解析:3,14⎛⎫⎪⎝⎭【分析】讨论1a >和01a <<两种情况,利用函数单调性解不等式得到答案. 【详解】3log 1log 4aa a >=,当1a >时,满足34a >,不成立;当01a <<时,34a >. 综上所述:3,14a ⎛⎫∈⎪⎝⎭. 故答案为:3,14⎛⎫⎪⎝⎭.【点睛】本题考查了利用函数单调性解不等式,分类讨论是解题的关键.17.2019【分析】观察的特点探究得再利用倒序相加法求解【详解】因为所以故答案为:2019【点睛】本题主要考查了函数求值中的倒序相加法还考查了抽象概括的能力属于中档题解析:2019 【分析】 观察122019101010101010⎛⎫⎛⎫⎛⎫+++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭f f f 的特点,探究得()(2)2+-=f x f x ,再利用倒序相加法求解. 【详解】因为()()()2442sin sin 222222x x f x f x x x πππ-+-=+++-=++ 所以1220192[]101010101010⎛⎫⎛⎫⎛⎫+++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭f f f12019120191010101010101010f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭22019=⨯1220192019101010101010f f f ⎛⎫⎛⎫⎛⎫∴+++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故答案为:2019.【点睛】本题主要考查了函数求值中的倒序相加法,还考查了抽象概括的能力,属于中档题.18.【分析】设点则点B 的坐标为由题意得则再根据平行四边形的面积求得由此得得函数的解析式从而得函数的的单调性与最值【详解】解:设点则点B 的坐标为∵∴∵平行四边形OABC 的面积又平行四边形OABC 的面积为2 解析:3-【分析】设点(),tE t a ,则点B 的坐标为()2,2tt a ,由题意得22tt aa =,则2t a =,再根据平行四边形的面积求得12t =,由此得4a =,得函数()f x 的解析式,从而得函数()f x 的的单调性与最值. 【详解】解:设点(),tE t a ,则点B 的坐标为()2,2tt a ,∵22t t a a =,∴2t a =,∵平行四边形OABC 的面积24t S OC AC a t t =⨯⨯==, 又平行四边形OABC 的面积为2,∴42t =,12t =,所以122a =,4a =, ∴()4f x x x=-在[]1,2为增函数,∴函数()f x 的最小值为()4111f =-=3-, 故答案为:3-. 【点睛】本题主要考查指数函数的图象和性质,考查利用函数的单调性求最值,属于中档题.19.【分析】根据题意由韦达定理得进而得再结合换底公式得【详解】解:因为、是方程的两个实根所以由韦达定理得所以所以所以故答案为:【点睛】本题解题的关键在于根据韦达定理与换底公式进行计算其中两个公式的转化是解析:37±【分析】根据题意由韦达定理得log log 5c c a b +=-,log log 3c c a b ⋅=-,进而得()2log log 37c c a b -=,再结合换底公式得1log log b acc b a==【详解】解:因为log c a 、log c b 是方程2530x x +-=的两个实根, 所以由韦达定理得log log 5c c a b +=-,log log 3c c a b ⋅=-, 所以()()22log log log log 4log log 37c c c c c c a b a b a b -=+-⋅=,所以log log c c b a -=所以11log log log 37log b c c acc b b a a===±-.故答案为:37± 【点睛】本题解题的关键在于根据韦达定理与换底公式进行计算,其中()()22log log log log 4log log c c c c c c a b a b a b -=+-⋅,1log log b acc b a=两个公式的转化是核心,考查运算求解能力,是中档题.20.①②④【分析】①根据指数函数的性质进行判断②根据对数的运算法则进行判断③根据函数的运算性质进行运算④根据偶函数的定义进行判断⑤根据集合关系利用排除法进行判断【详解】①当时(1)则函数的图象经过定点;解析:①②④ 【分析】①根据指数函数的性质进行判断,②根据对数的运算法则进行判断,③根据函数的运算性质进行运算,④根据偶函数的定义进行判断,⑤根据集合关系,利用排除法进行判断. 【详解】①当1x =时,f (1)02123a =+=+=,则函数的图象经过定点(1,3);故①正确, ②已知2log 3x =,843y=,则2823y=,282log 3y =, 则2222882log 3log log (3)log 8333x y +=+=⨯==;故②正确, ③若3()6f x x ax =+-,且(2)6f -=,则32266a ---=,即10a =-, 则f (2)32210618=-⨯-=-,故③错误;④函数的定义域为{|0}x x ≠,关于原点对称,1112()()?1222(12)xx x f x x x +=-=--, 则122112()?··()2(12)2(21)2(12)x x xx x x f x x x x f x --+++-=-=-==---, 即()f x 为偶函数,故④正确,⑤已知集合{1A =-,1},{|1}B x mx ==,且B A ⊆,当0m =时,B =∅,也满足条件,故⑤错误, 故正确的是①②④, 故答案为:①②④ 【点睛】本题主要考查命题的真假判断,涉及指数函数的性质,函数奇偶性的判断,以及对数的运算法则,综合性较强,涉及的知识点较多.三、解答题21.(1)1a =-;(2)89m <. 【分析】(1)由奇函数的性质()()0f x f x ,代入运算后可得1a =±,代入验证即可得解;(2)转化条件为131log 113xx x m x +<⎛⎫- ⎝+⎪⎭-对于[2,4]x ∀∈恒成立,令()[]131log ,2,4113xx g x x x x ⎛⎫-+=+⎝⎭∈- ⎪,结合函数的单调性求得()min g x 即可得解.【详解】(1)因为131()log 1axf x x -=-为奇函数, 则1113331111()()log log log 1111ax ax ax ax f x f x x x x x +-⎡+-⎤⎛⎫⎛⎫-+=+= ⎪⎪⎢⎥------⎝⎭⎝⎭⎣⎦ ()21231log 01ax x-==-, 则()22111ax x -=-,所以21a =即1a =±, 当1a =时,()11331()log log 11xf x x -==--,不合题意; 当1a =-时,131()log 1x f x x +=-,由101xx +>-可得1x >或1x <-,满足题意; 故1a =-;(2)由1()3xf x x m ⎛⎫+>+ ⎪⎝⎭可得131log 113xx x m x ⎛⎫>+ +⎪⎭+⎝-,则131log 113xx x m x +<⎛⎫- ⎝+⎪⎭-对于[2,4]x ∀∈恒成立,令()[]131log ,2,4113xx g x x x x ⎛⎫-+=+⎝⎭∈- ⎪,因为函数12111x y x x +==+--在[2,4]上单调递减, 所以函数131log 1xy x +=-在[2,4]上单调递增, 所以()g x 在[2,4]上单调递增,所以()()1min32log 182993g x g -===+, 所以89m <. 【点睛】关键点点睛:解决本题的关键是将恒成立问题转化为求函数的最值.22.(1)08m ≤<;(2)存在,0,2m n ==;(3)答案不唯一,见解析. 【分析】(1)根据函数定义域为R ,转化为220mx mx ++>恒成立,分类讨论求解;(2)根据二次函数单调性可得2222m mn n ⎧=⎨=⎩,求解即可;(3)换元,令11,333xt ⎛⎫⎡⎤=∈ ⎪⎢⎥⎝⎭⎣⎦,分类讨论求二次函数的最小值即可. 【详解】(1)∵定义域为R ,即220mx mx ++>恒成立 ∴0m =, 或00m >⎧⎨∆<⎩得08m << 综上得08m ≤< (2)2yx 的定义域为[],m n ,值域为[]2,2m n∴222(0)2m mm n n n ⎧=≤<⎨=⎩ ,解得0,2m n ==. (3)令11,333xt ⎛⎫⎡⎤=∈ ⎪⎢⎥⎝⎭⎣⎦,则223y t at =-+ 若13a ≤,则228()39a h a =-+; 若133a <<,则2()3h a a =-; 若3a ≥,则()612h a a =-+;【点睛】关键点点睛:涉及指数型复合函数的单调性最值问题,多采用换元法,能够使问题简捷,突出问题本质,大多转化为二次函数,利用二次函数的图象和性质,体现转化思想,属于中档题. 23.(1)33,22⎛⎫- ⎪⎝⎭;(2)奇函数,证明见解析;(3)302x <<【分析】(1)由320320x x +>⎧⎨->⎩可解得结果;(2)()F x 是奇函数,根据奇函数的定义可证结论正确; (3)根据对数函数的单调性可解得结果. 【详解】 (1)由320320x x +>⎧⎨->⎩,解得3322x -<<,所以函数()F x 的定义域为33(,)22-.(2)()F x 是奇函数. 证明如下:x ∀∈33(,)22-,都有x -∈33(,)22-,因为 ()ln(32)ln(32)()F x x x F x -=--+=-, ∴()F x 是奇函数.(3)由()0F x >可得()()0f x g x ->,得ln(32)ln(32)0x x +-->,即ln(32)ln(32)x x +>-,由对数函数的单调性得32320x x ,解得302x <<.【点睛】易错点点睛:利用对数函数的单调性解对数不等式时,容易忽视函数的定义域. 24.(1)22m n =⎧⎨=⎩;(2)1λ≥-. 【分析】(1)根据()f x 是奇函数,即()()f x f x -=-即可求解实数m ,n 的值;(2)利用换元法,转化为二次函数的问题讨论最值恒成立即可求解实数λ的取值范围. 【详解】(1)当0x >时,()()()12f x x n x ⎡⎤-=-++⎢⎥-⎣⎦,因为()f x 为奇函数,()()f x f x ∴-=-,()()()1122f x x n m x x x ⎡⎤⎡⎤⎛⎫∴-=-++=-+-⎢⎥ ⎪⎢⎥-⎝⎭⎣⎦⎣⎦, 即()()1220m x n x ⎛⎫-++-= ⎪⎝⎭总成立. 2020m n -=⎧∴⎨-=⎩,22m n =⎧∴⎨=⎩, 又当0x <时,同理可得22m n =⎧⎨=⎩,综上:22m n =⎧∴⎨=⎩. (2)40x >,20x >,原不等式化为11242222042xx xxλλ⎛⎫⎛⎫+-++-≥ ⎪ ⎪⎝⎭⎝⎭, 令122xxt =+,则2t ≥, 原不等式进一步化为230t t λλ+--≥在2t ≥上恒成立. 记()23g t t t λλ=+--,[)2,t ∈+∞①当22λ-≤时,即4λ≥-时,()()min 210g t g λ==+≥,1λ∴≥-合理;②当22λ->时,即4<-λ时,()n2mi 3024g t g λλλ⎛⎫-=---≥ ⎪⎝⎭=,显然不成立.综上实数λ的取值范围为:1λ≥-. 【点睛】本题考查的知识点是分段函数的应用,指数函数的单调性,奇函数的性质,是函数图象和性质的综合应用,难度中档.25.(1){}31A B x x ⋂=-<≤;(2)[][)1,24,m ∈-+∞【分析】(1)计算{}35A x x =-<≤,{}51B x x =-<≤,再计算交集得到答案. (2)A B A ⋃=,故B A ⊆,讨论B =∅和B ≠∅,计算得到答案. 【详解】(1)(){}{}2log 3335A x x x x =+≤=-<≤,{}51B x x =-<≤,故{}31A B x x ⋂=-<≤.(2){}35A x x =-<≤,A B A ⋃=,故B A ⊆,当B =∅时,213m m -≥+,解得4m ≥; 当B ≠∅时,4m <,故21335m m -≥-⎧⎨+≤⎩,解得12m -≤≤.综上所述:[][)1,24,m ∈-+∞.【点睛】本题考查交集运算,根据集合的包含关系求参数,意在考查学生的计算能力和综合应用能力.26.(1)110;(2)-1 【分析】(1)原式化简为分数指数幂,计算结果;(2)根据对数运算公式化简求值. 【详解】 (1)原式113133234432222323-⎛⎫⎛⎫=+⨯+⨯- ⎪ ⎪⎝⎭⎝⎭113322210833⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭110=(2)原式()()22lg5lg 25lg 2lg 510lg5=⨯⨯-⋅⨯-()()lg52lg2lg5lg2lg512lg5=⨯+-⋅+-()22lg 2lg5lg5lg 2lg5lg 22lg5=⋅+-⋅--()()2lg 2lg5lg5lg 2lg5lg5=⋅+-+-()lg5lg2lg51lg5=⋅+--lg51lg51=--=-【点睛】本题考查指数幂和对数运算,重点考查计算能力,转化与变形,属于基础题型.。

新北师大版高中数学必修一第三单元《指数函数和对数函数》测试题(含答案解析)(3)

新北师大版高中数学必修一第三单元《指数函数和对数函数》测试题(含答案解析)(3)

一、选择题1.函数12xy ⎛⎫= ⎪⎝⎭的大致图象是( ). A . B .C .D .2.形如221n+(n 是非负整数)的数称为费马数,记为F n 数学家费马根据F 0,F 1,F 2,F 3,F 4都是质数提出了猜想:费马数都是质数.多年之后,数学家欧拉计算出F 5不是质数,请你估算F 5是( )位数(参考数据:lg2≈0.3010). A .8B .9C .10D .113.专家对某地区新冠肺炎爆发趋势进行研究发现,从确诊第一名患者开始累计时间t (单位:天)与病情爆发系数()f t 之间,满足函数模型:0.22(50)11()t f t e --=+,当()0.1f t =时,标志着疫情将要大面积爆发,则此时t 约为( )(参考数据: 1.13e ≈) A .38 B .40C .45D .474.若x ,y ,z 是正实数,满足2x =3y =5z ,试比较3x ,4y ,6z 大小( )A .3x >4y >6zB .3x >6z >4yC .4y >6z >3xD .6z >4y >3x5.已知函数3()22x f x =+,则111357(1)432234f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭( ) A .212B .214C .7D .1526.已知实数1212a ⎛⎫= ⎪⎝⎭,2log 3b =,4log 7c =,则a 、b 、c 的大小关系是( )A .c b a <<B .c a b <<C .b a c <<D .a c b <<7.函数1()1x f x a +=-恒过定点( )A .(1,1)B .(1,1)-C .(1,0)-D .(1,1)--8.已知3log 2a =,那么33log 82log 6-用a 表示是( ) A .52a -B .2a -C .23(1)a a -+D .231a a --9.已知()lg(10)lg(10)f x x x =++-,则()f x 是( ) A .偶函数,且在(0,10)是增函数 B .奇函数,且在(0,10)是增函数 C .偶函数,且在(0,10)是减函数D .奇函数,且在(0,10)是减函数10.若函数112xy m -⎛⎫=+ ⎪⎝⎭的图象与x 轴有公共点,则m 的取值范围是( )A .1m ≤-B .10m -≤<C .m 1≥D .01m <≤11.设()lg (21)fx x a =-+是奇函数,则使f(x)<0的x 的取值范围是( ).A .(-1,0)B .(0, 1)C .(-∞,0)D .(-∞,0)∪(1,+∞)12.函数()log (3)a f x ax =-在[]13,上单调递增,则a 的取值范围是( ) A .()1+∞, B .()01,C .103⎛⎫ ⎪⎝⎭,D .()3+∞, 二、填空题13.已知函数()2log f x x =,正实数m ,n 满足m n <,且()()f m f n =,若()f x 在区间2,m n ⎡⎤⎣⎦上的最大值为2,则m n +=________.14.若函数()22log 3y x ax a =-+在[2,)+∞上是单调增函数,则a 的取值范围是____________.15.若()2lg 2lg lg x y x y -=+,则2x y=______.16.已知1122x x-+=22165x x x x --+-=+-______.17.关于x 的不等式()()222log 1log 2x x ->-的解集为______.18.设函数()f x =,则()()()()()()543456f f f f f f -+-+-++++=_____.19.已知2336m n ==,则11m n+=______. 20.已知函数()()log 21101a y x a a =-+>≠,的图象过定点A ,若点A 也在函数()2x f x b =+的图象上,则()2log 3f =________. 三、解答题21.已知函数21()log 1x f x x +=-. (1)求函数()f x 的定义域并证明该函数是奇函数;(2)若当(1,)x ∈+∞时,2()()log (1)g x f x x =+-,求函数()g x 的值域. 22.计算:(1)1ln 224()9e-+; (2)()223lg 2lg5lg 20log 3log 4+⋅+⋅.23.已知函数()log (1)a f x x =+,()log (1)(0a g x x a =->,且1)a ≠. (1)求函数()()f x g x -的定义域;(2)判断函数()()f x g x -的奇偶性,并说明理由;(3)当2a =时,判断函数()()f x g x -的单调性,并给出证明.24.已知函数()12xf x ⎛⎫= ⎪⎝⎭,函数()2log g x x =. (1)若()22g mx x m ++的定义域为R ,求实数m 的取值范围;(2)当[]1,1x ∈-时,函数()()223y f x af x =-+⎡⎤⎣⎦的最小值为1,求实数a 的值. 25.已知函数()21log 1x f x x +=-, (1)求函数()y f x =的定义域; (2)证明:()y f x =是奇函数; (3)设()()()14h x f x f x =+,求函数()y h x =在[]3,7内的值域; 26.已知函数()f x 是定义在R 上的奇函数,当0x 时,()121xaf x =++. (1)求实数a 的值及()f x 的解析式; (2)求方程4|(1)|5f x -=的解.【参考答案】***试卷处理标记,请不要删除一、选择题1.A 解析:A 【分析】去绝对值符号后根据指数函数的图象与性质判断. 【详解】由函数解析式可得:1,022,0xx x y x ⎧⎛⎫≥⎪ ⎪=⎨⎝⎭⎪<⎩可得值域为:01y <≤, 由指数函数的性质知:在(),0-∞上单调递增;在()0,∞+上单调递减. 故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.2.C解析:C 【分析】根据所给定义表示出9.632951010F =⨯,进而即可判断出其位数. 【详解】 根据题意,53223232lg232lg2320.30109.6320.6329521212101010101010F ⨯=+=+≈==≈==⨯,因为0.63211010<<,所以5F 的位数是10. 故选:C 【点睛】关键点睛:解答本题的关键是转化成对数运算,即3232lg 2210=.3.B解析:B 【分析】 根据()0.1f t =列式求解即可得答案.【详解】 解:因为()0.1f t =,0.22(50)11()t f t e --=+,所以0.22(50)()0.111t f t e--==+,即0.22(50)011t e --=+,所以0.22(50)9t e --=,由于 1.13e ≈,故()21.12.29e e =≈,所以0.222().250t e e --=,所以()0.2250 2.2t --=,解得40t =. 故选:B. 【点睛】本题解题的关键在于根据题意得0.22(50)9t e --=,再结合已知 1.13e ≈得()21.12.29e e =≈,进而根据0.222().250t e e --=解方程即可得答案,是基础题.4.B解析:B 【分析】令235x y z t ===,则1t >,lg lg 2t x =,lg lg 3t y =,lg lg 5tz =,利用作差法能求出结果. 【详解】∵x 、y 、z 均为正数,且235x y z ==, 令235x y z t ===,则1t >, 故2lg log lg 2t x t ==,3lg log lg 3t y t ==,5lg log lg 5tz t ==, ∴()3lg lg5lg 4lg 2lg 3630lg 2lg5lg 2lg5t t t x z -⎛⎫-=-=>⎪⋅⎝⎭,即36x z >; ()2lg lg 27lg 253lg 2lg 6420lg5lg3lg3lg5t t t z y -⎛⎫-=-=> ⎪⋅⎝⎭,即64z y >, 即364x z y >>成立,故选:B. 【点睛】 关键点点睛:(1)将指数式转化为对数式; (2)利用作差法比较大小.5.B解析:B 【分析】先利用解析式计算3()(2)2f x f x +-=,再计算和式即可得到结果. 【详解】 因为3()22x f x =+, 所以2332(2)22224xx x f x -⋅-==+⋅+,()3323()(2)222222x x x f x f x ⋅+-=+=++.故1113573321(1)34322342224f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++=⨯+=⎪ ⎪ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. 故选:B. 【点睛】本题解题关键是通过指数式运算计算3()(2)2f x f x +-=,再配对求和即解决问题. 6.D解析:D 【分析】本题首先可根据2log 3b =以及2log c =得出b c >,然后根据1a <以及1c >得出c a >,即可得出结果.【详解】 因为2log 3b =,42log 7log 7c ,函数2log y x =在()0,∞+上是增函数,所以b c >,因为01211122a <⎛⎫⎛⎫= ⎪ ⎪⎝⎝⎭=⎭,44log 7log 41c , 所以c a >, 综上所述,a c b <<, 故选:D. 【点睛】指数、对数的大小比较,可通过寻找合适的单调函数来构建大小关系,不同类型的数比较大小,应找一个中间数,通过它实现大小关系的传递,考查计算能力,是中档题.7.C解析:C 【分析】根据指数函数性质求定点. 【详解】因为01a =,所以()011f a -=-=0,因此过定点()1,0-,选C.【点睛】本题考查指数函数性质以及定点问题,考查基本分析求解能力,属于基础题.8.B解析:B 【解析】试题分析:33333333log 82log 6log 22log 233log 22(log 2log 3)-=-⨯=-+3log 222a =-=-,所以答案选B .考点:指数对数的计算9.C解析:C 【分析】先判断函数的定义域关于原点对称,再由奇偶性的定义判断奇偶性,根据复合函数的单调判断其单调性,从而可得结论. 【详解】 由100100x x +>⎧⎨->⎩,得(10,10)x ∈-,故函数()f x 的定义域为()10,10-,关于原点对称,又()()lg 10lg(10)()f x x x f x -=-++=,故函数()f x 为偶函数, 而()()2lg(10)lg(10)lg 100f x x x x=++-=-,因为函数2100y x =-在()0,10上单调递减,lg y x =在()0,∞+上单调递增, 故函数()f x 在()0,10上单调递减,故选C. 【点睛】本题主要考查函数的奇偶性与单调性,属于中档题. 判断函数的奇偶性首先要看函数的定义域是否关于原点对称,如果不对称,既不是奇函数又不是偶函数,如果对称常见方法有:(1)直接法, ()()f x f x -=±(正为偶函数,负为减函数);(2)和差法,()()0f x f x -±=(和为零奇函数,差为零偶函数);(3)作商法,()()1f x f x -=±(1 为偶函数,1- 为奇函数) .10.B解析:B 【分析】11()+2x y m -=与x 有公共点,转化为11()2xy -=与y m =-有公共点,结合函数图象,可得结果. 【详解】11()+2x y m -=与x 有公共点,即11()2x y -=与y m =-有公共点,11()2xy -=图象如图可知0110m m <-≤⇒-≤< 故选:B 【点睛】本题考查了函数的交点问题,考查了运算求解能力和数形结合思想,属于基础题目.11.A解析:A 【解析】 试题分析:由()lg (21)fxx a =-+为奇函数,则()()f xf x -=-,可得1a =-,即()lg 11f x xx =+-,又()0f x<,即lg110xx+-<,可变为0111x x <+-<,解得10x -<<.考点:函数的奇偶性,对数函数性质,分式不等式.12.D解析:D 【分析】由题意可得可得1a >,且30a ->,由此求得a 的范围. 【详解】 解:函数()log (3)a f x ax =-在[]13,上单调递增,而函数()3t x ax =-在[]13,上单调递增,根据复合函数的单调性可得1a >,且30a ->,解得3a >,即()3a ∈+∞,故选:D . 【点睛】本题主要考查对数函数的定义域、单调性,复合函数的单调性,属于基础题.二、填空题13.【分析】先画出函数图像并判断再根据范围和函数单调性判断时取最大值最后计算得到答案【详解】如图所示:根据函数的图象得所以结合函数图象易知当时在上取得最大值所以又所以再结合可得所以故答案为:【点睛】本题解析:52【分析】先画出函数图像并判断01m n <<<,再根据范围和函数单调性判断2x=m 时取最大值,最后计算得到答案. 【详解】如图所示:根据函数2()log x f x =的图象得01m n <<<,所以201m m <<<.结合函数图象,易知当2x=m 时()f x 在2,m n ⎡⎤⎣⎦上取得最大值,所以()222log2f m m== 又01m <<,所以12m =, 再结合()()f m f n =,可得2n =,所以21522m n +=+=. 故答案为:52【点睛】本题考查对数型函数的图像和性质、函数的单调性的应用和最值的求法,是中档题.14.【分析】利用复合函数单调性的判断方法分内层和外层分别判断解出的取值范围【详解】由题意得设根据对数函数及复合函数单调性可知:在上是单调增函数且所以所以故答案为:【点睛】本题考查复合函数单调性的应用考查 解析:(4,4]-【分析】利用复合函数单调性的判断方法,分内层和外层分别判断,解出a 的取值范围. 【详解】由题意得,设2()3g x x ax a =-+,根据对数函数及复合函数单调性可知:()g x 在[)2,+∞上是单调增函数,且(2)0g >,所以2240aa ⎧≤⎪⎨⎪+>⎩,所以44a -<≤. 故答案为: (4,4]-【点睛】本题考查复合函数单调性的应用,考查对数函数的性质,考查学生运算求解能力,属于中档题.15.16【分析】由通过对数运算得出由此再求的值要注意定义域【详解】∵∴解得∴故答案为:16【点睛】本题主要考查对数的运算还考查了运算求解能力属于基础题解析:16 【分析】由()2lg 2lg lg x y x y -=+,通过对数运算得出4x y =,由此再求2x y的值.要注意定义域. 【详解】∵()2lg 2lg lg x y x y -=+,∴2(2)2000x y xy x y x y ⎧-=⎪->⎪⎨>⎪⎪>⎩, 解得4x y =,∴42216x y==.故答案为:16 【点睛】本题主要考查对数的运算,还考查了运算求解能力,属于基础题.16.【分析】对平方可得再平方可得即可求解【详解】两边同时平方得:所以对两边同时平方得:则故答案为:【点睛】此题考查指数式的化简求值进行整体变形处理利用平方关系得出等量关系解析:12-【分析】对1122x x -+=13x x -+=,再平方可得227x x -+=,即可求解. 【详解】1122x x-+=125x x -++=,所以13x x -+=对13x x -+=两边同时平方得:2229x x -++=,227x x -+=则22167615352x x x x --+--==-+--. 故答案为:12- 【点睛】此题考查指数式的化简求值,进行整体变形处理,利用平方关系得出等量关系.17.【分析】由对数函数的性质化对数不等式为一元二次不等式组求解【详解】由得解得∴不等式的解集为故答案为:【点睛】本题考查对数不等式的解法考查了对数函数的性质是基础题解析:(,1-∞-. 【分析】由对数函数的性质化对数不等式为一元二次不等式组求解. 【详解】由()()222log 1log 2x x ->-,得21220x xx ⎧->-⎨->⎩,解得1x <--∴不等式()()222log 1log 2x x ->-的解集为(,1-∞-.故答案为:(,1-∞-. 【点睛】本题考查对数不等式的解法,考查了对数函数的性质,是基础题.18.【分析】根据指数的运算律计算出的值由此可计算出所求代数式的值【详解】因此故答案为【点睛】本题考查指数幂的化简计算解题的关键在于观察代数式结构并计算出为定值考查计算能力属于中等题解析:【分析】根据指数的运算律计算出()()1f x f x +-=的值,由此可计算出所求代数式的值. 【详解】()f x =()1122xx f x ∴-====, ()()12x x x f x f x ∴+-=+===,因此,()()()()()()54345662f f f f f f -+-+-++++=⨯=.故答案为 【点睛】本题考查指数幂的化简计算,解题的关键在于观察代数式结构并计算出()()1f x f x +-为定值,考查计算能力,属于中等题.19.【分析】根据对数的定义和运算法则即可求解【详解】由可得所以所以故答案为:【点睛】本题主要考查对数的运算法则的应用考查了学生的计算能力属于中档题 解析:12【分析】根据对数的定义和运算法则即可求解. 【详解】由2336m n ==可得23log 36,log 36m n == 所以361log 2m =,361log 3n=, 所以363636111log 2log 3log 62m n +=+==, 故答案为:12【点睛】本题主要考查对数的运算法则的应用,考查了学生的计算能力,属于中档题.20.2【分析】先利用函数的解析式得出其图象必过哪一个定点再将该定点的坐标代入函数中求出最后即可求出相应的函数值得到结果【详解】因为函数的图象恒过定点将代入得所以所以则故答案为:【点睛】该题考查的是有关函解析:2 【分析】先利用函数log (21)1(0,1)a y x a a =-+>≠的解析式得出其图象必过哪一个定点,再将该定点的坐标代入函数()2xf x b =+中求出b ,最后即可求出相应的函数值2(log 3)f ,得到结果. 【详解】因为函数log (21)1(0,1)a y x a a =-+>≠的图象恒过定点(1,1), 将1,1x y ==代入()2xf x b =+,得121b +=,所以1b =-,所以()21xf x =-, 则2log 32(log 3)21312f =-=-=,故答案为:2. 【点睛】该题考查的是有关函数值的求解问题,涉及到的知识点有对数型函数图象过定点问题,点在函数图象上的条件,已知函数解析式求函数值,属于简单题目.三、解答题21.(1){1x x <-或}1x >,证明见解析;(2)()1,+∞. 【分析】(1)本题首先可通过求解101xx +>-得出函数()f x 的定义域,然后通过()()f x f x -=-证得函数()f x 是奇函数;(2)本题可根据题意将函数转化为2()log (1)g x x =+,然后通过当1x >时2log (1)1x +>即可求出函数()g x 的值域.【详解】(1)因为函数21()log 1x f x x +=-, 所以101xx +>-,解得1x <-或1x >, 则函数的定义域为{1x x <-或}1x >,且定义域关于原点对称, 因为222111()log log log ()111x x x f x f x x x x --+-===-=---+-, 所以函数()f x 为奇函数.(2)22221l ()()log (1)log (1)log (1)og 1g x x x f x x x x +=+-==-+-+, 当1x >时,22log (1)log 21x +>=,函数2()log (1)g x x =+是增函数, 故当(1,)x ∈+∞时,()1g x >,函数()g x 的值域为()1,+∞. 【点睛】方法点睛:判断或证明函数奇偶性,首先要判断函数的定义域是否关于原点对称,然后通过()()f x f x -=-判断函数是奇函数或者通过()()f x f x -=判断函数是偶函数. 22.(1)32;(2)3. 【分析】(1)利用指对数运算对数恒等式直接得解 (2)利用对数运算及换底公式得解. 【详解】(1)1ln 22433()22922e -++=+-=, (2)223(lg 2)lg 5lg 20log 3log 4+⋅+⋅.22(lg 2)lg 5(1lg 2)log 4(lg 2)(lg 2lg 5)lg 52=+⋅++=+++lg 2lg523=++=【点睛】解决对数运算问题的常用方法(1)将真数化为底数的指数幂的形式进行化简. (2)将同底对数的和、差、倍合并.(3)利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用.(4)利用常用对数中的lg 2lg51+=23.(1)(1,1)-;(2)是奇函数,理由见解析;(3)单调递增,证明见解析. 【分析】(1)由对数有意义的条件列出不等式组1010x x +>⎧⎨->⎩,解之即可;(2)由(1)知,函数()()f x g x -的定义域关于原点对称,再根据函数奇偶性的概念进行判断即可;(3)当2a =时,函数()()f x g x -单调递增.根据用定义证明函数单调性的“五步法”:任取、作差、变形、定号、下结论,即可得证. 【详解】 (1)10x +>,10x ->,11x ∴-<<,∴函数()()f x g x -的定义域为(1,1)-.(2)由(1)知,函数()()f x g x -的定义域关于原点对称,()()log (1)log (1)log (1)log (1)[()()]a a a a f x g x x x x x f x g x ---=-+-+=--+=--,∴函数()()f x g x -是奇函数.(3)当2a =时,函数()()f x g x -单调递增.理由如下: 当(1,1)x ∈-时,1()()log 1a x f x g x x+-=-, 设1211x x -<<<, 则2121211222112121211211111[()()][()()]log log log (?)log 11111aa a ax x x x x x x x f x g x f x g x x x x x x x x x +++-+-----=-==---+-+-,1211x x -<<<,2121x x x x ∴->-+,21122112110x x x x x x x x ∴+-->-+->, ∴21122112111x x x x x x x x +-->-+-,即211221121log 01ax x x x x x x x +-->-+-, 2211()()()()f x g x f x g x ∴->-,故当2a =时,函数()()f x g x -单调递增. 【点睛】本题考查函数的单调性与奇偶性的判断、对数的运算法则,熟练掌握用定义证明函数单调性和奇偶性的方法是解题的关键,考查学生的逻辑推理能力和运算求解能力,属于中档题. 24.(1)()1,+∞;(2)a =【分析】(1)由220mx x m ++>恒成立,得关于m 的不等式组,求解得答案;(2)令12xt ⎛⎫= ⎪⎝⎭,1,22t ⎡⎤∈⎢⎥⎣⎦,可得()223y t a a =-+-,1,22t ⎡⎤∈⎢⎥⎣⎦,根据二次函数的定义域和对称轴的关系分类讨论求最小值,进一步求得实数a 的值. 【详解】(1)()()2222log 2g mx x m mx x m ++=++, ∵()22g mx x m ++的定义域为R ,∴220mx x m ++>恒成立,当0m =时,不符合, 当0m ≠时,满足2440m m >⎧⎨∆=-<⎩,解得1m , ∴实数m 的取值范围为()1,+∞;(2)令12xt ⎛⎫= ⎪⎝⎭,当[]1,1x ∈-时,1,22t ⎡⎤∈⎢⎥⎣⎦, 则函数()()223y f x af x =-+⎡⎤⎣⎦化为()222233y t at t a a =-+=-+-,1,22t ⎡⎤∈⎢⎥⎣⎦. ①当2a >时,可得当2t =时y 取最小值,且min 741y a =-=,解得32a =(舍去); ②当122a ≤≤时,可得当t a =时y 取最小值,且2min 31y a =-=,解得a =a =③12a <时, 可得当12t =时y 取最小值,且min 1314y a =-=,解得94a =(舍去),综上,a =【点睛】本题考查对数函数的定义域,考查不等式的恒成立问题,考查二次函数的最值,属于中档题.25.(1)见解析;(2)见解析;(3)[]4,5 【分析】 (1)由不等式101x x +>-即可求出()f x 的定义域; (2)证明()()f x f x -=-可得()f x 为奇函数;(3)先求出()f x 在[]3,7上的值域,令()t f x =,求()14h t t t=+的值域.【详解】 (1)由101x x +>-得:1x >或1x <-, ()f x ∴的定义域为()(),11,-∞-+∞;(2)()()222111log log log 111x x x f x f x x x x -+-+-===-=---+-, ()f x ∴为奇函数;(3)()22log 11f x x ⎛⎫=+ ⎪-⎝⎭在[]3,7上单调递减,令()t f x =,则24log ,13t ⎡⎤∈⎢⎥⎣⎦, 而()14h t t t =+在10,2⎛⎤ ⎥⎝⎦单调递减,在1,12⎡⎤⎢⎥⎣⎦上单调递增, 又()2411log 15,4342h h h h ⎛⎫⎛⎫⎛⎫<=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ∴函数()h x 在[]3,7内的值域为[]4,5.【点睛】本题主要考查了对数型函数的定义域,奇偶性,考查了复合函数的单调性,值域求解,属于中档题.26.(1) 2a =-,()2121x x f x -=+;(2) 212log 3x =+或212log 3x =-【分析】(1)根据奇函数(0)0f =求解a ,再根据奇函数的性质求解()f x 的解析式即可.(2)根据(1)可得()2121x x f x -=+为奇函数,可先求解4|()|5f t =的根,再求解4|(1)|5f x -=即可.【详解】(1)因为()f x 是定义在R 上的奇函数,且当0x ≥时,()121xaf x =++,故0(0)1021a f =+=+,即102a +=,解得2a =-.故当0x ≥时,()22112121xx x f x -=-=++. 所以当0x < 时, ()()211221211221x x x x x x f x f x -----=--=-=-=+++. 故()2121x x f x -=+(2) 先求解4|()|5f t =,此时()214215t t f t -==±+.当()()214421521215t t t t -=⇒+=-+,即29t =解得22log 92log 3t ==.因为()2121x x f x -=+为奇函数,故当214215t t -=-+时, 22log 3t =-.故4|(1)|5f x -=的解为212log 3x -=或212log 3x -=-, 解得212log 3x =+或212log 3x =- 【点睛】本题主要考查了根据奇函数求解参数的值以及解析式的方法,同时也考查了根据函数性质求解绝对值方程的问题,属于中档题.。

北师大版高中数学必修一第三单元《指数函数和对数函数》测试(包含答案解析)

北师大版高中数学必修一第三单元《指数函数和对数函数》测试(包含答案解析)

一、选择题1.已知函数()()2log 2xf x m =+,则满足函数()f x 的定义域和值域都是实数集R 的实数m 构成的集合为 ( ) A .{}|0m m =B .{}0|m m ≤C .{}|0m m ≥D .{}|1m m =2.若函数()()23log 5f x x ax a =+++,()f x 在区间(),1-∞上是递减函数,则实数a的取值范围为( ) A .[]3,2-- B .[)3,2--C .(],2-∞-D .(),2-∞-3.函数()f x =的定义域是( ) A .(0,2)B .[2,)+∞C .(0,)+∞D .(,2)-∞4.设()|lg |f x x =,且0a b c <<<时,有()()()f a f c f b >>,则( ) A .(1)(1)0a c --> B .1ac >C .1ac =D .01ac <<5.函数()213log 23y x x =-++的单调递增区间是( )A .(]1,1-B .(1)∞-,C .[) 1,3D .(1)∞,+ 6.一种放射性元素最初的质量为500g ,按每年10%衰减.则这种放射性元素的半衰期为( )年.(注:剩余质量为最初质量的一半,所需的时间叫做半衰期),(结果精确到0.1,已知lg 20.3010=,lg30.4771=)A .5.2B .6.6C .7.1D .8.37.设52a -=,5log 2b =,8log 5c =,则( ) A .a b c <<B .b c a <<C .c b a <<D .c a b <<8.已知函数()f x 满足()()11f x f x -=+,当(],1-∞时,函数()f x 单调递减,设()41331=log ,log 3,92a f b f c f log ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,则,,a b c 的大小关系是( )A .a b c <<B .c a b <<C .a c b <<D .c b a <<9.已知235log log log 0x y z ==<,则2x 、3y 、5z的大小排序为 A .235x y z<<B .325y x z <<C .523z x y <<D .532z y x<<10.函数()log (2)a f x ax =-(0a >且1a ≠)在[]0,3上为增函数,则实数a 的取值范围是( ) A .2,13⎛⎫⎪⎝⎭B .(0,1)C .20,3⎛⎫ ⎪⎝⎭D .[)3,+∞11.若函数()()212log 45f x x x =-++在区间()32,2m m -+内单调递增,则实数m 的取值范围为( ) A .4,33⎡⎤⎢⎥⎣⎦B .4,23⎡⎤⎢⎥⎣⎦C .4,23⎡⎫⎪⎢⎣⎭D .4,3⎡⎫+∞⎪⎢⎣⎭12.已知0.22a =,0.20.4b =,0.60.4c =,则( )A .a b c >>B .a c b >>C .c a b >>D .b c a >>二、填空题13.已知()(3),1log ,1aa x a x f x x x --<⎧=⎨≥⎩的值域为R ,那么实数a 的取值范围是_________.14.函数()f x =的定义域为______.15.函数()22log 617y x x =-+的值域是__.16.已知函数()f x 满足()()1f x f x =-+,当()0,1x ∈时,函数()3xf x =,则13log 19f ⎛⎫= ⎪⎝⎭______. 17.已知函数2()log x f x =,实数,a b 满足0a b <<,且()()f a f b =,若()f x 在2,a b ⎡⎤⎣⎦上的最大值为2,则1b a+=________. 18.32a b-=________(其中0a >,0b >)19.设函数122,1()1log ,1x x f x x x -⎧≤=⎨->⎩,则满足()2f x ≤的x 的取值范围是_______________.20.已知函数()()log 21101a y x a a =-+>≠,的图象过定点A ,若点A 也在函数()2x f x b =+的图象上,则()2log 3f =________. 三、解答题21.已知函数()1,02,0x x x f x x +≤⎧=⎨>⎩(Ⅰ)求()()()1ff f -的值;(Ⅱ)画出函数()f x 的图象,根据图象写出函数()f x 的单调区间;(Ⅲ)若()112f x f x ⎛⎫+-> ⎪⎝⎭,求x 的取值范围.22.化简下列各式:(1)22.53105330.06438π-⎡⎤⎛⎫⎢⎥ ⎪⎢⎥⎝⎭⎣⎦;(2)2lg 2lg3111lg 0.36lg1624++⋅+ 23.定义在D 上的函数()f x ,如果满足:对任意x D ∈,存在常数0M >,都有()f x M ≤成立,则称()f x 是D 上的“有上界函数”,其中M 称为函数()f x 的上界.已知函数11()139x xf x a ⎛⎫⎛⎫=+⋅+ ⎪ ⎪⎝⎭⎝⎭.(1)当12a =-时,求函数()f x 在(,0)-∞上的值域,并判断函数()f x 在(,0)-∞上是否为“有上界函数”,请说明理由;(2)若函数()f x 在[0,)+∞上是以4为上界的“有上界函数”,求实数a 的取值范围.24.(1)求函数()22log 32y x x =-+的定义域;(2)求函数221y x x =-+-,[]2,2x ∈-的值域;(3)求函数223y x x =--的单调递增区间.25.已知函数()log (1)a f x x =+,()log (1)(0a g x x a =->,且1)a ≠. (1)求函数()()f x g x -的定义域;(2)判断函数()()f x g x -的奇偶性,并说明理由;(3)当2a =时,判断函数()()f x g x -的单调性,并给出证明.26.已知函数()12xf x ⎛⎫= ⎪⎝⎭,函数()2log g x x =. (1)若()22g mx x m ++的定义域为R ,求实数m 的取值范围;(2)当[]1,1x ∈-时,函数()()223y f x af x =-+⎡⎤⎣⎦的最小值为1,求实数a 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】若定义域为实数集R ,则20x m +>对于x ∈R 恒成立,可得0m ≥,若值域为实数集R ,令2x t m =+,则2log y t = 此时需满足2x t m =+的值域包括()0,∞+,可得0m ≤,再求交集即可. 【详解】若()()2log 2xf x m =+定义域为实数集R ,则20x m +>对于x ∈R 恒成立,即2x m >-对于x ∈R 恒成立, 因为20x >,所以20x -<,所以0m ≥, 令2x t m =+,则2log y t =若()()2log 2xf x m =+值域为实数集R ,则2x t m =+的值域包括()0,∞+, 因为t m >,所以0m ≤, 所以0m =, 故选:A 【点睛】关键点点睛:本题的关键点是要找到定义域为R 的等价条件即20x m +>对于x ∈R 恒成立,分离参数m 求其范围,值域为R 的等价条件即2x t m =+可以取遍所有大于0的数,由t m >,所以0m ≤,再求交集.2.A解析:A 【分析】判断复合函数的单调性,首先要分清楚内外层函数,根据复合函数“同增异减”原则,同时内层函数的值域要满足外层函数的定义域要求即可. 【详解】由题意知,()f x 在区间(),1-∞上是递减函数, 由()()23log 5f x x ax a =+++可知,此复合函数外层函数为:()3log f x x =,在定义域上为增函数, 内层函数为()25h x x ax a =+++,要使()f x 在区间(),1-∞上是递减函数, 根据复合函数“同增异减”原则,内层函数为()h x 在区间(),1-∞上必须是递减函数, 同时须保证最大值()10h ≥,所以()1210a h ⎧-≥⎪⎨⎪≥⎩,解得32a --≤≤. 故选:A. 【点睛】易错点睛:判断复合函数的单调性,根据复合函数“同增异减”原则,同时内层函数的值域要满足外层函数的定义域要求.3.A解析:A 【分析】根据函数的形式,直接列解析式有意义的不等式,求出函数的定义域. 【详解】由题意得,函数的定义域需满足02>0x x >⎧⎨-⎩,解得:02x <<所以函数的定义域是()0,2. 故选:A . 【点睛】方法点睛:常见的具体函数求定义域:(1)偶次根号下的被开方数大于等于0;(2)分母不为0;(3)对数函数中真数大于0.4.D解析:D 【分析】作出()f x 的图象,利用数形结合即可得到结论. 【详解】∵函数()|lg |f x x =,作出()f x 的图象如图所示,∵0a b c <<<时,有()()()f a f c f b >>,∴0<a <1,c >1,即f (a )=|lga |=﹣lga ,f (c )=|lgc |=lgc ,∵f (a )>f (c ), ∴﹣lga >lgc ,则lga +lgc =lgac <0,则01ac <<. 故选:D .【点睛】关键点点睛:利用对数函数的图象和性质,根据条件确定a ,c 的取值范围.5.C解析:C 【分析】由不等式2230x x -++>,求得函数的定义域()1,3-,令()223g x x x =-++,得到()g x 在区间(]1,1-上单调递增,在区间[1,3)上单调递减,结合复数函数的单调性的判定方法,即可求解. 【详解】由题意,函数213()log 23y x x =-++有意义,则满足2230x x -++>,即223(3)(1)0x x x x --=-+<,解得13x,即函数的定义域为()1,3-,令()223g x x x =-++,则函数()g x 表示开口向下,对称轴方程为1x =的抛物线, 所以函数()g x 在区间(]1,1-上单调递增,在区间[1,3)上单调递减, 又由函数13log y x =在定义上是递减函数,结合复数函数的单调性的判定方法,可得函数213()log 23y x x =-++的递增区间为[1,3). 故选:C. 【点睛】函数单调性的判定方法与策略:定义法:一般步骤:设元→作差→变形→判断符号→得出结论;图象法:如果函数()f x 是以图象形式给出或函数()f x 的图象易作出,结合图象可求得函数的单调区间;导数法:先求出函数的导数,利用导数值的正负确定函数的单调区间;复合函数法:先将函数(())y f g x =分解为()y f t =和()t g x =,再讨论这两个函数的单调性,最后根据复合函数“同增异减”的规则进行判定.6.B解析:B 【分析】先根据题意列出关于时间的方程,然后利用指对互化以及对数换底公式并结合所给数据可计算出半衰期. 【详解】设放射性元素的半衰期为x 年,所以()500110%250x-=, 所以()1110%2x-=,所以0.91log 2x =,所以109log 2x =, 所以lg 2lg10lg9x =-,所以lg 212lg 3x =-,所以0.3010120.4771x =-⨯,所以 6.6x ≈,故选:B. 【点睛】思路点睛:求解和对数有关的实际问题的思路: (1)根据题设条件列出符合的关于待求量的等式;(2)利用指对互化、对数运算法则以及对数运算性质、对数换底公式求解出待求量的值.7.A解析:A 【分析】由551112,2332log -<<<,8152log >,即可得出a ,b ,c 的大小关系. 【详解】52112243--<=<,11325551152532log log log =<<=,12881582log log >=,a b c ∴<<.故选:A 【点睛】本题主要考查了指数函数、对数函数的单调性,对数的运算性质,还考查了转化求解问题的能力,属于中档题.8.B解析:B 【分析】由()()11f x f x -=+可得函数()f x 关于直线1x =对称,根据对数的运算法则,结合函数的对称性,变形41log 2、13log 3、39log 到区间[)1,+∞内,由函数()f x 在[)1,+∞上单调递增,即可得结果. 【详解】根据题意,函数()f x 满足()()11f x f x -=+, 则函数()f x 关于直线1x =对称,又由当(],1-∞时,函数()f x 单调递减,则函数在[)1,+∞上单调递增, 又由()44115log log 2222a f f f f ⎛⎫⎛⎫⎛⎫==-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ()()13log 313b f f f ⎛⎫==-= ⎪⎝⎭,()()3log 92c f f ==,则有c a b <<,故选B.【点睛】在比较()1f x ,()2f x ,,()n f x 的大小时,首先应该根据函数()f x 的奇偶性(对称性)与周期性将()1f x ,()2f x ,,()n f x 通过等值变形将自变量置于同一个单调区间,然后根据单调性比较大小.9.A解析:A 【解析】x y z ,, 为正实数,且235log log log 0x y z ==<,111235235k k k x y z ---∴===,,,可得:1112352131,51k k k x y z---=>=>=>,. 即10k -> 因为函数1kf x x -=() 单调递增,∴235x y z<<. 故选A.10.C解析:C 【分析】根据对数函数性质与复合函数的单调性求解. 【详解】因为0a >且1a ≠,令2t ax =-,所以函数2t ax =-在[]0,3上为减函数, 所以函数log a y t =应是减函数,()f x 才可能是增函数, ∴01a <<,因为函数()f x 在[]0,3上为增函数,由对数函数性质知230a ->,即23<a , 综上023a <<. 故选:C . 【点睛】本题考查复合函数的单调性,掌握对数函数性质是解题关键,考查逻辑思维能力和计算能力,属于常考题.11.C解析:C 【分析】求得函数()y f x =的定义域,利用复合函数法求得函数()y f x =的单调递增区间,根据题意可得出区间的包含关系,由此可求得实数m 的取值范围. 【详解】解不等式2450x x -++>,即2450x x --<,解得15x -<<,内层函数245u x x =-++在区间()1,2-上单调递增,在区间()2,5上单调递减, 而外层函数12log y u =在定义域上为减函数,由复合函数法可知,函数()()212log 45f x x x =-++的单调递增区间为()2,5, 由于函数()()212log 45f x x x =-++在区间()32,2m m -+上单调递增,所以,32232225m m m m -≥⎧⎪-<+⎨⎪+≤⎩,解得423m ≤<.因此,实数m 的取值范围是4,23⎡⎫⎪⎢⎣⎭. 故选:C. 【点睛】本题考查利用对数型复合函数在区间上的单调性求参数,考查计算能力,属于中等题.12.A解析:A 【解析】分析:0.20.4b =, 0.60.4c =的底数相同,故可用函数()0.4xf x =在R 上为减函数,可得0.60.200.40.40.41<<=.用指数函数的性质可得0.20221a =>=,进而可得0.20.20.620.40.4>>.详解:因为函数()0.4xf x =在R 上为减函数,且0.2<0.4所以0.60.200.40.40.41<<= 因为0.20221a =>=. 所以0.20.20.620.40.4>>. 故选A .点睛:本题考查指数大小的比较,意在考查学生的转化能力.比较指数式的大小,同底数的可利用指数函数的单调性判断大小,底数不同的找中间量1,比较和1的大小.二、填空题13.【分析】分类讨论和结合已知和对数函数及一次函数的单调性得a 的不等式组求解即可【详解】解:若当时当时此时的值域不为R 不符合题意;若当时当时要使函数的值域为R 需使解得综上所述故答案为:【点睛】本题考查分解析:31,2⎛⎤⎥⎝⎦【分析】分类讨论01a <<和1a >,结合已知和对数函数及一次函数的单调性,得a 的不等式组求解即可. 【详解】 解:若01a <<, 当1≥x 时,log 0a x ≤,当1x <时,()3332a x a a a a --<--=-,此时f x ()的值域不为R ,不符合题意;若1a >,当1≥x 时,log 0a x ≥,当1x <时,要使函数f x ()的值域为R ,需使30log 13a a a a ->⎧⎨≤--⎩,解得332a a <⎧⎪⎨≤⎪⎩,312a ∴<≤, 综上所述,312a <≤, 故答案为:31,2⎛⎤⎥⎝⎦.【点睛】本题考查分段函数的值域及对数函数的性质,考查分类讨论思想与数学运算能力,是中档题.14.【分析】根据二次根式和对数式有意义的条件得到不等式组求解函数的定义域即可得结果【详解】根据题意可得:解得所以函数的定义域为故答案为:【点睛】该题考查的是有关求函数的问题涉及到的知识点有求给定函数的定 解析:(2,3]【分析】根据二次根式和对数式有意义的条件,得到不等式组求解函数的定义域即可得结果. 【详解】根据题意可得:1220log (2)0x x ->⎧⎪⎨-≥⎪⎩,解得23x <≤,所以函数()f x =(2,3],故答案为:(2,3]. 【点睛】该题考查的是有关求函数的问题,涉及到的知识点有求给定函数的定义域,在解题的过程中,注意二次根式和对数式需要满足的条件即可得结果.15.【分析】设转化为函数根据在上单调递增可求解【详解】设函数则函数∵在上单调递增∴当时最小值为故答案为:【点睛】本题考察了二次函数对数函数性质综合解决问题 解析:[)3,+∞【分析】设()2261738t x x x =-+=-+,转化为函数2log y t =,[)8,t ∈+∞,根据2log y t =在[)8,t ∈+∞上单调递增,可求解.【详解】设()2261738t x x x =-+=-+函数()22log 617y x x =-+,则函数2log y t =,[)8,t ∈+∞, ∵2log y t =,在[)8,t ∈+∞上单调递增, ∴当8t =时,最小值为2log 83=, 故答案为:[)3,+∞. 【点睛】本题考察了二次函数,对数函数性质,综合解决问题.16.【分析】由满足得到函数是以2为周期的周期函数结合对数的运算性质即可求解【详解】由题意函数满足化简可得所以函数是以2为周期的周期函数又由时函数且则故答案为:【点睛】函数的周期性有关问题的求解策略:求解解析:2719-【分析】由()fx 满足()()1f x f x =-+,得到函数()f x 是以2为周期的周期函数,结合对数的运算性质,即可求解. 【详解】由题意,函数()f x 满足()()1f x f x =-+,化简可得()()2f x f x =+, 所以函数()f x 是以2为周期的周期函数,又由()0,1x ∈时,函数()3xf x =,且()()1f x f x =-+,则133339(log 19)(log 19)(log 192)(log )19f f f f =-=-+= 327log 193392727(log 1)(log )3191919f f =-+=-=-=-.故答案为:2719- 【点睛】函数的周期性有关问题的求解策略:求解与函数的周期性有关问题,应根据题目特征及周期定义,求出函数的周期; 解决函数周期性、奇偶性和单调性结合问题,通常先利用周期性中为自变量所在区间,再利用奇偶性和单调性求解.17.4【分析】先画出函数图像并判断再根据范围和函数单调性判断时取最大值最后计算得到答案【详解】如图所示:根据函数的图象得所以结合函数图象易知当时在上取得最大值所以又所以再结合可得所以故答案为:4【点睛】解析:4 【分析】先画出函数图像并判断01a b <<<,再根据范围和函数单调性判断2x a =时取最大值,最后计算得到答案. 【详解】如图所示:根据函数2()log x f x =的图象得01a b <<<,所以201a a <<<.结合函数图象,易知当2=x a 时()f x 在2,a b ⎡⎤⎣⎦上取得最大值,所以()222log2f aa ==又01a <<,所以12a =, 再结合()()f a f b =,可得2b =,所以2241b a+=+=. 故答案为:4 【点睛】关键点睛:解题关键在于,作出对数函数2()log x f x =的图象,得到01a b <<<,进而求解,属于中档题18.【分析】根据指数幂的运算法则即可求解【详解】根据指数幂的运算法则可得故答案为:【点睛】指数幂运算的一般原则:(1)由括号的先算括号里的无括号的弦做指数运算;(2)弦乘除后加减负指数幂化为正指数幂的倒 解析:a【分析】根据指数幂的运算法则,即可求解. 【详解】212132()33113322a b aa a ba b----⨯===.故答案为:a . 【点睛】指数幂运算的一般原则:(1)由括号的先算括号里的,无括号的弦做指数运算; (2)弦乘除后加减,负指数幂化为正指数幂的倒数;(3)底数是负数,先确定符号,底数是小数,先化成分数,底数是带分数的,先化成假分数;(4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来求解.19.【分析】根据分段函数分段解不等式最后求并集【详解】当时因为解得:∴当时解得:所以综上原不等式的解集为故答案为:【点睛】本题主要考查了解分段函数不等式涉及指数与对数运算属于基础题 解析:[0,)+∞【分析】根据分段函数,分段解不等式,最后求并集. 【详解】当1x ≤时,1()2xf x -=,因为11x -≤,解得:0x ≥,∴01x ≤≤ ,当1x >时,2()1log 2f x x =-≤,2log 1x ≥-,解得:12x ≥,所以1x >,综上,原不等式的解集为[)0,+∞. 故答案为:[)0,+∞. 【点睛】本题主要考查了解分段函数不等式,涉及指数与对数运算,属于基础题.20.2【分析】先利用函数的解析式得出其图象必过哪一个定点再将该定点的坐标代入函数中求出最后即可求出相应的函数值得到结果【详解】因为函数的图象恒过定点将代入得所以所以则故答案为:【点睛】该题考查的是有关函解析:2 【分析】先利用函数log (21)1(0,1)a y x a a =-+>≠的解析式得出其图象必过哪一个定点,再将该定点的坐标代入函数()2xf x b =+中求出b ,最后即可求出相应的函数值2(log 3)f ,得到结果. 【详解】因为函数log (21)1(0,1)a y x a a =-+>≠的图象恒过定点(1,1), 将1,1x y ==代入()2xf x b =+,得121b +=,所以1b =-,所以()21xf x =-, 则2log 32(log 3)21312f =-=-=,故答案为:2. 【点睛】该题考查的是有关函数值的求解问题,涉及到的知识点有对数型函数图象过定点问题,点在函数图象上的条件,已知函数解析式求函数值,属于简单题目.三、解答题21.(Ⅰ)2;(Ⅱ)图象见解析,单调递增区间为(),-∞+∞;(Ⅲ)14x >-. 【分析】(Ⅰ)依次求出()1f -,()()1ff -,()()()1f f f -即可(Ⅱ)根据函数解析式即可画出图象,根据图象即可得出单调区间; (Ⅲ)分段讨论可解出不等式. 【详解】解:(Ⅰ)()1110f -=-+=,所以()()1011ff -=+=, 所以()()()1122f f f -==;(Ⅱ)函数图象如下:由图可知,()f x 的单调递增区间为(),-∞+∞,无单调递减区间; (Ⅲ)①当0x ≤时,102x -≤, 所以()1f x x =+,1111222f x x x ⎛⎫⎛⎫-=-+=+ ⎪ ⎪⎝⎭⎝⎭ 所以()132122f x f x x ⎛⎫+-=+> ⎪⎝⎭,解得14x >-, 所以014x -<≤; ②当102x <≤时,102x -<, 所以()2xf x =,1111222f x x x ⎛⎫⎛⎫-=-+=+ ⎪ ⎪⎝⎭⎝⎭, 所以()112122xf x f x x ⎛⎫+-=++> ⎪⎝⎭显然成立, 所以102x <≤符合题意; ③当12x >时,102x ->, 所以()2xf x =,12122x f x ⎛⎫- ⎪⎝⎭⎛⎫-= ⎪⎝⎭,所以()1212212x xf x f x ⎛⎫- ⎪⎝⎭⎛⎫+-=+> ⎪⎝⎭显然成立,所以12x >符合题意, 综上所述:x 的取值范围为1,4⎛⎫-+∞ ⎪⎝⎭. 【点睛】关键点睛:本题考查函数不等式的求解,解题的关键是分段讨论x 的取值范围,根据不同范围函数的解析式求解. 22.(1)0;(2)1. 【分析】(1)根据指数幂的运算性质,准确运算,即可求解; (2)根据对数的运算性质,准确运算,即可求解. 【详解】(1)根据指数幂的运算性质,可得原式22.5311536427110008-⎧⎫⎡⎤⎪⎪⎛⎫⎛⎫⎢⎥=--⎨⎬ ⎪⎪⎢⎥⎝⎭⎝⎭⎪⎪⎣⎦⎩⎭ 1521335233431102⎛⎫⨯- ⎪⎝⎭⨯⎡⎤⎡⎤⎛⎫⎛⎫=--⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦531022=--=. (2)由对数的运算性质,可得原式242lg 2lg32lg 2lg311231lg 0.6lg 21lg lg 22410++==⨯++++ 2lg 2lg 32lg 2lg 311lg 2lg 3lg10lg 22lg 2lg 3++===++-++. 【点睛】本题主要考查了指数幂和对数的运算性质的化简、求值,其中解答中熟记指数幂与对数的运算性质,准确运算是解答的关键,着重考查运算与求解能力. 23.(1)值域为3,2⎛⎫+∞ ⎪⎝⎭,不是“有上界函数”;理由见解析;(2)(,2]-∞ 【分析】(1)把12a =-代入函数的表达式,令13xt ⎛⎫= ⎪⎝⎭,可得1t >,可求出2112y t t =-+的值域,即为()f x 在(,0)-∞的值域,结合“有上界函数”的定义进行判断即可;(2)由题意知,()4f x ≤对[0,)x ∈+∞恒成立,令13xt ⎛⎫= ⎪⎝⎭,可得(0,1]t ∈,整理得3a t t ⎛⎫≤- ⎪⎝⎭对(0,1]t ∈恒成立,只需min 3a t t ⎛⎫≤- ⎪⎝⎭即可.【详解】(1)当12a =-时,111()1239x xf x ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭,令13xt ⎛⎫= ⎪⎝⎭,0x <,1t ∴>,2112y t t =-+, 2112y t t =-+在(1,)+∞上单调递增,111232y -∴>+=,即()f x 在(,0)-∞的值域为3,2⎛⎫+∞⎪⎝⎭, 故不存在常数0M >,使()f x M ≤成立. ∴函数()f x 在(,0)-∞上不是“有上界函数” (2)由题意知,()4f x ≤对[0,)x ∈+∞恒成立,令13xt ⎛⎫= ⎪⎝⎭,0x ≥,(0,1]t ∴∈,214at t ∴++≤对(0,1]t ∈恒成立,即3a t t ⎛⎫≤-⎪⎝⎭对(0,1]t ∈恒成立, 设3()g t t t=-,易知()g t 在(0,1]t ∈上递减, ()g t ∴在(0,1]t ∈上的最小值为(1)2g =.∴min ()2a g t ≤=,∴实数a 的取值范围为(,2]-∞ 【点睛】本题考查新定义,考查函数的值域与最值,考查学生的推理能力与计算求解能力,属于中档题.24.(1)()(),12,-∞⋃+∞;(2)[]9,0-;(3)[]1,1-,[)3,+∞. 【分析】(1)解不等式2320x x -+>可求得函数()22log 32y x x =-+的定义域;(2)利用二次函数的基本性质可求得函数221y x x =-+-,[]2,2x ∈-的值域;(3)将函数223y x x =--的解析式表示为分段函数,利用二次函数的基本性质可求得原函数的单调递增区间. 【详解】(1)对于函数()22log 32y x x =-+,有2320x x -+>,解得1x <或2x >. 因此,函数()22log 32y x x =-+的定义域为()(),12,-∞⋃+∞;(2)当[]2,2x ∈-时,()[]222119,0y x x x =-+-=--∈-,因此,函数221y x x =-+-,[]2,2x ∈-的值域为[]9,0-;(3)解不等式2230x x -->,解得1x <-或3x >,所以,222223,12323,1323,3x x x y x x x x x x x x ⎧--<-⎪=--=-++-≤≤⎨⎪-->⎩.二次函数223y x x =--的图象开口向上,对称轴为直线1x =. 当1x <-时,函数223y x x =--单调递减;当13x -≤≤时,函数2y x 2x 3=-++在区间[]1,1-上单调递增,在区间[]1,3上单调递减;当3x >时,函数223y x x =--单调递增.综上所述,函数223y x x =--的单调递增区间为[]1,1-,[)3,+∞.【点睛】本题考查与二次函数相关问题的求解,考查了对数型复合函数的定义域、二次函数的值域以及含绝对值的二次函数单调区间的求解,考查计算能力,属于中等题. 25.(1)(1,1)-;(2)是奇函数,理由见解析;(3)单调递增,证明见解析. 【分析】(1)由对数有意义的条件列出不等式组1010x x +>⎧⎨->⎩,解之即可;(2)由(1)知,函数()()f x g x -的定义域关于原点对称,再根据函数奇偶性的概念进行判断即可;(3)当2a =时,函数()()f x g x -单调递增.根据用定义证明函数单调性的“五步法”:任取、作差、变形、定号、下结论,即可得证. 【详解】 (1)10x +>,10x ->,11x ∴-<<,∴函数()()f x g x -的定义域为(1,1)-.(2)由(1)知,函数()()f x g x -的定义域关于原点对称,()()log (1)log (1)log (1)log (1)[()()]a a a a f x g x x x x x f x g x ---=-+-+=--+=--,∴函数()()f x g x -是奇函数.(3)当2a =时,函数()()f x g x -单调递增.理由如下: 当(1,1)x ∈-时,1()()log 1a x f x g x x+-=-, 设1211x x -<<<, 则2121211222112121211211111[()()][()()]log log log (?)log 11111aa a ax x x x x x x x f x g x f x g x x x x x x x x x +++-+-----=-==---+-+-,1211x x -<<<,2121x x x x ∴->-+,21122112110x x x x x x x x ∴+-->-+->,∴21122112111x x x x x x x x +-->-+-,即211221121log 01ax x x x x x x x +-->-+-, 2211()()()()f x g x f x g x ∴->-,故当2a =时,函数()()f x g x -单调递增. 【点睛】本题考查函数的单调性与奇偶性的判断、对数的运算法则,熟练掌握用定义证明函数单调性和奇偶性的方法是解题的关键,考查学生的逻辑推理能力和运算求解能力,属于中档题. 26.(1)()1,+∞;(2)a =【分析】(1)由220mx x m ++>恒成立,得关于m 的不等式组,求解得答案;(2)令12xt ⎛⎫= ⎪⎝⎭,1,22t ⎡⎤∈⎢⎥⎣⎦,可得()223y t a a =-+-,1,22t ⎡⎤∈⎢⎥⎣⎦,根据二次函数的定义域和对称轴的关系分类讨论求最小值,进一步求得实数a 的值. 【详解】(1)()()2222log 2g mx x m mx x m ++=++, ∵()22g mx x m ++的定义域为R ,∴220mx x m ++>恒成立,当0m =时,不符合, 当0m ≠时,满足2440m m >⎧⎨∆=-<⎩,解得1m , ∴实数m 的取值范围为()1,+∞;(2)令12xt ⎛⎫= ⎪⎝⎭,当[]1,1x ∈-时,1,22t ⎡⎤∈⎢⎥⎣⎦, 则函数()()223y f x af x =-+⎡⎤⎣⎦化为()222233y t at t a a =-+=-+-,1,22t ⎡⎤∈⎢⎥⎣⎦. ①当2a >时,可得当2t =时y 取最小值,且min 741y a =-=,解得32a =(舍去); ②当122a ≤≤时, 可得当t a =时y 取最小值,且2min 31y a =-=,解得a =a =③12a <时,可得当12t=时y取最小值,且min1314y a=-=,解得94a=(舍去),综上,a=【点睛】本题考查对数函数的定义域,考查不等式的恒成立问题,考查二次函数的最值,属于中档题.。

最新北师大版高中数学必修一第三单元《指数函数和对数函数》测试题(有答案解析)(1)

最新北师大版高中数学必修一第三单元《指数函数和对数函数》测试题(有答案解析)(1)

一、选择题1.已知函数()()2log 2xf x m =+,则满足函数()f x 的定义域和值域都是实数集R 的实数m 构成的集合为 ( ) A .{}|0m m =B .{}0|m m ≤C .{}|0m m ≥D .{}|1m m =2.已知函数2()log x f x =,在[116,m ]上的值域为[0,4],2m f ⎛⎫⎪⎝⎭的取值范围是( ) A .[1,2]B .[0,2]C .[1,3]D .[0,3]3.我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微:数形结合百般好,隔离分家万事休”.在数学学习中和研究中,常用函数的图象来研究函数的性质,页常用函数的解析式来琢磨函数图象的特征,如函数()22xy xx R =-∈的大致图象是( )A .B .C .D .4.函数()()221lg 21xxx f x -=+的部分图象大致为( )A .B .C .D .5.已知函数3()22x f x =+,则111357(1)432234f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭( ) A .212 B .214C .7D .1526.已知235log log log 0x y z ==<,则2x 、3y 、5z的大小排序为 A .235x y z<< B .325y x z << C .523z x y<< D .532z y x<< 7.函数2y 34x x =--+ )A .(41)--,B .(41)-,C .(11)-,D .(11]-, 8.已知函数()2,01,0x x f x x x >⎧=⎨+≤⎩,若()()10f a f +=,则实数a 的值等于( )A .-3B .-1C .1D .39.设()lg (21)fx x a =-+是奇函数,则使f(x)<0的x 的取值范围是( ).A .(-1,0)B .(0, 1)C .(-∞,0)D .(-∞,0)∪(1,+∞)10.函数()log (3)a f x ax =-在[]13,上单调递增,则a 的取值范围是( ) A .()1+∞, B .()01,C .103⎛⎫ ⎪⎝⎭,D .()3+∞, 11.函数2ln 8x y x =-的图象大致为( )A .B .C .D .12.计算log 916·log 881的值为( ) A .18B .118C .83D .38二、填空题13.已知21()1,()log 2xf xg x x m ⎛⎫=+=+ ⎪⎝⎭,若()()1212[1,3],[1,3],x x f x g x ∀∈∃∈≥,则实数m 的取值范围是_______.14.已知函数2223,1,()log (6),1x mx x f x x m x ⎧---≤=⎨+>⎩在(,)-∞+∞上是单调函数,则m 的取值范围是__.15.函数()()()212log 24f x ax x a R =-+∈,若()f x 的值域为(],1-∞,则a 的值为______.16.已知函数1(2)1,2(),2x a x x f x a x --+<⎧=⎨≥⎩,在R 上单调递增,则实数a 的取值范围是_______.17.已知1a b >>,若10log log 3a b b a +=,b a a b =,则ab =___________.18.32a b-=________(其中0a >,0b >)19.设实数x 满足01x <<,且2log 4log 1x x -=,则x =______.20.设函数122,1()1log ,1x x f x x x -⎧≤=⎨->⎩,则满足()2f x ≤的x 的取值范围是_______________.三、解答题21.已知()11,04ln 1,?4x f x a x x x ⎧-<≤⎪=⎨⎪->⎩(1)若函数()f x 在21,2e ⎡⎤⎢⎥⎣⎦的最大值为2,求a 的值;(2)若25a =,求不等式()1f x <的解集. 22.已知函数()2221log 2m x f x x -=-(0m >且1m ≠)(1)求()f x 的解析式;(2)判断函数()f x 的奇偶性,并说明理由;(3)若关于x 的方程()1log m f x x =+有解,求m 的取值范围. 23.设函数()log (1)log (3)(0,1)a a f x x x a a =++->≠. (1)求函数()f x 的定义域(2)若(1)2f =,求函数()f x 在区间3[0,]2上的最大值. (3)解不等式:log (1)log (3)a a x x +>-. 24.已知函数21()log 1x f x x +=-. (1)求函数()f x 的定义域并证明该函数是奇函数;(2)若当(1,)x ∈+∞时,2()()log (1)g x f x x =+-,求函数()g x 的值域.25.已知函数()1,02,0x x x f x x +≤⎧=⎨>⎩(Ⅰ)求()()()1ff f -的值;(Ⅱ)画出函数()f x 的图象,根据图象写出函数()f x 的单调区间;(Ⅲ)若()112f x f x ⎛⎫+-> ⎪⎝⎭,求x 的取值范围.26.已知函数214()log (238)f x mx x m =-+. (Ⅰ)当1m =时,求函数()f x 在1[,2]2上的值域;(Ⅱ)若函数()f x 在(4,)+∞上单调递减,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】若定义域为实数集R ,则20x m +>对于x ∈R 恒成立,可得0m ≥,若值域为实数集R ,令2x t m =+,则2log y t = 此时需满足2x t m =+的值域包括()0,∞+,可得0m ≤,再求交集即可. 【详解】若()()2log 2xf x m =+定义域为实数集R ,则20x m +>对于x ∈R 恒成立,即2x m >-对于x ∈R 恒成立, 因为20x >,所以20x -<,所以0m ≥, 令2x t m =+,则2log y t =若()()2log 2xf x m =+值域为实数集R ,则2x t m =+的值域包括()0,∞+, 因为t m >,所以0m ≤, 所以0m =, 故选:A 【点睛】关键点点睛:本题的关键点是要找到定义域为R 的等价条件即20x m +>对于x ∈R 恒成立,分离参数m 求其范围,值域为R 的等价条件即2x t m =+可以取遍所有大于0的数,由t m >,所以0m ≤,再求交集.2.D解析:D 【分析】由对数函数的单调性可得[]1,16m ∈,再结合对数函数的性质即可得解. 【详解】由题意,函数2()log x f x =在(]0,1上单调递减,在[)1,+∞上单调递增, 且()116416f f ⎛⎫==⎪⎝⎭,()10f =, 结合该函数在1,16m ⎡⎤⎢⎥⎣⎦上的值域为[0,4]可得[]1,16m ∈, 所以1,822m ⎡⎤∈⎢⎥⎣⎦,[]2lo 2g 0,32m m f ⎛⎫= ⎪⎝∈⎭.故选:D. 【点睛】关键点点睛:解决本题的关键是由对数函数的图象变换及单调性确定[]1,16m ∈,即可得解.3.A解析:A 【分析】分析函数()()22xf x xx R =-∈的奇偶性,结合()01f =可得出合适的选项.【详解】令()22=-xf x x ,该函数的定义域为R ,()()()2222xxf x x x f x --=--=-=,函数()22=-xf x x 为偶函数,排除B 、D 选项;又()010f =>,排除C 选项. 故选:A. 【点睛】函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)从函数的特征点,排除不合要求的图象.4.B解析:B 【分析】求出函数()f x 的定义域,分析函数()f x 的奇偶性及其在区间()0,1上的函数值符号,进而可得出合适的选项. 【详解】 函数()()221lg 21xxx f x -=+的定义域为{}0x x ≠,()()()()()()()22221lg 221lg 12lg 2112221xx x xx xxxx x x f x f x ---------====-+++,函数()f x 为奇函数,当01x <<时,201x <<,则2lg 0x <,210x ->,210x +>,()0f x ∴<.因此,函数()f x 的图象如B 选项中的图象. 故选:B. 【点睛】函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)从函数的特征点,排除不合要求的图象.5.B解析:B 【分析】先利用解析式计算3()(2)2f x f x +-=,再计算和式即可得到结果. 【详解】 因为3()22x f x =+,所以2332(2)22224xx x f x -⋅-==+⋅+,()3323()(2)222222x x x f x f x ⋅+-=+=++. 故1113573321(1)34322342224f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++=⨯+=⎪ ⎪ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. 故选:B. 【点睛】本题解题关键是通过指数式运算计算3()(2)2f x f x +-=,再配对求和即解决问题. 6.A解析:A 【解析】x y z ,, 为正实数,且235log log log 0x y z ==<,111235235k k k x y z ---∴===,,,可得:1112352131,51k kk x y z ---=>=>=>,. 即10k -> 因为函数1kf x x -=() 单调递增,∴235x y z<<.故选A.7.C解析:C 【解析】要使函数有意义,需使210{340x x x +>--+>,即1{41x x >--<<,所以1 1.x -<<故选C8.A解析:A 【分析】先求得()1f 的值,然后根据()f a 的值,求得a 的值. 【详解】由于()1212f =⨯=,所以()()20,2f a f a +==-,22a =-在()0,∞+上无解,由12a +=-解得3a =-,故选A.【点睛】本小题主要考查分段函数求函数值,考查已知分段函数值求自变量,属于基础题.9.A解析:A 【解析】 试题分析:由()lg (21)fxx a =-+为奇函数,则()()f xf x-=-,可得1a =-,即()lg 11f x x x =+-,又()0f x<,即lg110xx+-<,可变为0111x x <+-<,解得10x -<<.考点:函数的奇偶性,对数函数性质,分式不等式.10.D解析:D 【分析】由题意可得可得1a >,且30a ->,由此求得a 的范围. 【详解】 解:函数()log (3)a f x ax =-在[]13,上单调递增,而函数()3t x ax =-在[]13,上单调递增,根据复合函数的单调性可得1a >,且30a ->,解得3a >,即()3a ∈+∞,故选:D . 【点睛】本题主要考查对数函数的定义域、单调性,复合函数的单调性,属于基础题.11.D解析:D 【分析】先根据偶函数性质排除B ,再考虑当0x >且0x →时,y →+∞,排除A.再用特殊值法排除C ,即可得答案. 【详解】解:令()2ln 8x f x y x ==-,则函数定义域为{}0x x ≠ ,且满足()()f x f x -=,故函数()f x f (x )为偶函数,排除选项B ; 当0x >且0x →时,y →+∞,排除选项A ;取特殊值x =1ln 1ln 0y e =-<-=,排除选项C. 故选:D. 【点睛】本题考查利用函数解析式选函数图象问题,考查函数的基本性质,是中档题.12.C解析:C 【分析】根据对数的运算性质,换底公式以及其推论即可求出.【详解】原式=23443232448log 2log 3log 2log 3233⋅=⋅=. 故选:C . 【点睛】本题主要考查对数的运算性质,换底公式以及其推论的应用,属于基础题.二、填空题13.【分析】求出函数在上的最值最后根据题意列出不等式进行求解即可【详解】当时因此;当时因此因为所以有即故答案为:【点睛】本题考查了求指数型函数和对数型函数的最小值考查了存在性和任意性的概念的理解考查了数解析:9,8⎛⎤-∞⎥⎝⎦【分析】求出函数(),()f x g x 在[1,3]x ∈上的最值,最后根据题意列出不等式进行求解即可. 【详解】当[1,3]x ∈时,11[,1]28x⎛⎫∈ ⎪⎝⎭,因此9()[,2]8f x ∈;当[1,3]x ∈时,22(log )[0,log 3]x ∈,因此2()[,log 3]g x m m ∈+, 因为()()1212[1,3],[1,3],x x f x g x ∀∈∃∈≥,所以有min min ()()f x g x ≥, 即9988m m ≥⇒≤. 故答案为:9,8⎛⎤-∞ ⎥⎝⎦【点睛】本题考查了求指数型函数和对数型函数的最小值,考查了存在性和任意性的概念的理解,考查了数学运算能力.14.【分析】根据对数部分函数为单调递增所以整个函数为递增函数两段函数各自递增且左段的右端点小于等于右段的左端点即可求得的取值范围【详解】函数在上是单调函数因为当时为增函数所以整个函数在上是单调递增函数因 解析:[5,4]--【分析】根据对数部分函数为单调递增,所以整个函数为递增函数.两段函数各自递增,且左段的右端点小于等于右段的左端点,即可求得m 的取值范围. 【详解】函数2223,1,()log (6),1x mx x f x x m x ⎧---≤=⎨+>⎩在(,)-∞+∞上是单调函数因为当1x >时, 2()log (6)f x x m =+为增函数,所以整个函数在(,)-∞+∞上是单调递增函数因而满足60x m +>对1x >恒成立,则6m ≥-. 当1x ≤时,2()23f x x mx =---为增函数,则14m -≥ 即2614(1)log (6)m mf m ≥-⎧⎪⎪-≥⎨⎪≤+⎪⎩,即2645log (6)0m m m m ≥-⎧⎪≤-⎨⎪+++≥⎩因为2()5log (6)g x x x =+++在(6,)-+∞为增函数,且(5)0g -=, 所以5m ≥-.综上可知54m -≤≤-,即[5,4]m ∈-- 故答案为:[5,4]-- 【点睛】本题考查了分段函数的单调性判断,根据函数单调性求参数的取值范围,属于中档题.15.【分析】根据对数的性质可知且最小值为即可求得的值【详解】因为的值域为所以函数的最小值为即解得故答案为:【点睛】本题考查对数函数的值域考查对数的性质合理转化是解题的关键考查了运算能力属于中档题 解析:27【分析】根据对数的性质可知2240y ax x =-+>,且最小值为1,即可求得a 的值.【详解】因为()()()212log 24f x ax x a R =-+∈的值域为(],1-∞,所以2240ax x -+>, 函数224y ax x =-+的最小值为12,即()20442142a a a >⎧⎪⎨⨯--=⎪⎩,解得27a =,故答案为:27【点睛】本题考查对数函数的值域,考查对数的性质,合理转化是解题的关键,考查了运算能力,属于中档题.16.【分析】根据分段函数单调性列出各段为增函数的条件并注意两段分界处的关系即可求解【详解】函数在R 上单调递增则需满足(1)当时函数单调递增;则(2)当时函数单调递增;则(3)函数在两段分界处满足即所以满 解析:23a <≤【分析】根据分段函数单调性,列出各段为增函数的条件,并注意两段分界处的关系,即可求解. 【详解】函数1(2)1,2(),2x a x x f x a x --+<⎧=⎨≥⎩,在R 上单调递增则需满足(1)当2x <时,函数()f x 单调递增;则2a > (2)当2x ≥时,函数()f x 单调递增;则1a >(3)函数()f x 在两段分界处2x =,满足()21221a a --⨯+≤,即3a ≤所以满足条件的实数a 的范围是23a <≤ 故答案为:23a <≤ 【点睛】关键点睛:本题考查由函数的单调性求参数范围,解答本题的关键是分段函数在上单调递增,从图象上分析可得从左到右函数图象呈上升趋势,即函数()f x 在[)2+∞,上的最小值大于等于函数在(),2-∞上的最大值.则()21221a a --⨯+≤,这是容易忽略的地方,属于中档题.17.9【分析】由对数的运算性质解并整理得由可求出的值【详解】解:整理得解得或因为所以则即因为所以所以解得或因为所以所以所以故答案为:9【点睛】关键点睛:本题主要考查对数运算和指数运算解题的关键是由得出再解析:9 【分析】由对数的运算性质解10log log 3a b b a +=并整理得3a b =,由b a a b =可求出,a b 的值. 【详解】解:110log log log log 3a b b b b a a a +=+=,整理得()23log 10log 30b b a a -+=, 解得log 3b a =或13,因为1a b >>,所以log 1b a >,则log 3b a =,即3a b =,因为b a a b =,所以33b b b b =,所以33b b =,解得b =0,因为1b >,所以b =所以3a ==,所以9ab ==. 故答案为:9. 【点睛】关键点睛:本题主要考查对数运算和指数运算,解题的关键是由10log log 3a b b a +=得出3a b =,再根据指数运算求解.18.【分析】根据指数幂的运算法则即可求解【详解】根据指数幂的运算法则可得故答案为:【点睛】指数幂运算的一般原则:(1)由括号的先算括号里的无括号的弦做指数运算;(2)弦乘除后加减负指数幂化为正指数幂的倒 解析:a【分析】根据指数幂的运算法则,即可求解. 【详解】212132()33113322a b aa a ba b----⨯===.故答案为:a . 【点睛】指数幂运算的一般原则:(1)由括号的先算括号里的,无括号的弦做指数运算; (2)弦乘除后加减,负指数幂化为正指数幂的倒数;(3)底数是负数,先确定符号,底数是小数,先化成分数,底数是带分数的,先化成假分数;(4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来求解.19.【分析】利用换底公式和对数运算法则可将方程转化为解方程求得或进而结合的范围求得结果【详解】即解得:或或故答案为:【点睛】本题考查对数方程的求解问题涉及到对数运算法则和换底公式的应用;考查基础公式的应解析:14【分析】利用换底公式和对数运算法则可将方程转化为222log 1log x x-=,解方程求得2log 2x =-或2log 1x =,进而结合x 的范围求得结果.【详解】22log 42log 2log x x x ==2222log 4log log 1log x x x x∴-=-= 即()222log log 20x x +-=,解得:2log 2x =-或2log 1x = 14x ∴=或2x = 01x << 14x ∴=故答案为:14【点睛】本题考查对数方程的求解问题,涉及到对数运算法则和换底公式的应用;考查基础公式的应用能力.20.【分析】根据分段函数分段解不等式最后求并集【详解】当时因为解得:∴当时解得:所以综上原不等式的解集为故答案为:【点睛】本题主要考查了解分段函数不等式涉及指数与对数运算属于基础题 解析:[0,)+∞【分析】根据分段函数,分段解不等式,最后求并集. 【详解】当1x ≤时,1()2xf x -=,因为11x -≤,解得:0x ≥,∴01x ≤≤ ,当1x >时,2()1log 2f x x =-≤,2log 1x ≥-,解得:12x ≥,所以1x >, 综上,原不等式的解集为[)0,+∞. 故答案为:[)0,+∞. 【点睛】本题主要考查了解分段函数不等式,涉及指数与对数运算,属于基础题.三、解答题21.(1)49a =;(2)()220,4,3e ⎛⎫⎪⎝⎭【分析】(1)由函数ln 1y x =-在(24,e ⎤⎦上是增函数且max 1y =,故根据题意得函数111,42y x a x =-<≤的最大值为2,再根据函数单调性即可得1124a -=,解得49a =. (2)根据题意得()51,042ln 1,?4x f x x x x ⎧-<≤⎪=⎨⎪->⎩,进而分045112x x<≤⎧⎪⎨-<⎪⎩或ln 114x x -<⎧⎨>⎩两种情况求解即可得答案. 【详解】解:(1)因为函数ln 1y x =-在(24,e ⎤⎦上是增函数, 所以2max ln 11y e =-=,因为函数()f x 在21,2e ⎡⎤⎢⎥⎣⎦的最大值为2,所以函数111,42y x a x =-<≤的最大值为2, 由于函数111,42y x a x =-<≤是增函数, 所以1124a -=,解得:49a =. (2)当25a =时,()51,042ln 1,?4x f x x x x ⎧-<≤⎪=⎨⎪->⎩,所以045112x x <≤⎧⎪⎨-<⎪⎩或ln 114x x -<⎧⎨>⎩,解得203x <<或24x e <<.故若25a =,求不等式()1f x <的解集为()220,4,3e ⎛⎫ ⎪⎝⎭【点睛】本题考查分段函数与对数函数的性质,考查分类讨论思想与运算求解能力,是中档题.本题第一问解题的关键在于注意到函数ln 1y x =-在(24,e ⎤⎦上是增函数且max 1y =,进而将问题转化为函数111,42y x a x =-<≤的最大值为2求解,第二问的解题核心是分类讨论. 22.(1)()1log 1m x f x x+=-;(2)()f x 为奇函数,理由见解析;(3)3m ≥+. 【分析】(1)令21t x =-,采用换元法求解函数解析式;(2)先确定函数的定义域,再由函数奇偶性的定义判断即可; (3)由条件可转化为()11x m x x +=-在()0,1x ∈上有解问题即可.【详解】(1)令21t x =-,则21x t =+,则()()11log log 211m mt t f t t t++==-+-, 所以()1log 1m x f x x+=-; (2)由101xx+>-得11x -<<, 又()()()11log log 11mm x xf x f x x x---===---+,所以()f x 为定义域上的奇函数;(3)由110x x -<<⎧⎨>⎩得01x <<,又1log 1log log 1mm m x x mx x +=+=-,11x mx x+=-在()0,1x ∈上有解, ()11x m x x +=-,令()11,2u x =+∈,2132323t m u u u u ==≥=+-+-⎛⎫-++ ⎪⎝⎭,当且仅当u =,所以3m ≥+.【点睛】 易错点睛:(1)判断函数的奇偶性一定不要忘记先判断定义域是否关于原点对称; (2)利用基本不等式求解范围,一定要注意满足“一正二定三相等”的条件. 23.(1)(1,3)-;(2)2;(3)答案见解析. 【分析】(1)由1030x x +>⎧⎨->⎩得解定义域(2)由(1)2f =求得2a =.化简 22()log (1)4f x x ⎡⎤=--+⎣⎦,求得函数单调性得解(3)分类1a >和01a <<讨论得解 【详解】(1)由1030x x +>⎧⎨->⎩得13x ,所以函数()f x 的定义域为(1,3)-.(2)因为(1)2f =,所以log 42(0,1)a a a =>≠,所以2a =.22222()log (1)log (3)log [(1)(3)]log (1)4f x x x x x x ⎡⎤=++-=+-=--+⎣⎦,所以当(1,1]x ∈-时,()f x 是增函数;当(1,3)x ∈时,()f x 是减函数, 故函数()f x 在(1,3)-上的最大值是2(1)log 42f ==. (3)当1a >时1330x x x +>-⎧⎨->⎩解得13x x >⎧⎨<⎩不等式解集为:{|13}x x <<当01a <<时1310x xx +<-⎧⎨+>⎩解得11x x <⎧⎨>-⎩不等式解集为:{|11}x x -<<【点睛】简单对数不等式问题的求解策略(1)解决简单的对数不等式,应先利用对数的运算性质化为同底数的对数值,再利用对数函数的单调性转化为一般不等式求解.(2)对数函数的单调性和底数a 的值有关,在研究对数函数的单调性时,要按1a >和01a <<进行分类讨论.24.(1){1x x <-或}1x >,证明见解析;(2)()1,+∞. 【分析】(1)本题首先可通过求解101xx +>-得出函数()f x 的定义域,然后通过()()f x f x -=-证得函数()f x 是奇函数;(2)本题可根据题意将函数转化为2()log (1)g x x =+,然后通过当1x >时2log (1)1x +>即可求出函数()g x 的值域.【详解】(1)因为函数21()log 1x f x x +=-, 所以101xx +>-,解得1x <-或1x >, 则函数的定义域为{1x x <-或}1x >,且定义域关于原点对称, 因为222111()log log log ()111x x x f x f x x x x --+-===-=---+-, 所以函数()f x 为奇函数.(2)22221l ()()log (1)log (1)log (1)og 1g x x x f x x x x +=+-==-+-+, 当1x >时,22log (1)log 21x +>=,函数2()log (1)g x x =+是增函数, 故当(1,)x ∈+∞时,()1g x >,函数()g x 的值域为()1,+∞. 【点睛】方法点睛:判断或证明函数奇偶性,首先要判断函数的定义域是否关于原点对称,然后通过()()f x f x -=-判断函数是奇函数或者通过()()f x f x -=判断函数是偶函数. 25.(Ⅰ)2;(Ⅱ)图象见解析,单调递增区间为(),-∞+∞;(Ⅲ)14x >-. 【分析】(Ⅰ)依次求出()1f -,()()1ff -,()()()1f f f -即可(Ⅱ)根据函数解析式即可画出图象,根据图象即可得出单调区间; (Ⅲ)分段讨论可解出不等式. 【详解】解:(Ⅰ)()1110f -=-+=,所以()()1011ff -=+=, 所以()()()1122f f f -==;(Ⅱ)函数图象如下:由图可知,()f x 的单调递增区间为(),-∞+∞,无单调递减区间; (Ⅲ)①当0x ≤时,102x -≤, 所以()1f x x =+,1111222f x x x ⎛⎫⎛⎫-=-+=+ ⎪ ⎪⎝⎭⎝⎭ 所以()132122f x f x x ⎛⎫+-=+> ⎪⎝⎭,解得14x >-, 所以014x -<≤; ②当102x <≤时,102x -<, 所以()2xf x =,1111222f x x x ⎛⎫⎛⎫-=-+=+ ⎪ ⎪⎝⎭⎝⎭, 所以()112122xf x f x x ⎛⎫+-=++> ⎪⎝⎭显然成立, 所以102x <≤符合题意; ③当12x >时,102x ->, 所以()2xf x =,12122x f x ⎛⎫- ⎪⎝⎭⎛⎫-= ⎪⎝⎭,所以()1212212x xf x f x ⎛⎫- ⎪⎝⎭⎛⎫+-=+> ⎪⎝⎭显然成立,所以12x >符合题意, 综上所述:x 的取值范围为1,4⎛⎫-+∞ ⎪⎝⎭. 【点睛】关键点睛:本题考查函数不等式的求解,解题的关键是分段讨论x 的取值范围,根据不同范围函数的解析式求解. 26.(Ⅰ)114455log 10,log 8⎡⎤⎢⎥⎣⎦(Ⅱ)3,10⎡⎫+∞⎪⎢⎣⎭【分析】(Ⅰ)把1m =代入,可得()122()log 238f x x x =-+,令2238y x x =-+,求出其在1[,2]2上的值域,利用对数函数的单调性即可求解. (Ⅱ)根据对数函数的单调性可得2()238g x mx x m =-+在(4,)+∞上单调递增,再利用二次函数的图像与性质可得0,34,4(4)0,m m g >⎧⎪⎪≤⎨⎪≥⎪⎩解不等式组即可求解. 【详解】(Ⅰ)当1m =时,()122()log 238f x x x =-+, 此时函数()f x 的定义域为1,22⎡⎤⎢⎥⎣⎦.因为函数2238y x x =-+的最小值为242835588⨯⨯-=. 最大值为22232810⨯-⨯+=,故函数()f x 在1,22⎡⎤⎢⎥⎣⎦上的值域为114455log 10,log 8⎡⎤⎢⎥⎣⎦;(Ⅱ)因为函数14log y x =在(0,)+∞上单调递减,故2()238g x mx x m =-+在(4,)+∞上单调递增,则0,34,4(4)0,m m g >⎧⎪⎪≤⎨⎪≥⎪⎩ 解得310m ≥,综上所述,实数m 的取值范围3,10⎡⎫+∞⎪⎢⎣⎭. 【点睛】本题主要考查了利用对数函数的单调性求值域、利用对数型函数的单调区间求参数的取值范围以及二次函数的图像与性质,属于中档题.。

新北师大版高中数学必修一第三单元《指数函数和对数函数》测试卷(含答案解析)

新北师大版高中数学必修一第三单元《指数函数和对数函数》测试卷(含答案解析)

一、选择题1.设a ,b ,c 为正数,且3a =4b =6c ,则有( ) A .111c a b=+ B .221c a b=+ C .122c a b=+ D .212c a b=+ 2.若关于x 的不等式34log 2xa x -≤在10,2x ⎛⎤∈ ⎥⎝⎦恒成立,则实数a 的取值范围是( ) A .1,14⎡⎫⎪⎢⎣⎭B .10,4⎛⎤ ⎥⎝⎦C .3,14⎡⎫⎪⎢⎣⎭D .30,4⎛⎤ ⎥⎝⎦3.已知0.20.33log 0.2,3,0.2a b c ===,则( )A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.已知函数3131()(),()log ,()(0)2xf x xg x x xh x x x x =-=-=->的零点分别为,,a b c ,则,,a b c 的大小顺序为( )A .a b c >>B .c a b >>C .b c a >>D .b a c >>5.5G 技术的数学原理之一便是著名的香农公式:2log 1S C W N ⎛⎫=+⎪⎝⎭,它表示:在受高斯白噪声干扰的信道中,最大信息传递速率C 取决于信道带宽W 、信道内所传信号的平均功率S 、信道内部的高斯噪声功率N 的大小,其中SN叫做信噪比.按照香农公式,在不改变W 的情况下,将信噪比SN从1999提升至λ,使得C 大约增加了20%,则λ的值约为(参考数据:lg 20.3≈, 3.96109120≈)( ) A .7596B .9119C .11584D .144696.若13log 2a =,131()2b =,2log 3c =,则,,a b c 的大小关系是( ) A .b a c << B .b c a << C .a b c << D .c b a <<7.已知函数 ()lg 2x xe ef x --=,则f (x )是( )A .非奇非偶函数,且在(0,+∞)上单调递增B .奇函数,且在R 上单调递增C .非奇非偶函数,且在(0,+∞)上单调递减D .偶函数,且在R 上单调递减 8.已知函数()f x 满足()()11f x f x -=+,当(],1-∞时,函数()f x 单调递减,设()41331=log ,log 3,92a f b f c f log ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,则,,a b c 的大小关系是( )A .a b c <<B .c a b <<C .a c b <<D .c b a <<9.函数2y 34x x =--+的定义域为( )A .(41)--,B .(41)-,C .(11)-,D .(11]-, 10.已知函数()a f x x 满足(2)4f =,则函数()log (1)a g x x =+的图象大致为( )A .B .C .D .11.已知函数222,0()2,0x x x f x x x x ⎧+≥=⎨-<⎩,212(log )(log )2(1)f a f f a ≤+,则实数a 的取值范围是( ) A .1,22⎡⎤⎢⎥⎣⎦B .102⎛⎤ ⎥⎝⎦,C .[]1,2D .(]0,2 12.物理学规定音量大小的单位是分贝(dB ),对于一个强度为I 的声波,其音量的大小η可由如下公式计算:010lgII η=(其中0I 是人耳能听到声音的最低声波强度).我们人类生活在一个充满声音的世界中,人们通过声音交换信息、交流情感,人正常谈话的音量介于40dB 与60dB 之间,则60dB 声音的声波强度1I 是40dB 声音的声波强度2I 的( ) A .32倍 B .3210倍C .100倍D .3lg2倍 二、填空题13.函数12()log (2)f x x =-的定义域为______.14.已知21()1,()log 2xf xg x x m ⎛⎫=+=+ ⎪⎝⎭,若()()1212[1,3],[1,3],x x f x g x ∀∈∃∈≥,则实数m 的取值范围是_______.15.设函数2()ln(1)f x x x =+,若()23(21)0f a f a +-<,则实数a 的取值范围为_____. 16.72log 2338log272lg 5lg 47-+++=______.17.定义在(,0)(0,)-∞+∞上的函数1,0(),0x x e x f x e m x -⎧->=⎨+<⎩是奇函数,则实数m 的值为______.18.若幂函数()2()57m f x m m x =-+在R 上为增函数则1log2log 2lg5lg4mm m+-=_____.19.函数()()212log 56f x x x =-+的单调递增区...间是__________. 20.7log 31lg 25lg 272++=________. 三、解答题21.已知指数函数()f x 的图象经过点()1,3-,()()2()23x g x f a x f =-+在区间[]1,1-上的最小值是()h a . (1)求函数()f x 的解析式;(2)若3a ≥时,求函数()g x 的最小值()h a 的表达式;(3)是否存在m 、n ∈R 同时满足以下条件:①3m n >>;②当()h a 的定义域为[],n m 时,值域为22,n m ⎡⎤⎣⎦;若存在,求出m 、n 的值;若不存在,说明理由.22.已知函数()2log f x x =,()241g x ax x =-+.(1)若函数()()y f g x =的值域为R ,求实数a 的取值范围;(2)函数22()()()h x f x f x =-,若对于任意的1,22x ⎡∈⎤⎢⎥⎣⎦,都存在[]1,1t ∈-使得不等式()22th x k >⋅-成立,求实数k 的取值范围. 23.化简与求值: (1)2ln 43(0.125)e-++;(2)若1122x x -+=1x x --的值. 24.(1)已知函数()()()2110x g x a a -=++>的图像恒过定点A ,且点A 又在函数()()f x x a =+的图像上,求不等式()3g x >的解集;(2)已知121log 1x -≤≤,求函数1114242x xy -⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭的最大值和最小值. 25.已知函数()2log 11a f x x ⎛⎫=-⎪+⎝⎭(0a >且1a ≠).(1)判断函数()f x 的奇偶性并说明理由;(2)当01a <<时,判断函数()f x 在()1,+∞上的单调性,并利用单调性的定义证明; (3)是否存在实数a ,使得当()f x 的定义域为[],m n 时,值域为[]1log ,1log a a n m ++?若存在,求出实数a 的取值范围;若不存在,请说明理由.26.求函数()log 23=-2-3y x x 的定义域、值域和单调区间.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】首先根据指对互化求出,,a b c ,再根据换底公式表示111,,a b c,最后根据对数运算法则化简. 【详解】设3a =4b =6c =k , 则a =log 3k , b =log 4k , c =log 6k , ∴311log 3log k a k ==, 同理1log 4k b =,1log 6k c=, 而11log 2,log 3log 22k k k b c ==+, ∴1112c a b =+,即221c a b =+. 故选:B 【点睛】本题考查指对数运算,换底公式,以及对数运算的性质,关键是灵活应用对数运算公式,公式1log log a b b a=是关键. 2.A解析:A 【分析】转化为当10,2x ⎛⎤∈ ⎥⎝⎦时,函数342xy =-的图象不在log a y x =的图象的上方,根据图象列式可解得结果. 【详解】由题意知关于x 的不等式34log 2xa x -≤在10,2x ⎛⎤∈ ⎥⎝⎦恒成立,所以当1 0,2x⎛⎤∈ ⎥⎝⎦时,函数342xy=-的图象不在log ay x=的图象的上方,由图可知0111log22aa<<⎧⎪⎨≥⎪⎩,解得114a≤<.故选:A【点睛】关键点点睛:利用函数342xy=-的图象与函数log ay x=的图象求解是解题关键.3.B解析:B【分析】根据指数函数的单调性以及对数函数的单调性分别判断出,,a b c的取值范围,从而可得结果【详解】因为33log0.2log10<=,0.20331>=,...030002021<<=,a c b∴<<.故选:B.【点睛】比较大小问题,常见思路有两个:一是利用中间变量;二是利用函数的单调性直接解答4.B解析:B【分析】将函数3131()(),()log,()(0)2xf x xg x x xh x x x x=-=-=->的零点,转化为函数y x=的图象分别与函数3131(),log,(0)2xy y x y x x===>的图象交点的横坐标,利用数形结合法求解.【详解】函数3131()(),()log ,()(0)2x f x x g x x x h x x x x =-=-=->的零点,即为函数y x =的图象分别与函数3131(),log ,(0)2x y y x y x x ===>的图象交点的横坐标, 如图所示:由图象可得:c a b >>, 故选:B 【点睛】本题主要考查函数的零点以及指数函数,对数函数和幂函数的图象的应用,还考查了数形结合的思想方法,属于中档题.5.B解析:B 【分析】根据题设条件列出方程,计算即可. 【详解】由题可知 ()()()22log 119991+20%log 1W W λ+⨯=+,即()221.2log 2000log 1λ⨯=+,所以()lg 1lg 20001.2lg 2lg 2λ+⨯=,即()()lg 1 1.2lg2000 1.23lg2 3.96λ+=⨯=⨯+≈,所以 3.961109120λ+≈≈,所以9119λ≈. 故选:B 【点睛】本题主要考查对属于对数函数,考查学生的运算能力.6.C解析:C 【分析】由题容易看出,0a <, 01b <<,2log 31c =>,便得出,,a b c 的大小关系. 【详解】1133log 2log 10a =<=,310110122b ⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,22log 3log 21c =>=,因此a b c <<.故选:C. 【点睛】本题考查指数函数和对数函数的比较大小,常与中间值0-1,1,来比较,再结合函数的单调性即可求解,属于中档题.7.A解析:A 【分析】本题考查函数的奇偶性和和单调性的概念及简单复合函数单调性的判定. 【详解】要使函数有意义,需使0,2x x e e -->即21,1,x xx e e e >∴>解得0;x >所以函数()f x 的为(0,);+∞定义域不关于原点对称,所以函数()f x 是非奇非偶函数;因为1,xxx y e y ee-==-=-是增函数,所以2x xe e y --=是增函数,又lg y x =是增函数,所以函数()lg 2x xe ef x --=在定义域(0,)+∞上单调递增.故选:A 【点睛】本题考查对数型复合函数的奇偶性和单调性,属于中档题.8.B解析:B 【分析】由()()11f x f x -=+可得函数()f x 关于直线1x =对称,根据对数的运算法则,结合函数的对称性,变形41log 2、13log 3、39log 到区间[)1,+∞内,由函数()f x 在[)1,+∞上单调递增,即可得结果. 【详解】根据题意,函数()f x 满足()()11f x f x -=+,则函数()f x 关于直线1x =对称,又由当(],1-∞时,函数()f x 单调递减,则函数在[)1,+∞上单调递增, 又由()44115log log 2222a f f f f ⎛⎫⎛⎫⎛⎫==-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ()()13log 313b f f f ⎛⎫==-= ⎪⎝⎭,()()3log 92c f f ==,则有c a b <<,故选B.【点睛】在比较()1f x ,()2f x ,,()n f x 的大小时,首先应该根据函数()f x 的奇偶性(对称性)与周期性将()1f x ,()2f x ,,()n f x 通过等值变形将自变量置于同一个单调区间,然后根据单调性比较大小.9.C解析:C 【解析】要使函数有意义,需使210{340x x x +>--+>,即1{41x x >--<<,所以1 1.x -<< 故选C10.C解析:C 【分析】由已知求出a ,得()g x 表达式,化简函数式后根据定义域和单调性可得正确选项. 【详解】由恬24a=,2a =,222log (1),10()log (1)log (1),0x x g x x x x -+-<<⎧=+=⎨+≥⎩, 函数定义域是(1,)-+∞,在(1,0)-上递减,在(0,)+∞上递增. 故选:C . 【点睛】本题考查对数型复合函数的图象问题,解题方法是化简函数后,由定义域,单调性等判断.11.A解析:A 【分析】根据条件判断()f x 的奇偶性和单调性,把不等式212(log )(log )2(1)f a f f a ≤+转化为2log 1a ≤进行求解即可.【详解】当0x <时,0x ->,则2()2()f x x x f x -=-=, 当0x >时,0x -<,则2()2()-=+=f x x x f x , ∴函数()f x 为偶函数,∴222122(log )(log )(log )(log )2(log )f a f a f a f a f a +=+-=.又当0x ≥时,函数()f x 单调递增,∴22(log )2(1)f a f ≤可转化为2((log 1))f a f ≤,则2log 1a ≤, ∴21log 1a -≤≤,解得122a ≤≤. 故选:A. 【点睛】本题考查了分段函数的性质,考查函数的单调性与奇偶性,考查学生的推理能力与计算求解能力,属于中档题.12.C解析:C 【分析】 先根据010lg II η=得10010I I η=,再将60dB 和40dB 代入得计算12I I 即可得答案.【详解】解:因为音量大小与强度为I 的声波的关系为010lg II η=, 所以10010I I η=,所以606101001010I I I ==,404102001010I I I ==,所以6014201010010I I I I ==, 故选:C. 【点睛】本题以物理知识为背景,考查指对数的互化,运算等,是中档题.二、填空题13.【分析】根据二次根式和对数式有意义的条件得到不等式组求解函数的定义域即可得结果【详解】根据题意可得:解得所以函数的定义域为故答案为:【点睛】该题考查的是有关求函数的问题涉及到的知识点有求给定函数的定 解析:(2,3]【分析】根据二次根式和对数式有意义的条件,得到不等式组求解函数的定义域即可得结果.【详解】根据题意可得:1220log (2)0x x ->⎧⎪⎨-≥⎪⎩,解得23x <≤,所以函数()f x =(2,3],故答案为:(2,3]. 【点睛】该题考查的是有关求函数的问题,涉及到的知识点有求给定函数的定义域,在解题的过程中,注意二次根式和对数式需要满足的条件即可得结果.14.【分析】求出函数在上的最值最后根据题意列出不等式进行求解即可【详解】当时因此;当时因此因为所以有即故答案为:【点睛】本题考查了求指数型函数和对数型函数的最小值考查了存在性和任意性的概念的理解考查了数解析:9,8⎛⎤-∞ ⎥⎝⎦【分析】求出函数(),()f x g x 在[1,3]x ∈上的最值,最后根据题意列出不等式进行求解即可. 【详解】当[1,3]x ∈时,11[,1]28x⎛⎫∈ ⎪⎝⎭,因此9()[,2]8f x ∈;当[1,3]x ∈时,22(log )[0,log 3]x ∈,因此2()[,log 3]g x m m ∈+, 因为()()1212[1,3],[1,3],x x f x g x ∀∈∃∈≥,所以有min min ()()f x g x ≥, 即9988m m ≥⇒≤. 故答案为:9,8⎛⎤-∞ ⎥⎝⎦【点睛】本题考查了求指数型函数和对数型函数的最小值,考查了存在性和任意性的概念的理解,考查了数学运算能力.15.【分析】根据已知可得为奇函数且在上单调递增不等式化为转化为关于自变量的不等式即可求解【详解】的定义域为是奇函数设为增函数在为增函数在为增函数在处连续的所以在上单调递增化为等价于即所以实数的取值范围为解析:1(1,)3-【分析】根据已知可得()f x 为奇函数且在R 上单调递增,不等式化为()23(12)f a f a <-,转化为关于自变量的不等式,即可求解. 【详解】()f x 的定义域为R ,()()))ln10f x f x x x +-=+==,()f x ∴是奇函数,设,[0,)()x u x x =∈+∞为增函数,()f x 在[0,)+∞为增函数,()f x 在(,0)-∞为增函数, ()f x 在0x =处连续的,所以()f x 在R 上单调递增,()23(21)0f a f a +-<,化为()23(12)f a f a <-,等价于2312a a <-,即213210,13a a a +-<-<<, 所以实数a 的取值范围为1(1,)3-. 故答案为: 1(1,)3- 【点睛】本题考查利用函数的单调性和奇偶性解不等式,熟练掌握函数的性质是解题的关键,属于中档题.16.【分析】根据指数幂运算法则和对数运算法则化简可得【详解】故答案为:【点睛】此题考查指数对数的综合运算关键在于熟练掌握运算法则和相关公式准确化简求值解析:32【分析】根据指数幂运算法则和对数运算法则化简可得. 【详解】72log 2338log 2lg 5lg 47-+++()732log 232332log 32lg52lg 27=-++++34222=-+++32= 故答案为:32【点睛】此题考查指数对数的综合运算,关键在于熟练掌握运算法则和相关公式,准确化简求值.17.【分析】由奇函数定义求解【详解】设则∴此时时为奇函数故答案为:【点睛】方法点睛:本题考查函数的奇偶性对于分段函数一般需要分类求解象这种由奇函数求参数可设求得参数值然后再验证这个参数值对也适用即可本题解析:1-. 【分析】由奇函数定义求解. 【详解】设0x >,则()1x f x e -=-,()xf x em --=+,∴10x x e m e --++-=,1m =-.此时,0x <时,()1,x f x e =-()1()xf x e f x -=-=-,()f x 为奇函数.故答案为:1-. 【点睛】方法点睛:本题考查函数的奇偶性,对于分段函数,一般需要分类求解.象这种由奇函数求参数,可设0x >,求得参数值,然后再验证这个参数值对0x <也适用即可.本题也可以由特殊值如(1)(1)f f -=-求出参数,然后检验即可.18.3【分析】利用幂函数的定义与性质求得将代入利用对数的运算法则化简得解【详解】在上为增函数解得(舍去)故答案为:3【点睛】正确理解幂函数的定义求得的值和熟练运用对数恒等式是关键解析:3 【分析】利用幂函数的定义与性质求得3m =,将3m =代入,利用对数的运算法则化简得解. 【详解】()()257m f x m m x =-+在R 上为增函数,25710m m m ⎧-+=∴⎨>⎩,解得3,2m m ==(舍去), 1log2log 2lg 5lg 4mm m∴+-=31log 23l l og 3g1003+=故答案为:3. 【点睛】正确理解幂函数的定义求得m 的值和熟练运用对数恒等式是关键.19.【分析】求出函数的定义域利用复合函数法可求得函数的单调递增区间【详解】对于函数有解得或所以函数的定义域为内层函数在区间上单调递减在区间上单调递增外层函数为减函数所以函数的单调递增区间为故答案为:【点 解析:(),2-∞【分析】求出函数()f x 的定义域,利用复合函数法可求得函数()()212log 56f x x x =-+的单调递增区间. 【详解】对于函数()()212log 56f x x x =-+,有2560x x -+>,解得2x <或3x >. 所以,函数()()212log 56f x x x =-+的定义域为()(),23,-∞+∞,内层函数256u x x =-+在区间(),2-∞上单调递减,在区间()3,+∞上单调递增, 外层函数12log y u =为减函数,所以,函数()f x 的单调递增区间为(),2-∞.故答案为:(),2-∞. 【点睛】复合函数()y f g x ⎡⎤=⎣⎦的单调性规律是“同则增,异则减”,即()y f u =与()u g x =.若具有相同的单调性,则()y f g x ⎡⎤=⎣⎦为增函数,若具有不同的单调性,则()y f g x ⎡⎤=⎣⎦必为减函数.20.4【分析】结合对数的基本运算化简求值即可【详解】解:故答案为:4【点睛】本题主要考查对数的基本运算性质熟记公式熟练运用对数的化简对数恒等式是最基本的要求属于基础题型解析:4 【分析】结合对数的基本运算化简求值即可. 【详解】解:7log 3211lg 25lg 27lg5lg 23lg5lg 23lg103422++=++=++=+=. 故答案为:4. 【点睛】本题主要考查对数的基本运算性质,熟记公式,熟练运用对数的化简、对数恒等式是最基本的要求,属于基础题型.三、解答题21.(1)1()3xf x ⎛⎫= ⎪⎝⎭;(2)()126h a a =-;(3)不存在,理由见解析. 【分析】(1)设()xf x c =(0c >且1c ≠),由题意可得()13f -=,可求得c 的值,进而可求得函数()f x 的解析式;(2)令11,333xt ⎛⎫⎡⎤=∈ ⎪⎢⎥⎝⎭⎣⎦,设()223k t t at =-+,分析当3a ≥时,函数()k t 的单调性,进而可得出()()min h a k t =,即可得解;(3)分析出函数()h a 在区间[],n m 上单调递减,可得出22126126n m m n⎧-=⎨-=⎩,将两个等式作差可得出6m n +=,结合3m n >>判断可得出结论. 【详解】(1)设()xf x c =(0c >且1c ≠),因为指数函数()f x 的图象经过点()1,3-,()113f c-∴-==,即13c =,因此,()13xf x ⎛⎫= ⎪⎝⎭; (2)令()13xt f x ⎛⎫== ⎪⎝⎭,[]1,1x ∈-,1,33t ⎡⎤∴∈⎢⎥⎣⎦, 所以,设()223k t t at =-+,对称轴为t a =.3a ≥,可知()k t 在1,33⎡⎤⎢⎥⎣⎦上单调递减,当3t =时,()k t 取最小值,即()g x 取最小值()()3126h a k a ==-; (3)由(2)知3m n >>时,()126h a a =-在[],n m 上单调递减,若此时()h a 的值域为22,n m ⎡⎤⎣⎦,则22126126n m m n ⎧-=⎨-=⎩,即()()()6m n m n m n -=-+,m n ≠,则0m n -≠,6m n ∴+=,又3m n >>,则6m n +>,故不存在满足条件的m 、n 的值. 【点睛】方法点睛:(1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴动区间定,不论哪种类型,解决的关键就是考查对称轴于区间的位置关系,当含有参数时,要依据对称轴与区间的位置关系进行分类讨论;(2)二次函数的单调性主要依据二次函数图象的对称轴进行分析讨论求解. 22.(1)[]0,4a ∈;(2)2k <. 【分析】(1)由()2log f x x =,()()y f g x =的值域为R ,知()g x 值域应为小于等于0的数直至正无穷,分类讨论参数a 的正负,再结合二次函数值域与判别式的关系即可求解; (2)对恒成立问题与存在性问题转化得()22tmin k h x ⋅<+在[]1,1t ∈-有解,求得()min h x ,再结合函数单调性即可求解【详解】(1)0a <时,内函数有最大值,故函数值不可能取到全体正数,不符合题意; 当0a =时,内函数是一次函数,内层函数值可以取遍全体正数,值域是R ,符合题意; 当0a >时,要使内函数的函数值可以取遍全体正数,只需要函数最小值小于等于0, 故只需0≥,解得(]0,4a ∈.综上得[]0,4a ∈;2()由题意可得2222()222t k h x log x log x ⋅<+=-+在1,22x ⎡∈⎤⎢⎥⎣⎦恒成立, 则()221tmin k h x ⋅<+=在[]1,1t ∈-有解,即1<2tk 在[]1,1t ∈-有解, 122t maxk ⎛⎫∴<= ⎪⎝⎭,综上,实数k 的取值范围2k <.【点睛】关键点睛:本题考查由对数型复合函数的值域求解参数取值范围,由恒成立与存在性问题建立的不等式求解参数取值范围,解题关在在于: (1)()()()log a f x g x =值域为R ,()g x 值域范围的判断; (2)全称命题与存在性命题逻辑关系的理解与正确转化.23.(1)14;(2) 【分析】(1)利用幂的运算法则和对数的运算法则计算;(2)利用完全平方公式求得1x x -+,再求得22x x -+,然后可求得1x x --. 【详解】(1)原式=236342464⎛⎫-⨯- ⎪⎝⎭++=++=14;-(2)由1122x x -+=1+25x x -+=,所以13x x -+=所以2222+29=7x x x x --+=+, 则1222()2=5x x x x ---=-+所以1=x x -- 【点睛】幂的运算法则从整数范围推广到有理数范围,实数范围后,乘法公式也随之推广过来, 即公式222()2a b a ab b +=++,222()2a b a ab b -=-+,22()()a b a b a b +-=-中,a b 是是分数指数幂时,公式也适用,解题时要注意体会.24.(1)()3,+∞;(2)min 1y =,max 54y =. 【分析】(1)结合指数函数性质首先求a 的值,再解指数不等式;(2)通过换元,设12xt ⎛⎫= ⎪⎝⎭,并且求变量的取值范围,转化为二次函数在定义域内的最大值和最小值. 【详解】(1)由题意知定点A 的坐标为()2,2, ∴)22a =+解得1a =.∴()221x g x -=+.∴由()3g x >得,2213x -+>. ∴222x ->. ∴21x ->. ∴3x >.∴不等式()3g x >的解集为()3,+∞.(2)由121log 1x -≤≤得122x ≤≤令12xt ⎛⎫= ⎪⎝⎭,则14t ≤≤, 221442412y t t t ⎛⎫=-+=-+ ⎪⎝⎭.∴当12t =,即1122x⎛⎫= ⎪⎝⎭,1x =时,min 1y =, 当14t =,即1124x⎛⎫= ⎪⎝⎭,2x =时,max 54y =. 【点睛】本题考查指数函数与对数函数的图象与性质,考查求对数型函数的值域,求值域的方法是用换元法把函数转化为二次函数,然后求解.25.(1)奇函数,理由见详解;(2)单调递减,过程见详解;(3)存在(0,3∈-a .【分析】(1)先由函数解析式求出定义域,再由()f x ,求出()f x -,根据函数奇偶性的概念,即可得出结果;(2)先令2()11=-+g x x ,用单调性的定义,即可判断2()11=-+g x x 的单调性,再由复合函数单调性的判定原则,即可得出结果;(3)先假设存在满足条件的实数a ,由题意得出01a <<,()1log ()1log a a f n nf m m =+⎧⎨=+⎩,推出,m n 是方程2log 11log 1⎛⎫-=+ ⎪+⎝⎭a a x x 的两根,进而得到2(1)10ax a x +-+=在()1,+∞上有两个不同解,根据一元二次方程根的分布情况,列出不等式组,即可求出结果. 【详解】 (1)由2101->+x 解得1x >或1x <-,即函数()f x 的定义域为(,1)(1,)-∞-+∞; 又()21log 1log 11-⎛⎫=-= ⎪++⎝⎭a a x f x x x , 所以()22121log 1log 1log log 1111-+-+⎛⎫⎛⎫-=-=-== ⎪ ⎪-+-+-+-⎝⎭⎝⎭a a a a x x f x x x x x , 因此()()log 10+-==a f x f x ,所以()()f x f x -=-, 所以函数()f x 为奇函数; (2)令2()11=-+g x x ,任取121x x <<, 则12121221212222()()111111(1)(1)⎛⎫⎛⎫--=---=-= ⎪ ⎪++++++⎝⎭⎝⎭x x g x g x x x x x x x , 因为120x x -<,110x +>,210x +>,所以121221()()0(1)(1)--=<++x x g x g x x x ,即函数2()11=-+g x x 在()1,+∞上单调递增; 又01a <<,所以log ay x =单调递减,根据同增异减的原则,可得:()2log 11a f x x ⎛⎫=- ⎪+⎝⎭在()1,+∞上单调递减;(3)假设存在实数a ,使得当()f x 的定义域为[],m n 时,值域为[]1log ,1log a a n m ++,由m n <,1log 1log +<+a a n m 可得01a <<;所以()1log ()1log a a f n n f m m =+⎧⎨=+⎩,因此,m n 是方程2log 11log 1⎛⎫-=+ ⎪+⎝⎭a a x x 的两根, 即2(1)10ax a x +-+=在()1,+∞上有两个不同解,设2()(1)1=+-+h x ax a x ,则(1)01120h a a >⎧⎪-⎪->⎨⎪∆>⎪⎩,解得03a <<-.所以存在(0,3∈-a ,使得当()f x 的定义域为[],m n 时,值域为[]1log ,1log a a n m ++.【点睛】本题主要考查函数奇偶性的判定,单调性的判定,以及由函数定义域与值域求参数的问题,熟记函数单调性与奇偶性的定义即可,属于常考题型. 26.定义域为(,1)(3,)-∞-+∞,函数值域为R ,减区间是(,1)-∞-,增区间是(3,)+∞.【分析】结合对数函数性质求解. 【详解】由2230x x -->得1x <-或3x >,∴定义域为(,1)(3,)-∞-+∞.由2230x x -->得y R ∈,函数值域为R ,223y x x =--在(,1)-∞-上递减,在(3,)+∞上递增,∴()log 23=-2-3y x x 的减区间是(,1)-∞-,增区间是(3,)+∞. 【点睛】本题考查对数型复合函数的性质,掌握对数函数的性质是解题关键.。

最新北师大版高中数学必修一第三单元《指数函数和对数函数》检测题(含答案解析)(2)

最新北师大版高中数学必修一第三单元《指数函数和对数函数》检测题(含答案解析)(2)

一、选择题1.函数12xy⎛⎫= ⎪⎝⎭的大致图象是().A.B.C.D.2.设()|lg|f x x=,且0a b c<<<时,有()()()f a f c f b>>,则()A.(1)(1)0a c-->B.1ac>C.1ac=D.01ac<< 3.集合{}1002,xx x x R=∈的真子集的个数为()A.2B.4C.6D.74.已知函数||()2xf x=,记131(())4a f=,37(log)2b f=,13(log5)c f=,则a,b,c的大小关系为()A.c b a>>B.b a c>>C.a b c>>D.c a b>>5.已知1311531log,log,363a b cπ-===,则,,a b c的大小关系是()A.b a c<<B.a c b<<C.c b a<<D.b c a<< 6.已知函数()()2lnf x ax bx c=++的部分图象如图所示,则a b c-+的值是()A.1-B.1 C.5-D.57.已知函数()lg2x xe ef x--=,则f(x)是()A.非奇非偶函数,且在(0,+∞)上单调递增B.奇函数,且在R上单调递增C .非奇非偶函数,且在(0,+∞)上单调递减D .偶函数,且在R 上单调递减8.函数()log (2)a f x ax =-(0a >且1a ≠)在[]0,3上为增函数,则实数a 的取值范围是( )A .2,13⎛⎫ ⎪⎝⎭B .(0,1)C .20,3⎛⎫ ⎪⎝⎭D .[)3,+∞ 9.若函数112xy m -⎛⎫=+ ⎪⎝⎭的图象与x 轴有公共点,则m 的取值范围是( )A .1m ≤-B .10m -≤<C .m 1≥D .01m <≤10.已知奇函数()f x 与偶函数()g x 满足()()2x x f x g x a a -+=-+,且()g b a =,则()2f 的值为( )A .2aB .2C .154D .17411.已知0.22a =,0.20.4b =,0.60.4c =,则( )A .a b c >>B .a c b >>C .c a b >>D .b c a >>12.函数()log (3)a f x ax =-在[]13,上单调递增,则a 的取值范围是( ) A .()1+∞, B .()01,C .103⎛⎫ ⎪⎝⎭,D .()3+∞, 二、填空题13.函数()log 31a y x =+-.(0a >且1a ≠)的图像恒过定点A ,若点A 在直线10mx ny ++=上(其中m ,0n >),则12m n+的最小值等于__________. 14.已知()f x 是定义在[0,)+∞的函数,满足(1)()f x f x +=-,当[0,1)x ∈时,()3x f x =,则3(log 30)f =________.15.已知函数()()212log 23f x x ax =-+,若函数的增区间是(),1-∞,则实数a =______. 16.已知函数2223,1,()log (6),1x mx x f x x m x ⎧---≤=⎨+>⎩在(,)-∞+∞上是单调函数,则m 的取值范围是__.17.设25a b m ==,且112a b+=,则m =______.18.函数()()12log 13y x x =-+的递增区间为______.19.若函数1log 12a y x ⎛⎫=+⎪⎝⎭在区间3,62⎡⎤-⎢⎥⎣⎦有最小值-2,则实数a =_______.20.已知函数()()log 21101a y x a a =-+>≠,的图象过定点A ,若点A 也在函数()2x f x b =+的图象上,则()2log 3f =________. 三、解答题21.已知函数()ln(32)f x x =+,()ln(32)g x x =-.设函数()()()F x f x g x =-. (1)求函数()F x 的定义域; (2)判断()F x 奇偶性并证明; (3)若()0F x >成立,求x 的取值范围. 22.已知函数()()()ln 1ln 1f x x x =+--. (1)判断并证明函数()f x 的奇偶性; (2)用定义法证明()f x 在定义域上是增函数; (3)求不等式()()2520f x f x -+-<的解集.23.已知12324xA x ⎧⎫=≤≤⎨⎬⎩⎭,121log ,264B y y x x ⎧⎫==≤≤⎨⎬⎩⎭. (1)求AB ;(2)若{}11C x m x m =-≤≤+,若C A ⊆,求m 的取值范围.24.(1)求满足不等式221139x x --⎛⎫> ⎪⎝⎭的x 的取值集合;(2)求函数235()log (45)f x x x =--的单调递减区间. 25.已知函数()lg(3)f x ax =-的图像经过定点(2,0). (1)求a 的值;(2)设(3),(5)f m f n ==,求21log 63(用,m n 表示); 26.函数()2lg 34y x x=-+的定义域为M ,x M ∈,求()2234x x f x +=-⨯的最值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】去绝对值符号后根据指数函数的图象与性质判断. 【详解】由函数解析式可得:1,022,0xx x y x ⎧⎛⎫≥⎪ ⎪=⎨⎝⎭⎪<⎩可得值域为:01y <≤, 由指数函数的性质知:在(),0-∞上单调递增;在()0,∞+上单调递减. 故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.2.D解析:D 【分析】作出()f x 的图象,利用数形结合即可得到结论. 【详解】∵函数()|lg |f x x =,作出()f x 的图象如图所示,∵0a b c <<<时,有()()()f a f c f b >>,∴0<a <1,c >1,即f (a )=|lga |=﹣lga ,f (c )=|lgc |=lgc ,∵f (a )>f (c ), ∴﹣lga >lgc ,则lga +lgc =lgac <0,则01ac <<. 故选:D .【点睛】关键点点睛:利用对数函数的图象和性质,根据条件确定a ,c 的取值范围.3.D解析:D 【分析】分析指数函数2xy =与幂函数100y x=的图像增长趋势,当0x <时,有1个交点;当0x >时,有2个交点;即集合{}1002,x x x x R =∈有3个元素,所以真子集个数为3217-=【详解】分析指数函数2xy =与幂函数100y x =的图像增长趋势, 当0x <时,显然有一个交点;当0x >时,当1x =时,110021>;当2x =时,210022<;故()1,2x ∈时,有一个交点;分析数据发现,当x 较小时,100y x =比2x y =增长的快;当x 较大时,2x y =比100y x =增长的快,即2x y =是爆炸式增长,所以还有一个交点.即2xy =与100y x =的图像有三个交点,即集合{}1002,x x xx R =∈有3个元素,所以真子集个数为3217-= 故选:D. 【点睛】结论点睛:本题考查集合的子集个数,集合A 中含有n 个元素,则集合A 的子集有2n 个,真子集有()21n-个,非空真子集有()22n-个.4.A解析:A 【分析】首先判断函数()f x 的性质,再比较133317,log ,log 542⎛⎫ ⎪⎝⎭的大小关系,从而利用单调性比较a ,b ,c 的大小关系. 【详解】()2xf x =是偶函数,并且当0x >时,2x y =是增函数,()133log 5log 5c f f ⎛⎫== ⎪⎝⎭,因为1310()14<<,3371log log 52<<,即1333170log log 542⎛⎫<<< ⎪⎝⎭ 又因为()y f x =在()0,∞+是增函数,所以a b c <<. 故选:A. 【点睛】关键点点睛:本题考查利用函数的单调性和奇偶性比较函数值的大小,本题的关键是判断函数()2xf x =的性质,后面的问题迎刃而解.5.D解析:D 【分析】根据指数函数和对数函数性质,借助0和1进行比较. 【详解】由对数函数性质知151log 16>,13log 03π<,由指数函数性质知13031-<<,∴b c a <<. 故选:D . 【点睛】方法点睛:本题考查指数式、对数式的大小比较,比较指数式大小时,常常化为同底数的幂,利用指数函数性质比较,或化为同指数的幂,利用幂函数性质比较,比较对数式大小,常常化为同底数的对数,利用对数函数性质比较,如果不能化为同底数或同指数,或不同类型的数常常借助中间值如0或1比较大小.6.D解析:D 【分析】由图中函数的单调性可得方程20ax bx c ++=的两根为2和4,利用根与系数的关系结合(1)0f =列式求得,,a b c 的值,则答案可求.【详解】解:由图可知,函数()f x 的减区间为(,2)-∞,增区间为(4,)+∞, ∴内层函数2t ax bx c =++的减区间为(,2)-∞,增区间为(4,)+∞, ∴方程20ax bx c ++=的两根为2和4, 又(1)0f =,68ln()0ba ca abc ⎧-=⎪⎪⎪∴=⎨⎪++=⎪⎪⎩,解得13283a b c ⎧=⎪⎪=-⎨⎪⎪=⎩.182533a b c ∴-+=++=.故选:D. 【点睛】本题考查函数的图象与图象变换,考查复合函数的单调性,考查数学转化思想方法,是中档题.7.A解析:A 【分析】本题考查函数的奇偶性和和单调性的概念及简单复合函数单调性的判定. 【详解】要使函数有意义,需使0,2x x e e -->即21,1,x xx e e e >∴>解得0;x >所以函数()f x 的为(0,);+∞定义域不关于原点对称,所以函数()f x 是非奇非偶函数;因为1,xxx y e y ee-==-=-是增函数,所以2x xe e y --=是增函数,又lg y x =是增函数,所以函数()lg 2x xe ef x --=在定义域(0,)+∞上单调递增.故选:A 【点睛】本题考查对数型复合函数的奇偶性和单调性,属于中档题.8.C解析:C 【分析】根据对数函数性质与复合函数的单调性求解. 【详解】因为0a >且1a ≠,令2t ax =-,所以函数2t ax =-在[]0,3上为减函数, 所以函数log a y t =应是减函数,()f x 才可能是增函数, ∴01a <<,因为函数()f x 在[]0,3上为增函数, 由对数函数性质知230a ->,即23<a , 综上023a <<. 故选:C . 【点睛】本题考查复合函数的单调性,掌握对数函数性质是解题关键,考查逻辑思维能力和计算能力,属于常考题.9.B解析:B 【分析】11()+2x y m -=与x 有公共点,转化为11()2xy -=与y m =-有公共点,结合函数图象,可得结果. 【详解】11()+2x y m -=与x 有公共点,即11()2x y -=与y m =-有公共点,11()2xy -=图象如图可知0110m m <-≤⇒-≤< 故选:B 【点睛】本题考查了函数的交点问题,考查了运算求解能力和数形结合思想,属于基础题目.10.C解析:C 【分析】根据奇函数()f x 与偶函数()g x ,由()()2x xf xg x a a -+=-+得到()()2﹣﹣﹣=+xx g x f x a a ,两式相加、相减并结合()g b a =求得()f x 即可.【详解】∵奇函数()f x 与偶函数()g x ,()()()(),-∴=-=f x f x g x g x .又()()2﹣+=+-x x f x g x a a ,①()()2﹣---∴+=+x x f x g x a a ,()()2﹣∴=--+x x g x f x a a .② +①②,得()24g x =,()2g x ∴=. (),2g b a a =∴=. ()22﹣-∴=x x f x . 22115(2)22444f -∴=-=-=. 故选:C. 【点睛】本题主要考查函数奇偶性的综合应用,还考查了运算求解的能力,属于中档题.11.A解析:A 【解析】分析:0.20.4b =, 0.60.4c =的底数相同,故可用函数()0.4xf x =在R 上为减函数,可得0.60.200.40.40.41<<=.用指数函数的性质可得0.20221a =>=,进而可得0.20.20.620.40.4>>.详解:因为函数()0.4xf x =在R 上为减函数,且0.2<0.4 所以0.60.200.40.40.41<<= 因为0.20221a =>=. 所以0.20.20.620.40.4>>. 故选A .点睛:本题考查指数大小的比较,意在考查学生的转化能力.比较指数式的大小,同底数的可利用指数函数的单调性判断大小,底数不同的找中间量1,比较和1的大小.12.D解析:D 【分析】由题意可得可得1a >,且30a ->,由此求得a 的范围. 【详解】 解:函数()log (3)a f x ax =-在[]13,上单调递增,而函数()3t x ax =-在[]13,上单调递增,根据复合函数的单调性可得1a >,且30a ->,解得3a >,即()3a ∈+∞,故选:D . 【点睛】本题主要考查对数函数的定义域、单调性,复合函数的单调性,属于基础题.二、填空题13.8【分析】根据函数平移法则求出点得再结合基本不等式即可求解【详解】由题可知恒过定点又点在直线上故当且仅当时取到等号故的最小值等于8故答案为:8【点睛】本题考查函数平移法则的使用基本不等式中1的妙用属解析:8 【分析】根据函数平移法则求出点A ()2,1--,得21m n +=,再结合基本不等式即可求解 【详解】由题可知,()log 31a y x =+-恒过定点()2,1--,又点A 在直线 10mx ny ++=上,故21m n +=,()121242448n mm n m n m n m n⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当122n m ==时取到等号,故12m n+的最小值等于8故答案为:8 【点睛】本题考查函数平移法则的使用,基本不等式中“1”的妙用,属于中档题14.【分析】利用对数的运算性质得出结合周期性即可得出的值【详解】且则则函数的周期为2故答案为:【点睛】本题主要考查了由抽象函数的周期求函数值涉及了对数的运算属于中档题 解析:109-【分析】利用对数的运算性质得出3310log 303log 9=+,结合周期性,即可得出3(log 30)f 的值. 【详解】33333101010log 30log 27log 27log 3log 999⎛⎫=⨯=+=+ ⎪⎝⎭,且333100log log log 9131=<<= (1)()f x f x +=-,(11)(1)()f x f x f x ∴++=-+=,则(2)()f x f x +=,则函数()f x 的周期为2310log 3333310101010(log 30)21log 1log log 39999f f f f⎛⎫⎛⎫⎛⎫∴=++=+=-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 故答案为:109- 【点睛】本题主要考查了由抽象函数的周期求函数值,涉及了对数的运算,属于中档题.15.1或2【分析】因为函数在上单调递减要使的单调增区间为分两种情况讨论对称轴和对称轴分别计算可得;【详解】解:因为函数在上单调递减要使的单调增区间为①当函数对称轴为时因为所以恒成立满足条件②当函数对称轴解析:1或2 【分析】因为函数12log y x =在()0,∞+上单调递减,要使()()212log 23f x x ax =-+的单调增区间为(),1-∞,分两种情况讨论,对称轴1x =和对称轴1x a =>,分别计算可得; 【详解】解:因为函数12log y x =在()0,∞+上单调递减,要使()()212log 23f x x ax =-+的单调增区间为(),1-∞,①当函数()223g x x x a =-+对称轴为1x a ==时,因为()22430∆=--⨯<,所以2230x ax -+>恒成立,满足条件,②当函数()223g x x x a =-+对称轴1x a =>时,需满足()10g =,即21230a -+=解得2a =;综上可得1a =或2 故答案为:1或2 【点睛】本题考查复合函数的单调性判断,已知函数的单调性求参数的取值范围,属于中档题.16.【分析】根据对数部分函数为单调递增所以整个函数为递增函数两段函数各自递增且左段的右端点小于等于右段的左端点即可求得的取值范围【详解】函数在上是单调函数因为当时为增函数所以整个函数在上是单调递增函数因 解析:[5,4]--【分析】根据对数部分函数为单调递增,所以整个函数为递增函数.两段函数各自递增,且左段的右端点小于等于右段的左端点,即可求得m 的取值范围. 【详解】函数2223,1,()log (6),1x mx x f x x m x ⎧---≤=⎨+>⎩在(,)-∞+∞上是单调函数因为当1x >时, 2()log (6)f x x m =+为增函数,所以整个函数在(,)-∞+∞上是单调递增函数因而满足60x m +>对1x >恒成立,则6m ≥-. 当1x ≤时,2()23f x x mx =---为增函数,则14m -≥ 即2614(1)log (6)m mf m ≥-⎧⎪⎪-≥⎨⎪≤+⎪⎩,即2645log (6)0m m m m ≥-⎧⎪≤-⎨⎪+++≥⎩因为2()5log (6)g x x x =+++在(6,)-+∞为增函数,且(5)0g -=, 所以5m ≥-.综上可知54m -≤≤-,即[5,4]m ∈-- 故答案为:[5,4]-- 【点睛】本题考查了分段函数的单调性判断,根据函数单调性求参数的取值范围,属于中档题.17.【分析】变换得到代入化简得到得到答案【详解】则故故答案为:【点睛】本题考查了指数对数变换换底公式意在考查学生的计算能力【分析】变换得到2log a m =,5log b m =,代入化简得到11log 102m a b+==,得到答案. 【详解】25a b m ==,则2log a m =,5log b m =,故11log 2log 5log 102,m m m m a b+=+==∴=【点睛】本题考查了指数对数变换,换底公式,意在考查学生的计算能力.18.【分析】首先求出函数的定义域再根据复合函数的单调性计算可得【详解】解:则解得即函数的定义域为令则因为在上单调递增在上单调递减;在定义域上单调递减根据复合函数的单调性同增异减可知函数在上单调递增故答案 解析:()1,1-【分析】首先求出函数的定义域,再根据复合函数的单调性计算可得. 【详解】 解:()()12log 13y x x =-+则()()130x x -+>解得31x -<<即函数的定义域为()3,1- 令()()()()21314t x x x x =-+=-++,()3,1x ∈-,则12logy t =因为()t x 在()3,1--上单调递增,在()1,1-上单调递减;12log y t =在定义域上单调递减根据复合函数的单调性“同增异减”可知函数()()12log 13y x x =-+在()1,1-上单调递增故答案为:()1,1- 【点睛】本题考查复合函数的单调区间的计算,属于基础题.19.或2【分析】根据复合函数的单调性及对数的性质即可求出的值【详解】当时在为增函数求得即;当时在为减函数求得即故答案为:或【点睛】本题考查复合函数单调性对数方程的解法难度一般解析:12或2 【分析】根据复合函数的单调性及对数的性质即可求出a 的值. 【详解】当1a >时, 1log 12a y x ⎛⎫=+⎪⎝⎭在3,62⎡⎤-⎢⎥⎣⎦为增函数,min 33log 1-224a y f ⎛⎫⎛⎫=-=-+= ⎪ ⎪⎝⎭⎝⎭,求得-214a =,即=2a ; 当01a <<时, 1log 12a y x ⎛⎫=+ ⎪⎝⎭在3,62⎡⎤-⎢⎥⎣⎦为减函数,()()min 6log 31-2a y f ==+=,求得-24a =,即1=2a . 故答案为:12或2. 【点睛】本题考查复合函数单调性,对数方程的解法,难度一般.20.2【分析】先利用函数的解析式得出其图象必过哪一个定点再将该定点的坐标代入函数中求出最后即可求出相应的函数值得到结果【详解】因为函数的图象恒过定点将代入得所以所以则故答案为:【点睛】该题考查的是有关函解析:2 【分析】先利用函数log (21)1(0,1)a y x a a =-+>≠的解析式得出其图象必过哪一个定点,再将该定点的坐标代入函数()2xf x b =+中求出b ,最后即可求出相应的函数值2(log 3)f ,得到结果. 【详解】因为函数log (21)1(0,1)a y x a a =-+>≠的图象恒过定点(1,1), 将1,1x y ==代入()2xf x b =+,得121b +=,所以1b =-,所以()21xf x =-, 则2log 32(log 3)21312f =-=-=,故答案为:2. 【点睛】该题考查的是有关函数值的求解问题,涉及到的知识点有对数型函数图象过定点问题,点在函数图象上的条件,已知函数解析式求函数值,属于简单题目.三、解答题21.(1)33,22⎛⎫- ⎪⎝⎭;(2)奇函数,证明见解析;(3)302x <<【分析】(1)由320320x x +>⎧⎨->⎩可解得结果;(2)()F x 是奇函数,根据奇函数的定义可证结论正确; (3)根据对数函数的单调性可解得结果.【详解】 (1)由320320x x +>⎧⎨->⎩,解得3322x -<<,所以函数()F x 的定义域为33(,)22-.(2)()F x 是奇函数. 证明如下:x ∀∈33(,)22-,都有x -∈33(,)22-,因为 ()ln(32)ln(32)()F x x x F x -=--+=-, ∴()F x 是奇函数.(3)由()0F x >可得()()0f x g x ->,得ln(32)ln(32)0x x +-->, 即ln(32)ln(32)x x +>-,由对数函数的单调性得32320x x ,解得302x <<.【点睛】易错点点睛:利用对数函数的单调性解对数不等式时,容易忽视函数的定义域. 22.(1)奇函数,证明见解析;(2)证明见解析;(3)}{23x x <<. 【分析】(1)求出函数定义域,求出()()()()ln 1ln 1f x x x f x -=--+=-即可得到奇偶性; (2)任取1211x x -<<<, 则()()12f x f x -122111ln 11x x x x ⎛⎫+-=⋅⎪+-⎝⎭,得出与0的大小关系即可证明; (3)根据奇偶性解()()()2522f x f x f x -<--=-,结合单调性和定义域列不等式组即可得解. 【详解】(1)由对数函数的定义得1010x x ->⎧⎨+>⎩,得11x x <⎧⎨>-⎩,即11x -<<所以函数()f x 的定义域为()1,1-.因为()()()()ln 1ln 1f x x x f x -=--+=-, 所以()f x 是定义上的奇函数. (2)设1211x x -<<<,则()()()()()()121122ln 1ln 1ln 1ln 1f x f x x x x x -=+---++-122111ln 11x x x x ⎛⎫+-=⋅ ⎪+-⎝⎭因为1211x x -<<<,所以12011x x <+<+,21011x x <-<-, 于是12211101,0111x x x x +-<<<<+-.则1221110111x x x x +-<⋅<+-,所以122111ln 011x x x x ⎛⎫+-⋅< ⎪+-⎝⎭ 所以()()120f x f x -<,即()()12f x f x <,即函数()f x 是()1,1-上的增函数. (3)因为()f x 在()1,1-上是增函数且为奇函数.所以不等式()()2520f x f x -+-<可转化为()()()2522f x f x f x -<--=-所以1251121252x x x x -<-<⎧⎪-<-<⎨⎪-<-⎩,解得23x <<.所以不等式的解集为}{23x x <<.【点睛】此题考查判断函数的奇偶性和单调性,利用单调性解不等式,关键在于熟练掌握奇偶性和单调性的判断方法,解不等式需要注意考虑定义域. 23.(1)[1,5]A B ⋂=-;(2)(],3-∞. 【分析】(1)根据指数运算解不等式求出集合A ,利用对数的运算求出集合B ,由此能求出A B ;(2)由{}11C x m x m =-≤≤+和C A ⊆,对C 是否为空集分类讨论,列出不等式组,由此能求出m 的取值范围. 【详解】 解:(1)1{|232}{|25}4xA x x x ==-, 12{|log B y y x==,12}{|16}64x x x =-, [1,5]A B ∴=-.(2){}11C x m x m =-≤≤+且C A ⊆,若,11,0C m m m =∅->+<若C ≠∅,则111512m m m m -≤+⎧⎪+⎨⎪--⎩,解得03m ≤≤,m ∴的取值范围是(],3-∞.【点睛】本题考查交集的运算以及根据集合间的包含关系求参数的取值范围,还涉及指对数的运算,属于基础题. 24.(1)32x x ⎧⎨⎩或}1x <- (2)(5,)+∞ 【分析】(1)先使得()22222139x x ---⎛⎫= ⎪⎝⎭,再由3x y =的单调性求解即可;(2)先求定义域,再根据复合函数单调性的“同增异减”原则求解即可. 【详解】解:(1)因为221139x x --⎛⎫> ⎪⎝⎭,且()22222139x x ---⎛⎫= ⎪⎝⎭,所以()222133x x --->,因为3x y =在R 上单调递增,所以()2221xx -->-,解得32x >或1x <-, 则满足不等式221139x x --⎛⎫> ⎪⎝⎭的x 的取值集合为32x x⎧⎨⎩或}1x <- (2)由题,2450x x -->,解得5x >或1x <-,则定义域为()(),15,-∞-+∞,设245u x x =--,35log y u =,因为35log y u =单调递减,若求()f x 的递减区间,则求245u x x =--的递增区间,因为245u x x =--的对称轴为2x =,所以在()5,+∞上单调递增, 所以函数()f x 的单调减区间为()5,+∞ 【点睛】本题考查解指数不等式,考查复合函数的单调区间. 25.(1)2a =;(2)2m nm n++ 【分析】(1)根据对数运算求a 的值;(2)利用换底公式化简求值. 【详解】(1)由已知得231a -=得:2a =(2)由(1)得()()lg 23f x x =-,则()()3lg3,5lg7f m f n ====, ∴21lg632lg3lg72log 63lg21lg3lg7m nm n++===++ 【点睛】本题考查对数换底公式,考查基本分析求解能力,属基础题. 26.最大值为43,无最小值. 【分析】首先根据对数真数大于0,解不等式2340x x -+>求出定义域M ,然后利用换元法,即可求出函数()f x 的最值. 【详解】由2340x x -+>,解得1x <或3x >,所以(,1)(3,)M =-∞+∞,22()234423(2)x x x x f x +=-⨯=⨯-⨯,令2x t =,由x M ∈得02t <<或8t >,则原函数可化为2224()433()33g t t t t =-=--+,其对称轴为23t =,所以当02t <<时,4()(4,]3g t ∈-;当8t >时,()(,160)g t ∈-∞-. 所以当23t =,即223log x =时,()g t 取得最大值43,即函数()f x 取得最大值43,函数()g t 无最小值,故函数()f x 无最小值. 【点睛】本题主要考查函数定义域的求法及换元法求函数最值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学学习材料金戈铁骑整理制作第三章 指数函数与对数函数 测试题学号:________ 班级:________姓名:________得分:________(时间:120分钟 满分:150分)一.选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知集合}1,)21(|{},1,log |{2>==>==x y y B x x y y A x,则A =B ( ) A . ⎭⎬⎫⎩⎨⎧<<210|y y B. {}10|<<y y C. ⎭⎬⎫⎩⎨⎧<<121|y y D. Φ 2. 函数5log (23)x y x -=-的定义域为( ) A .3(,5)2B .3(,4)2C .(4,5)D .3(,4)2(4,5)3. 已知0.30.22log 0.3,2,0.3a b c ===,则,,a b c 三者的大小关系是( ) A .b a c >>B. b c a >>C.a b c >>D.c b a >>4. 设函数221,1(),1x x f x x ax x ⎧+<⎪=⎨+≥⎪⎩,,若((0))4f f a =,则实数a 等于( )A.12B.45C.2D. 95. 化简()()4433log 3log 9log 2log 8++= ( ) A.6 B.6-C.12D.12-6. 下列各组函数中,表示同一个函数的是 ( )A .()()f x g x x == B .()()2log 2,x f x g x ==C .()()2,x f x x g x x== D .()()2ln ,2ln f x x g x x ==7. 与函数()a xf x =(01)a a >,≠且的图象关于直线y =x 对称的函数g (x )的图象过点(a,a ),则1()2g 的值为 ( ) A.2B.1C.12D.-1 8.下列函数中,值域为(0,)+∞的是 ( )A.15xy = B .11()3xy -= C .1()12x y =- D .22log (1)y x =+9. x=3log 131log 111121+的值属于区间( )A. (-3,-2)B. (-2,-1)C.(-1,0)D.(2,3) 10. 若函数24()(01)x f x a a a |-|=>,≠且满足1(1)9f =,则f (x )的单调递减区间是( )A.(2]-∞,B.[2,+)∞C. [-2,+)∞D.(2]-∞,-=log 2|x |,11. 函数f (x )g (x )=-x 2+2,则f (x )g (x )的图象只可能是( )12. 若函数f (x )=log a (x +b )(其中a ,b 为常数)的图象如图所示,则函数g (x )=a x+b 的大致图象是( )二.填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13. 函数1()2,x 0xf x R =∈≠(x 且)的值域为14. 已知幂函数2()m y x m N -=∈的图象与x ,y 轴都无交点,且关于y 轴对称,则m =15. 已知函数()()331log 1a a x x f x x x ⎧--≤⎪=⎨>⎪⎩,,,在R 上单调递增,则实数a 的取值范围为 .16. 函数f (x )=lg -x 2+4x 的值域为________.三.解答题(本大题共6小题,共70分.解答题应写出文字说明、证明过程或演算步骤)17. (10分) 化简(1)()21151133662226300a b a b a b a b ⎛⎫⎛⎫⎛⎫-÷->> ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭且;(2)若log a m =0.32,求23log a m +的值. 18. (12分)已知函数522)2(2+⨯-=xx y . (1)求该函数的单调区间;(2)当]2,1[-∈x 时,求该函数的最大值和最小值. 19.已知函数()log (1)log (3),(01).a a f x x x a =-++<<(1)求函数f(x)的定义域;(2)若函数 f(x)的最小值为2-,求a 的值.20. (12分)设函数2()log ()x x f x a b =-,且(1)1f =,2(2)log 12f =. (1)求a b ,的值;(2)当[12]x ∈,时,求()f x 的最大值. 21. (12分)已知定义在R 上的函数()f x 满足(4)()f x f x +=,当26x ≤≤时,||1()(),(4)312x m f x n f -=+=.(1)求,m n 的值;(2)比较3(log )f m 与3(log )f n 的大小.22. (12分)已知定义域为R 的函数12()2x x bf x a+-+=+是奇函数.(1)求,a b 的值;(2)若对任意的t R ∈,不等式0)()2(22<--+-k t t f t t f 恒成立,求实数k 的取值范围.参考答案一.选择题1.A2.D3.B4.C5.A6.B7.B 8.B 9.B 10.B 11.C 12.D 提示:1.1{|0},{|0}2A y yB y y =>=<<,所以A =B ⎭⎬⎫⎩⎨⎧<<210|y y . 2.由对数函数有意义的条件得5051230x x x ->⎧⎪-≠⎨⎪->⎩,,,即4x 523≠<<且x ,故选D .3.0.30.22log 0.30,21,00.31a b c =<=><=<,所以b c a >>.4.0(0)212,f =+=2((0))(2)224,2f f f a a a ==+==所以. 5.()()2344334333log 27log 3log 9log 2log 8log 27log 16log 4236log 4++=⋅=⨯=⨯=.6.根据定义域与对应法则相同知B 正确. 7.依题意得g (x )=log 12x , 所以1()2g =log 12112=. 8. A 项中y ≠1,C,D 项中y 可以为09.10.由1(1)9f =,得219a =,所以13a =,因此f (x )241()3x |-|=.因为g (x )=|2x -4|在[2,+)∞上单调递增,所以f (x )的单调递减区间是[2,+)∞.11.因为函数)(),(x g x f 都为偶函数,所以F (x )=)()(x g x f 也为偶函数,所以图象关于y 轴对称,排除A,D ;F (x )=x x x g x f 22log )2()()(+-=,当10<<x 时,0)()(<x g x f ,排除B,选C. 12.由题意知01,0(0)log 1,a f ab <<⎧⎨<=<⎩所以01,1,a a b <<⎧⎨<<⎩则选D.二.填空题 13.(0,1)(1,)+∞ 14. 0或2 15.36a <≤ 16. (-∞,lg2]提示:13.因为0,x ≠所以()1f x ≠,又因为()0f x >,所以f (x )的值域是(0,1)(1,)+∞.14.因为幂函数的图象与x,y 轴都无交点,所以m-2≤0,又m N ∈,所以0≤m ≤2,即m=0,1又图象关于y 轴对称,所以m-2为偶数,所以m 为偶数,所以m=0,2. 15.由题意知30a ->,且a>1,330a --≤,所以36a <≤.16.由题意知,-x 2+4x =-(x -2)2+4>0,所以-x 2+4x ∈(0,4],所以-x 2+4x ∈(0,2],所以函数f (x )的值域为(-∞,lg2]. 三.解答题17.解:(1)211511336622(2)(6)(3)4a b a b a b a -÷-=; (2)由题意知01a a >,≠且 ,m>0,23log a m + =122132loglog a a m m -+=16log log 4a a m m -=6×0.32-10.324⨯=1.84.18. 解:设2x t =,则()2225=14y t t t =-+-+,其中t>0.(1)当t ≥1时,()214y t =-+在[)∞+,1上为增函数,由2x≥1得x ≥0,且t=2x在[)∞+,0上为增函数,所以原函数在[)∞+,0上为增函数.同理,原函数在(0-,∞]上为增函数.(2)因为]2,1[-∈x ,所以1[,4]2t ∈,则225y t t =-+,当1t =时,y 取最小值4,当4t =时,y 取最大值13.19.解:(1)要使函数有意义,则有1030x x ->⎧⎨+>⎩,解得-3<x<1,所以定义域为(-3,1) .(2)函数可化为2()log (1)(3)log (23)a a f x x x x x =-+=--+2log [(1)4]a x =-++ .因为-3<x<1, 所以20(1)44x <-++≤ . 因为01a <<,4log ]4)1([log 2a a x ≥++-∴,即f(x)的最小值为log a 4.由log a 4=-2,得24a -=,12142a -∴==.20. 解:(1)由题意知22222log ()1246 2.log ()log 12a b a b a a b b a b -=⎧-==⎧⎧⎨⎨⎨+==-=⎩⎩⎩,,,即解得,, (2)由(1)知,2()log (42)x x f x =-,由4x-2x>0,得2x (2x-1)>0,因为2x>0,所以2x-1>0,所以x>0.所以f (x )的定义域为x|x>0.因为]2,1[∈x 为),(∞+0的真子集,所以令2,[2,4]x t t =∈,222211()()log ()log (),24f x g t t t t ⎡⎤==-=--⎢⎥⎣⎦又g (t )在]4,2[上为增函数,所以当t=4,即x=2时,g (t )取最大值log 212,故f (x )的最大值为f (2)=log 212.当4t =时,即2x =时,y 取最大值12,f (x )的最大值为2log 12.21. 解:(1)因为()f x 在R 上满足(4)()f x f x +=,所以(2)(6)f f =,即|2||6|11()()22m m n n --+=+, 所以|2||6|m m -=-,解得4m =,所以|4|1()().2x f x n -=+又(4)31f =,即|44|1312n -+=,所以n=30.(2)由(1)知|4|1()()30,[2,6]2x f x x -=+∈.因为1<log 34<2,所以5<log 34+4<6,所以3|log 444|3331(log )(log 4)(log 44)()302f m f f +-==+=+3log 41()30.2=+因为33log 304<<,所以3381log 4log 3030311(log 30)()30()3022f -=+=+. 因为3381log log 430<,所以3381log log 43011()()22<,所以3381log log 43011()30()3022+<+, 所以33(log )(log )f m f n <.22.解:(1)因为()f x 是奇函数,所以(0)f =0,即111201()22xx b b f x a a +--===++,得,所以. 又由f (1)= -f (-1)知11122 2.41a a a --=-=++,得(2)由(1)知11211()22221x x x f x +-==-+++,易知()f x 在(,)-∞+∞上为减函数.又因为()f x 是奇函数,从而不等式0)()2(22<--+-k t t f t t f 恒成立等价于)()2(22k t t f t t f ---<-=)(2k t t f ++-恒成立,因为()f x 为R 上的减函数,所以222-++k t t t t ->,即k <3t 2-2t 恒成立,又3t 2-2t =32)31(-t -31≥-31,所以k <-31.实数k 的取值范围为k <-31.。

相关文档
最新文档