Z2、圆锥曲线与解析几何b2、直线与双曲线,中点问题

合集下载

高考数学复习:圆锥曲线的定点、定值、定直线

高考数学复习:圆锥曲线的定点、定值、定直线

高考数学复习:圆锥曲线的定点、定值、定直线【热点聚焦】纵观近几年的高考试题,圆锥曲线的定点、定值、定直线问题是热点之一.从命题的类型看,主要是大题.一般说来,考查直线与椭圆、双曲线、抛物线的位置关系问题,综合性较强,涉及方程组联立,根的判别式、根与系数的关系、弦长、面积、参数、几何量为定值,或定点在某直线上、定直线过某点等.难度往往大些.【重点知识回眸】(一)定值问题1.定义:定值问题是指虽然圆锥曲线中的某些要素(通常可通过变量进行体现)有所变化,但在变化过程中,某个量的值保持不变即为定值.2.圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值:依题意设条件,得出与代数式参数有关的等式,代入代数式,化简即可得出定值;(2)求点到直线的距离为定值:利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得;(3)求某线段长度为定值:利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.3.常见定值问题的处理方法:(1)确定一个(或两个)变量为核心变量,其余量均利用条件用核心变量进行表示(2)将所求表达式用核心变量进行表示(有的甚至就是核心变量),然后进行化简,看能否得到一个常数.4.定值问题的处理技巧:(1)对于较为复杂的问题,可先采用特殊位置(例如斜率不存在的直线等)求出定值,进而给后面一般情况的处理提供一个方向.(2)在运算过程中,尽量减少所求表达式中变量的个数,以便于向定值靠拢(3)巧妙利用变量间关系,例如点的坐标符合曲线方程等,尽量做到整体代入,简化运算(二)定点问题1.求解圆锥曲线中的定点问题的两种思路:(1)特殊推理法:先从特殊情况入手,求出定点,再证明定点与变量无关.(2)直接推理法:①选择一个参数建立直线系方程,一般将题目中给出的曲线方程(包含直线方程)中的常量当成变量,将变量x,y当成常量,将原方程转化为kf(x,y)+g(x,y)=0的形式(k是原方程中的常量);②根据直线过定点时与参数没有关系(即直线系方程对任意参数都成立),得到方程组()0g()0f x y x y =⎧⎨=⎩,,;③以②中方程组的解为坐标的点就是直线所过的定点,若定点具备一定的限制条件,则可以特殊解决.2.求解圆锥曲线中的定点问题的方法(1)确定题目中的核心变量(此处设为k )(2)利用条件找到k 与过定点的曲线(),0F x y =的联系,得到有关k 与,x y 的等式(3)所谓定点,是指存在一个特殊的点()00,x y ,使得无论k 的值如何变化,等式恒成立.此时要将关于k 与,x y 的等式进行变形,直至易于找到00,x y .常见的变形方向如下:①若等式的形式为整式,则考虑将含k 的项归在一组,变形为“()k ⋅”的形式,从而00,x y 只需要先让括号内的部分为零即可②若等式为含k 的分式,00,x y 的取值一方面可以考虑使其分子为0,从而分式与分母的取值无关;或者考虑让分子分母消去k 的式子变成常数(这两方面本质上可以通过分离常数进行相互转化,但通常选择容易观察到的形式)3.一些技巧与注意事项:(1)面对复杂问题时,可从特殊情况入手,以确定可能的定点(或定直线).然后再验证该点(或该直线)对一般情况是否符合.属于“先猜再证”.(2)有些题目所求与定值无关,但是在条件中会隐藏定点,且该定点通常是解题的关键条件.所以当遇到含参数的方程时,要清楚该方程为一类曲线(或直线),从而观察这一类曲线是否过定点.尤其在含参数的直线方程中,要能够找到定点,抓住关键条件.例如:直线:1l y kx k =+-,就应该能够意识到()11y k x =+-,进而直线绕定点()1,1--旋转.(三)定直线问题探求圆锥曲线中的定直线问题的两种方法:方法一是参数法,即先利用题设条件探求出动点T 的坐标(包含参数),再消去参数,即得动点T 在定直线上;方法二是相关点法,即先设出动点T 的坐标为(x,y),根据题设条件得到已知曲线上的动点R 的坐标,再将动点R 的坐标代入已知的曲线方程,即得动点T 在定直线上.【典型考题解析】热点一定值问题【典例1】已知抛物线C :2y =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N .(Ⅰ)求直线l 的斜率的取值范围;(Ⅱ)设O 为原点,QM QO λ= ,QN QO μ= ,求证:11λμ+为定值.【典例2】如图,已知抛物线2:4C x y =,过点(0,2)M 任作一直线与C 相交于,A B 两点,过点B 作y 轴的平行线与直线AO 相交于点D (O 为坐标原点).(1)证明:动点D 在定直线上;(2)作C 的任意一条切线l (不含x 轴)与直线2y =相交于点1N ,与(1)中的定直线相交于点2N ,证明:2221||MN MN -为定值,并求此定值.【典例3】已知抛物线C :22(0)y px p =>的焦点为F ,过F 且斜率为43的直线l 与抛物线C 交于A ,B 两点,B 在x 轴的上方,且点B 的横坐标为4.(1)求抛物线C 的标准方程;(2)设点P 为抛物线C 上异于A ,B 的点,直线PA 与PB 分别交抛物线C 的准线于E ,G 两点,x 轴与准线的交点为H ,求证:HG HE ⋅为定值,并求出定值.【典例4】已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()30,2,,12A B ⎛--⎫ ⎪⎝⎭两点.(1)求E 的方程;(2)设过点()1,2P -的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH = .证明:直线HN 过定点.【典例5】已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅= ,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.【典例6】已知抛物线C :x 2=−2py 经过点(2,−1).(Ⅰ)求抛物线C 的方程及其准线方程;(Ⅱ)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.【总结提升】动直线l 过定点问题的常见思路设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk ,得y =k(x +m),故动直线过定点(-m,0).【典例7】设椭圆的焦点在x 轴上(Ⅰ)若椭圆的焦距为1,求椭圆的方程;(Ⅱ)设分别是椭圆的左、右焦点,为椭圆上第一象限内的点,直线交轴与点,并且,证明:当变化时,点在某定直线上.【典例8】已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别是()11,0F -,()21,0F ,点()0,A b ,若12AF F △的内切圆的半径与外接圆的半径的比是1:2.(1)求椭圆C 的方程;(2)过C 的左焦点1F 作弦DE ,MN ,这两条弦的中点分别为P ,Q ,若0DE MN ⋅= ,证明:直线PQ 过定点.【典例9】设12,F F 是双曲线()2222:10,0x y C a b a b-=>>的左、右两个焦点,O 为坐标原点,若点P 在双曲线C 的右支上,且1122,OP OF PF F == 的面积为3.(1)求双曲线C 的渐近线方程;(2)若双曲线C 的两顶点分别为()()12,0,,0A a A a -,过点2F 的直线l 与双曲线C 交于M ,N 两点,试探究直线1A M 与直线2A N 的交点Q 是否在某条定直线上?若在,请求出该定直线方程;若不在,请说明理由.1.已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM |·|ON |=2,求证:直线l 经过定点.2.在平面直角坐标系中,动点(),M x y 与定点()5,0F 的距离和M 到定直线16:5l x =的距离的比是常数54,设动点M 的轨迹为曲线C .(1)求曲线C 的方程;(2)设()2,0P ,垂直于x 轴的直线与曲线C 相交于,A B 两点,直线AP 和曲线C 交于另一点D ,求证:直线BD 过定点.3.已知双曲线2222:1(0,0)x y C a b a b -=>>的离心率为32,右焦点F.(1)求双曲线C 的方程;(2)若12,A A 分别是C 的左、右顶点,过F 的直线与C 交于,M N 两点(不同于12,A A ).记直线12,A M A N 的斜率分别为12,k k ,请问12k k 是否为定值?若是定值,求出该定值;若不是,请说明理由.4.已知椭圆C :()222210x y a b a b+=>>的左焦点为()11,0F -,上、下顶点分别为A ,B ,190AF B ∠=︒.(1)求椭圆C 的方程;(2)若椭圆上有三点P ,Q ,M 满足OM OP OQ =+uuu r uu u r uuu r ,证明:四边形OPMQ 的面积为定值.5.已知动圆M 过定点()2,0A ,且在y 轴上截得的弦长为4,圆心M 的轨迹为曲线L .(1)求L 的方程;(2)已知点()3,2B --,()2,1C ,P 是L 上的一个动点,设直线PB ,PC 与L 的另一交点分别为E ,F ,求证:当P 点在L 上运动时,直线EF 恒过一个定点,并求出这个定点的坐标.6.已知椭圆()2222:10x y C a b a b +=>>,一个焦点1F 与抛物线2y =-的焦点重合.(1)求椭圆C 的方程;(2)若直线:l y kx m =+交C 于,A B 两点,直线1F A 与1F B 关于x 轴对称,证明:直线l 恒过一定点.7.在直角坐标系xOy 中,已知定点(0,1)F ,定直线:3l y =-,动点M 到直线l 的距离比动点M 到点F 的距离大2.记动点M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线?(2)设0(2,)P y 在C 上,不过点P 的动直线1l 与C 交于A ,B 两点,若90APB ∠=︒,证明:直线1l 恒过定点.8.椭圆()2222:10x y C a b a b+=>>的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C 的标准方程;(2)设F 为椭圆C 的左焦点,M 为直线3x =-上任意一点,过F 作MF 的垂线交椭圆C 于点P ,Q .证明:OM 经过线段PQ 的中点N .(其中O 为坐标原点)9.已知椭圆E :()222210x y a b a b +=>>的离心率为2,短轴长为2.(1)求E 的方程;(2)过点()4,0M -且斜率不为0的直线l 与E 自左向右依次交于点B ,C ,点N 在线段BC 上,且MB NBMC NC =,P 为线段BC 的中点,记直线OP ,ON 的斜率分别为1k ,2k ,求证:12k k 为定值.10.已知椭圆C :22221x y a b+=()0a b >>的右焦点为F ,过点F 作一条直线交C 于R ,S 两点,线段RS,C的离心率为2.(1)求C 的标准方程;(2)斜率不为0的直线l 与C 相交于A ,B 两点,(2,0)P ,且总存在实数R λ∈,使得PA PB PF PA PB λ⎛⎫ ⎪=+ ⎪⎝⎭ ,问:l 是否过一定点?若过定点,求出该定点的坐标11.已知椭圆C :()222210x y a b a b+=>>的右焦点为F ,圆O :222x y a +=,过F 且垂直于x 轴的直线被椭圆C 和圆O.(1)求C 的方程;(2)过圆O 上一点P (不在坐标轴上)作C 的两条切线1l ,2l ,记1l ,2l 的斜率分别为1k ,2k ,直线OP 的斜率为3k ,证明:()123k k k +为定值.12.已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点()2,1A .(1)求C 的方程:(2)点M ,N 在C 上,且AM AN ⊥,AD MN ⊥,D 为垂足.证明:存在定点Q ,使得DQ 为定值.。

高考数学复习点拨直线与圆锥曲线问题解析

高考数学复习点拨直线与圆锥曲线问题解析

故 DE
(x1 x2) 2 ( y1 y2 )2
2 ( x1 x2) 2 4x1x2 4 5
(或 DE 1 k 2 x1 x2 4 5 ).
说明:(1)当弦的两端点的坐标易求时, 可直接求出交点坐标,再用两点间距离公式求
弦 长 ;( 2 ) 当 弦 的 两 端 点 的 坐 标 不 易 求 时 , 可 用 弦 长 公 式 d
1
4 ,得 a
2.
(4,1) ,
注 :本题同样也可用“点差法”解.
说明:( 1)求弦中点(轨迹)问题一般解题步骤 :①联立解方程组转化为一元二次方程;
②应用根与系数的关系;③消参数(注意检验) .( 2)求弦的中点及与中点有关的问题,常
用根与系数的关系;有时采用“点差法” ,可优化解题方法,简化运算.
3.圆锥曲线的弦长问题,考查两点的距离公式,弦长公式,以及分类讨论思想 例 3 已知点 A( 3,0) 和 B( 3,0) ,动点 C 到 A, B 两点的距离之差的绝对值为
2,点 C
的轨迹与直线 y x 2 交于 D, E 两点,求线段 DE 的长.
解:设点 C ( x, y) ,则 CA CB 2 ,
线与双曲线渐近线相平行时的情况.抛物线同样也存在这样的问题,应特别引起注意.
2.直线与圆锥曲线的相交弦中点问题,考查运用一元二次方程根与系数的关系,考查
用点差法与中点建立联系的能力
例2
已知倾斜角为
45°的直线
l 过点
A(1,
2) ,若直线
l 与双曲线
x2 C: 2
y2
1(a 0)
a
相交于 E,F 两点,且线段 EF 的中点坐标为 (4,1) ,求 a 的值.
直线与圆锥曲线问题解析

圆锥曲线垂直弦中点轨迹过定点问题

圆锥曲线垂直弦中点轨迹过定点问题
点(结论3)(主义椭圆内部点的表示方式)。 3. 联系椭圆和双曲线的对应关系,以上各条(结论1~3)均可以推广到双曲线中(结论4~7)(注
意椭圆与双曲线的差异性:非封闭图形,因此横双竖双内部的点要分开讨论)。 4. 局限:椭圆与双曲线和抛物线的表达形式有较大差异,对于抛物线中的上述结论需要重新讨论。
kMN
yM xM
yN xN
mb2 x0 a2 b2m2
a2 x0
mb2 x0 a2m2 b2
a2m2 x0
m a2 b2 =
a2 m2 1
a2 b2m2 a2m2 b2
m a2 b2 直线 lMN : y a2 m2 1
m a2 b2
x xM yM y a2 m2 1
a2
b2
椭圆分别交于
A、B、C、D
四点。设弦
AC、BD
的中点分别为
M、N,lMN
恒过定点
a2
b2
x0 , a2
b2
y0
x2 y2
结论6:双曲线方程
C: a2 b2
1 ,过点 P 0, y0
y0 , b b,
作两条相互垂直的
1/4
2014.11.30
直线 l1 、 l2 与椭圆分别交于 A、B、C、D 四点。设弦 AC、BD 的中点分别为 M、N, lMN 恒过定点
且满足 MA MB=0 ,则 lAB 过定点 x0 , y0 2 p iv. 抛物线方程 C: x2 2 py p 0 上一点 P x0 , y0 ,抛物线上存在不同于点 P 的点 A、B,
且满足 MA MB=0 ,则 lAB 过定点 x0, y0 2 p
五、 联系
《圆锥曲线曲线上直角弦过定点结论》其实是与《圆锥曲线垂直弦中点轨迹过定点结论》有巨大联系

中点弦在圆锥曲线规律

中点弦在圆锥曲线规律

中点弦在圆锥曲线规律
中点弦定理是圆锥曲线中的一个基本定理,它描述了圆锥曲线上一点到两个焦点的距离之差等于它到一个定点(中点弦所在直线与圆锥曲线的交点)的距离的两倍。

具体来说,对于椭圆、双曲线和抛物线,中点弦定理可以分别表示为:
椭圆:设M为椭圆上一点,F1和F2为椭圆的两个焦点,N为MF1的中点,则MF2=2FN。

双曲线:设M为双曲线上一点,F1和F2为双曲线的两个焦点,N为MF1的中点,则MF2=-2FN。

抛物线:设M为抛物线上一点,F为抛物线的焦点,T 为MF的中点,则MT=PF,其中P为抛物线的顶点。

中点弦定理在圆锥曲线的研究中有着广泛的应用。

例如,在椭圆的应用中,中点弦定理可以用于计算椭圆上一点的速度和加速度等物理量;在双曲线的应用中,中点弦定理可以用于计算双曲线上一点的切线和法线等几何量;在抛物线的应用中,中点弦定理可以用于计算抛物线上一点的切线和法线等几何量。

高考数学专题复习圆锥曲线中点弦问题

高考数学专题复习圆锥曲线中点弦问题

关于圆锥曲线的中点弦问题直线与圆锥曲线相交所得弦中点问题, 是解析几何中的重要内容之一,也是高考的一个热点问题.这类问题一般有以下三种类型:(1)求中点弦所在直线方程问题; (2)求弦中点的轨迹方程问题;(3)求弦中点的坐标问题.其解法有代点相减法、设而不求法、参数法、待定系数法 及中央对称变换法等.一、求中点弦所在直线方程问题在的直线方程. 解法一:设所求直线方程为 y-1=k(x-2)22 _ _ 2(4k1)x8( 2k k)x又设直线与椭圆的交点为 A(x 1,y 1),B (x 2,y 2),那么x 1,x 2是方程的两个根,于是8(2k 2 k)x 1 x2—TT~2一"一,4k 1 2又M 为AB 的中点,所以 工一9 4^2一s 2 ,2 4k 1-1解得k-, 2故所求直线方程为 x 2y 4 0.2 2x y 例2过椭圆—— —1上一点P (-8, 0)作直线交椭圆于 Q 点,求PQ 中点的轨迹万 6436x 2例1过椭圆一 16 2y-1 内一点 M (2, 41)引一条弦,使弦被点 M 平分,求这条弦所,代入椭圆方程并整理得: _ 2 一4(2k 1)16 0解法二:设直线与椭圆的交点为 A(x 1, 所以 x 1 x 2 4 , y 1 y 2 2,22又A 、B 两点在椭圆上,那么 x 1 4 y l.... 1 . (2)222两式相减得(x 1 x 2 ) 4( y 1 y 2 )所以Li- X21,即x 〔 x 2 4( y 〔 y 2) 2故所求直线方程为 x 2y 4 0. 解法三:设所求直线与椭圆的一个交点为 那么另一个交点为 B(4- x ,2 y ), 由于A 、B 两点在椭圆上,所以有(4两式相减得x 2y 4 0, 由于过A 、B 的直线只有一条, 故所求直线方程为 x 2y 4 0.、求弦中点的轨迹方程问题 %), B (x 2,y 2), M (2, 1)为 AB 的中点,22_16 , x 2 4 y 2 16 ,0 ,k1kAB八,2A( x , y ),由于中点为M (2, 1),22x 24y 216 2-2x)24(2 y)2 16程.解法一:设弦PQ中点M ( x, y),弦端点P ( Xi, yi) , Q ( X2, y2),2 2那么有9X1216y12576,两式相减得9(x12 x22)9X2 16y2 576三、弦中点的坐标问题例3求直线y x 1被抛物线y2 4x截得线段的中点坐标.解:解法一:设直线y x 1与抛物线y2 4x交于A(x1, y1), B(x2, y2),其中点y x 1P(x0,y o),由题意得2,y 4x消去y 得(x 1)2 4x,即x2 6x 1 0 ,所以x.六3, y. x. 1 2,即中点坐标为(3,2).解法二:设直线y x 1与抛物线y2 4x交于人(为」),B(x2,y2),其中点P(x0,y0),由题意得"24",两式相减得y22 y: 4(x2 x1),y2 4x2所以(y2 y1)(y2 y1)416(y:2、y2 ) 0,又由于x1 x2 2x, y1 y22y,所以9 2x(x1x2) 16 2y(y1 y2) 0,y1y29x 工所以—————,而k PQx1x216y化简可得9x2 72x 16y2 0 (x 8).解法二:设弦中点M(x,y) , Q ( x1, y1),由x W 2y, x1 8 y1 广八八-一,y 工可得x1 2x 8 ,2 22 又由于Q在椭圆上,所以卫64 1 ,即4(x“ 36 64 鱼136所以PQ中点M的轨迹方程为(x 4)16x 8).所以y i y 24,即y o 2 , X 0 y 0 1 3,即中点坐标为〔3,2〕.上面我们给出了解决直线与圆锥曲线相交所得弦中点问题的一些根本解法.下面我们 看一个结论 2 2弓।理 设A 、B 是二次曲线C :A X Cy D X Ey F弦AB 的中点,那么 0上的两点,p 〔X0,y0〕为 kAB E 0) 2 设 A (X I ,V I )、B (X 2, y 2)贝u Axi 2 AX 22Cy i 2Cy 2 D X I Ey i F 0……(i) DX 2 Ey 2 F ⑴(2)得 A(X i .2A X 0 (x i X 2 ) X 2)(X i X 2) C(y i y 2)(y i v2 D(X i X 2) 2) E(y i V2) 0 . (2AX 0 D)(x i •• 2Cy 0 〔说明:当A2A X 0 酝B D E ) 2推论i 设圆X 2X 0 D 2y 0 k AB 推论2b \X--- -• ----------k AB 设点 2Cy o (y i y 2)D(X 1 X 2) X 2) (2Cy ° E)(y i y ?) .X i X 2y i y X i X 2 时,上面的结论就是过二次曲线 〔假设点设椭圆a2・a y0.〔注:对丫?血2・a V .〕推论3 设双曲线bi?及 2 ■ E(y i y 2) 2AX 0 2Cy ° E 即 k AB2AX 0 D 2C V ^~~ED X Ey F 0的弦 P 在圆上时,那么过点 2匕b 2a< b C 上的点P 〔X0,y .〕的切线斜率公式, AB 的中点为 p 〔X0,y0〕〔y .0〕,那么 k P 的切线斜率2X 0 D2y .E为) i的弦AB也成立.假设点2y b 2a y 0.〔假设点p 在双曲线上,的中点为P〔X0,y.〕y 00),那么P 在椭圆上, 那么过点P 的切线斜率为i的弦AB 的中点为那么过 P 点的切线斜率为2推论4设抛物线y2Px 的弦AB 的中点为P 〔x0,y0〕〔k 卫〕P 在抛物线上,那么过点 P 的切线斜率为y0P (x 0 , y 0 ) y 00)那么y.bl?a 2 ■a V .)k AB0)那么P y0.(假我们可以直接应用上面这些结论解决有关问题,下面举例说明.例1、求椭圆252L 116 斜率为3的弦的中点轨迹方程.解:设P (x,V)是所求轨迹上的任一点,那么有c 16 cx3 — ?一25 y,故所示的轨迹方程为( 16x+75y=075,2412x;1)…,,一2例2、椭圆a2y 1(a b 0),A、2 ,2a bB是椭圆上两点,线段AB的垂直平分线l2 ,2a bP(x0,0),求证:证实:设AB的中点为T(x i,y i),由题设可知AB与x轴不垂直,,y i 0b2 a2 aQy i --- Z-■''.•.l的方程为:2ax1 ~ 1T2a b2 ,2a b -.l±AB2 土?〞(xb x1• . | x1 | ab2a2例3、抛物线C: y x ,直线在关于l对称的两点,k的取值范围是什么?解:设中点为C上两点A、P(x0 , y0 )(k AB 12y0令y=02*?t(x.x1)2a-2""ab-?x01l:y k(x 1) 1,要使抛物线C上存B两点关于l对称,AB的0)1k2 k(x0 1)•• P在抛物线内_ 2(k 2)( k1,1k24y0. PC1 kl y°k(x°J 1 1 I、P( ,- k)2 k 21) 1,k3» 0,4k与抛物线有关的弦的中点的问题〔1〕中点弦问题:y =3+ 1与/+_/+分-了= 1交于两点,且这两点关于直缥+ y = 0对称,那么笳+5 = 7〔上题麻烦了.是圆不用中点法〕争两交点是〔工1,乃、〔电1?都满足二i■太曲线方程.?〔1〕•㈡〕有〔局一/〕3 +/〕+〔>[-M〕C X1+⑷土中.「占〕-〔>-以〕=.小同时除出一々〕有区+引+33〔乃+打〕〞一"建二0」〔占一修〕〔七一刍〕空生就是直线的斜率E 〔西十两〕,乃〕就是交点中点坐标的两倍,由关于另〔占-%〕直线对称,所以逐=-1,且交点的中点就是两直线交点为〔」,当,所以, 2 2占十勺二1 j【十乃二1,所以又有1+ 〔1〕+匕・31〕=.得到g/p例1由点〔2,0〕向抛物线y2 4x弓|弦,求弦的中点的轨迹方程.分析:解决问题的关键是找到弦的端点A、B在直线上的性质和在抛物线上的性质的内在联系.解法1:利用点差法. 2 2设漏点为A〔x i,yj , B〔x2,y2〕,那么y i 4x i, y4x2,2 2 ., 、两式相减得y2y1 4〔 x2x1〕, ①①式两边同时除以x2 x1,得〔y2 y i〕 y—y1 4, ②x2x1设弦的中点坐标为〔x, y〕,那么x1 x2 2x, y1 y2 2y, ③又点〔x, y〕和点〔2,0〕在直线AB上,所以有」一 y 2y1. ④瓯'+短+㈣-乃= 1.〕*、婚+W+6电-打二1⑵2 x2x1y i y 22 2一代入(i)得 y 2 2(x 2)k2 2故得所求弦中点的轨迹万程是y 2(x 2)在抛物线y 4x 内部的局部.评注:(i )求点的轨迹方程即是求曲线上的点的横、纵坐标所满足的关系式,此题所给 (x, y)与条件的内在联系,列关于 x, y 的关系式,进而求出轨迹的方程.(2)弦中点轨迹问题与中点的关系,要学会推导,并能运用.将③、④代入②得2y y 4, x 22整理得y 2(x 2).故得中点的轨迹方程是 y 2 2(x 2)在抛物线y 2 4x 内部的局部. 解法2:设弦AB 所在直线的方程为y k(x 2),由方程组y k(x 2)4x消去x 并整理得ky 2 4y 8k 0, (3)(x i , y i )、 B (x 2,y 2)、 '\ ' (x, y),对于方程(3),由根与系数的关系,有y i V2 2出的两种方法,都是找动点 设抛物线y 22 Px (0)的弦 AB ,A (x i ,y i ) ,B(x 2,y 2),弦 AB 的中点 C (x o ,y 0),2,y i 那么有 2 y 22px i2 Px 2⑴(2)(i) — ( 2)2y i 2y 22p(x i x 2),.y i y 2x i x 22P y i y 2将 y i y 2y 1y 2q _yi 72,代入上式,并整理得x i x 2k AB—,这就是弦的斜率 y .例2抛物线y22x ,过点Q(2,i)作一条直线交抛物线于A,B两点,试求弦AB的中点轨迹方程.解:如图,设弦AB的中点为A、B、M点坐标分别为(x[,y i),2 -(x,y),根据题意设有y i2x 1 ,①2 -公y2 2x 2 ,② x 1 x 2 2x , ③ y iy 2 2y,④ rd,⑤x 1 x 2 x 2y i y 2i x 1 x 2, -------- -,x i X2y2-i 2 7 ⑥代入⑤得,y 丫*2,即(丫3)x -o2y 2 2x ,利用根与系数的关系,求出弦中点的轨迹方程.专题:直线与抛物线的位置关系及中点弦问题(1)位置关系:Q 直线/:, =必+皿用=0) r 抛物线y 2 = 2px(p>0)联立解CJ tky~ -2/?y + 2^ = 0 @假设k 二 (L 直战与抛物战的对称轴平行或重合,直线与抛物线相交于一点:假设k HU , △真线与抛物线相交,有阴个交点;A = 0n 亢浅与抛物浅相切,有一个交点;宜线与抛物线相离,无交点二(2)相交弦长:宜城与圆世曲线相交的茂长公式设直线圆锥曲线才Fi.r4)=O .它HI 的交点为Pi (xi»yi)- Pj 口?而,[Fix. v) = 0 且由1 ,Ti 消去了得到那苏十H.r+p=0『mHO), △=/ 一4川p*[,二心 + H设马・力3 那么弦长公式为;那么I AE 匕J1 +/那么 +//一4而/ 假设联立消去不得y 的一元二次方程:町/十fry + f/ = 0(m * 0)S 小阳,为yJ 『Ml AB 1= j + Jjbi +y 万 一4%力 {3)典洌分析:④代入①—②得,2 y(y iy 2) 2(x 1评注:此题还有其他解答方法,如设AB 的方程为y k(x 2) i ,将方程代入例1抛物线的方程为y2=4x,直线1过定点斜率为k,k为柯值时,直线1与抛物线y 2 = 4x :只有一个公共点;有两个公共点;没有公共点?解:由题意,设直绷的方程为y-l = Ar(x+2)由方程组e;:::(x+2)ffl ky2 - 4y + 4 (2k +1) - O (1)(1)当k = O时,由方程(1)得y = l将y = 1 代入y2 = 4x,得x =这时直线,与抛物线只有V个公共点g ,1)(2)当kHO时,方程⑴的判别式为©A = T6 冲+"I)⑴当A = 0时,即2k2 + k・l = 0,解得k = ・l,或k =;于是当k=-l,或k=T时,方程(1)只有一个解,从而方程组只有一个解.此时直线1与抛物线有一个交点.(2)当A>0时即2尸+J <0,解得—1<上< —2于是当时,方程⑴有两个解,从而方程组有两个解.此时直线1与抛物线有两个交点.(3)当A <0时,即+解得k<-l或幺>-于是当k<-l或k>不时,方程(1)没有肝,从而方程组没有解.此时直线I与制物线没有交点.绿上所述:当・l<k<g且k*0时,直缭口抛物线有网个交点;当k7或或k・0时,直蝴抛物线有一个交点;2当k<-l或k>:时,直缭口抛物线没有交点.例2、抛物线C:J=4x,设直线与抛物线两交点为A、B,且线段AB中点为M 〔2, 1〕,求直线/的方程.解由即意可知,亘线1斜率一定存在,故可设庆〔勺,?〕,13@2,%〕〔乂1工乂2〕,Mx l + x2 = 4,y1+y2 = 2曲[曰=4% =2!L^=_1_=2 gp k = 2I月=4七3一出乂+»2 2止匕由f直线/的方程为y-l = 2〔x-2〕,艮P2x-y-3 = 0由y - 4x 消x彳号y2・2y-6 = 0 n△ > 02x-y-3 = 0所以直线/的方程为y・l = 2〔x-2〕RU2x・y・3 = 0说明:中点弦问鹿的常见解决方法,点差法例3抛物线的顶点在原点,焦点在x釉的正半轴上,百线y = -4x + ]被抛物线所截得的弦AB的中点的纵坐标为- 2 .〔I〕求抛物线的方程:〔2〕是否存在异于原点的定点H,使得过〃的动直线与抛物线相交于A Q两点,且以PQ为直径的圆过原点?解〔1〕:由条件可设抛物线方程为:r =2px〔p>o〕联立直线y = -4x+l化简得:2y2+〃y - 〃 =〔〕设43],必〕,8〔/2,丫2〕那么?+〕'2 =-^ = -4.,./? = 8抛物纹方程为:y 2 =]6工〔2〕设存在满足条件的定点内.设动直线方程为〕& + 0〕联立抛物线方程化简得:02-16丁 + 161=0设.〔再,必〕,..2,/2〕那么有用/ + 丫.2 =〔〕即:b = -16k 故动电线方程为丁=6-164 = Z:〔x-16〕,恒过定点〔16. 0〕当直线斜率不存在时,设宜线方程为/ = %,易触得% = 16.粽匕存在异于原点的定止〃(16, 1J)满足条件0例4直线『过定点人43且与‘抛物线.:5'22#(2>0)交]子,Q两点,假设以PQ 为直径的阿枇过原点..求尸的伍解:可设直线/的方程为f = my+4代入« =2『工得y L-2/JW1V-8/J = 0»设代百,X )◎0,%)•那么九力=—8/,斯与=?- * =竽匕=16+2P 2p 4p由题总如,OPLOQ. Wl OP OQ = 0即丹马+耳为= 16 —8p = 0; p 二2此时,抛物线的方程为f = 4K.例5在抛物战y? = 64十上求一点,使到电战4K十3y+46 = 0的距嘉最短,并求出最短距瓦解;设与百线4#+ 3y +用=0平行且与楠制相切的直建方程为:x-y + m = 0联立化筒群/ +48v-48w = 0 L)由A = 0解得旧=-12,故切线方程为:4工+ 3, —12 = 0代人双曲线方程解得f 9-24 )最短师离d = 2例6求直线y x 1被抛物线y2 4x截得线段的中点坐标.解:解法一:设直线y x 1与抛物线y2 4x交于A(x1,y1), B(x2,y2),其中点y x 1P(x0,y0),由题意得2,y 4x消去y 得(x 1)2 4x,即x2 6x 1 0,所以x.3, y0 x. 1 2,即中点坐标为(3,2).解法二:设直线y x 1与抛物线y2 4x交于A(x1,y) , B(x2,y2),其中点2P(x0,y0),由题意得y124x1,两式相减得\2 y: 43x1), y2 4x2所以(y2 y1)(y2 y1)4,所以y〔y2 4,即y0 2 , x0y 1 3,即中点坐标为(3,2).。

圆锥曲线解题技巧和方法综合方法

圆锥曲线解题技巧和方法综合方法

圆锥曲线的解题技巧一、常规七大题型:(1) 中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两 点为(X i ,yJ , (x 2 ,y 2),代入方程,然后两方程相减,再应用中点关系 及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参 数。

2 2X 7 如:(1) r T =1(ab 0)与直线相交于A 、B ,设弦AB 中点为a b M(x o ,y o ),则有畤 2k = O 。

a b 2 2 (2) 笃-% fa 0,b 0)与直线I 相交于A 、B ,设弦AB 中点为 a b(3) y 2=2px (p>o )与直线I 相交于A 、B 设弦AB 中点为M(x °,y o ),则有 2y o k=2p,即 y o k=p.2典型例题 给定双曲线X 2 -亍=1。

过A (2,1)的直线与双曲线交于 两点P i 及P 2,求线段P i P 2的中点P 的轨迹方程。

(2) 焦点三角形问题椭圆或双曲线上一点P ,与两个焦点F i 、F 2构成的三角形问题,常用 正、余弦定理搭桥。

2 2典型例题 设P(x,y)为椭圆 J 七二1上任一点,F i (-c ,o), F 2(c,o )a b 为焦点,• PF/?二〉,PF 2F 1 二。

sin (口 + P )(1) 求证离心率e 二sina + sin P M(x o ,y o)则有 直 Yoa 2b 2(2)求IPF J PF2|3的最值。

(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。

典型例题抛物线方程2=p(x 1)(p 0),直线y = t与轴的交点在抛物线准线的右边。

(1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A、B,且0A丄OB,求p关于t的函数f(t)的表达式。

圆锥曲线中的典型问题与方法:圆锥曲线的定值、定点问题

圆锥曲线中的典型问题与方法:圆锥曲线的定值、定点问题

圆锥曲线中的定值、定点问题一、直线恒过定点问题例1. 已知动点E 在直线:2l y =-上,过点E 分别作曲线2:4C x y =的切线,EA EB , 切点为A 、B , 求证:直线AB 恒过一定点,并求出该定点的坐标;解:设),2,(-a E )4,(),4,(222211x x B x x A ,x y x y 214'2=∴=,)(2141121点切线过,的抛物线切线方程为过点E x x x x y A -=-),(21421121x a x x -=--∴整理得:082121=--ax x同理可得:222280x ax --=8,2082,2121221-=⋅=+∴=--∴x x a x x ax x x x 的两根是方程)24,(2+a a AB 中点为可得,又2212121212124442ABx x y y x x a k x x x x --+====-- 2(2)()22a a AB y x a ∴-+=-直线的方程为,2()2ay x AB =+∴即过定点0,2.例2. 已知点是椭圆22:12x E y +=上任意一点,直线l 的方程为0012x xy y +=, 直线0l 过P 点与直线l 垂直,点M (-1,0)关于直线0l 的对称点为N ,直线PN 恒过一定点G ,求点G 的坐标。

解:直线0l 的方程为0000()2()x y y y x x -=-,即000020y x x y x y --=设)0,1(-M 关于直线0l 的对称点N 的坐标为(,)N m n则0000001212022x nm y x n m y x y ⎧=-⎪+⎪⎨-⎪⋅--=⎪⎩,解得320002043200002002344424482(4)x x x m x x x x x n y x ⎧+--=⎪-⎪⎨+--⎪=⎪-⎩∴ 直线PN 的斜率为4320000032000042882(34)n y x x x x k m x y x x -++--==---+ 从而直线PN 的方程为: 432000000320004288()2(34)x x x x y y x x y x x ++---=---+ 即3200043200002(34)14288y x x x y x x x x --+=+++--从而直线PN 恒过定点(1,0)G 二、恒为定值问题例3. 已知椭圆两焦点1F 、2F 在y 轴上,短轴长为22,离心率为22,P 是椭圆在第一象限弧上一点,且121PF PF ⋅=,过P 作关于直线F 1P 对称的两条直线PA 、PB 分别交椭圆于A 、B 两点。

直线与圆锥曲线知识点与题型归纳总结

直线与圆锥曲线知识点与题型归纳总结

直线与圆锥曲线知识点与题型归纳总结知识点精讲一、直线l 与圆锥曲线C 的位置关系的判断判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程0Ax By c ++= 代入圆锥曲线C 的方程(),0F x y = ,消去y (也可以消去x )得到关系一个变量的一元二次方程,,即()0,0Ax By c F x y ++=⎧⎪⎨=⎪⎩ ,消去y 后得20ax bx c ++=(1)当0a =时,即得到一个一元一次方程,则l 与C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线平行;若C 为抛物线,则直线l 与抛物线 的对称轴平行(2) 当0a ≠时,0∆> ,直线l 与曲线C 有两个不同的交点; 0∆=,直线l 与曲 线C 相切,即有唯一的公共点(切点); 0∆< ,直线l 与曲线C 二、圆锥曲线的弦连接圆锥曲线上两点的线段称为圆锥曲线的弦直线():,0l f x y = ,曲线():F ,0,A,B C x y =为l 与C 的两个不同的交点,坐标分别为()()1122,,,A x y B x y ,则()()1122,,,A x y B x y 是方程组()(),0,0f x y F x y =⎧⎪⎨=⎪⎩ 的两组解, 方程组消元后化为关于x 或y 的一元二次方程20Ax Bx c ++=(0A ≠) ,判别式24B AC ∆=- ,应有0∆> ,所以12,x x 是方程20Ax Bx c ++=的根,由根与系数关系(韦达定理)求出1212,B Cx x x x A A+=-= , 所以,A B 两点间的距离为12AB x =-==即弦长公式,弦长 公式也可以写成关于y 的形式)120AB y y k =-=≠三, 已知弦AB 的中点,研究AB 的斜率和方程(1) AB 是椭圆()22221.0x y a b a b+=>的一条弦,中点()00,M x y ,则AB 的斜率为2020b x a y - ,运用点差法求AB 的斜率;设()()()112212,,A x y B x y x x ≠ ,,A B 都在椭圆 上,所以22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩ ,两式相减得22221212220x x y y a b --+=所以()()()()12121212220x x x x y y y y a b +-+-+=即()()()()22121202212120y y b x x b x x x a y y a y -+=-=--+,故2020AB b x k a y =-(1) 运用类似的方法可以推出;若AB 是双曲线()22221.0x y a b a b-=>的弦,中点()00,M x y ,则2020ABb x k a y =;若曲线是抛物线()220y px p => ,则0AB p k y =题型归纳及思路提示题型1 直线与圆锥曲线的位置关系思路提示(1)直线与圆锥曲线有两个不同的公共点的判定:通常的方法是直线与圆锥曲线方程联立方程消元后得到一元二次方程,其中0∆> ;另一方面就是数形结合,如直线与双曲线有两个不同的公共点,可通过判定直线的斜率与双曲线渐近线的斜率的大小得到。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档