里氏木霉外源表达载体的构建(摘要)
一种里氏木霉及其应用的制作方法技术

一种里氏木霉及其应用的制作方法技术里氏木霉(Rhizopus oligosporus)是一种常见的真菌,被广泛应用于食品发酵工业中,比如制作豆豉、豆腐等。
下面将详细介绍一种里氏木霉及其应用的制作方法技术。
第一步:筛选和培养菌种从自然环境中收集到的分离物中筛选出里氏木霉的分离菌株。
将分离菌株转移到含有理想培养基的平板上,用微量酵母爆发培养基增殖,确保菌株的纯度和增殖能力。
第二步:制备里氏木霉培养基选择合适的培养基成分制备里氏木霉培养基。
常见的培养基配方包括麦芽提取物、葡萄糖、酵母提取物、氨基酸等。
将所有成分按照一定比例加入到蒸馏水中,并调整pH值至适宜范围。
第三步:菌种发酵和扩大培养将筛选和培养得到的菌种接种到里氏木霉培养基中,利用摇床、发酵罐等发酵设备进行培养,控制培养温度、转速、通气速率等因素使得菌种能够充分发酵。
通过扩大培养,得到足够的里氏木霉菌体以供下一步操作使用。
第四步:提取和制备里氏木霉将发酵得到的里氏木霉菌体经过离心、洗涤等操作,去除培养基中的杂质,然后将菌体冻干或者通过其他方法进行干燥。
干燥的木霉菌体即为制备得到的里氏木霉。
第五步:里氏木霉的应用将制备得到的里氏木霉用于食品和饮料的发酵过程中。
比如,在豆豉的制作过程中,将豆子进行煮沸、凉干后与里氏木霉混合发酵,控制发酵时间和温度,使得豆子能够充分发酵,产生特殊的香味和风味。
在豆腐的制作过程中,将大豆磨浆,煮沸凝结后与里氏木霉混合发酵,使得豆腐口感更加细腻鲜嫩。
除了在食品发酵工业中的应用,里氏木霉还可以用于生物酶的生产和环境污染治理等领域。
通过在培养基中添加特定的底物和条件,可以使得里氏木霉产生丰富的酶类物质,比如纤维素酶、脂肪酶等。
这些酶可以应用于农产品加工、纺织工业中。
此外,里氏木霉还可以利用其菌丝结构,去除废水中的有机废弃物和重金属离子等,起到环境保护的作用。
总结:以上是一种里氏木霉及其应用的制作方法技术的简要介绍。
通过筛选和培养菌种、制备培养基、发酵和扩大培养、提取和制备菌体等步骤,可以制备得到里氏木霉菌体。
关于做好第9期SRTP项目结题及第10期SRTP项目中期检查工作的

关于做好第9期SRTP项目结题及第10期SRTP项目中期检查工作的通知各导师及有关学生负责人:现根据校教务处《福州大学本科生科研训练计划(SRTP)项目管理实施办法》文件的精神,各导师应积极组织有关学生做好第9期SRTP项目结题及第10期SRTP项目中期检查的工作。
一、第9期本科生科研训练计划项目结题工作第9期本科生科研训练计划项目需在2010年5月24日前进行结题,并上报如下结题材料。
1.填好《福州大学本科生科研训练计划(SRTP)项目结题表》(在教务处主页下载专区“教学实践”下载表格);2.有实物成果的要有照片或实物;3.研究报告、科研论文(如有发表文章、申请专利等,需另提交复印件);以上除纸质材料一式两份外还需另刻成光盘1张,装入资料袋后交院教学办。
二、第10期SRTP项目中期检查工作(一)检查内容如下:1、项目的进展情况是否按照计划执行。
2、项目执行过程中存在的问题及拟定解决的办法。
3、下阶段应完成计划的情况等。
(二)检查工作要求:1、导师实施中期检查,应查阅学生的实验原始数据记录及项目实施过程记录等。
2、学生负责人应在导师指导下填写《福州大学本科生科研训练计划项目中期检查情况表》(可直接在教务处主页“下载专区”下载)一式两份,于2010年5月24日前交院教学办。
3、对不按时递交中期检查情况表、项目无明显进展或中期检查不合格的项目,学校将停止下拨相应的另一半经费。
生工学院教学办2010年5月4日附:1、第9期SRTP项目名单2、第10期SRTP项目名单福州大学本科生科研训练计划立项项目表(第九期立项项目)福州大学本科生科研训练计划立项项目表(第十期立项项目)。
表达载体的构建

表达载体的构建关于表达载体的构建1.表达载体(expression vector):能使目的基因在宿主细胞中表达的一类载体。
这类载体既有复制子,更要有强启动子;2.大肠杆菌中的表达载体应含有(1)强启动子(2)在启动子下游区和A TG上游区有一个好的SD序列。
(3)在外源基因插入序列下游区要有一个强的转录终止序列,保证外源基因有效转录和质粒的稳定性。
我们实验室常用的就是PBI121的表达型载体,该载体具有35S强启动子,下游有MCS,并且具有T-DNA插入片段和T et和Kan的抗性位点,有利于作为农杆菌浸染植物的表达载体。
3.载体构建的步骤(1).设计引物1.引物的长度用于PCR扩增的寡核苷酸引物至少应在16个碱基以上,一般以20—30个碱基为宜,引物过短会使PCR特异性降低,过长则会引起引物间的退火而影响有效扩增。
2. 引物自身序列应位于高度保守区,与非扩增区无同源序列。
引物中碱基分布应尽可能避免嘌呤、嘧啶的连续排列,引物间3’端的互补、二聚体或发夹结构也可能导致PCR反应失败。
3. Tm值引物的Tm值一般控制在55-60度, 尽可能保证上下游引物的Tm值一致,一般不超过2度. 如果引物中的G+C含量相对偏低,则可以使引物长度稍长,而保证一定的退火温度.Tm=2(A+T)+4(C+G)4. 引物的GC含量引物中GC含量应占到45%一60%左右。
在引物设计时应尽量避免引物二聚体和发卡结构,尤其是在引物3,端不应有互补结构。
引物3,端应与目的片段完全配匹,而其5’端碱基可不与模板配匹,故在引物设计时可在其5,端加上限制酶位点或其他短的序列,这些与原初模板并不配对的非互补序列在后续的循环中将被带到双链DNA中去,这样反应产物不仅含有目的序列,同时在目的基因的两侧又有了新的限制酶位点,用相应的限制酶切割后即可将PCR产物定向克隆到载体中。
以基因GhAGP31为例说明,以下是GhAGP31的ORF序列:ATGGGGTTTGCTGTAATAGTACTAGTAGTTAAAGCTGCTTTGCTTGTG CAGCTTTCACT GTTGTTACTGAGCACCTTCACTGTCTCTGCTCCCATTTGGCCTCAGGC TTCTCCTCCTC ATTACCATGCTGTTTCACCTGTAGTCCCGCCTACTCACCCACCAACCC ACCACCATCAC CACCACCCTCACCCTCACCCTCACCCCCATCCTCATCCACCCACTAA GCCCCCAACCC CCACTCCTCCTCCAGTTCA TCCACCACCCAAGGCGCCAGTGCAACCACCAACCAAGC CACCAGTTCACCCACCACCCAAGCCACCAGTTCAACCTCCAACTAA GCCACCAACCA AACCTCCAACTCAACCCCCGACTAAGCCACCAACTCAGCCCCCGAC TAAGCCACCAA CCAAGCCTCCAACTCAGCCCCCGACGAAGCCACCAACACACCCAC CATCTCATCCTC CGGCCAAGCCACCTAAA TCGAGCCAGGTGGCAGTGCAGGGCGTTGTTTATTGCAAGT CA TGCAAGTACGCCGGAGTCGACACCCTTTTGGGAGCTAAACCAATTC TTAGTGCCAC CGTAAGGCTGACA TGCAAAGACGCTAAAAACGAATTAACGGTCCAGTTCAAGACTGA CAAGAATGGTTA TTTCTTCCTGCAAGCACCAATTACCATCTACAATTTTGATCTCCACA ATTGCAGCGTCTCCCTCGTATCTTCACCATTGAAAGCATGCAGCAAG CCA TCTAATCTA AACGGTGGATTGAAGGGCGCCCCCTTGAAGCCTGAGAAACCATCTACTTCAAAGAAG CTCCCATATGTTCTCTACAGCGTTGGGCCCTTCGCTTTCGAACCCACA TGTCACAAGAA CTAGGhAGP31Up1: 5’>CTTGGA TCCATGGGGTTTGCTGTAATAGTAC<3’BamHI GhAGP31Dn1: 5’>CTTTCTAGAGTTCTTGTGACA TGTGGGTTCG<3’XbaI 两条引物都有CTT作为保护碱基,同时平衡引物中的G+C含量。
绿色木霉外源基因表达系统的构建

湖北农业科学2013年收稿日期:2012-06-27作者简介:刘芳(1987-),女,辽宁锦州人,硕士,从事酶生物化学与分子生物学研究,(电话)130********(电子信箱)339839513@;通讯作者,陈红漫(1969-),女,辽宁沈阳人,副教授,博士,从事生物化学与酶学研究,(电子信箱)hongmanc@。
纤维素酶在木质纤维素资源化利用过程中发挥着重要的作用。
目前纤维素酶存在酶活性低、对天然木质纤维素分解能力弱、生产周期长以及价格昂贵等问题,严重制约了其工业化应用[1,2]。
本实验室选育的绿色木霉(Trichoderma viride )Sn-9106能以秸秆、纸浆等工业废物为碳源,将其中的纤维素转化为可发酵的糖成分,是一株适合固体发酵模式的纤维素酶工业生产菌株[3-5]。
随着基因工程技术的不断发展,利用分子生物学手段研究丝状真菌纤维素酶系分泌机制、活性及协同作用等逐渐成为目前研究热点[6-8]。
研究表明,纤维素酶在大肠杆菌表达系统中容易形成包涵体、酶活性比较低、缺乏糖基化修饰;在酵母中表达又存在着过度糖基化和蛋白折叠等问题,使表达的纤维素酶活性严重丧失[9]。
目前木霉为适合真菌类纤维素酶的表达载体之一[10]。
瑞氏木霉(Trichoderma reesei )中外切葡聚糖纤维二糖水解酶Ⅰ基因(cbh Ⅰ)是纤维素酶基础性表达基因之一。
在异源表达过程中,cbh Ⅰ启动子在没有诱导物存在的情况下也能够启动报告基因表达[1]。
本研究利用瑞氏木霉cbh Ⅰ启动子、以绿色荧光蛋白为报告基因、潮霉素为抗性标记构建绿色木霉表达载体,为构建高产纤维素酶基因工程菌奠定了基础。
1材料与方法1.1材料1.1.1菌株与载体瑞氏木霉QM9414、绿色木霉Sn-9106、pET30-GFP 质粒和pSK 质粒载体由沈阳农业大学生物技术学院保存;pSM565质粒由沈阳农业大学生物技术中心提供;感受态细胞E.coli DH5α购自天根生化科技(北京)有限公司;pMD19-T Simple Vector 购自宝生物工程(大连)有限公司产品。
构建表达载体的一般流程

构建表达载体的一般流程
构建表达载体的一般流程如下:
1. 选择合适的载体:根据需要表达的基因或蛋白质,选择一个合适的表达载体。
常用的载体有质粒、病毒、合成RNA等。
2. 插入目标基因:将需要表达的基因插入到载体的多克隆位点中。
可以通过PCR 扩增目标基因并使用限制性内切酶切割载体和基因,然后进行连接。
3. 连接启动子和终止子:为确保基因在宿主细胞中能够正常表达,需要在基因的上游添加启动子和在基因的下游添加终止子。
这些序列将调控基因的表达方式和水平。
4. 检验构建质量:通过限制性内切酶切割、PCR扩增或测序等方法,验证所构建的载体和目标基因的正确性和完整性。
5. 转化宿主细胞:将构建好的表达载体导入到宿主细胞中。
常用的转化方法有电穿孔、热激冲击和化学转化等。
6. 筛选和鉴定:通过特定的筛选方法或选择标记,在转化的宿主细胞中筛选和鉴定表达目标基因的阳性克隆。
7. 表达优化:根据需要,可以通过调节培养条件、添加诱导剂或使用特定的宿主菌株等方法,优化目标基因的表达水平和质量。
8. 收获表达产物:经过一段时间的培养后,收获表达的基因产物,如蛋白质,进行后续的纯化、鉴定和应用等。
需要注意的是,具体的构建流程和方法可能会因实验的目的和要求而有所不同。
在实施过程中,需要对不同步骤和条件进行优化和调整,以确保表达载体的构建和表达目标基因的成功。
里氏木霉外源表达载体的构建_英文_

Constructi on of Exogenous Expression Vector of Tri -choder ma reeseiZHANG X i ao-xuan 1,WANG Ao -xue2*1.Chengdong Co llege ,Nort heast Agricultural Univ ers ity ,Har b in 150030;2.Co llege of Lif e Sc iences ,Nort heas tAgricult ural Universit y ,Har -bin 150030Abstract [Objecti ve]The st udy w as t o construc ta ex ogenous expression v ector f or Tri chode r m a ree se i .[M et ho d]U sing CBH I pro moter and t er m inat or of T.ree se i strain 40359,we cons tructed an expr ession vec t or o f T.ree se i s train 40359f or expressing Hp t gene and got s ix strains capab l e o f grow ing on basic m ediu m c ontaining 175mg /L of hygro myc i n B ,f urt her c onduc t ed hygr omycin resis t ance tes.t [R es ults ]In co mpar-i son w ith t he ori g inal strain(w il d t ype),hygro myc in r esis t ance t he six engineer ed strains was increased by 75%;t he hygro myc i n resis t ance c oul d inherit st ab l y .[Co ncl usio n]Our results laid bas is f or bi o l o g i c al study on T.ree se i atm ol e cul a r and genetic a lly engineeri n g levels .Key wo r ds T ri cho de r m a ree se i ;Vec t or ;Genetic transf or mati o nReceived :February 18,2011 Accept ed :March 21,2011*C orresponding author .E -mai:l wangaoxue @yahoo .co mC BH I pro mot er fro m Tri choder m a reese i is a very strong pro m oter that is usually used for vector constructi o n f or gene-t i c m i provement of T.reese i ,i .e .,inserting t he gene of inter -est(GOI)int o t he space bet w een CBHI promot er and ter m-i nat or sequence .The reco mbined frag ment is transf or med into fil a ment ous fungi prot oplas,t and located and int egrat ed into chromoso m e by us i n g t he m ethod of t argeted gene replace -ment and int egrati o n .This makes the GO I dri v en by t he strong pro mot er CBH I and the required homologous or heter -ologous prot ein expressed secret ory under the induction of t he l e ader peptide of C BH I .This method has been successf ull y used f or construct engineered filament ous fungistai n s overex -pressing various t arget prot eins .For inst ance ,MU Jing -yu e t a l .[1]from Jilin Universit y succeeded i n overexpression of As-pe rg ill u s n i g er glucose ox i d ase gene under the control of CBH I pro m oter fro m T.reese i .I n vie w of t his ,we att empt ed to ex -press hygro mycin B phos photrans f erase gene i n T.reese i by us i n g CBH I promot er and ter m i n at or sequence ,and carri e d out hygromyc i n B resist ance t est on the y i e lded resistant strains and reco mbinants ,am i i n g at prov i d ing basis for bi o log -i c al study on T.reese i at molecular and genetically engineer -i n g l e vels .Mat eri a ls and MethodsExperi m entalmateri al sStrai ns and reagents Tri chode r m a reese i strain 40359was purchas ed from Chi n a Center of IndustrialCulture Collection ;plas m id pCAM1305.1harboring hygromyc i n B phos photrans -ferase gene was preserved by our research group ;vectors pMD18and pU C19were purchas ed fro m TaKaRa ;EF Taq DNA pol y merase ,plas m id DNA isolation k it and prm i ers were purchas ed from Beijing Langang B i o t ech Co .,Ltd .;T 4-DNA ligase ,DL2000Marker ,RT -PCR k i,t CTAB ,Tris #C,l B -mer -capt oet hano,l RNase and agarose were all purchas ed fro m TaKaRa ;all the restrictive endonulceas es used were pur -chased from MB;I agarose gel extrac tion k it was purchased fro m T iangen Biot ech (Beijing)Co .,Lt d .All other reagents were home made products at analyti c pure grade .M ed i a r eci pe(for 1L) Basalmediu m:20g glucose ,15gKH 2PO 4,5g(NH 4)2SO 4,0.6g CaC l 2#2H 2O,0.6g M g -SO 4#7H 2O,0.005g FeSO 4#7H 2O ,0.0016g M n SO 4#H 2O,0.0014g ZnSO 4#7H 2O ,0.002g Co C l 2#6H 2O,pH=5.5;aut o -cl a ving at 121e f or 30m in (addition of 2%of agar f or solid m ediu m and 1%agar for sem-i soli d medium ).Regenerati o n m edia :(1)l o wer layermediu m :additi o n of1mol/L of s orb-i t oland 2%of agar into basalm ediu m;(2)upper layermed-i u m :addition of 1mol/L of sorbit ol and 1%of agar into basal m ediu m.Experi m entalmethods Pri m er s and their sequences used for PCR a mplifi cati on Based on sequence inf or mation from GenBank ,soft ware Gene runnerwas e mployed to design prm i ers as f ollo w s :amplificati o n of CBH I promoter and signalpeptide(pCBHI ):P1:Sense :5c -GC GCATGC AATTCTGGAGACGGCTT -GTT -3c :S ph ÑP2:Ant -i s ens e :5c -GCGT CGACCTCCAAGT GTTGC -CAT CGTA -3c :S a lÑamplification of C BH I t er m inator(t CBHI ):T1:Sense :5c -GCGCGGATCCAGGTCACCTTCT CCAA -CATCA -3c :Bam H ÑT2:Ant -i sense :5c -GCGCGAATT CCACGAAGAGCG -GCGATTCTA -3c :Eco R Ñamplification of Hp t :H1:Sense :5c -GCGC GTCGAC ATGCCTGAACTCAC -CGCGAC -3c S a l ÑH2:Ant -i sens e :5c -GC GC GGAT CC CGGTCGGCATC -TACT CT ATT -3c Bam H Ñ.A mplifi cati on of target frag ment (1)PCR reacti o n volu me (50L l)f or amplifying t he upstrea m nucleoti d e fragment of T.reese i cbh 1gene was composed of 312.5L mol/L dNTPs ,2.5L mol/L of prm i er ,500ng of t emplate ,3.5-3.6mmol/L of MgC l 2,2.5U EF Taq DN A poly merase .These reacti o n co mponents were first react ed at 94e f or 7m in predenat ur -ati o n before t he addition of EF Taq DNA poly meras e ,then 30cyc l e s at 94e f or 1m in ,60e f or 1m in and 72e for 2.5m in ,finally at 72e f or 10m i n .(2)PCR reaction volume(50L l)f or a mplif y ing t he downstream nuc l e otide fragment of T.reese i cbh 1gene was composed of 200L mol/L of dNTPs ,1.5L mol/L of prm i er ,500ng of te mpl a t e ,1.5-2.5mmol/L ofAgri c ultural B i o technol o gyAgricult ural Sc i e nc e&Technology ,2011,12(2):308-312Copyright k 2011,I nf or mati o n Institute ofHAAS .A ll ri g ht s reserv ed .MgC l2,1.5U EF Taq DNA poly meras e.These reacti o n co mpo-nent s were first reac t ed at94e f or7m i n predenat urationbef ore the addition of EF Taq DNA poly meras e,t hen30cycl e s at94e f or1m in,55e f or1.5m in and72e f or1.5m in,fi n ally at72 e f or10m in.(3)PCR reac tion volu me(50L l)f or a mplifying the Hp t gene was co mposed of312.5L mol/L of dNTPs,1.0 L mol/L of prm i er,500ng of t emplate,2.5mmol/L ofMgC l2, 1.5U EF Taq DNA poly merase.These reaction co mponents were first react ed at94e f or7m i n predenaturati o n bef ore t he additi o n of EF Taq DNA poly merase,then30cycles at94e f or30s,60e f or1m in and72e f or2.5m in,finally at72e f or10m in.Constr uction of expr ession vector Geno m ic DNA of T.reese i[2-3]and P l a s m i d contai n ing Hygro m ycin B phospho-transferase gene was extracted as te mplat e f or PCR amplif-i cati o n using prm i ers P1and P2t o a mplif y T.reese iCBHI pro-mot er and CBHI signal pepti d e gene;the reacti o n products were ligat ed i n t o p MD18-T vect or;t he y i e lded vect orwas then double-digest ed by us i n g S phÑand S a lÑf or use.Likew ise,T. reese iCBH I promot erwas a mp lifi e d using prm i ers T1and T2 and ligated int o p MD18-T vector;the y i e lded vector was then double-digest ed by using Bam HÑand Eco RÑf or use.Esche-ri ch i a co l i hygromyc i n B(HygB)phosphotransferase gene was amplified using prm i ers H1and H2from pl a s m id DNA har-boring this gene,and li g at ed int o pMD18-T vec t or;t he yielded vec t or was t hen double-digest ed by us i n g S a lÑand Bam HÑf or use.The frag m ents yiel d ed above were li g at ed by usi n g T4 ligase at16e overni g h;t t he y i e lded productwas transfor med i n t o co mpet ent E.co li cells v i a heat shock method and coat ed on LB sel e cti o n pl a te cont aining Amp and HygB,the pl a tes were incubat ed at37e overni g h.t The recombi n antwas inoc-ulated i n t o LB li q ui d medium cont aini n g Amp and HygB and in-cubat ed at37e f or12-16h(200r/m in).The yiel d ed turbid bact erial solution was used to extract plas m i d DNA f or PCR and enzy mati c di g estion.The constructs consist s of CBH I promoter-CBH I signal peptide gene-Hyg gene-C BH I ter m i n at or-pUC19vector,desig-nat ed as Pcbh-HygB.Deter m i nation on the resi stance of T.reesei strain to HygB B.Se m-i solid basal medi a contai n ing25,50,75, 100,125,150,175and200mg/L of HygB were respectivel y prepared and m i x ed w ith appropriat e vol u me of T.reese i strain40359.Them ixtures were poured into the l o wer l a yerof plat e and cultured at28e for the observation of mycelial grow t h.Transfor mati on o f the pr o toplast of T.reesei strai n40359 Prot opl a st preparati o n and transfor mati o n was ref erred to the method of PenttiL¾M.et a l.[3].Appropriat e volu me of transfor mati o n reacti o n soluti o n was coated on the lower layer of regeneration mediu m and i n cubated at28e f or12-16h, then a l a yer of se m-i solid fil a ment ous f ungiMM mediu m cont a-i ning125mg/L of HygB was poured on the pl a t e used above and i n cubat ed at28e for3-4d.The Hyg B-resist ant transfor ma-nt s were sel e ct ed f or furt hermolecular identificati o n.PCR i dentifi cation of transgen i c str ai ns PCR a mplificati o n was perf or med by using genom ic DNA as t empl a t e and t he upstream and downstrea m prm i ers of Hp t as prm i ers,w ith ge-no m ic DNA of non-transf or med strain40359as negati v e con-trol and plas m id DNA as positive contro.lHpt-spec ific prm i ers:s ense:5c-ATGCCT GAACTCACCGCGAC-3c;ant-i sense:5c-CGGTCGGCATCTACT CTATT-3cFuncti onal i dentificati on o f transgenic strai ns Transgenic strains were inoculat ed on PDA media w it hout hygro mycin f or 6conti n uous generations.The yiel d ed spores were scraped int o ddH2O and coat ed on solid m edia containing diff erent concentrations of HygB;these medi a were incubat ed under dark f or12-24h,then appropriate vol u me of s em-i s olid me-dium cont aining s ame concentration of hygromycin was poured into thes e plates.Likew ise,non-transf or m ed strain 40359was used as negative control f or observing myceli a l grow t h.Results and AnalysisA mplifi cati on o f pCBH I,tCBHI and Hpt genesGenom ic DNA of T.reese i strai n YB40359was extract ed by using m i proved CTAB method(F i g.1).The y i e lded ge-nom ic DNAs were allw it h molecul a rweight hi g her t han20kb and hi g hly pure,whi c h could be used f or subsequent exper-i men.t PCR results of all the Hp t gene,t CBH I and pCBHI as-su med a singl e band,w ith Hp t gene of approxm i ately1000bp, t CBH I of approxm i ately600bp,pCBH I approxm i ately1600bp (F i g.2).M:Marker15000;lanes1-8:G enom i c DNA samples.Fi g.1E l e ctrophoresis patt ern of geno m ic DNA of T.reese i strain40359M:2000bp m arker;lanes1and2:Hyg;3-4:t C BHI;4-5:pC BH I.Fi g.2Elec tr ophores is patt ern of PCR a mp lific ati o n result sC l oning of pCBHI,t CBHI and Hpt genesThe a mplified results of pCBHI,t C BH I and Hp t genes were ligat ed into pMD18T-vect or and incubat ed at16e over-309ZHANG X i a o-xuan e t a l.Construc tion of Exogenous Ex pres s ion Vec t or o f Tri chode r m a reese inigh.t The li g at ed products were transfor med i n t o E.co li viaheat shock method and coated on LB pl a t e contai n ing Amp .Follow ing incubation for another 12-16h ,t wo white col o nies f or each gene were select ed f or PCR identificati o n .The re -sults showed that all six col o ni e s produced a band consistent w ith the size of t arget genes(Fig .3).The reco mbinants were identifi e d by using double diges -tion of Kpn I and S ph ,I the digestion produc t s were identifi e d w ith agarose gel electrophoresis(F i g .4).The double endonu -c l e ase di g esti o ns all produced t w o frag ments ,t he large one is the vector bond hi g her t han2.5kb ,the s mallone is the t arget genes :l a ne 1,about 600bp of t CBH I ;lane 2,about1000bp of Hp t ;lane 3,about 1600bp of pC BH I .This suggests that the t arget genes have been insert ed int o the c l o ning vec t or and successf ull y transf or med .The sequencing results (Shanghai Sangon Bioengineeri n g Co .,Lt d .)were blast ed and f ound an identity of 100%.M :2000bp marker ;1-2:Hyg ;3-4:t CB HI ;5-6:pC BH I .F i g .3 Bac t eriu m -based PCR a mplifi c ation on recombinantsM :2000bpmarker ;1:P l a s m id cont aini n g t CBH 1gene ;2:P l a s -m i d cont aini n g Hp t gene ;3:P l a sm i d cont ainin g pCBH 1gene .F i g .4 I dentifi c ation of reco mbined plas m id by double -di g esti o nI den tifi cati on expr essi on vector by usi ng PCR amp lifi ca -ti on and double endonucl ease digesti on As i n di c ated fro m Fig .5,PCR amplification results of all pCBHI ,t CBHI and Hp t genes accord w it h t hat us ed f or liga -tion ;l a ne 4is f or a mplificati o n of pC BH I p l u s Hp t gene ,w ith a size of approxm i atel y 2600bp ;lane 5is f or a mplificati o n of Hpt plus t CBH I gene ,w it h a size of approxm i at ely 1650bp .Endonucl e ase di g esti o n on recombinant s is using Eco R Ñpro -duced a s i z e of approxm i at ely 6000bp ,accordi n g w it h t he expect ed s iz e ;double endonulcease di g esti o n on recomb-inants is using S a l Ñand Bam H Ñto i d entif y Hp t gene ,whichproduced a larger band of approxm i at ely 4800bp(pU C19+pCBH I +t CBH I )and a s maller one of approxm i atel y 1000bp (Hp t gene);double endonul c ease digestion on reco mbinants is using S ph Ñand S a l Ñto identif y pCBHI ,which produced a lar -ger band of approxm i at ely 3300bp (pUC19+Hyg+t CBHI )and a s maller one of approxm i at ely 1600bp(pCBH I );double endonulcease di g esti o n on recombinant s is us i n g Bam H Ñand PstIto i d entif y t CBH I ,which produced a l a rger band of approx -m i at ely 4300bp(pUC19+Hyg+pCBHI )and a s maller one of approxm i at ely 600bp(t CBHI ).Not e :M:2000bp marker ;1:pC BHI ;2:t C BH I ;3:Hyg ;4:pC BH I and Hyg ;5:Hyg and t C BH I .Fi g.5 PCR a mplific ati o n on ex pres s ion vectorM1:15000bp mar ker ;M2:2000bp marker ;1:Sin g l e enzymedi g estion us i n g E co R Ñ;2:Dou b l e di g estion of S a l Ñand Bam H Ñt o i d entif y Hpt ;3:Doubl e di g estion of S ph Ñand S a l Ñto identif y pCB-H I ;4:Doubl e digesti o n of Bam H Ñand Pst Ñt o identif y t CBH I .Fi g.6 I dentifi c ation of ex press i o n by double -di g esti o nTransfor mati on of T.r eesei 40359and scr eeni ng of trans -for mantsRef erring t o PenttiL ¾M(1987),2-5L lof single endonu -clease di g est ed pUC19-Hyg was m ixed w it h the prot opl a st of T.reese i strain 40359(100s L l),using non -transfor med pro -t oplast as blank contro.l After coating on regenerationmedium containing HygB and incubat ed at 28e f or 3-4d ,six tran -f or m ants capabl e of grow ing on regeneration mediu m cont a-i ning 175mg/L of HygB .These six transf or m ants had st able and l a sting hygro mycin resi s tance aft er several conti n uous gen -erati o ns of culture .For the contro,l non -transf or med prot oplast of T.reesei strain 40359di d not grow onmediu m cont ai n ing 125mg/L of hygromycin ,indicati n g t hat there is no self resist ance m ut ation inw il d t ype strai n s .I dentificati on of tr ansgeni c strai ns PCR amp lifi cati on Geno m i c DNAs of hygro m ycin -resist ant strains all assumed a s i n gl e clear and orderly band(Fig .7).310Agricultural Sc i e nc e&Technology Vo.l 12,No .2,2011This indicat es that the DNA s amples have good qualit y and could be used for subsequent PCR amplifi c ati o n .Tab l e 1Gro w th sit uation of T.see se i strains on hy gro myc in Bp l a tesHy gro m y c in c oncentration M mg /LT.see se i Z40359T.see se i4035950++++75++++100+++125++-150++-175+-200--++repr es ent s we ll gro w th ;+r epres ents poor gro w th ;-repres ents no gro w th .F i g .7 E l e ctrophoresis patt ern of geno m ic DNA of genetic a llyengineered s tr a i nAs shown in Fig .8,PCR amplification on Hp t geneshowed t hat plas m id and six resist ant transf omants all produc -ed a target band of about 1000bp ,whil e non -transfor medstrain 40359di d no.t The results well demonstrat e that Hp t gene has transf or med and i n t egrated int o T.seese i strain 40359,designed as Z40359.M :2000bp marker ;1:Pos itive contro;l 2:Negati v e contro;l3-8:Transgenic s trains .Fi g.8 PCR det ection of pUC19-Hp t transgenic strainsResi stance and stab ility of tr ansgenic T.seesei strains tohygro myci n One of the T.seese i Z40359strains was cu-lt ured on solidm ediu m for s i x conti n uous generati o ns t o det ect its resistance t o hygro mycin(Fig .9).The results sho wed t hat T.seesei Z40359strains were res i s tant to175mg/L of hygro -m ycin ,and the resist ance l a st ed f or six generations .This confir m s that T.seeseiZ40359has a heredit ary stable resis-t ance t o hygromycin.1:Gene tically engineer ed T.ree se i s train Z40359on mediu m cont aining 100mg /L of hygro m yc in B ;2:P riginal strain 40359on med i u mcont aining 100mg/L hygro myc in B ;3:G eneti c all y engineered T.ree se i s train Z40359on mediu m cont aining 175mg/L of hygr omycin B ;4:O ri g i n a l s tr a i n 40359onm ediu m cont aining 175mg/L of hygro myc in B .Fi g.9 Toleranc e o fgeneticall y engineered T.reese i strain Z40359t o hygro myc i nD i s cussi o nThe re m arkable advantages of T.seese i inc lude its well capacit y of protein synt hesis and excretion and it s eukaryoti c excretory m echanis m ,as well as its protein modification per -for mance sm i ilar w ith ma mmal s yst e m ,such as hi g h -mannose type and N -gl y cosy l a tion .Thes e advant ages hugely pro mot e the geneti c modifi c ati o n of T.seese i strain ,and that construction of strong ext ernalgene expressi o n syst e m is t he precondition of itsmol e cul a r biol o gy st udy and genetic m i provement [4].The maj o r co mponent of T.reesei -excret ed extracellular prot ein i s cellul o se(CBH I ).So f ar ,t he cellulose cont ent of produced by T.reese i reached 40g/L ,several hundredstm i es over common bacteria [4].In the present st udy ,we e m -ployed PCR technique t o cl o ne the promot er and ter m i n at or of T.reese i strain YB40359,and f urt her est ablished strong ex -ternal gene expression geneti c transf or m ation syst em in T.reese i .Our results confir med the strong f unc tion of CBH I pro m oter and also lai d basis f or molecul a r st udy and geneti cm i provement of T.reese i .References[1]MU J Y(母敬郁),WANG Q(王峤),YAN G CZ (杨纯中),e ta l .Re -co mbinant Aspe r g ill u s n i ger gl u cose ox i d as e ex press ed in Tri -chode r m a reese i (瑞氏木霉表达黑曲霉葡萄糖氧化酶)[J].Chines eJ ournal of Biot echnol o gy (生物工程学报),2006,22(1):82-86.[2]JI A NG J(冮洁),DU LX (杜连祥),LU FP(路福平),e t a l .Themethod f or chro mos o me DNA pr eparation fro m reco mbinant Tri -chode r m a t ee se i (基因工程菌里氏木霉染色体DNA 的提取方法)[J].Bi o tec hn o l o gy(生物技术),2004,14(2):24-26.[3]PE NTT I L A M,NEVALAI NEN H ,R 'TT ;M ,e ta l .A v ersatile trans -f or mation syst e m f or t he cell u lol y tic fila ment ous fungus T ri chode r -rn a reese i [J].Gene ,1987,61(2):155-164.[4]WANG DH(汪大虹),WU ZH(吴志红).Construc ti o n of het er oge -n eous genes ex pression s yst e m of fila ment ous f ungus Tri chode r m ar e ese i (丝状真菌瑞氏木霉外源基因表达系统的构建)[J].Chines e J ournal of Bioc hem i s t ry and Molecul a r B i o logy (中国生物化学与分子生物学报),2003,19(6):736-742.Respons i bl e editor :DU AN Yong -boRespons i bl e proofreader :WU X i ao -yan311ZHANG X i a o -xuan e t a l .Construc tion of Exogenous Ex pres s ion Vec t or o f Tri chode r m a reese i里氏木霉外源表达载体的构建(摘要)张晓烜1,王傲雪2*(1.东北农业大学成栋学院,黑龙江哈尔滨150030;2.东北农业大学生命科学学院,黑龙江哈尔滨150030)[目的]构建里氏木霉外源表达载体。
里氏木霉细胞表面表达系统的构建

里氏木霉细胞表面表达系统的构建里氏木霉细胞表面表达系统的构建苏建臣1,欧阳浩淼1,赵婉1,董志扬2,金城1*【摘要】摘要:【目的】烟曲霉(Aspergillusfumigatus)的AfMp1p是一种通过糖基磷脂酰肌醇(glycosylphosphatidylinositol,GPI)修饰定位于细胞壁上的蛋白,其细胞壁定位信号位于蛋白质的C 末端。
里氏木霉(Trichoderma reesei)是一种重要的工业生产菌种。
构建里氏木霉的细胞表面表达系统具有十分重要的意义。
【方法】我们将AfMp1p的细胞壁定位GPI信号肽和烟曲霉几丁质酶AfChiB1的N 端信号肽分别与绿色荧光蛋白(green fluorescent protein,GFP)的C 末端和N末端融合并转化里氏木霉。
本文首先对木霉遗传转化系统进行了优化;随后通过Real-time PCR和蛋白定量,对GFP融合蛋白在里氏木霉中不同时期的表达情况进行了研究;最后对里氏木霉表达的GFP 融合蛋白进行细胞定位研究。
【结果】荧光观察结合Western blot的结果表明,在平台期中期和后期,带有GPI信号的GFP融合蛋白定位于细胞壁。
【结论】烟曲霉来源的GPI信号可被里氏木霉识别,本论文所构建的表达系统可用于外源蛋白在里氏木霉中的细胞壁定位表达。
【期刊名称】微生物学报【年(卷),期】2013(053)001【总页数】9【关键词】关键词:里氏木霉,细胞表面表达系统,烟曲霉,GPI 信号里氏木霉属于真菌界、子囊菌门、丛梗孢目、木霉属,是在自然界中广泛分布的腐生嗜温性丝状真菌,其有性生殖方式的种类属于肉座菌属(Hypocrea jecorina)[1]。
由于其具有较高的蛋白质合成和分泌能力,以及公认的高生物。
表达载体构建

表达载体构建1. 背景介绍表达载体是在分子生物学领域中广泛使用的工具,用于将目标基因导入宿主细胞中并使其表达。
构建高效的表达载体对于基因功能研究和基因工程应用具有重要意义。
本文将介绍表达载体的构建方法及其在基因表达中的应用。
2. 表达载体的构建方法构建表达载体的一般步骤包括选择合适的载体骨架、选择适当的启动子和终止子、插入目标基因序列以及进行转染或转化等操作。
下面将详细介绍表达载体的构建方法。
2.1 选择合适的载体骨架常用的载体骨架包括质粒和病毒载体。
质粒是可以在细菌中复制的DNA分子,通常由起始位点、选择标记和多个限制酶切位点组成。
病毒载体包括腺病毒、慢病毒等,具有高效转染特性。
选择适合自己研究的载体骨架是表达载体构建的第一步。
2.2 选择适当的启动子和终止子启动子是基因表达的起始信号,终止子是基因表达的终止信号。
启动子的选择应根据目标基因的表达需求和宿主细胞的特性进行。
常用的启动子包括强启动子(如CMV启动子)、组织特异性启动子等。
终止子则可以选择常规的转录终止信号。
2.3 插入目标基因序列选择合适的酶切位点,在载体DNA上进行限制性内切酶切割,并将目标基因序列与载体连接。
连接的方法可以是经典的限制性酶切连接、PCR扩增连接、Ligase连接等。
连接完成后,应进行酶切鉴定和测序验证,确保目标基因序列插入准确。
2.4 进行转染或转化将构建好的表达载体导入宿主细胞中,实现基因表达。
转染方法包括化学转染、电穿孔转染、病毒介导转染等,转化方法包括细菌的电转化、植物的农杆菌介导转化等。
3. 表达载体的应用表达载体广泛应用于基因功能研究和基因工程应用,具有重要的实验意义和应用前景。
3.1 基因功能研究通过表达载体,可以实现外源基因的高效表达,进而研究基因的功能、调控机制等。
比如可以通过表达载体将目标基因在细胞中过度表达或进行基因敲除等,来研究该基因在细胞或生物体中的功能。
3.2 基因治疗表达载体在基因治疗中具有重要的应用价值。