人教版八年级数学下学期期中试题2015.05
人教版八年级数学下期中试题.docx

初中数学试卷马鸣风萧萧达县2014——2015学年度下学期八年级数学期中试题 一、填空题(本题共36分,每小题3分)1、比较大小:-a 2-a (填“ = ” “ > ” “ < ”)2、不等式组x+3<5 的解集是 。
x -2>43、分解因式:-2x 3-2x 2-21x = 。
4、代数式4y 2﹢1与一个单项式的和是一个整式的完全平方,这个单项式可以是 (填一个即可)5、已知x -y =1,则代数式21x 2-xy+21y 2的值是 。
6、当x = 时,分式 X 2X 22X 的值为零。
7、X 3X 29 = 1() 、XX 3+= ()92-X 、=-3x ()23x x x - 8、计算11X 2XX1X 1X =9、若3=+b b a ,则ba ba +- = A10、如右图:已知△ABC ∽△ADE ,AD =9cm,AE =12cm,AB =4cm, B C 则CE = cm 。
D E (第10题图) 11、若a+a1=2,则代数式a 2+21a 的值是12、请你写出一个符合下列三个条件的不等式组:(1)它的解集为非负数,(2)有一个不等式的解集是x ≤2,(3)有一个不等式在求解时要改变不等号方向。
你写的不等式组是 。
二、选择题(本题共18分,每小题3分)13、若a 、b 是非零实数,则下列说法正确的是( ) A 、若a 2>a ,则a >1 B 、若a 2>a ,则a 2b >ab C 、若a 2>a ,则a 2-b 2>a -b 2 D 、若a 2>a ,则-a 2b <-ab 14、如果不等式组 -4x+1<-8-x 的解集是x >m ,那么m 的 x >m 取值范围是( )A 、m ≥3B 、m ≤3C 、m =3D 、m <3 15、下列分解因式正确的是( ) A 、x 2-1+x =(x+1)(x-1)+xB 、(m+n )2-6(m+n )+9=(m+n-3)(m+n+3)C 、x 6-10x 3-25=(x 3-5)2D 、-1+x 4=(x+1)(x-1)(x 2+1)16、a 为任意实数时,下列分式一定有意义的是( )A 、a a a +2B 、12+a aC 、12-a aD 112-a 、17、下列分式化简正确的是( )A 、22x 22xx x =++ B 、y x xy y x x =--222 C 、3396922-+=+--x x x x x D 、21422+=++x x x18、如图,点C 是线段AB 的黄金分割点,则下列各式正确的是( ) A 、AC AB BC AC = B 、BCACAB BC =A CB(第18题图)C 、BC AB AB AC = D 、ABACAB BC =三、解答下列各题(共46分)19、解不等式或不等式组,并把它的解集在数轴上表示出来(本题共8分,每小题4分)(1)221x -- 323+x >-437+x (2)4x-7<3(x-1) 31x+3≥1-32x20、计算下列各式(共8分,每小题4分)(1)215845y x x y -。
2015学年八年级下期中数学试卷及答案 5 新人教版

四川省广安市岳池县2015学年八年级下学期期中数学试卷一、选择题(本题共10小题,每小题4分,共40分,每题的四个选项中,只有一个符合题意,请把符合题意的选项填在下表中)1.下列根式与是同类二次根式的是( )A.B.C.D.2.下列计算正确的是( )A.B.C.D.3.下面是三角形三边的比,其中是直角三角形三边的比的是( )A.2:1:2 B.2:3:4 C.1:1:D.4:5:64.一个直角三角形的一条直角边长为5,斜边长为13,则另一条直角边的长是( ) A.12 B.10C.D.以上答案都不是5.如图所示,以不在同一直线上的三点作为平行四边形的三个顶点,可以作出平行四边形的个数为( )A.1个B.2个C.3个D.4个6.计算a2﹣(a+b)2的结果是( )A.2ab+b2B.﹣2ab﹣b2C.2a2+2ab+b2D.非上述答案7.如图,在平行四边形ABCD中,点E是边AD的中点,CE与BA的延长线交于点F.若∠FCD=∠D,则下列结论不成立的是( )A.△AEF≌△CED B.CF=AD C.AF=CD D.BF=CF8.如图所示,将矩形ABCD沿BE折叠,若∠ABC′=30°,则∠BEC′等于( )A.30°B.45°C.60°D.75°9.如图所示,在菱形ABCD中,AC=8,BD=6,则菱形的周长为( )A.20 B.30 C.40 D.5010.在如图所示的方格纸中,点A、B、C都在方格线的交点.则∠ACB=( )A.120°B.135°C.150°D.165°二、填空题(本大题共6小题,每小题4分,共24分,请把答案直接填在题中的横线上)11.当x__________时,在实数范围有意义.12.若a=,则a的相反数是__________,a的倒数是__________.13.已知直角三角形的两边的长分别是3和4,则第三边长为__________.14.直角三角形的两直角边的长分别为6cm、8cm,则斜边上高的长是__________cm.15.平行四边形的周长为32cm,一组邻边的差为2cm,则较短边的边长为__________cm.16.如图,点O是AC的中点,将周长为4cm的菱形ABCD沿对角线AC方向平移AO长度得到菱形OB′C′D′,则四边形OECF的周长是__________cm.三、按要求解答下列各题.本大题共3小题,共24分17.计算:(2)(2)+3×.18.计算:2﹣3+.19.已知x=﹣2,求的值.四、解答题.每小题8分,共32分20.如图,在Rt△ABC中,∠C=90°,∠A=30°,AC=8,求斜边AB的长.21.如图所示,在△ABC中,CD⊥AB于点D,若AD=2BD,AC=4,BC=3,求BD的长.22.如图,在边长为2的正方形ABCD中,点E,F分别是BC,CD的中点,连接AE,AF,EF可得△AEF,求AE﹣EF的值.23.在▱ABCD中,点E,F分别在AB,CD上,CF=AE,四边形DEBF是平行四边形吗?说说你的理由.五、应用题.每小题10分,共30分24.学校有一块正方形花坛,面积为15cm2,求它的对角线长.25.如图,平行四边形ABCD的边长AD=3cm,AB=8cm,∠A=60°,现求对角线BD的长度.同学甲的方案是:过点B作BE⊥CD,垂足为E,然后利用直角三角形性质和勾股定理求得BD的长度;同学乙的方案是:过D作DH⊥AB,垂足为H,然后利用直角三角形性质和勾股定理求得BD的长度.请你作出判断,是同学甲的方案好还是同学乙的方案好,并给出你的解答.26.如图,菱形ABCD中,AB=4,E为BC中点,AE⊥BC,AF⊥CD于点F,CG∥AE,CG交AF于点H,交AD于点G.(1)求菱形ABCD的面积;(2)求∠CHA的度数.四川省广安市岳池县2014-2015学年八年级下学期期中数学试卷一、选择题(本题共10小题,每小题4分,共40分,每题的四个选项中,只有一个符合题意,请把符合题意的选项填在下表中)1.下列根式与是同类二次根式的是( )A.B.C.D.考点:同类二次根式.专题:计算题.分析:利用同类二次根式的定义判断即可.解答:解:=4,=2,=,=,则与是同类二次根式的是,故选B.点评:此题考查了同类二次根式,熟练掌握同类二次根式的定义是解本题的关键.2.下列计算正确的是( )A.B.C.D.考点:二次根式的混合运算.专题:计算题.分析:根据二次根式的加减法对A、C进行判断;根据二次根式的性质对B进行判断;根据二次根式的乘法法则对D进行判断.解答:解:A、原式=2﹣,所以A选项错误;B、原式=2,所以B选项错误;C、与不能合并,所以C选项错误;D、原式==,所以D选项正确.故选D.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.3.下面是三角形三边的比,其中是直角三角形三边的比的是( )A.2:1:2 B.2:3:4 C.1:1:D.4:5:6考点:勾股定理的逆定理.分析:由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.解答:解:A、22+12≠22,故不能构成三角形,故此选项错误;B、22+32≠42,故不能构成三角形,故此选项错误;C、12+12=()2,故不能构成三角形,故此选项正确;D、42+52≠62,故不能构成三角形,故此选项错误;故选:C.点评:本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.4.一个直角三角形的一条直角边长为5,斜边长为13,则另一条直角边的长是( ) A.12 B.10C.D.以上答案都不是考点:勾股定理.分析:根据勾股定理即可求得另一条直角边的长.解答:解:由勾股定理得:另一直角边==12,故选A.点评:本题考查了利用勾股定理解直角三角形的能力即:直角三角形两直角边的平方和等于斜边的平方.5.如图所示,以不在同一直线上的三点作为平行四边形的三个顶点,可以作出平行四边形的个数为( )A.1个B.2个C.3个D.4个考点:平行四边形的判定.分析:根据平行四边形的定义,结合图形知可作3个平行四边形.解答:解:根据平行四边形的定义可知,分别以三角形的一边作为平行四边形的一边,作出的平行四边形有3个.故选C.点评:主要考查了平行四边形的定义和作图,要注意的是三角形有三个边,作图有三个方法.6.计算a2﹣(a+b)2的结果是( )A.2ab+b2B.﹣2ab﹣b2C.2a2+2ab+b2D.非上述答案考点:完全平方公式.分析:首先利用完全平方公式进行计算,然后再去括号、合并同类项即可.解答:解:原式=a2﹣(a2+2ab+b2)=a2﹣a2﹣2ab﹣b2=﹣2ab﹣b2.故选:B.点评:本题主要考查的是完全平方公式的应用,掌握完全平方公式是解题的关键.7.如图,在平行四边形ABCD中,点E是边AD的中点,CE与BA的延长线交于点F.若∠FCD=∠D,则下列结论不成立的是( )A.△AEF≌△CED B.CF=AD C.AF=CD D.BF=CF考点:平行四边形的性质.分析:根据平行四边形的性质得出AD=BC,∠D=∠B,AB∥CD,根据平行线的性质得出∠F=∠DCE,根据AAS推出△AEF≌△DEC,求出∠F=∠B,再逐个判断即可.解答:解:A、∵四边形BACD是平行四边形,∴AD=BC,∠D=∠B,AB∥CD,∴∠F=∠DCE,∵点E是边AD的中点,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC,故本选项错误;B、∵∠B=∠D,∠FCD=∠D,∠F=∠FCD,∴∠F=∠B,∴CF=BC,∵BC=AD,∴CF=AD,故本选项错误;C、∵△AEF≌△DEC,∴AF=CD,故本选项错误;D、已经推出BC=CF,已知不能推出∠B=60°,即不能推出BF=CF,故本选项正确.故选D.点评:本题考查了平行四边形的性质,平行线的性质,全等三角形的性质和判定的应用,能综合运用定理进行推理是解此题的关键,综合性比较强,难度偏大.8.如图所示,将矩形ABCD沿BE折叠,若∠ABC′=30°,则∠BEC′等于( )A.30°B.45°C.60°D.75°考点:翻折变换(折叠问题).分析:由折叠的性质知,折叠后形成的图形全等,找出对应的边角关系即可.解答:解:由翻折的性质可知:∠C=∠C′,∠C′BE=∠CBE,∠C′EB=∠CEB.∵∠ABC′=30°,∴∠C′BE==30°.在Rt△C′BE中,∠BEC′=90°﹣∠C′BE=90°﹣30°=60°.故选:C.点评:本题考查图形的轴对称.解题关键是找出由轴对称所得的相等的边或者相等的角.9.如图所示,在菱形ABCD中,AC=8,BD=6,则菱形的周长为( )A.20 B.30 C.40 D.50考点:菱形的性质.分析:根据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOB中,根据勾股定理可以求得AB的长,即可求菱形ABCD的周长.解答:解:菱形对角线互相垂直平分,∴BO=OD=3,AO=OC=4,∴AB==5,∴菱形的周长=4AB=20.故选A.点评:本题考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键.10.在如图所示的方格纸中,点A、B、C都在方格线的交点.则∠ACB=( )A.120°B.135°C.150°D.165°考点:解直角三角形.专题:网格型.分析:在方格纸中,设网格边长为1,则AC=,BC=,AB=5,根据余弦定理进行求解即可.解答:解:设网格边长为1则AC=,BC=,AB=5由余弦定理得cos∠ACB==﹣∴∠ACB=135°故选B.点评:本题考查了余弦定理的应用,属于基础题,熟记余弦定理是解题关键.二、填空题(本大题共6小题,每小题4分,共24分,请把答案直接填在题中的横线上)11.当x<5时,在实数范围有意义.考点:二次根式有意义的条件;分式有意义的条件.分析:根据二次根式的性质和分式的意义,由被开方数大于等于0,分母不等于0计算即可.解答:解:根据二次根式的意义,被开方数5﹣x≥0,即x≤5;根据分式有意义的条件,5﹣x≠0,解得x≠5.所以x的取值范围是x<5,故答案为:<5.点评:本题考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.当二次根式在分母上时还要考虑分母不等于零,此时被开方数大于0.12.若a=,则a的相反数是2,a的倒数是﹣2.考点:实数的性质.分析:根据相反数和倒数的定义进行解答即可.解答:解:若a=,a的相反数2﹣;a的倒数为==﹣.故答案为:2﹣;﹣2.点评:本题主要考查的是相反数、倒数、二次根式的化简,掌握分母有理数的方法是解题的关键.13.已知直角三角形的两边的长分别是3和4,则第三边长为5或.考点:勾股定理.专题:分类讨论.分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①3是直角边,4是斜边;②3、4均为直角边;可根据勾股定理求出上述两种情况下,第三边的长.解答:解:①长为3的边是直角边,长为4的边是斜边时:第三边的长为:=;②长为3、4的边都是直角边时:第三边的长为:=5;综上,第三边的长为:5或.故答案为:5或.点评:此题主要考查的是勾股定理的应用,要注意的是由于已知的两边是直角边还是斜边并不明确,所以一定要分类讨论,以免漏解.14.直角三角形的两直角边的长分别为6cm、8cm,则斜边上高的长是4.8cm.考点:勾股定理.专题:计算题.分析:先根据勾股定理求出直角三角形的斜边,然后从直角三角形面积的两种求法入手,代入公式后计算即可.解答:解:∵直角三角形两直角边分别为6cm,8cm,∴斜边长为=10cm.∵直角三角形面积=×一直角边长×另一直角边长=×斜边长×斜边的高,代入题中条件,即可得:斜边高=4.8cm.故答案为:4.8.点评:本题考查勾股定理及直角三角形面积公式的应用,看清条件即可.15.平行四边形的周长为32cm,一组邻边的差为2cm,则较短边的边长为7cm.考点:平行四边形的性质.分析:如图:因为四边形ABCD是平行四边形,根据平行四边形的对边相等,可得AB=CD,AD=BC,又因为平行四边形的周长等于32cm,两邻边之差为2cm,所以可求得这个平行四边形较长的边长的长.解答:解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∵平行四边形的周长等于32cm,∴AB+CD+AD+BC=32cm,∴AB+BC=16cm,∵BC﹣AB=2cm,∴BC=9cm,AB=7cm,∴平行四边形的较短边的长是7cm,故答案为7.点评:此题考查了平行四边形的性质:平行四边形的对边相等.注意解此题需要利用方程思想.16.如图,点O是AC的中点,将周长为4cm的菱形ABCD沿对角线AC方向平移AO长度得到菱形OB′C′D′,则四边形OECF的周长是2cm.考点:菱形的性质;平移的性质.专题:计算题;压轴题.分析:根据题意得,▱ABCD∽▱OECF,且AO=OC=AC,故四边形OECF的周长是▱ABCD 周长的一半.解答:解:由平移的性质得,▱ABCD∽▱OECF,且AO=OC=AC,故四边形OECF的周长是▱ABCD周长的一半,即为2cm.故答案为2.点评:此题主要考查学生对菱形的性质及平移的性质的综合运用.三、按要求解答下列各题.本大题共3小题,共24分17.计算:(2)(2)+3×.考点:二次根式的混合运算.专题:计算题.分析:先利用平方差公式和二次根式的乘除法则计算,然后合并即可.解答:解:原式=(2)2﹣()2+3×××=12﹣5+=7+.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.计算:2﹣3+.考点:二次根式的加减法.分析:先把各二次根式化为最简二次根式,再合并同类项即可.解答:解:原式=﹣+4=(1﹣+4)=.点评:本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.19.已知x=﹣2,求的值.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.解答:解:原式=÷=•=,当x=﹣2时,原式==﹣.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.四、解答题.每小题8分,共32分20.如图,在Rt△ABC中,∠C=90°,∠A=30°,AC=8,求斜边AB的长.考点:勾股定理;含30度角的直角三角形.分析:设BC=x,则AB=2x,再根据勾股定理求出x的值,进而得出结论.解答:解:∵在Rt△ABC中,∠C=90°,∠A=30°,AC=8,∴设BC=x,则AB=2x,∵AC2+BC2=AB2,即(8)2+x2=(2x)2,解得x=,∴AB=2x=.点评:本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.21.如图所示,在△ABC中,CD⊥AB于点D,若AD=2BD,AC=4,BC=3,求BD的长.考点:勾股定理.分析:由于CD⊥AB,CD为Rt△ADC和Rt△BCD的公共边,在这两个三角形中利用勾股定理可求出BD的长.解答:解:∵CD⊥AB,∴∠CDA=∠BDC=90°在Rt△ADC中,CD2=AC2﹣AD2,在Rt△BCD中,CD2=BC2﹣BD2,∴AC2﹣AD2=BC2﹣BD2,∵AD=2BD,AC=4,BC=3,∴42﹣(2BD)2=32﹣BD2∴BD=.点评:本题考查了勾股定理的运用,仔细分析题目是解题的关键,本题中有一直角边为公共边,只要充分利用这一点及勾股定理,则容易解题.22.如图,在边长为2的正方形ABCD中,点E,F分别是BC,CD的中点,连接AE,AF,EF可得△AEF,求AE﹣EF的值.考点:正方形的性质;勾股定理.分析:根据正方形的性质和中点的定义得到∠B=∠C=90°,以及AB,BE,CE,CF的长,根据勾股定理可求AE,EF的长,再相减即可求解.解答:解:∵四边形ABCD是正方形,∴∠B=∠C=90°,∵在边长为2的正方形ABCD中,点E,F分别是BC,CD的中点,∴AB=2,BE=1,CE=1,CF=1,在Rt△ABE中,AE==,在Rt△CEF中,EF==,∴AE﹣EF=﹣.点评:考查了正方形的性质,中点的定义,勾股定理,关键是根据勾股定理可求AE,EF的长.23.在▱ABCD中,点E,F分别在AB,CD上,CF=AE,四边形DEBF是平行四边形吗?说说你的理由.考点:平行四边形的判定与性质.专题:推理填空题.分析:由平行四边形的性质可得AB∥CD,且AB=CD,又由题中条件,则不难得出其为平行四边形.解答:解:四边形DEBF是平行四边形.理由:在平行四边形ABCD中,则AB∥CD,且AB=CD,又CF=AE,∴BE=DF∴四边形DEBF是平行四边形.点评:本题主要考查平行四边形的性质及判定,能够熟练掌握.五、应用题.每小题10分,共30分24.学校有一块正方形花坛,面积为15cm2,求它的对角线长.考点:正方形的性质.分析:设正方形的边长为xcm,由题意得出x2=15,根据勾股定理得出正方形的对角线长==(cm)即可.解答:解:设正方形的边长为xcm,根据题意得:x2=15,根据勾股定理得:正方形的对角线长===(cm);答:正方形的对角线长为cm.点评:本题考查了正方形的性质、勾股定理;熟练掌握正方形的性质,并能进行推理计算是解决问题的关键.25.如图,平行四边形ABCD的边长AD=3cm,AB=8cm,∠A=60°,现求对角线BD的长度.同学甲的方案是:过点B作BE⊥CD,垂足为E,然后利用直角三角形性质和勾股定理求得BD的长度;同学乙的方案是:过D作DH⊥AB,垂足为H,然后利用直角三角形性质和勾股定理求得BD的长度.请你作出判断,是同学甲的方案好还是同学乙的方案好,并给出你的解答.考点:平行四边形的性质;勾股定理.分析:乙的方案好,比甲同学的方案少一些解题步骤.解答:解:乙的方案好些,理由如下:过D作DH⊥AB,垂足为H,∵∠A=60°,∠AHD=90°,∴∠ADH=30°,∵AD=3,AH=AD=cm,由勾股定理得:DH==cm,∵AD=8cm,∴HB=AB﹣AH=8﹣=cm,由勾股定理得:BD==7cm,∴对角线BD的长为7cm.点评:本题考查了平行四边形的性质、勾股定理的运用,解题的关键是读懂题意,作出辅助线,构造直角三角形.26.如图,菱形ABCD中,AB=4,E为BC中点,AE⊥BC,AF⊥CD于点F,CG∥AE,CG交AF于点H,交AD于点G.(1)求菱形ABCD的面积;(2)求∠CHA的度数.考点:菱形的性质.专题:计算题.分析:连接AC,BD并且AC和BD相交于点O,根据菱形的性质以及垂直定理得到△ABC 和△ADC都是正三角形,即AB=AC=4,再利用勾股定理求出BD的长,进而求出菱形ABCD 的面积;根据正三角形的性质求出∠DAF的度数,然后利用三角形内角和定理求出∠CHA 的度数.解答:解:(1)连接AC、BD并且AC和BD相交于点O,∵AE⊥BC,且AE平分BC,而AB=CB=AD=CD=AC,∴△ABC和△ADC都是正三角形,∴AB=AC=4,因为△ABO是直角三角形,∴BD=4,∴菱形ABCD的面积是.(2)∵△ADC是正三角形,AF⊥CD,∴∠DAF=30°,又∵CG∥AE,AE⊥BC,∴四边形AECG是矩形,∴∠AGH=90°,∴∠AHC=∠DAF+∠AGH=120°.点评:本题综合考查菱形的性质,垂直的定义,正三角形的性质,菱形的面积公式,三角形内角和定理.。
人教八年级下学期期中考试数学试题.doc

1343DCBA初中数学试卷马鸣风萧萧2014---2015学年度下学期期中质量检测八年数学试题(考试时间:90分钟,试卷满分:120分)一、选择题(每题3分,共24分) 题号 1 2 3 4 5 6 7 8 答案1. 下列式子一定是二次根式的是( ) A .2--x B .x C .22+x D .22-x2. 平行四边形的周长为24cm ,相邻两边长的比为3 :1,•那么这个平行四边形中较短的边长为( ) A .6cm B .3cm C .9cm D .12cm3. 下列运算正确的是( ) A.235=- B.312914= C.323=23 D.()52522-=-4.由线段a 、b 、c 组成的三角形不是直角三角形的是( ) A. a=7,b=24,c=25; B. a=41,b=4,c=5; C. a=54,b=1,c=34; D. a=13,b=14,c=15; 5.若平行四边形中两个内角的度数比为1∶3,则其中较小的内角是( ) A.30° B.45° C.60° D.75° 6.已知n 20是整数,则满足条件的最小正整数n 为( ) A.5 B.4C.3D.27.如图,△ABC 、△ABD 都是直角三角形,其中AC=4, BC=3,AD=13,则四边形ACBD 的面积为( ) A.36 B.28 C.40 D.728.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,八年数学下(期中)第1页 共6页 八DABC NMP DA EDCBA12题为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )二、填空题:(每小题3分,共24分)9.函数y=2x +·2x -中,自变量x 的取值范围是 . 10.计算⑴20= ; ⑵3a = ; ⑶114= 。
人教数学八年级下册第二学期期中测试题.docx

初中数学试卷桑水出品2014—2015学年度第二学期八年级期中测试题数学试题(满分:120 分时间:90 分钟)一.选择题(共12小题)1.若二次根式有意义,则x的取值范围是()A.x≥2 B.x>2 C.x≤2D.x<22.下列二次根式中最简根式是()A.B.C.D.3.下列各组数中不能作为直角三角形的三边长的是()A.1.5,2,3 B.8,15,17 C.6,8,10 D.9,12,154.如图,以直角三角形的三边作正方形,已知S1=9,S2=36,S3=4,正方形S的边长为8,则S4=()A.12 B.14 C.15 D.165.如图,在四边形ABCD中,对角线AC与BD相交于点O,不能判断四边形ABCD是平行四边形的是A.A B∥DC,AD=BC B.A B∥DC,AD∥BC C.A B=DC,AD=BC D.O A=OC,OB=ODA.内角和等于360°B.对角相等C.对边平行且相等D.对角线互相垂直A.2.4 B.3.6 C.4.8 D.68.如图,在矩形ABCD中,对角线AC、BD交于点O,若∠AOB=60°,AB=3,则对角线BD的长是()(8题图)(12题图)A.6B.3C.5D.49.直角三角形的两条直角边分别是6和8,则这三角形斜边上的高是()A.4.8 B.5C.3D.1010.如果菱形的两条对角线长分别是10cm和24cm,那么这个菱形的周长为()A.13cm B.34cm C.52cm D.68cm11.在菱形ABCD中,对角线AC与BD交于点O,如果∠ABC=60°,AC=4,那么该菱形的面积是()A.B.16 C.D.812.如图,在▱ABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,则AB的长是()A.1B.2C.D.4二.填空题(共8小题, 每题3分。
)13.已知直角三角形的两边的长分别是3和4,则第三边长为.14.若一个三角形的三边之比为5:12:13,且周长为60cm,则它的面积为cm2.15.在平行四边形ABCD中,若∠A+∠C=100°,则∠D=°.16.如图,平行四边形ABCD中,∠A的平分线AE交CD于E,AB=5,BC=3,则EC的长为.17.如果菱形的两条对角线的长为a和b,且a,b满足(a﹣1)2+=0,那么菱形的面积等于.18.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED=.19.若正方形的一条对角线的长为2cm,则这个正方形的面积为.20.如图所示,在四边形ABCD中,AD∥CB,且AD>BC,BC=6cm,动点P,Q分别从A,C同时出发,P以1cm/s的速度由A向D运动,Q以2cm/s的速度由C向B运动,则秒后四边形ABQP为平行四边形.(16题图)(18题图)(20题图)三.解答题(共7道题,21题每小题5分,共10分,22、23、24各5分,25、26题每题10分,27题15分。
2015八年级(下)期中数学试卷 附答案

八年级(下)期中数学试卷一、精心选择,一锤定音!(本题10小题,每小题3分,共30分,每小题只有一个选项是正确的)1.计算的结果是()A.﹣3 B.3 C.﹣9 D.92.式子在实数范围内有意义,则x的取值范围是()A.x<1 B.x≥1 C.x≤﹣1 D.x>13.下列各组数能成为直角三角形三边的是()A.32、42、52 B.、、C.、2、D.、、14.下列各式中,属于最简二次根式的是()A.B.C.D.5.等腰三角形的底边长为6,底边上的中线长为4,它的腰长为()A.7 B. 6 C. 5 D. 46.已知△ABC的各边长度分别为3cm、4cm、5cm,则连接各边中点的三角形周长为()A.2cm B.7cm C.5cm D.6cm7.如图,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,则∠AOB的大小为()A.30° B.60° C.90° D.120°8.如图,在菱形ABCD中,AB=3,∠ABC=60°,则对角线AC=()A.12 B.9 C. 6 D. 39.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.12≤a≤13 B.12≤a≤15 C.5≤a≤12 D.5≤a≤1310.如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…A n分别是正方形的中心,则这n个正方形重叠部分的面积之和是()A.n B.n﹣1 C.()n﹣1 D.n二、耐心填空,准确无误(每题3分,共计18分)11.计算﹣=.12.如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件,使ABCD成为菱形(只需添加一个即可)13.如图,已知OA=OB,那么数轴上点A所表示的数是.14.已知y=+﹣3,则2xy的值为.15.直角三角形的两边长为5和7,则第三边长为.16.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为.三、用心做一做,显显你的能力(本大题共8小题,共72分)17.(+)﹣2﹣.18.先化简,再求值:.19.如图,直角三角形纸片ABC,∠C=90°,AC=6,BC=8.(1)作图:用尺规作AB的垂直平分线,交BC于D,交AB于H.(保留作图痕迹)(2)在满足(1)的情况下,求BD的长.20.如图,在所给方格纸中,每个小正方形边长都是1,标号为①,②,③的三个三角形均为格点三角形(顶点在方格顶点处),请按要求将图甲、图乙中的指定图形分割成三个三角形,使它们与标号为①,②,③的三个三角形分别对应全等.(1)图甲中的格点正方形ABCD;(2)图乙中的格点平行四边形ABCD.注:分割线画成实线.21.阅读下列材料,并解决相应问题:阅读:分母有理化就是把分母中的根号化去.例如:===+应用:用上述类似的方法化简下列各式:(1)(2)++…+.22.在海洋上有一近似于四边形的岛屿,其平面图如图,小明据此构造出该岛的一个数学模型(如图四边形ABCD)来求岛屿的面积,其中∠B=∠D=90°,AB=BC=15千米,CD=3千米,请求出四边形ABCD的面积.(结果保留根号)23.已知矩形ABCD中,M、N分别是AD、BC的中点,E、F分别是线段BM、CM的中点.(1)求证:△ABM≌DCM;(2)判断四边形MENF是(只写结论,不需证明);(3)在(1)(2)的前提下,当等于多少时,四边形MENF是正方形,并给予证明.24.已知:如图(1)四边形ABCD和四边形GCEF为正方形,B、C、E在同一直线.(1)试判断BG、DE的位置关系,请直接写出结论:;(2)若正方形GCEF绕C点顺时针旋转到图(2)的位置,(1)的结论是否仍成立?若成立,给予证明,若不成立?请说明理由.(3)在图(2)中,若正方形ABCD的边长为6,正方形CEFG边长为3,连结BE,DG 求BE2+DG2的值.参考答案与试题解析一、精心选择,一锤定音!(本题10小题,每小题3分,共30分,每小题只有一个选项是正确的)1.计算的结果是()A.﹣3 B.3 C.﹣9 D.9考点:二次根式的性质与化简.专题:计算题.分析:原式利用二次根式的化简公式计算即可得到结果.解答:解:原式=|﹣3|=3.故选:B.点评:此题考查了二次根式的性质与化简,熟练掌握二次根式的化简公式是解本题的关键.2.式子在实数范围内有意义,则x的取值范围是()A.x<1 B.x≥1 C.x≤﹣1 D.x>1考点:二次根式有意义的条件.分析:根据二次根式的性质,被开方数大于等于0,解不等式即可.解答:解:根据题意得:x﹣1≥0,即x≥1时,二次根式有意义.故选:B.点评:主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.3.下列各组数能成为直角三角形三边的是()A.32、42、52 B.、、C.、2、D.、、1考点:勾股定理的逆定理.分析:分别计算每一组中,较小两数的平方和,看是否等于最大数的平方,若等于就是直角三角形,否则就不是直角三角形.解答:解:A、因为(32)2+(42)2≠(52)2,所以不能构成直角三角形,此选项错误;B、因为()2+()2≠()2,所以不能构成直角三角形,此选项错误;C、因为()2+22≠()2,所以不能构成直角三角形,此选项错误;D、因为()2+()2=12,能构成直角三角形,此选项正确.故选D.点评:本题主要考查了勾股定理的逆定理,已知三条线段的长,判断是否能构成直角三角形的三边,判断的方法是:计算两个较小的数的平方和是否等于最大数的平方即可判断.4.下列各式中,属于最简二次根式的是()A.B.C.D.考点:最简二次根式.分析:判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.解答:解:A、被开方数含开的尽的因数,故A错误;B、被开方数含分母,故B错误;C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C正确;D、被开方数含开的尽的因数,故D错误;故选:C.点评:本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.5.等腰三角形的底边长为6,底边上的中线长为4,它的腰长为()A.7 B. 6 C. 5 D. 4考点:勾股定理;等腰三角形的性质.专题:压轴题.分析:根据等腰三角形的性质可知BC上的中线AD同时是BC上的高线,根据勾股定理求出AB的长即可.解答:解:∵等腰三角形ABC中,AB=AC,AD是BC上的中线,∴BD=CD=BC=3,AD同时是BC上的高线,∴AB==5,故选C.点评:本题考查勾股定理及等腰三角形的性质.解题关键是得出中线AD是BC上的高线,难度适中.6.已知△ABC的各边长度分别为3cm、4cm、5cm,则连接各边中点的三角形周长为()A.2cm B.7cm C.5cm D.6cm考点:三角形中位线定理.分析:根据三角形的中位线平行于第三边并且等于第三边的一半可得中点三角形的周长等于原三角形的周长的一半求解即可.解答:解:∵△ABC的周长=3+4+5=12cm,∴连接各边中点的三角形周长=×12=6cm.故选D.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理并判断出中点三角形的周长等于原三角形的周长的一半是解题的关键.7.如图,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,则∠AOB的大小为()A.30° B.60° C.90° D.120°考点:矩形的性质.专题:几何图形问题.分析:根据矩形的对角线互相平分且相等可得OB=OC,再根据等边对等角可得∠OBC=∠ACB,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答:解:∵矩形ABCD的对角线AC,BD相交于点O,∴OB=OC,∴∠OBC=∠ACB=30°,∴∠AOB=∠OBC+∠ACB=30°+30°=60°.故选:B.点评:本题考查了矩形的性质,等边对等角的性质以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键.8.如图,在菱形ABCD中,AB=3,∠ABC=60°,则对角线AC=()A.12 B.9 C. 6 D. 3考点:菱形的性质;等边三角形的判定与性质.分析:根据菱形的性质及已知可得△ABC为等边三角形,从而得到AC=AB.解答:解:∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC为等边三角形,∴AC=AB=3.故选D.点评:本题考查了菱形的性质和等边三角形的判定,难度一般,解答本题的关键是掌握菱形四边相等的性质.9.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.12≤a≤13 B.12≤a≤15 C.5≤a≤12 D.5≤a≤13考点:勾股定理的应用.专题:压轴题.分析:最短距离就是饮料罐的高度,最大距离可根据勾股定理解答.解答:解:a的最小长度显然是圆柱的高12,最大长度根据勾股定理,得:=13.即a的取值范围是12≤a≤13.故选:A.点评:主要是运用勾股定理求得a的最大值,此题比较常见,难度不大.10.如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…A n分别是正方形的中心,则这n个正方形重叠部分的面积之和是()A.n B.n﹣1 C.()n﹣1 D.n考点:正方形的性质;全等三角形的判定与性质.专题:规律型.分析:根据题意可得,阴影部分的面积是正方形的面积的,已知两个正方形可得到一个阴影部分,则n个这样的正方形重叠部分即为(n﹣1)个阴影部分的和.解答:解:由题意可得一个阴影部分面积等于正方形面积的,即是×4=1,5个这样的正方形重叠部分的面积和为:1×4,n个这样的正方形重叠部分的面积和为:1×(n﹣1)=n﹣1.故选:B.点评:此题考查了正方形的性质,解决本题的关键是得到n个这样的正方形重叠部分的面积和的计算方法,难点是求得一个阴影部分的面积.二、耐心填空,准确无误(每题3分,共计18分)11.计算﹣=.考点:二次根式的加减法.分析:先进行二次根式的化简,然后合并.解答:解:原式=3﹣=.故答案为:.点评:本题考查了二次根式的加减法,解答本题的关键是掌握二次根式的化简以及同类二次根式的合并.12.如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件OA=OC,使ABCD成为菱形(只需添加一个即可)考点:菱形的判定.专题:开放型.分析:可以添加条件OA=OC,根据对角线互相垂直平分的四边形是菱形可判定出结论.解答:解:OA=OC,∵OB=OD,OA=OC,∴四边形ABCD是平行四边形,∵AC⊥BD,∴平行四边形ABCD是菱形,故答案为:OA=OC.点评:此题主要考查了菱形的判定,关键是掌握菱形的判定定理.13.如图,已知OA=OB,那么数轴上点A所表示的数是﹣.考点:勾股定理;实数与数轴.分析:首先根据勾股定理得:OB=.即OA=.又点A在数轴的负半轴上,则点A对应的数是﹣.解答:解:由图可知,OC=2,作BC⊥OC,垂足为C,取BC=1,故OB=OA===,∵A在x的负半轴上,∴数轴上点A所表示的数是﹣.故答案为:﹣.点评:熟练运用勾股定理,同时注意根据点的位置以确定数的符号.14.已知y=+﹣3,则2xy的值为﹣15.考点:二次根式有意义的条件.分析:根据非负数的性质列式求出x的值,再求出y的值,然后代入代数式进行计算即可得解.解答:解:根据题意得,2x﹣5≥0且5﹣2x≥0,解得x≥且x≤,所以,x=,y=﹣3,所以,2xy=2××(﹣3)=﹣15.故答案为:﹣15.点评:本题考查的知识点为:二次根式的被开方数是非负数.15.直角三角形的两边长为5和7,则第三边长为2或.考点:勾股定理.专题:分类讨论.分析:分7为斜边与7为直角边两种情况考虑,分别利用勾股定理即可求出第三边.解答:解:若7为斜边,根据勾股定理得:第三边为=2;若7为直角边,根据勾股定理得:第三边为=,故答案为:2或点评:此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.16.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为6.考点:轴对称-最短路线问题;正方形的性质.专题:计算题.分析:连接BD,DE,根据正方形的性质可知点B与点D关于直线AC对称,故DE的长即为BQ+QE的最小值,进而可得出结论.解答:解:连接BD,DE,∵四边形ABCD是正方形,∴点B与点D关于直线AC对称,∴DE的长即为BQ+QE的最小值,∵DE=BQ+QE===5,∴△BEQ周长的最小值=DE+BE=5+1=6.故答案为:6.点评:本题考查的是轴对称﹣最短路线问题,熟知轴对称的性质是解答此题的关键.三、用心做一做,显显你的能力(本大题共8小题,共72分)17.(+)﹣2﹣.考点:二次根式的加减法.分析:先把二次根式为最简二次根式,再计算即可.解答:解:原式=2+﹣﹣=.点评:本题考查了二次根式的加减运算,把二次根式化为最简二次根式是解题的关键.18.先化简,再求值:.考点:二次根式的化简求值;分式的化简求值.分析:此题要对代数式先通分,最简公分母是xy(x+y),再相减,能够熟练运用因式分解的方法进行约分.代值的时候,熟练合并同类二次根式.解答:解:原式=﹣===.当时,=.点评:此题综合考查了二次根式的混合运算和二次根式的加减运算.19.如图,直角三角形纸片ABC,∠C=90°,AC=6,BC=8.(1)作图:用尺规作AB的垂直平分线,交BC于D,交AB于H.(保留作图痕迹)(2)在满足(1)的情况下,求BD的长.考点:作图—基本作图;线段垂直平分线的性质.分析:(1)垂直平分线的作法为:将圆规的圆心分别处于线段的两端,各做一个圆弧(半径大于线段长的一半),并让其相交,将其交点相连即为该线段垂直平分线;(2)首先利用勾股定理求得斜边的长,从而求得BH的长,然后利用△BHD∽△BCA求得BD的长即可.解答:解:(1)如图:(2)∵∠C=90°,AC=6,BC=8,∴AB==10,∵HD垂直平分AB,∴AH=BH=5,∵△BHD∽△BCA,∴,即:,解得:BD=.点评:本题考查了尺规作图的知识,要牢记:将圆规的圆心分别处于线段的两端,各做一个圆弧(半径大于线段长的一半),并让其相交,将其交点相连即为该线段垂直平分线;20.如图,在所给方格纸中,每个小正方形边长都是1,标号为①,②,③的三个三角形均为格点三角形(顶点在方格顶点处),请按要求将图甲、图乙中的指定图形分割成三个三角形,使它们与标号为①,②,③的三个三角形分别对应全等.(1)图甲中的格点正方形ABCD;(2)图乙中的格点平行四边形ABCD.注:分割线画成实线.考点:作图—应用与设计作图.专题:作图题.分析:(1)利用三角形的形状以及各边长进而拼出正方形即可;(2)利用三角形的形状以及各边长进而拼出平行四边形即可.解答:解:(1)如图甲所示:(2)如图乙所示:点评:此题主要考查了应用设计与作图,利用网格结合三角形各边长得出符合题意的图形是解题关键.21.阅读下列材料,并解决相应问题:阅读:分母有理化就是把分母中的根号化去.例如:===+应用:用上述类似的方法化简下列各式:(1)(2)++…+.考点:分母有理化.专题:阅读型.分析:(1)根据分式的性质,分子分母都乘以分母两个数的和,可得答案;(2)根据分式的性质,分子分母都乘以分母两个数的和,可得实数的运算,根据实数的运算,可得答案.解答:解:(1)原式===+;(2)原式=++…+=﹣1+﹣+…+﹣=﹣1.点评:本题考查了分母有理化,利用分式的性质:分子分母都乘以分母分母两个数的和或差得出平方差是解题关键.22.在海洋上有一近似于四边形的岛屿,其平面图如图,小明据此构造出该岛的一个数学模型(如图四边形ABCD)来求岛屿的面积,其中∠B=∠D=90°,AB=BC=15千米,CD=3千米,请求出四边形ABCD的面积.(结果保留根号)考点:勾股定理的应用.分析:连接AC,根据AB=BC=15千米,∠B=90°得到∠BAC=∠ACB=45° AC=15,再根据∠D=90°利用勾股定理求得AD的长后即可求面积;解答:解:连接AC∵AB=BC=15千米,∠B=90°∴∠BAC=∠ACB=45° AC=15千米,又∵∠D=90°,∴AD==12(千米)∴面积=S△ABC+S△ADC=112.5+18(平方千米).点评:本题考查了解直角三角形的应用,与实际问题相结合提高了同学们解题的兴趣,解题的关键是从实际问题中整理出直角三角形并求解.23.已知矩形ABCD中,M、N分别是AD、BC的中点,E、F分别是线段BM、CM的中点.(1)求证:△ABM≌DCM;(2)判断四边形MENF是菱形(只写结论,不需证明);(3)在(1)(2)的前提下,当等于多少时,四边形MENF是正方形,并给予证明.考点:矩形的性质;全等三角形的判定与性质;菱形的判定;正方形的性质.分析:(1)由矩形的性质得出AB=DC,∠A=∠D,再由M是AD的中点,根据SAS即可证明△ABM≌△DCM;(2)先由(1)得出BM=CM,再由已知条件证出ME=MF,EN、FN是△BCM的中位线,即可证出EN=FN=ME=MF,得出四边形MENF是菱形;(3)先证出∠AMB=45°,同理得出∠DMC=45°,证出∠BMC=90°,即可得出结论.解答:(1)证明:∵四边形ABCD是矩形,∴∠A=∠D=90°,AB=DC,∵M是AD的中点,∴AM=DM,在△ABM和△DCM中,,∴△ABM≌△DCM(SAS);(2)解:四边形MEBF是菱形;理由如下:由(1)得:△ABM≌△DCM,∴BM=CM,∵E、F分别是线段BM、CM的中点,∴ME=BE=BM,MF=CF=CM,∴ME=MF,又∵N是BC的中点,∴EN、FN是△BCM的中位线,∴EN=CM,FN=BM,∴EN=FN=ME=MF,∴四边形MENF是菱形;(3)解:当=2时,四边形MENF是正方形;证明如下:当=2时,AB=AM,∴△ABM是等腰直角三角形,∴∠AMB=45°,同理:∠DMC=45°,∴∠BMC=90°,∴四边形MENF是正方形.点评:本题考查了矩形的性质、全等三角形的判定与性质、菱形的判定、正方形的判定;熟练掌握矩形的性质以及菱形、正方形的判定方法,证明三角形全等是解决问题的关键.24.已知:如图(1)四边形ABCD和四边形GCEF为正方形,B、C、E在同一直线.(1)试判断BG、DE的位置关系,请直接写出结论:BG⊥DE;(2)若正方形GCEF绕C点顺时针旋转到图(2)的位置,(1)的结论是否仍成立?若成立,给予证明,若不成立?请说明理由.(3)在图(2)中,若正方形ABCD的边长为6,正方形CEFG边长为3,连结BE,DG 求BE2+DG2的值.考点:四边形综合题.分析:(1)根据已知,利用SAS判定△BCG≌△DCE,全等三角形的对应角相等,所以∠CBG=∠CDE,∠BGC=∠DEC,因为∠CBG+∠BGC=90°,所以∠BHE=90°,得出结论;(2)四边形ABCD是正方形推出△BCG≌△DCE.全等三角形的对应角相等,所以∠CBG=∠CDE,等量代换得出∠DOH=90°,推出BG⊥DE;(3)利用勾股定理得出BE2+DG2=OB2+OE2+OG2+OD2=BD2+GE2,进而得出答案即可.解答:(1)解:延长BG与DE交于点H,∵四边形ABCD、四边形CEFG都是正方形,∴BC=CD,CG=CE,∠BCD=∠ECG=90°,∴∠BCG=∠DCE,∵在△BCG与△DCE中,,∴△BCG≌△DCE(SAS),∴∠CBG=∠CDE,∠BGC=∠DEC,∵∠CBG+∠BGC=90°,∴∠CBG+∠DEC=90°,∴∠BHE=90°,∴BG⊥DE,故答案为:BG⊥DE.(2)仍成立.证明:∵四边形ABCD、四边形CEFG都是正方形∴BC=CD,CG=CE,∠BCD=∠ECG=90°,∴∠BCG=∠DCE,∵在△BCG与△DCE中,,∴△BCG≌△DCE(SAS),∴∠CBG=∠CDE,又∵∠BHC=∠DHO,∠CBG+∠BHC=90°,∴∠CDE+∠DHO=90°,∴∠DOH=90°,∴BG⊥DE.(3)∵BG⊥DE,∴BE2+DG2=OB2+OE2+OG2+OD2=BD2+GE2,又∵AB=6,CE=3,∴BD=6,GE=3,∴BD2+GE=+=90,∴BE2+DG2=90.点评:此题主要考查了全等三角形的判定与性质和勾股定理的应用,熟练利用全等三角形的性质是解此题关键.。
2015八年级(下)期中数学试卷附答 案

八年级(下)期中数学试卷一、细心选一选,你一定准!(每小题3分,共30分;每小题只有一个选项符合题意)1.下列式子是分式的是()A.B.C.+y D.2.已知一粒大米的质量约为0.000021千克,这个数用科学记数法表示为()A.0.21×10﹣4B.2.1×10﹣4C.2.1×10﹣5D.21×10﹣63.化简的结果是()A.B.C.D.4.分式方程的解是()A.﹣1 B.1 C.﹣2 D.25.已知甲、乙两地相距s(km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t(h)与行驶速度v(km/h)的函数关系图象大致是()A.B.C.D.6.函数y=x+m与(m≠0)在同一坐标系内的图象可以是()A. B. C.D.7.如图是一张直角三角形的纸片,两直角边AC=6cm、BC=8cm,现将△ABC折叠,使点B与点A 重合,折痕为DE,则BE的长为()A.4cm B.5cm C.6cm D.10cm8.把直角三角形的两直角边同时扩大到原来的3倍,则其斜边扩大到原来的()A.3倍B.6倍C.9倍D.18倍9.在一直角坐标系中,点A、点B的坐标分别为(﹣6,0)、(0,8),则坐标原点O到线段AB的距离为()A.6 B.8 C.10 D.4.810.如图,是反比例函数y=和y=(k1>k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A、B两点,若S△AOB=4,则k1﹣k2的值是()A.1 B.2 C.4 D.8二、填空题(共6小题,每小题3分,满分18分)11.已知点M(a,1)在双曲线上,则a=.12.如图,已知OA=OB,那么数轴上点A所表示的数是.13.如图,已知OA=6,∠AOB=30°,则经过点A的反比例函数的解析式为.14.已知,则=.15.函数的图象如图所示,则结论:①两函数图象的交点A的坐标为(2,2);②当x>2时,y2>y1;③当x=1时,BC=3;④当x逐渐增大时,y1随着x的增大而增大,y2随着x的增大而减小.其中正确结论的序号是.16.如图所示,沿DE折叠长方形ABCD的一边,使点C落在AB边上的点F处,若AD=8,且△AFD 的面积为60,则△DEC的面积为.三、认真做一做,你一定棒!(共52分.写出详细的解答或证明过程)1)计算:;(2)化简:.18.解方程:.19.如图,反比例函数y=(k≠0)和一次函数y=ax+b(a≠0)的图象交于A(4,),B(﹣2,n)两点.(1)根据图象写出:当x为何值时,一次函数值大于反比例函数值;(2)求反比例函数的解析式和n的值.20.已知原来从遂宁到内江公路长150km,高速公路路程缩短了30km,如果一辆小车从遂宁到内江走高速公路的平均速度可以提高到原来的1.5倍,需要的时间可以比原来少用1小时10分钟.求小汽车原来和走高速公路的平均速度分别是多少?21.如图,正比例函数y=x的图象与反比例函数y=(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知△OAM的面积为1.(1)求反比例函数的解析式;(2)如果B为反比例函数在第一象限图象上的点(点B与点A不重合),且B点的横坐标为1,在x轴上找一点P,使PA+PB最小.求P点坐标?22.如图,CD是AB上的高,AC=4,BC=3,DB=.(1)求CD的长;(2)△ABC是直角三角形吗?请说明理由.23.如图,梯形ABCD中,AD∥BC,∠ABC=45°,∠ADC=120°,AD=DC,AB=2,求BC的长.参考答案与试题解析一、细心选一选,你一定准!(每小题3分,共30分;每小题只有一个选项符合题意)1.下列式子是分式的是()A.B.C.+y D.考点:分式的定义.分析:判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.解答:解:,+y,的分母中均不含有字母,因此它们是整式,而不是分式.的分母中含有字母,因此是分式.故选:A.点评:本题主要考查分式的定义,注意π不是字母,是常数,所以不是分式,是整式.2.已知一粒大米的质量约为0.000021千克,这个数用科学记数法表示为()A.0.21×10﹣4B.2.1×10﹣4C.2.1×10﹣5D.21×10﹣6考点:科学记数法—表示较小的数.专题:应用题.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.解答:解:0.000 021=2.1×10﹣5.故选C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.化简的结果是()A.B.C.D.考点:分式的加减法.专题:计算题.分析:先把x2﹣9因式分解得到最简公分母为(x+3)(x﹣3),然后通分得到,再把分子化简后约分即可.解答:解:原式=﹣===.故选B.点评:本题考查了分式的加减法:先把各分母因式分解,确定最简公分母,然后进行通分化为同分母的分式,再把分母不变,分子相加减,然后进行约分化为最简分式或整式.4.分式方程的解是()A.﹣1 B.1 C.﹣2 D.2考点:解分式方程.分析:方程两边乘最简公分母x,可以把分式方程转化为整式方程求解.解答:解:方程的两边同乘x,得2+x﹣1=2x,解得x=1.检验:把x=1代入x=1≠0.∴原方程的解为:x=1.故选B.点评:本题考查了解分式方程,解题的关键是注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.5.已知甲、乙两地相距s(km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t(h)与行驶速度v(km/h)的函数关系图象大致是()A.B.C.D.考点:反比例函数的应用.专题:数形结合.分析:根据实际意义,写出函数的解析式,根据函数的类型,以及自变量的取值范围即可进行判断.解答:解:根据题意有:v•t=s;故v与t之间的函数图象为反比例函数,且根据实际意义v>0、t>0,其图象在第一象限.故选:C.点评:现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.6.函数y=x+m与(m≠0)在同一坐标系内的图象可以是()A. B. C.D.考点:反比例函数的图象;一次函数的图象.分析:先根据一次函数的性质判断出m取值,再根据反比例函数的性质判断出m的取值,二者一致的即为正确答案.解答:解:A、由函数y=x+m的图象可知m<0,由函数y=的图象可知m>0,相矛盾,故错误;B、由函数y=x+m的图象可知m>0,由函数y=的图象可知m>0,正确;C、由函数y=x+m的图象可知m>0,由函数y=的图象可知m<0,相矛盾,故错误;D、由函数y=x+m的图象可知m=0,由函数y=的图象可知m<0,相矛盾,故错误.故选B.点评:本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.7.如图是一张直角三角形的纸片,两直角边AC=6cm、BC=8cm,现将△ABC折叠,使点B与点A 重合,折痕为DE,则BE的长为()A.4cm B.5cm C.6cm D.10cm考点:翻折变换(折叠问题).分析:在Rt△ABC中,可求出AB的长度,根据折叠的性质可得出AE=EB=AB.解答:解:∵AC=6cm,BC=8cm,∴AB==10cm,∵由折叠的性质得,∠B=∠DAE,DE⊥AB,∴AE=EB=AB=5cm.故选B.点评:本题考查的是翻折变换,熟知图形翻折不变性的性质是解答此题的关键.8.把直角三角形的两直角边同时扩大到原来的3倍,则其斜边扩大到原来的()A.3倍B.6倍C.9倍D.18倍考点:勾股定理.分析:设原来直角三角形的两直角边为a、b,斜边为c,根据勾股定理得出a2+b2=c2,即可求出答案.解答:解:设原来直角三角形的两直角边为a、b,斜边为c,则根据勾股定理得:a2+b2=c2,所以(3a)2+(3b)2=9(a2+b2)=9c2=(3c)2,即把直角三角形的两直角边同时扩大到原来的3倍,则其斜边扩大到原来的3倍,故选A.点评:本题考查了勾股定理的应用,能正确根据勾股定理进行计算是解此题的关键,注意:直角三角形的两直角边的平方和等于斜边的平方.9.在一直角坐标系中,点A、点B的坐标分别为(﹣6,0)、(0,8),则坐标原点O到线段AB的距离为()A.6 B.8 C.10 D.4.8考点:勾股定理;坐标与图形性质.分析:在直角坐标系中利用勾股定理求出线段AB的长,然后利用面积相等的方法求得原点到线段AB的距离.解答:解:在坐标系中,OA=6,OB=8,∴由勾股定理得:AB==10,设点O到线段AB的距离为h,∵S△ABO=OA•OB=AB•h,∴6×8=10h,解得h=4.8.故选D.点评:本题考查了勾股定理的知识,利用面积相等求直角三角形的斜边上的高是长采用的方法.10.如图,是反比例函数y=和y=(k1>k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A、B两点,若S△AOB=4,则k1﹣k2的值是()A.1 B.2 C.4 D.8考点:反比例函数系数k的几何意义.分析:设A(a,b),B(c,d),代入双曲线得到k1=ab,k2=cd,根据三角形的面积公式求出cd﹣ab=2,即可得出答案.解答:解:设A(a,b),B(c,d),代入得:k1=ab,k2=cd,∵S△AOB=4,∴ab﹣cd=4,∴ab﹣cd=8,∴k1﹣k2=8,故选D.点评:本题主要考查对反比例函数系数的几何意义,反比例函数图象上点的坐标特征,三角形的面积等知识点的理解和掌握,能求出ab﹣cd=8是解此题的关键.二、填空题(共6小题,每小题3分,满分18分)11.已知点M(a,1)在双曲线上,则a=2.考点:反比例函数图象上点的坐标特征.专题:计算题.分析:根据反比例函数图象上点的坐标特征求解.解答:解:∵点M(a,1)在双曲线上,∴a•1=2,∴a=2.故答案为2.点评:本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.12.如图,已知OA=OB,那么数轴上点A所表示的数是﹣.考点:勾股定理;实数与数轴.分析:首先根据勾股定理得:OB=.即OA=.又点A在数轴的负半轴上,则点A对应的数是﹣.解答:解:由图可知,OC=2,作BC⊥OC,垂足为C,取BC=1,故OB=OA===,∵A在x的负半轴上,∴数轴上点A所表示的数是﹣.故答案为:﹣.点评:熟练运用勾股定理,同时注意根据点的位置以确定数的符号.13.如图,已知OA=6,∠AOB=30°,则经过点A的反比例函数的解析式为.考点:反比例函数综合题.分析:首先过A作AC⊥x轴,利用直角三角形30°角所对的直角边等于斜边的一半可得AC的长,再利用勾股定理算出OC的长,即可得到A点的坐标,最后利用待定系数法求出反比例函数关系式即可.解答:解:过A作AC⊥x轴,∵∠AOB=30°,∴,∵OA=6,∴AC=3,在Rt△ACO中,OC2=AO2﹣AC2,∴,∴A点坐标是:(3,3),设反比例函数解析式为,∵反比例函数的图象经过点A,∴,∴反比例函数解析式为.点评:此题主要考查了直角三角形的性质,勾股定理的应用,以及待定系数法求函数关系式,解决问题的关键是求出A点坐标.14.已知,则=﹣.考点:比例的性质.分析:根据题意设x=3a,y=4a,z=5a,进而代入求出即可.解答:解:∵,∴设x=3a,y=4a,z=5a,∴===﹣.故答案为:﹣.点评:此题主要考查了比例的性质,假设出未知数进而代入求出是解题关键.15.函数的图象如图所示,则结论:①两函数图象的交点A的坐标为(2,2);②当x>2时,y2>y1;③当x=1时,BC=3;④当x逐渐增大时,y1随着x的增大而增大,y2随着x的增大而减小.其中正确结论的序号是①③④.考点:反比例函数与一次函数的交点问题.专题:计算题;压轴题;数形结合.分析:①将两函数解析式组成方程组,即可求出A点坐标;②根据函数图象及A点坐标,即可判断x>2时,y2与y1的大小;③将x=1代入两函数解析式,求出y的值,y2﹣y1即为BC的长;④根据一次函数与反比例函数的图象和性质即可判断出函数的增减性.解答:解:①将组成方程组得,,由于x>0,解得,故A点坐标为(2,2).②由图可知,x>2时,y1>y2;③当x=1时,y1=1;y2=4,则BC=4﹣1=3;④当x逐渐增大时,y1随着x的增大而增大,y2随着x的增大而减小.可见,正确的结论为①③④.故答案为:①③④.点评:本题考查了反比例函数与一次函数的交点问题,知道函数图象交点坐标与函数解析式组成的方程组的解之间的关系是解题的关键.16.如图所示,沿DE折叠长方形ABCD的一边,使点C落在AB边上的点F处,若AD=8,且△AFD的面积为60,则△DEC的面积为.考点:翻折变换(折叠问题).分析:由AD=8,且△AFD的面积为60,即可求得AF与DF的长,由折叠的性质,可得CD=DF,然后在Rt△BEF中,利用勾股定理即可求得CE的长,继而求得△DEC的面积.解答:解:∵四边形ABCD是矩形,∴∠A=∠B=90°,BC=AD=8,CD=AB,∵△AFD的面积为60,即AD•AF=60,解得:AF=15,∴DF==17,由折叠的性质,得:CD=DF=17,∴AB=17,∴BF=AB﹣AF=17﹣15=2,设CE=x,则EF=CE=x,BE=BC﹣CE=8﹣x,在Rt△BEF中,EF2=BF2+BE2,即x2=22+(8﹣x)2,解得:x=,即CE=,∴△DEC的面积为:CD•CE=×17×=.故答案为:.点评:此题考查了矩形的性质、折叠的性质、勾股定理以及三角形面积问题.此题难度适中,注意掌握数形结合思想与方程思想的应用,注意折叠中的对应关系.三、认真做一做,你一定棒!(共52分.写出详细的解答或证明过程)1)计算:;(2)化简:.考点:实数的运算;分式的混合运算;零指数幂.专题:计算题.分析:(1)原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算,第三项利用乘法法则计算,第四项利用乘方的意义计算即可得到结果;(2)原式第一项约分后,相减即可得到结果.解答:解:(1)原式=5+1﹣1+1=6;(2)原式=﹣=0.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.解方程:.考点:解分式方程.分析:观察可得最简公分母是(x+1)(x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程两边都乘以(x+1)(x﹣1),得4﹣(x+1)(x+2)=﹣(x2﹣1),整理,3x=1,解得x=.经检验,x=是原方程的解.故原方程的解是x=.点评:本题考查了分式方程的解法,注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.19.如图,反比例函数y=(k≠0)和一次函数y=ax+b(a≠0)的图象交于A(4,),B(﹣2,n)两点.(1)根据图象写出:当x为何值时,一次函数值大于反比例函数值;(2)求反比例函数的解析式和n的值.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:(1)观察函数图象,写出一次函数图象在反比例函数图象上方所对应的自变量的取值范围即可;(2)先根据反比例函数图象上点的坐标特征把A点坐标代入y=可求出k,从而得到反比例函数解析式,然后把B(﹣2,n)代入反比例函数解析式即可求出n的值.解答:解:(1)根据图象可得:当x>4或﹣2<x<0时,一次函数的值大于反比例函数的值;(2)把A(4,)代入y=得k=4×=6,所以反比例函数的解析式为y=把B(﹣2,n)代入y=得﹣2n=6,解得n=﹣3.点评:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.20.已知原来从遂宁到内江公路长150km,高速公路路程缩短了30km,如果一辆小车从遂宁到内江走高速公路的平均速度可以提高到原来的1.5倍,需要的时间可以比原来少用1小时10分钟.求小汽车原来和走高速公路的平均速度分别是多少?考点:分式方程的应用.分析:设小汽车原来的平均速度为x千米/时,走高速公路的平均速度是1.5x千米/时,根据题意可得,小汽车不走高速公路走120千米的路程所用的时间=走高速公路150千米所用时间+1小时10分钟,据此列方程求解.解答:解:设小汽车原来的平均速度为x千米/时,走高速公路的平均速度是1.5x千米/时,根据题意,得,解这个方程,得:x=60.经检验:x=60是所列方程的解,这时1.5x=1.5×60=90且符合题意.答:小汽车原来的平均速度是60千米/时,走高速公路的平均速度是90千米/时.点评:本题考查了分式方程的应用,解答本题的关键是读懂题意,根据题意设出适当的未知数,找出等量关系,列方程求解,注意检验.21.如图,正比例函数y=x的图象与反比例函数y=(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知△OAM的面积为1.(1)求反比例函数的解析式;(2)如果B为反比例函数在第一象限图象上的点(点B与点A不重合),且B点的横坐标为1,在x轴上找一点P,使PA+PB最小.求P点坐标?考点:反比例函数综合题.专题:综合题;压轴题.分析:(1)根据反比例函数图象上的点的横纵坐标的乘积为函数的系数和△OAM的面积为1可得k=2,即反比例函数的解析式为y=.(2)由正比例函数y=x的图象与反比例函数y=(k≠0)在第一象限的图象交于A点求得A为(2,1).要使PA+PB最小,需作出A点关于x轴的对称点C,并连接BC,交x轴于点P,P为所求点.A点关于x轴的对称点C(2,﹣1),而B为(1,2),故BC的解析式为y=﹣3x+5,即可求得P点的坐标.解答:解:(1)设A点的坐标为(a,b),则b=∴ab=k∵ab=1,∴k=1∴k=2,∴反比例函数的解析式为y=.(3分)(2)根据题意画出图形,如图所示:得=x,解得x=2或x=﹣2,∵点A在第一象限,∴x=2把x=2代入y=得y=1,∴A为(2,1)(4分)设A点关于x轴的对称点为C,则C点的坐标为(2,﹣1).令直线BC的解析式为y=mx+n∵B点的横坐标为1,B为反比例函数在第一象限图象上的点,∴xy=2,∴y=2,∴B为(1,2),将B和C的坐标代入得:,解得:∴BC的解析式为y=﹣3x+5(6分)当y=0时,x=,∴P点为(,0).(7分)点评:本题考查反比例函数和一次函数解析式的确定、图形的面积求法、轴对称等知识及综合应用知识、解决问题的能力.有点难度.22.如图,CD是AB上的高,AC=4,BC=3,DB=.(1)求CD的长;(2)△ABC是直角三角形吗?请说明理由.考点:勾股定理的逆定理;勾股定理.分析:(1)在△CDB中利用勾股定理计算出CD长即可;(2)首先利用勾股定理计算出AD2,再计算出AD,然后可得AB长,再利用勾股定理逆定理可证出△ABC是直角三角形.解答:解:(1)∵CD是AB上的高,∴,∴CD=;(2)△ABC是直角三角形理由是:∵,∴,∵,又∵32+42=52,∴△ABC是直角三角形.点评:此题主要考查了勾股定理和勾股定理逆定理,关键是掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方;三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.23.如图,梯形ABCD中,AD∥BC,∠ABC=45°,∠ADC=120°,AD=DC,AB=2,求BC的长.考点:梯形.专题:计算题.分析:过点A作AE⊥BC于点E,过点D作DF⊥BC,则AD=EF,再分别求出BE、CF的长,即可得出答案.解答:解:过点A作AE⊥BC于点E,过点D作DF⊥BC,则AD=EF,∵∠ABC=45°,AB=2,∴BE=AE=2,又∠ADC=120°,∴∠CDF=30°,∴AD=DC==,CF=,∴BC=BE+EF+CF=2+=2+2.点评:本题考查了梯形的知识,难度不大,注意熟练应用梯形的性质是关键.。
【人教版】2015-2016年八年级下期中数学试卷及答案解析

【解答】 解:矩形的性质有: ① 矩形的对边相等且平行, ② 矩形的对角相等, 且都是直角,
③ 矩形的对角线互相平分、相等; 平行四边形的性质有: ① 平行四边形的对边分别相等且平行,
② 平行四边形的对角分别相
等, ③ 平行四边形的对角线互相平分;
∴矩形具有而平行四边形不一定具有的性质是对角线相等,
【点评】本题考查了矩形的性质及菱形的判定.注意掌握菱形的判定方法有三种:
① 定义:
一组邻边相等的平行四边形是菱形; ② 四边相等; ③ 对角线互相垂直平分的四边形是菱形.
9.矩形具有而一般的平行四边形不一定具有的特征(
)
A .对角相等 B.对角线相等
C.对角线互相平分 D .对边相等 【分析】举出矩形和平行四边形的所有性质, 找出矩形具有而平行四边形不具有的性质即可.
八年级(下)期中数学试卷(解析版)
参考答案与试题解析
一、选择题(每小题只有 1 个正确答案,每小题 3 分,共 30 分)
1.下列的式子一定是二次根式的是(
)
A.
B . C.
D.
【分析】根据二次根式的被开方数是非负数对每个选项做判断即可.
【解答】解: A 、当 x=0 时,﹣ x﹣ 2< 0,
无意义,故本选项错误;
为负数,则无实数根).
2.下列二次根式中属于最简二次根式的是(
)
A.
B.
C. D.
【分析】 B、 D 选项的被开方数中含有未开尽方的因数或因式; 母;因此这三个选项都不是最简二次根式. 【解答】解:因为: B、 =4 ;
C 选项的被开方数中含有分
C、 =
;
D、
=2
;
所以这三项都不是最简二次根式.故选 A .
人教版2015八年级下册数学期中考试卷

人教版2015八年级下册数学期中考试卷一、填空题(每小题3分,共18分)1.“平行四边形的对角相等”的逆命题是;2.用科学记数法表示:0.000002009=;3.若A( , )、B( , )在函数的图象上,则当、满足_______________时, > ;4.如图,在ΔABC中,M、N分别是AB、AC的中点,且∠A +∠B=120°,则∠ANM= °;5.已知平行四边形ABCD中,AB=6cm,BC=10cm,?B=300,则平行四边形ABCD的面积为cm2;6.已知、b、c为三个正整数,如果 +b+c=12,那么以、b、c为边能组成的三角形是:①等腰三角形;②等边三角形;③直角三角形;④钝角三角形.以上符合条件的正确结论是 .(只填序号)二、选择题(每小题3分,共30分)7.对于反比例函数,下列说法不正确的是( )A.点在它的图象上B.它的图象在第一、三象限C.当时,随的增大而增大D.当时,随的增大而减小8.三角形三边长分别为,则这个三角形是( )A.等腰直角三角形B.直角三角形C.锐角三角形D.钝角三角形9.平行四边形ABCD中,对角线AC和BD相交于点O,如果AC=12,BD=10,AB=x,那么x的取值范围是( )A.1C.10 10.某钢厂原计划生产300吨钢,每天生产x吨.由于应用新技术,每天增加生产10吨,因此提前1天完成任务,可列方程为( ) A. B. C. D. 11. 当路程s一定时,速度v与时间t之间的函数关系是( ) A.正比例函数 B.反比例函数 C.一次函数 D. 以上都不是12. 下列性质中,平行四边形不一定具备的是( ) A.对边相等 B.对角相等 C.对角线互相平分 D.是轴对称图形13.下列计算正确的是( ) A. B. C. D. 14.若分式的值为零,则x的值为( ) A.-1 B.1 C.1或-1 D.0 15.若方程有增根,则的值是( ) A.-1 B.0 C.1 D.6 16.已知关于x的函数y=k(x-1) 和 ,它们在同一坐标系中的图象大致是( ) 三、分式(每小题6分,共30分) 17.计算:18.计算:19.先化简再求值:,其中20.解方程:21.2010年4月14日,我国甘肃玉树发生7.1级地震,导致某地电路断电. 某供电局组织电工进行抢修,供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求这两种车的速度. 四、空间与图形(每小题6分,共12分) 22.已知:如图所示,四边形ABCD是平行四边形,E、F是直线BD上的两点,且DE=BF,(1)求证:AE=CF. (2)连接AF、CE,则四边形AFCE是平行四边形吗? 23.已知某开发区有一块四边形的空地ABCD,如图所示,现计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问需要多少投入? 五、反比例函数(共8分) 24. 如图所示是某一蓄水池每小时的排水量V(m3/h)与排完水池中的水所用的时间t(h)之间的函数关系图象. (1)请你根据图象提供的信息求出此蓄水池的蓄水量; (2)求出此函数的解析式; (3)若要6h 排完水池中的水,那么每小时的排水量应该是多少? (4)如果每小时排水量不超过5 000m3,那么水池中的水至少要多少小时排完? 六、综合应用(第25题10分,第26题12分,共22分) 25.已知:如图,在△ABC中,∠BCA=90°,D、E分别是AC、AB的中点,点F在BC延长线上,且∠CDF=∠A. (1)求证:四边形DECF是平行四边形; (2) ,四边形EBFD的周长为22,求四边形DECF的面积. (注:直角三角形斜边上的中线等于斜边的一半.) 26.如图,直线(k≠0)与x轴交于点B,与双曲线交于点A、C,其中点A在第一象限,点C在第三象限. ⑴求B点的坐标;⑵若S△AOB=2,求A点的坐标; ⑶在(2)的条件下,在y轴上是否存在点P,使△AOP 是等腰三角形?若存在,请直接写出P点的坐标; 若不存在,请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014—2015学年度下学期期中学业水平质量调研试题
八年级数学
(时间:90分钟总分120分)2015.05
注意事项:
1.答题前,请先将自己的姓名、考场、考号在相应的位置填涂清楚;
2.选择题答案涂在答题卡上,非选择题用0.5mm黑色中性笔直接写在答
题纸上
一、选择题(本大题共12小题,每小题3分,共36分)
1
x的取值范围是
A.x>0 B.x>3 C.x≥3 D.x≤3
2.设n为正整数,且n <<n+1,则n的值为
A.8 B.7 C.6 D.5
3.下列几组数据能作为三角形的边:(1) 8, 15, 17; (2) 4, 5, 6; (3)12, 15, 20;
(4) 7, 24, 25. 其中能作为直角三角形的三边长的有( )组
A.1
B.2
C.3
D.4
4.如图,在平行四边形ABCD中,下列说法一定正确的是
A.AC=BD
B.AC⊥BD
C.AB=BC
D.AB=CD
5.在□ABCD中,∠A、∠B的度数之比为5∶4,则∠C=
A.60°B.80°C.100°D.120°
6
A.1 B.1-C
D
F 第11题图
7.如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行 A .8米 B .10米 C .12米 D .14米
8.如图所示:数轴上点A 所表示的数为a ,则a 的值是 A B . C .
D
9.顺次连结矩形四边中点所得的四边形一定是
A .平行四边形
B .矩形
C .菱形
D .正方形 10.菱形的两个邻角之比为1︰2,边长为6,则该菱形的面积是 A .36 B . C . D .18
11.已知,如图,矩形ABCD 中,AB =3,AD =9,将此矩形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为 A . 6 B . 8 C . 10 D . 12
12.如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE =DF ,AE 、BF 相交于点O ,下列结论:(1)AE =BF (2)AE ⊥BF (3)AO =OE (4)S △AOB =S 四边形DEOF 中正确的有:
A .4个
B .3个
C .2个
D .1个
第
II 卷 非选择题(共84分)
二、填空题(本大题共8小题,每小题3分,共24分) 13.计算:21(22
-
-= . 14.在△ABC 中,若AB=10,
AC =17,BC 边上的高为
8,则
BC
的长为________. 15.在
□ABCD 中,AB=8,BC=
16,∠B=60,则□ABCD 的面积为________. 16.比较大小:
17.如图,菱形ABCD 中,对角线AC =6,BD =8,M 、N 分别是BC 、CD 的中点,P 是线段BD 上的一个动点,则PM +PN 最小值是 .
18.如图,在正方形ABCD 的内部,作等边△ABE ,则∠EDC =____.
19.如图,菱形ABCD 的边长为2,45ABC ∠=,则点D 的坐标为 . 20.如图,在□ABCD 中,对角线AC 、BD 相交成的锐角为30α=,若AC =a ,BD =b ,则□ABCD 的面积是 .
三、解答题(本大题共6小题,共60分) 21.(本小题满分6分)
计算+
22.(本小题满分8分)
如图,在四边形ABCD 中,∠B =90°,AB =3,∠BAC =30,CD =2,AD =22,求∠ADC 的度数.
23.(本小题满分10分)
如图,OABC 是一张放在平面直角坐标系中的矩形纸片,O 为原点,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,OA =10,OC =8,在OC 边上取一点D ,将纸片沿AD 翻折,使点O 落在BC 边上的点E 处.求D 、E 两点的坐标;
24.(本小题满分11分)
如图,在□ABCD 中,F 是AD 的中点,延长BC 到点E ,使CE =2
1
BC ,连结DE ,CF .
(1)求证:四边形CEDF 是平行四边形; (2)若AB =4,AD =6,∠B =60°,求DE 的长.
25.(本小题满分12分)
如图,在△ABC 中,AD 是BC 边上的中线,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于点F ,连接CF . (1)求证:AF =DC ;
(2)若AB ⊥AC ,试判断四边形ADCF 的形状,并证明你的结论.
F
E
D
C
B
A
26.(本小题满分13分)
如图,平行四边形ABCD 中,AB ⊥AC ,AB=1,BC
=AC ,BD 相交于点O ,将直线AC 绕点O 顺时针转动,分别交BC ,AD 于点E ,F . (1)证明:当旋转的角度为90时,四边形ABEF 是平行四边形; (2)试说明在转动过程中,线段AF 与EC 总保持相等;
(3)在转动过程中,四边形BEDF 可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC 绕点O 顺时针旋转的度数.
2014—2015学年度下学期期中学业水平质量调研试题
八年级数学参考答案
二、填空题(本大题共8小题,每小题3分,共24分)
13.114.21或9 15.16.<17.5 18.15
ab
19.(220.
4
三、解答题(本大题共6小题,共60分)
21.(本小题满分6分)
……………………………4分
=
2
-……………………………6分
=
2
22.(本小题满分8分)
解:在Rt△ABC中,∠BAC=30AB=
设CB为x,则AC为2x
由勾股定理得,CB=1,AC=2 ………………………3分
在△ADC中,AC=2,CD=2,AD=22
得△ADC为等腰直角三角形,
∴∠ADC=45…………………8分
23.(本小题满分10分)
解:由题意可知,折痕AD是四边形OAED的对称轴,
∴在Rt△ABE中,AE=AO=10,AB=8,
,
∴CE=4,
∴E(4,8)……………………5分
在Rt△DCE中,DC2+CE2=DE2,
又∵DE=OD,
∴(8﹣OD)2+42=OD2。
∴OD=5。
∴D(0,5)………………10分
24.(本小题满分11分)
ABCD
5分
在ABCD
∴CH=2,DH=
在CEDF
∴在Rt△DHE中,得DE……11分
25.(本小题满分12分)
(1)证明:
∵AF∥BC,
∴∠AFE=∠DBE,
∵E是AD的中点,AD是BC边上的中线,
∴AE=DE,BD=CD,在△AFE和△DBE中:
,
7分
12分26.(本小题满分13分)
证明:
(1):当∠AOF=90°时,AB∥EF,又AF∥EB,
∴四边形ABEF为平行四边形.……………………………4分
(2)∵四边形ABCD为平行四边形,
∴△AOF≌△COE
∴AF=EC…………………………………8分(3)四边形BEDF可以是菱形.…………………………………9分
BF DE,
理由:如图,连接,
由(2)知△AOF≌△COE,
,
得OE OF
∴EF与BD互相平分.
∴当EF⊥BD时,四边形BEDF为菱形.
AC==,
在Rt△ABC中,2
又AB⊥AC,
∴∠AOB=45°,
∴∠AOF=45°
∴绕点O顺时针旋转45°时,四边形BEDF为菱形.……………13分AC。