法拉第效应-磁光调制实验

合集下载

法拉第效应-磁光调制实验

法拉第效应-磁光调制实验

费尔德(Verdet)对 许多介质的磁致旋光 进行了研究,发现了 法拉第效应在固体、 液体和气体中都存在。
法拉第效应的应用
光纤通讯中的磁光隔离器:减少光纤中器件表 面反射光对光源的干扰 磁场测量方面:磁光效应磁强计——测量脉冲 强磁场(天文学中测量射电脉冲星)、交变强 磁场 电流测量方面:测量几千安培的大电流和几兆 伏的高压电流 生命科学领域:医疗和生化中酶作用的研究; 研究核糖和核酸以及生命物质中左旋氨基酸的 测量;人体血液中或尿液中糖份的测定等。
11 1
1 .1 2 7 4 1 0 C k g
11
1
2 10

e
2mc d

dn
0 .0 3 7 5 8
实验得到的电子荷 质比比理论值偏小 35%!
误差分析
1.使用特斯拉计测电磁铁中心位置磁场,手 持特斯拉计可能不稳定,造成误差。 2.多次拟合结果,累计的系统误差较大
Λ (nm)
x 2 .2 8 3 4 9
) 3 4 0 .7 4 8 1
460
3.626
480
3.980
500
4.287
520
4.557
540
4.798
560
5.017
580
5.216
600
5.400
dd (mm)
U-B拟合(线性拟合)
U-B拟合(二次拟合)
B-Θ拟合 λ=580nm 证明Θ与B呈线性关系
疑问: λ-Θ曲线一定是线性的么
λ-Θ二次拟合
B=498.2mT
U=12V
可以做这样的近似
V

b
e 2mc

法拉第效应与磁光调制实验

法拉第效应与磁光调制实验
化合物的纯度测定;制药业中的产物分析和纯度检测;医疗和 生化中酶作用的研究;生命科学中研究核糖和核酸以及生命物质中左旋氨基酸的测量;人体 血液中或尿液中糖份的测定等。
一、实验目的 1. 用特斯拉计测量电磁铁磁头中心的磁感应强度,分析线性范围。 2. 法拉第效应实验:正交消光法检测法拉第磁光玻璃的费尔德常数。 3. 磁光调制实验:熟悉磁光调制的原理,用倍频法精确测定消光位置;精确测量不同样品
角位移倒转。在磁致旋光介质的入射截面上,入射线偏振光的电矢量 E 可以分解为图 3-(a)
所示两个旋转方向不同的圆偏振光 ER 和 EL ,通过介质后,它们的相位滞后不同,旋转方向
也不同,在出射界面上,两个圆偏振光的旋转电矢量如图 3-(b)所示。当光束射出介质后, 左、右旋圆偏振光的速度又恢复一致,我们又可以将它们合成起来考虑,即仍为线偏振光。
(7)
由式(7)可知,当α 一定时,输出光强 I 仅随θ 变化,因为θ 是受交变磁场 B 或信号电流
i = i0 sin ωt 控制的,从而使信号电流产生的光振动面旋转,转化为光的强度调制,这就是磁
光调制的基本原理。
图 4 磁光调制装置
根据倍角三角函数公式由式(7)可以得到
I
=
1 2
I0[1 +
cos
器之间加一个由励磁线圈(调制线圈)、磁光调制晶体和低频信号源组成的低频调制器,则调
制励磁线圈所产生的正弦交变磁场 B = B0 sin ωt ,能够使磁光调制晶体产生交变的振动面转
角θ = θ0 sin ωt ,θ0 称为调制角幅度验
I = I0 cos2 (α + θ ) = I0 cos2 (α + θ0 sin ωt)
幅度 i0 连续可调,所以磁光调制器的光强调制深度 i0 连续可调。只要选定调制频率 f (如

大物实验4——法拉第磁光效应(一)

大物实验4——法拉第磁光效应(一)

法拉第磁光效应(一)实验目的1、了解磁光效应现象和法拉第效应的机理。

2、测量磁致旋光角,验证法拉第—费尔德定律θ=VBL 。

3、法拉第效应与自然旋光的区别。

4、了解磁光调制原理。

实验原理1、法拉第效应实验表明,在磁场不是非常强时,如图5.16.1所示,偏振面旋转的角度与光波在介质中走过的路程d及介质中的磁感应强度在光的传播方向上的分量B 成正比,即:θ=VBd(5.16.1)比例系数V由物质和工作波长决定,表征着物质的磁光特性,这个系数称为费尔德(Verdet)常数。

费尔德常数V与磁光材料的性质有关,对于顺磁、弱磁和抗磁性材料(如重火石玻璃等),V为常数,即θ与磁场强度B有线性关系;而对铁磁性或亚铁磁性材料(如YIG等立方晶体材料),θ与B不是简单的线性关系。

图5.16.1 法拉磁致旋光效应表5.16.1为几种物质的费尔德常数。

几乎所有物质(包括气体、液体、固体)都存在法拉第效应,不过一般都不显著。

不同的物质,偏振面旋转的方向也可能不同。

习惯上规定,以顺着磁场观察偏振面旋转绕向与磁场方向满足右手螺旋关系的称为“右旋”介质,其费尔德常数V>0;反向旋转的称为“左旋”介质,费尔德常数V<0。

对于每一种给定的物质,法拉第旋转方向仅由磁场方向决定,而与光的传播方向无关(不管传播方向与磁场同向或者反向),这是法拉第磁光效应与某些物质的固有旋光效应的重要区别。

固有旋光效应的旋光方向与光的传播方向有关,即随着顺光线和逆光线的方向观察,线偏振光的偏振面的旋转方向是相反的,因此当光线往返两次穿过固有旋光物质时,线偏振光的偏振面没有旋转。

而法拉第效应则不然,在磁场方向不变的情况下,光线往返穿过磁致旋光物质时,法拉第旋转角将加倍。

利用这一特性,可以使光线在介质中往返数次,从而使旋转角度加大。

这一性质使得磁光晶体在激光技术、光纤通信技术中获得重要应用。

表5.16.1 几种材料的费尔德常数(单位:弧分/特斯拉·厘米)物质(mm)V水589.3 1.31⨯102 二硫化碳589.3 4.17⨯102轻火石玻璃589.3 3.17⨯102重火石玻璃830.0 8⨯102~10⨯102冕玻璃632.8 4.36⨯102~7.27⨯102石英632.8 4.83⨯102磷素589.3 12.3⨯102与固有旋光效应类似,法拉第效应也有旋光色散,即费尔德常数随波长而变,一束白色的线偏振光穿过磁致旋光介质,则紫光的偏振面要比红光的偏振面转过的角度大,这就是旋光色散。

法拉第磁光效应实验

法拉第磁光效应实验
(5.16.25)
式中,I0为起偏器同检偏器的透光轴之间夹角=0或=时的输出光强。若在两个偏振器之间加一个由励磁线圈(调制线圈)、磁光调制晶体和低频信号源组成的低频调制器(参见图5.16.4),则调制励磁线圈所产生的正弦交变磁场B=B0sint,能够使磁光调制晶体产生交变的振动面转角=0sint,0称为调制角幅度。此时输出光强由式(5.16.25)变为
(5.16.35)
若将输出的调制光强入射到硅光电池上,转换成光电流,在经过放大器放大输入示波器,就可以观察到被调制了的信号。当=45时,在示波器上观察到调制幅度最大的信号,当=0或=90,在示波器上可以观察到由式(5.16.34)和式(5.16.35)决定的倍频信号。但是因为 一般都很小,由式(5.16.34)和式(5.16.35)可知,输出倍频信号的幅度分别接近于直流分量0或I0。
②了解顺磁、弱磁、抗磁性、铁磁性或亚铁磁性材料的基本特性,以及费尔德常数V与磁光材料性质的关系。
③比较法拉第磁光效应与固有旋光效应的异同。
④磁光调制过程中,调制信号与输入信号之间的函数关系。
5.16.2
1
实验表明,在磁场不是非常强时,如图5.16.1所示,偏振面旋转的角度与光波在介质中走过的路程d及介质中的磁感应强度在光的传播方向上的分量B成正比,即:
对于每一种给定的物质,法拉第旋转方向仅由磁场方向决定,而与光的传播方向无关(不管传播方向与磁场同向或者反向),这是法拉第磁光效应与某些物质的固有旋光效应的重要区别。固有旋光效应的旋光方向与光的传播方向有关,即随着顺光线和逆光线的方向观察,线偏振光的偏振面的旋转方向是相反的,因此当光线往返两次穿过固有旋光物质时,线偏振光的偏振面没有旋转。而法拉第效应则不然,在磁场方向不变的情况下,光线往返穿过磁致旋光物质时,法拉第旋转角将加倍。利用这一特性,可以使光线在介质中往返数次,从而使旋转角度加大。这一性质使得磁光晶体在激光技术、光纤通信技术中获得重要应用。

磁光调制实验

磁光调制实验

1.李鸿章1872年在上海创办轮船招商局,“前10年盈和,成
为长江上重要商局,招商局和英商太古、怡和三家呈鼎立
之势”。这说明该企业的创办
()
A.打破了外商对中国航运业的垄断
B.阻止了外国对中国的经济侵略
C.标志着中国近代化的起步
D.使李鸿章转变为民族资本家
解析:李鸿章是地主阶级的代表,并未转化为民族资本家; 洋务运动标志着中国近代化的开端,但不是具体以某个企业 的创办为标志;洋务运动中民用企业的创办在一定程度上抵 制了列强的经济侵略,但是并未能阻止其侵略。故B、C、D 三项表述都有错误。 答案:A
11
主控单元后面板 注意:“调制输出”输出的是交流信号 “励磁输出”输出的是直流流信号 两接口不要接反,否则会烧坏线圈
12
实验内容及测试方法
调出磁光调制倍频现象 测出直流磁光调制θ∽I曲线
方法一:消光法:直接消光法测量。 方法二:交流倍频法 采用在交流磁光调制下出现的标准倍频现象 做为基准,通过示波器波形间接测量消光位 置。
交流磁光调制0siniit??t?sin0bb?t???sin0???????????tiiii???????sin2cos122cos12cos00020????????6??为起偏器pp与检偏器aa主截面之间的夹角ii00为光强的幅值当线圈通以交流电信号设调制线圈产生的磁场为则介质相应地会产生旋转角设起偏器与检偏器的夹角为??初始入射光强为则从检偏器输出的光强为
消光法:起、检偏器透光轴垂直时,消光;加直流磁光调 制,光偏转一角度,则消光现象消失;再转动检偏器出现 消光,此时,检偏器转过的角度就是磁光调制使光偏振面 旋转的角度。
交流倍频法测直流磁光调制:以交流磁光调制出现的标准 倍频现象做为基准,检偏器只有在直流调制消光位置时, 才出现倍频信号(此倍频信号可以通过示波器观察,灵敏 度高于光强),由此可用示波器上出现的倍频信号来精确 确定直流调制消光位置。通过调节检偏器,重复出现的标 准倍频现象来判断磁致旋转角变化角度。

磁光调制实验报告

磁光调制实验报告

磁光调制实验报告课程:_____光电子实验_____**::专业:信息工程大学工程管理学院磁光调制实验报告一、实验目的1 观察磁光调制现象2 测量调制深度与调制角幅度3测定旋光角与外加磁场的关系4 测量直流磁场对磁光介质的影响5 磁光调制与光通讯实验演示二、实验原理1 磁光效应当平面偏振光穿透*种介质时,假设在沿平行于光的传播方向施加一磁场,光波的偏振面会发生旋转,实验说明其旋转角θ正比于外加的磁场强度B,这种现象称为法拉第〔Faraday〕效应,也称磁致旋光效应,简称磁光效应,即:θ (1)=vlB式中l为光波在介质中的路径,ν为表征磁致旋光效应特征的比例系数,称为维尔德〔Verdet〕常数。

由于磁致旋光的偏振方向会使反射光引起的旋角加倍,而与光的传播方向无关,利用这一特性在激光技术中可制成具有光调制、光开关、光隔离、光偏转等功能性磁光器件,其中磁光调制为其最典型的一种。

图1 磁光效应示意图如图1所示,在磁光介质的外围加一个励磁线圈就构成根本的磁光调制器件。

2 直流磁光调制当线偏振光平行于外磁场入射磁光介质的外表时,偏振光的光强I可以分解成如图2所示的左旋圆偏振光I L和右旋圆偏振光I R〔两者旋转方向相反〕。

由于介质对两者具有不同的折射率n L和n R,当它们穿过厚度为l的介质后分别产生不同的相位差,表达在角位移上有:式中λ为光波波长 因θθθθ+=-R L()()l n n R L R L ⨯-=-=λπθθθ221( 2 ) 如折射率差()R L n n -正比于磁场强度B ,即可得〔1〕式,并由θ值与测得的B 与l 求出威德尔常数υ。

3 交流磁光调制用一交流电信号对励磁线圈进展鼓励,使其对介质产生一交变磁场,就组成了交流〔信号〕磁光调制器〔此时的励磁线圈称为调制线圈〕,在线圈未通电流并且不计光损耗的情况下,设起偏器P 的线偏振光振幅为A 0,则A 0可分解为A 0 cos α及A 0 sin α两垂直分量,其中只有平行于P 平面的A 0 cos α分量才能通过检偏器,故有输出光强αα2020cos )cos (I A I ==〔马吕斯定律〕其中200A I =为其振幅。

近物实验II 法拉第效应

近物实验II 法拉第效应

法拉第效应一、引言1845年英国物理学家法拉第(Faraday )发现原本没有旋光性的铅玻璃在磁场中出现了旋光性,这种磁致旋光现象后来被称为法拉第效应,这也是人类第一次认识到电磁现象和光现象之间的相互关联。

后来,费尔德(Verdet )研究了许多介质的磁致旋光效应,发现法拉第效应普遍存在于固体、液体和气体中,只是大部分物质的法拉第效应很弱,而掺稀土离子的玻璃的费尔德常数稍大。

近年来研制的磁性石榴石(YIG )等晶体的费尔德常数更大一些。

法拉第效应只是磁光效应中的一种。

磁光效应是描述在磁场的作用下,在具有固有磁矩的介质中传播的光其物理性质发生变化的现象,比如光的频率、偏振面、相位或者散射特性等性质发生了变化。

磁光效应有很多种类型,常见的有法拉第效应、塞曼(Zeeman )效应、克尔(Kerr )效应、科顿-穆顿(Cotton-Mouton )效应和磁激发光散射等。

法拉第效应的应用领域极其广泛。

它可以作为物质结构研究的手段,比如,根据结构对法拉第效应的影响来分析碳氢化合物的结构;在光谱学中,可以用于研究激发能级的有关信息;在电工测量中,可用来测量电路中的电流和磁场。

如今利用法拉第效应原理制成的偏频盒、旋转器、环行器、相移器、锁式开关、Q 开关、光纤隔离器等能快速控制激光参数的各种元器件,已广泛应用于激光雷达、激光测距、激光陀螺、光纤通信中。

本实验的目的是:通过实验理解法拉第效应的本质,掌握测量旋光角的基本方法,并测量几种不同类型材料的旋光角,同时学会计算费尔德常数。

二、实验原理所谓的法拉第效应就是,当在光的传播方向上加上一个强磁场时,平面偏振光穿过处于该磁场中的样品后,其偏振面会偏转一个角度。

实验结果表明,光的偏振面旋转的角度θF 与其在介质中传播的距离l 及介质中磁感应强度在光传播方向上的分量B 成正比,即F d (),V Bl θλ= (1)上式中,比例系数V d (λ)称为费尔德常数,它由材料本身的性质和工作波长决定,表征物质的磁光特性。

近代物理实验报告—法拉第效应

近代物理实验报告—法拉第效应

法拉第效应一、引言1845年英国物理学家法拉第发现原本没有旋光性的铅玻璃在磁场中出现了旋光性,这种磁致旋光现象即法拉第效应。

随后费尔德的研究发现法拉第效应普遍存在于固体、液体、和气体中,只是大部分物质的法拉第效应很弱。

法拉第效应只是磁光效应中的一种。

磁光效应是描述在磁场的作用下,具有固有磁矩的介质中传播的光气无力性质发生变化的现象,比如光的频率,偏振面,相位等性质发生了变化。

法拉第效应的应用领域极其广泛,可用于物质结构的研究、光谱学和电工测量等领域。

此外利用法拉第效应原理制成的各种可快速控制激光参数的元器件也已广泛地应用于激光雷达、激光测距、激光陀螺、光纤通信中。

本实验的目的是通过实验理解法拉第效应的本质,掌握测量旋光角的基本方法,学会计算费尔德常数。

二、实验原理法拉第效应就是,当线偏振光穿过介质时,若在介质中加一平行于光的传播方向的磁场,则光的振动面将发生旋转,振动面转过的角度称为法拉第效应旋光角。

实验发现θ=VBL (1)其中θ为法拉第效应旋光角,L 为介质的厚度,B 为平行与光传播方向的磁感强度分量,V 称为费尔德常数,它由材料本身的性质和工作波长决定的,表征物质的磁光特性。

一般约定,当光的旋转方向与产生磁场的电流的方向一致时,称法拉第旋转是左旋,V>0;反之则叫右旋,V<0。

法拉第效应与自然旋光不同在于:法拉第效应对于给定的物质,偏振面的旋转方向只由磁场的方向决定而与光的传播方向无关,光线往返一周,旋光角将倍增,这叫做法拉第效应的“旋光非互易性”。

而自然旋光过程是可逆的。

1、法拉第效应原理的菲涅尔唯象理论一束平面偏振光可以分解为两个不同频率等振幅的左旋和右旋圆偏振光。

在没有外加磁场时,介质对它们具有相同的折射率和传播速度,他们通过距离为 的介质后,他们产生的相位移相同,不发生偏转。

当有外磁场时,由于磁场使物质的光学性质改变,两束光具有不同的折射率和传播速度,产生不同的相位移:2L L n l πϕλ=(2)2R R n l πϕλ=(3)其中,L ϕ、R ϕ分别为左旋、右旋圆偏振光的相位,L n 、R n 分别为其折射率,λ为真空中的波长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档