桥梁裂缝产生原因浅析
桥梁裂缝产生原因浅析

桥梁裂缝产生原因浅析本文详细介绍了几种常见的桥梁裂缝产生的原因。
标签:桥梁施工裂缝混凝土结构裂缝的成因复杂而繁多,甚至多种因素相互影响,但每一条裂缝均有其产生的一种或几种主要原因。
混凝土桥梁裂缝的种类,就其产生的原因,大致可划分如下几种:一、荷载引起的裂缝(一)直接应力裂缝是指外荷载引起的直接应力产生的裂缝。
裂缝产生的原因有:1、设计计算阶段,结构计算时不计算或部分漏算;计算模型不合理;结构受力假设与实际受力不符;荷载少算或漏算;内力与配筋计算错误;结构安全系数不够。
结构设计时不考虑施工的可能性;设计断面不足;钢筋设置偏少或布置错误;结构刚度不足;构造处理不当;设计图纸交代不清等。
2、施工阶段,不加限制地堆放施工机具、材料;不了解预制结构结构受力特点,随意翻身、起吊、运输、安装;不按设计图纸施工,擅自更改结构施工顺序,改变结构受力模式;不对结构做机器振动下的疲劳强度验算等。
3、使用阶段,超出设计载荷的重型车辆过桥;受车辆、船舶的接触、撞击;发生大风、大雪、地震、爆炸等。
(二)次应力裂缝是指由外荷载引起的次生应力产生裂缝。
裂缝产生的原因有:1、在设计外荷载作用下,由于结构物的实际工作状态同常规计算有出入或计算不考虑,从而在某些部位引起次应力导致结构开裂。
例如两铰拱桥拱脚设计时常采用布置“X”形钢筋、同时削减该处断面尺寸的办法设计铰,理论计算该处不会存在弯矩,但实际该铰仍然能够抗弯,以至出现裂缝而导致钢筋锈蚀。
2、桥梁结构中经常需要凿槽、开洞、设置牛腿等,在常规计算中难以用准确的图式进行模拟计算,一般根据经验设置受力钢筋。
在长跨预应力连续梁中,经常在跨内根据截面内力需要截断钢束,设置锚头,而在锚固断面附近经常可以看到裂缝。
因此,若处理不当,在这些结构的转角处或构件形状突变处、受力钢筋截断处容易出现裂缝。
二、温度变化引起的裂缝1、年温差。
一年中四季温度不断变化,对桥梁结构的影响主要是导致桥梁的纵向位移,一般可通过桥面伸缩缝、支座位移或设置柔性墩等构造措施相协调,只有结构的位移受到限制时才会引起温度裂缝,例如拱桥、刚架桥等。
桥梁裂缝成因分析

桥梁裂缝成因分析桥梁是连接两个地理位置之间的重要结构,以促进安全、高效和便捷的运输。
在桥梁使用寿命内,裂缝可能会出现在结构的不同位置。
这些裂缝可能是由各种原因引起的。
下面将对桥梁裂缝的成因进行详细分析。
自然因素温度的影响温度是桥梁裂缝的常见原因之一。
当桥梁暴露于不断变化的温度环境中,结构将会收缩或膨胀,这可能导致快速而猛烈的裂缝。
虽然这种情况比较难以避免,但是应该注意选择适当的材料和在结构设计阶段纳入温度方面的考虑,以减缓此类裂缝出现的速度。
风力的影响风力也是引起桥梁裂缝的另一个原因。
当风力超过结构的安全荷载,便会形成横向或纵向的荷载。
这种荷载会导致组成桥梁的元件出现变形或位移,进而形成裂缝。
建造桥梁时应参照当地的风荷载标准,和在桥梁维护时注意风力对结构的影响,以减少这种裂缝的形成。
地震的影响地震可能是桥梁裂缝的最严重原因之一。
地震会引起突然的振动和震荡,这会导致结构元件的扭曲和变形,从而引起裂缝。
在桥梁设计和建造中,充分考虑地震所导致的可能影响。
在地震后,需要对桥梁进行检修和维护,确保其结构的完整性和耐用性。
人为因素错误的设计和规划设计和规划错误是另一个人为因素,会导致桥梁裂缝的发生,如错误的结构设计和材料选择。
如果设计或规划不足,或所选材料不够强大,那么最终结构就会出现缺陷和裂缝。
应该确保在桥梁设计和规划时进行充分的研究和检查,确保结构的符合最高的安全标准和质量要求。
经常运载超重桥梁在长期使用过程中,如果经常运载超重,结构必然会受到一定的损害。
过多的荷载会对桥梁的承载能力带来潜在的破坏,进而导致裂缝。
应该在设计和立项时确保仅在规定荷载下运载桥梁,以减少其在用期中出现的损坏。
维护保养不及时桥梁维护和保养是确保其安全、高效和长寿命的一个重要环节,若维护不及时,桥梁出现缺陷和裂缝的风险将大大增加。
保养包括清洁、维护构件、防锈、涂漆等方面的工作,应定期进行。
定期的维护可以提高桥梁的使用寿命,并减少结构的损坏和裂缝。
浅析桥梁裂缝产生的原因

使 用 阶 段 。超 出设 计 载 荷 的 重 型 车 辆 过 桥 ,受车 辆 、船
其 实 , 果பைடு நூலகம்采 取 一 定 的 设计 和 施 工 措 施 多 裂缝 是 可 以 克服 和 如 很
控 制 的。
束 ,设 置 锚 头 ,而 在 锚 固 断 面 附近 经 常可 以看 到 裂 缝 。
载 裂 缝 ,归纳 起 来 主 要 有 直 接 应 力 裂 缝 、 应 力裂 缝 两 种 。 接 次 直
应 力 裂 缝 是 指 外 荷 载 引 起 的 直 接 应 力 产 生 的 裂 缝 。 裂 蛙 产 生 的
 ̄c ag # lH 骚疆 hn 8 a 0鳍
四 、温 度 变 化 引 起 的 裂 缝
混 凝 土 具 有 热 胀 冷 缩 性 质 . 当外 部 环 境 或 结 构 内部 温 度 发 生 变 化 . 凝 土 将 发 生 变形 , 变 形 遇 到 约 束 . 在 结 构 内将 产 混 若 则
必 须 指 出 , 果 受压 区 出 现起 皮或 有沿 受压 方 向 的短 裂 缝 , 往 如 往
力 与 配 筋 计 算 错误 结 构 安 全 系 数不 够 。 构设 计 时不 考 虑 施 工 结
的 可 能 性 设 计 断 面 不 足 , 筋 设 置 偏 少 或 布 置 错 误 , 构 刚 度 钢 结
生 应 力 ,当应 力 超过 混 凝 土 抗 拉 强 度 时 即产 生温 度 裂 缝 。
混 凝 土 凝 胶 孔 中 的过 冷 水 ( 结冰 温 度 在 一 8 下 ) 微 观 结 构 中 7 以 在 迁 移 和 重 分 布 引起 渗 透压 . 混 凝 土 中膨 胀 力 加 大 . 凝 土 强 度 使 混
桥梁裂缝产生原因浅析

桥梁裂缝产生原因浅析【摘要】桥梁裂缝是桥梁结构中常见的问题,影响桥梁的安全和使用寿命。
裂缝的产生原因多种多样,主要包括材料质量问题、设计缺陷、施工质量问题、自然因素和运载荷过大等。
材料质量问题是裂缝产生的重要原因之一,如果材料的强度、韧性等指标不符合要求,容易导致裂缝的产生。
设计缺陷和施工质量问题也会直接影响桥梁的稳定性,进而造成裂缝。
自然因素如地震、温度变化等也是裂缝产生的重要原因之一。
为了保证桥梁的安全使用,重视裂缝预防至关重要。
综合各种原因,需要加强对桥梁的监测和维护,及时发现裂缝并进行修复,从而保障桥梁的安全运行。
【关键词】关键词:桥梁、裂缝、材料质量、设计缺陷、施工质量、自然因素、运载荷、预防、重要性。
1. 引言1.1 背景介绍桥梁是交通建设中非常重要的基础设施,承担着连接两岸的重要作用。
随着桥梁使用年限的增加,裂缝问题也逐渐显露出来,给桥梁的安全稳定性带来了极大的隐患。
裂缝问题不仅会影响桥梁的使用寿命,还可能导致桥梁的倒塌,给人们的生命和财产安全带来危险。
桥梁裂缝是指桥梁结构中出现的沿着一定方向、一定长度的裂缝。
裂缝的产生对桥梁结构的稳定性和承载能力有着重大影响。
而裂缝的产生原因也多种多样,其中包括材料质量问题、设计缺陷、施工质量问题、自然因素以及运载荷过大等。
裂缝问题一旦出现,往往需要进行及时有效的维修处理,以确保桥梁的安全可靠性。
了解桥梁裂缝产生的原因是非常重要的,只有通过科学分析和综合探讨,才能更好地预防和处理桥梁裂缝问题,保障桥梁的安全运行。
1.2 问题提出桥梁作为承载交通运输的重要设施,在使用过程中可能会出现裂缝等问题,影响其安全性和稳定性。
裂缝的产生原因是多方面的,需要进行深入分析和研究。
在本文中,我们将从材料质量问题、设计缺陷、施工质量问题、自然因素和运载荷过大等方面进行探讨,以帮助读者更好地了解桥梁裂缝产生的原因及预防措施。
裂缝产生不仅会影响桥梁的使用寿命和安全性,还可能造成严重的交通事故,因此值得重视。
桥梁裂缝产生原因浅析

桥梁裂缝产生原因浅析【摘要】桥梁作为交通重要组成部分,裂缝的产生对其安全性和使用寿命造成严重影响。
设计缺陷、材料质量问题、施工工艺不当、环境因素和运载超载等因素是导致桥梁裂缝的主要原因。
为解决这些问题,应加强桥梁设计规范、提高材料质量控制、加强施工质量监督、加强桥梁维护和管理以及严格限制运载标准。
只有全面考虑这些因素,并采取有效措施进行预防和修复,才能保证桥梁的安全可靠性,延长其使用寿命,让人们更加安全便捷地使用桥梁。
【关键词】桥梁裂缝, 设计缺陷, 材料质量, 施工工艺, 环境因素, 运载超载, 设计规范, 材料质量控制, 施工质量监督, 桥梁维护, 运载标准1. 引言1.1 桥梁裂缝产生原因浅析桥梁作为重要的交通设施,在日常使用中难免会出现裂缝问题,这不仅影响了桥梁的使用寿命,也对交通安全造成了一定的威胁。
那么,桥梁裂缝产生的原因是什么呢?设计缺陷是导致桥梁裂缝的重要原因之一。
如果在设计中存在计算失误、荷载估计不准确等问题,就会导致桥梁承载能力不足,从而产生裂缝。
材料质量问题也是引起桥梁裂缝的关键因素。
如果使用的材料质量不达标,就容易出现强度不足、耐久性差等问题,从而加剧裂缝的产生。
施工工艺不当也会造成桥梁裂缝。
如果施工中存在操作不规范、质量监督不到位等情况,就容易引发桥梁裂缝的问题。
环境因素对桥梁裂缝也有一定影响。
例如气候变化、地质条件等因素都可能导致桥梁产生裂缝。
运载超载也是桥梁裂缝的重要原因之一。
如果超载运输导致桥梁承载能力超出限制,就会加剧裂缝问题的出现。
要减少桥梁裂缝的发生,需要加强桥梁设计规范、提高材料质量控制、加强施工质量监督、加强桥梁维护和管理,并严格限制运载标准。
只有综合考虑以上因素,才能有效预防和解决桥梁裂缝问题。
2. 正文2.1 设计缺陷导致裂缝设计缺陷是导致桥梁裂缝的一个主要原因。
在桥梁设计中,如果存在一些缺陷或错误,就容易导致桥梁在使用过程中出现裂缝。
设计缺陷可能包括桥梁结构设计不合理、荷载计算不准确、梁柱连接设计不合理等问题。
桥面混凝土铺装裂缝原因及防治措施

桥面混凝土铺装裂缝原因及防治措施桥面混凝土铺装裂缝是由于多种因素引起的。
以下是15条关于桥面混凝土铺装裂缝的原因及防治措施:1. 温度变化:温度变化是桥面混凝土铺装裂缝的主要原因之一。
温度波动导致桥面混凝土膨胀和收缩,产生裂缝。
防治措施包括使用合适的抗裂混凝土和设置伸缩缝。
2. 车辆荷载:大量车辆通过桥面会给混凝土铺装带来巨大的荷载压力。
长期以来,荷载会导致桥面混凝土产生裂缝。
增加桥面混凝土的强度和厚度是防治措施之一。
3. 桥基沉降:桥基沉降可能导致桥面混凝土发生破裂。
及时修复桥基沉降是防治措施之一。
4. 外部渗透:水分和其他外部物质渗透到桥面混凝土中会引起腐蚀和裂缝。
防治措施包括使用耐腐蚀涂层和做好防水处理。
5. 混凝土质量问题:混凝土的材料和制作过程可能存在问题,导致桥面混凝土易于出现裂缝。
解决措施包括使用质量可靠的混凝土及正确施工。
6. 施工质量问题:施工过程中,如果不符合标准要求,如不充分振捣混凝土,也容易导致桥面混凝土裂缝。
提高施工质量和技术培训是防治措施之一。
7. 水平变位:桥梁下面的土层沉降或隆起,会导致桥面发生水平变位,从而引起裂缝。
加强地基处理和定期检查是防治措施之一。
8. 腐蚀:桥面混凝土受到腐蚀,比如由于化学物质的作用,会导致混凝土表面发生破裂。
使用耐腐蚀材料和定期保养可以预防裂缝的发生。
9. 疏忽的维护:桥面混凝土需要定期维护和修复,如果疏忽不顾,会导致裂缝扩大。
加强维护管理和定期检查是防治措施之一。
10. 风力作用:风力对桥面的压力和摩擦力会使其产生裂缝。
加强桥面结构设计和维护可以减轻风力对桥面的影响。
11. 地震震动:地震震动会导致桥面发生位移和振动,从而引起裂缝。
加强桥梁的抗震性和定期检查是防治措施之一。
12. 破损的伸缩缝:伸缩缝如果破损或没有正常维护,会导致桥面混凝土裂缝。
及时修复和替换破损的伸缩缝是防治措施之一。
13. 设计不当:桥面的设计不合理,如混凝土的配筋不够,会导致桥面混凝土易于产生裂缝。
公路桥梁施工过程中裂缝产生原因及应对策略

公路桥梁施工过程中裂缝产生原因及应对策略公路桥梁施工过程中,裂缝是常见的问题,它会对桥梁的结构安全和使用寿命产生很大影响,同时也会浪费施工成本和时间。
本文将从裂缝的产生原因和应对策略两个方面介绍公路桥梁施工中裂缝的问题。
一、裂缝产生原因1.温度差异公路桥梁施工中的温度变化很大,冬季低温,夏季高温,这种温度差异会引起桥墩混凝土的体积变化,从而导致裂缝的产生。
2.地震影响地震会对桥梁的结构安全造成很大的影响,长期以来,我们一直在尝试提高桥梁的抗震性能。
然而即使是结构稳定的桥梁,遭受到强烈地震影响时仍然会发生裂缝。
3.设计不当公路桥梁的设计工作非常重要,设计不当会导致桥梁强度不足,不稳定,裂缝难以避免。
4.材料质量问题施工过程中,如果使用的材料没有达到标准要求,或者存在瑕疵,也会导致桥梁产生裂缝。
例如,使用强度不足的混凝土、钢筋,或者存在砂石等杂物的混凝土等。
5.施工工艺问题施工工艺是公路桥梁建设中的关键环节。
如果施工不规范,施工过程中存在问题,例如模板未拆除、混凝土的振捣不足等问题,都会导致桥梁施工中产生裂缝。
二、应对策略1.选择适合的材料选择质量好的混凝土、钢筋以及杂物较少的混凝土砂石等材料是防止桥梁裂缝的首要措施。
材料质量的提高可以有效地减少裂缝的产生。
2.设计合理的结构合理的结构设计可以保证桥梁的强度和整体稳定性,从而避免裂缝的产生。
同时,应该结合实际情况考虑桥梁所面对的天气等环境因素,灵活地对设计进行调整。
3.施工规范公路桥梁的施工应该按照标准规范进行,工艺不规范是造成桥梁裂缝的主要原因之一,规范的施工流程可以有效减少裂缝的产生。
4.预防维修在公路桥梁的使用过程中,应定期检查和维修。
如果出现裂缝,应及时进行维修加固。
通过及时的维修加固,可以有效地延长桥梁的使用寿命。
综上所述,公路桥梁在施工过程中裂缝的产生会对其结构安全、使用寿命以及施工成本等方面产生不良影响。
如果应对不当,将导致更多的问题出现。
浅析桥梁裂缝产生的原因及防治

加外层混凝土与 内部混凝土 的温差 。温度应 力是 由温差 引起 的变 形 缝 宽度 、采用足够 的保护层厚度 。 造成的 ,温差愈大 ,温度应力 也愈 大 混凝 土具有 热胀冷 缩性 质, 2 . 2优选混凝土 原材料 当外部环境或 内部温度发生变 化,混凝土将 发生变形,若变形遭到 优 选混 凝土原材料、优化混凝土配合 比的 目的是使混凝土 具有 约束 ,则在结构 内将产生应力 ,当应 力超过 混凝 土抗 拉强度时即产 较大 的抗裂能力 。 生温度裂缝 。 ( 1 )采 用低 水化热的水泥 。由于矿物成分及掺加混合材料数量 1 . 2混凝土收缩变形 不同,水泥 的水化热差异较大 。铝酸三钙和硅酸三钙含量高 的,水 实 际工程 中,混凝 土因收缩所 引起的裂缝是最常见的 。混凝土 化热较高;混合材料掺量多的水泥水化热较低。为减 小水泥 水化热 , 中含有大量空 隙、粗 孔及 毛细 孔,孔隙中存 在水分,而水分的活动 降低混凝土 绝热温升和混凝土 内部温度 ,从而减小 内外温差 ,应选 将影响 到混凝土 的一 系列性质,引起混凝土的收缩变形,导致裂缝 用低水化热的水泥产 品。 的产生 。混凝土 的收缩变形主要有 以下几种形式 : ( 2 ) 掺粉煤灰 。 可 以用适量粉煤灰取 代一部 分水泥 以削减 水化 ( 1 )自由收缩 。它是混凝土硬化过程 中由于化学作用 引起 的收 热产生的高温峰值 。混凝土 中掺用粉煤灰后 ,可提高混凝土 的抗渗 缩 ,是化 学结合 水与水泥 的化合结果 。 性、耐久性 ,减少收缩 ,降低胶凝材料体系 的水化热 ,提 高混凝土 ( 2 )塑性收缩 。混凝土 浇筑初 期,水泥水化反应激 烈,分子链 的抗拉强度,抑制碱集料反应,减 少新拌混凝土 的泌水等 。 逐渐形 成,出现水分急剧蒸发现象 ,引起混凝土失水收缩 ,此时骨 ( 3 )骨料的选用 。应优先选用热膨胀系数小、含泥量低的骨料, 料 与胶合料之 间产生不均匀 的收缩变形 。 并强调骨料的连续级配, 条件 许可时 , 应尽 可能使用 粒径 大的骨料 。 ( 3 )碳化收缩 。它是指大气 中的二氧化碳与水泥的水化物发生 之所 以这样 ,因为一方面骨料本身 的强度就远大 于水泥 胶体,另一 化学反应 引起的收缩变 形。 方面 , 采 用连续 级配 的骨料 ,可 以提高骨料在混凝土中的所 占体积 , ( 4 )干 缩。水泥 石在干燥 和水湿 的环境 中要产生干缩和湿胀作 能大幅度降低水泥用量 ,从而间接地降低水化热。 用 ,最大的收缩 发生在 第一次干燥之 后。 2 . 3采 取合适 的施工措施 1 . 3 钢 筋 锈 蚀 引起 的裂 缝 合适的旋工方法 不仅 能降低混凝土 内的最 高温度 ,还能减小混 由于保护层厚度不足 ,混凝土保护层受 二氧化碳侵蚀碳化 至钢 凝土 的内外温差 ,有 效地 降低温度 裂缝 的产 生,达到控制裂缝的 目 筋表面,使钢筋周围混凝土碱度降低 ,或 由于氯化物介入 ,钢筋周 的 。 围氯离子含量较高,均可 引起钢筋表面氧化膜破坏发生锈蚀反应 , ( 1 )浇筑方案 。在混凝 土施 工过程中 ,为 了有效 降低混凝土的 其锈蚀物氢氧化铁体积 比原来增长几倍 ,从而产 生膨胀应 力,导致 内外温 差,常采用分 块浇 筑。分块浇筑 又可分为分层浇筑法和分段 保护层混凝土开裂,沿钢筋纵 向产生裂缝 ,并有锈迹渗到混凝 土表 跳仓浇筑法两种 。分 层浇 筑法 目前 有全 面分层法 、分段分层法、斜 面。 面分层法 3种浇注方案 。 全面分层浇筑是在第一层全面浇筑完毕后 , 1 . 4 施 工 方 法和 施 工 工 艺 质量 的 原 因 开始浇筑第二层时 ,已施 工的第 一层混 凝土还未初凝 ,如此逐层进 在混凝土结构构件 制作、运输、安装过程中, 施 工方法 不合理 、 行,直 至浇筑完成 ;分段 分层浇筑,适用于厚度不大而面积或长度 施工质量较低,容易产生各种形式 的裂缝 ,产生裂缝 的原 因主 要有 较大 的工程 ,施工 时混凝 土先从底 层开始浇筑,进行至一定距离后 以下 几 方 面 : 再浇筑 到第三层 ,如此依 次向前浇筑其他各层;斜面分层适用于结 ( 1 )骨料进场控制不严 : 碎石厂对碎石的分级生产控制不严格 , 构的长度超过厚度 的三倍 的浇筑层 , 振捣上作从浇筑层 的下端开始 , 施工单位进场的石子混堆、混放 ,导致混凝土拌合物 和易性 性能差 , 逐渐上移 , 此 时向前推进 的浇筑混凝土摊铺坡度应小于 1 : 3 , 以保 造成混凝土质量波动,质量差的混凝土容易产生裂缝。 证分层混凝土之 间的施 工质量 。 ( 2 )施工前对支架压实不足或支架刚度不足,浇筑 混凝土后支 ( 2 )降低混凝 土浇筑 温度 的措施 。 混凝土 因为水化热 引起体积 架不均匀下沉 ;施工时模板 刚度不 足,在浇 筑混凝 土时,由于混凝 变化,以及 因为环境温度的周期变化均会引起开裂 ,如果把混凝土 土 自重和侧向压力的作用使得模板变形。 的初始温度 降低到一定程 度,使之产生的温差较小 ,从而产生 的拉
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
桥梁裂缝产生原因浅析近年来,我省交通基础建设得到迅猛发展,各地兴建了大量的混凝土桥梁。
在桥梁建造和使用过程中,有关因出现裂缝而影响工程质量甚至导桥梁垮塌的报道屡见不鲜。
混凝土开裂可以说是“常发病”和“多发病”,经常困扰着桥梁工程技术人员。
其实,如果采取一定的设计和施工措施,很多裂缝是可以克服和控制的。
为了进一步加强对混凝土桥梁裂缝的认识,尽量避免工程中出现危害较大的裂缝,本文尽可能对混凝土桥梁裂缝的种类和产生的原因作较全面的分析、总结,以方便设计、施工找出控制裂缝的可行办法,达到防范于未然的作用。
l 混凝土桥梁裂缝种类、成因实际上,混凝土结构裂缝的成因复杂而繁多,甚至多种因素相互影响,但每一条裂缝均有其产生的一种或几种主要原因。
混凝土桥梁裂缝的种类,就其产生的原因,大致可划分如下几种:一、荷载引起的裂缝混凝土桥梁在常规静、动荷载及次应力下产生的裂缝称荷载裂缝,归纳起来主要有直接应力裂缝、次应力裂缝两种。
直接应力裂缝是指外荷载引起的直接应力产生的裂缝。
裂缝产生的原因有:1、设计计算阶段,结构计算时不计算或部分漏算;计算模型不合理;结构受力假设与实际受力不符;荷载少算或漏算;内力与配筋计算错误;结构安全系数不够。
结构设计时不考虑施工的可能性;设计断面不足;钢筋设置偏少或布置错误;结构刚度不足;构造处理不当;设计图纸交代不清等。
2、施工阶段,不加限制地堆放施工机具、材料;不了解预制结构结构受力特点,随意翻身、起吊、运输、安装;不按设计图纸施工,擅自更改结构施工顺序,改变结构受力模式;不对结构做机器振动下的疲劳强度验算等。
3、使用阶段,超出设计载荷的重型车辆过桥;受车辆、船舶的接触、撞击;发生大风、大雪、地震、爆炸等。
次应力裂缝是指由外荷载引起的次生应力产生裂缝。
裂缝产生的原因有:1、在设计外荷载作用下,由于结构物的实际工作状态同常规计算有出入或计算不考虑,从而在某些部位引起次应力导致结构开裂。
例如两铰拱桥拱脚设计时常采用布置“X”形钢筋、同时削减该处断面尺寸的办法设计铰,理论计算该处不会存在弯矩,但实际该铰仍然能够抗弯,以至出现裂缝而导致钢筋锈蚀。
2、桥梁结构中经常需要凿槽、开洞、设置牛腿等,在常规计算中难以用准确的图式进行模拟计算,一般根据经验设置受力钢筋。
研究表明,受力构件挖孔后,力流将产生绕射现象,在孔洞附近密集,产生巨大的应力集中。
在长跨预应力连续梁中,经常在跨内根据截面内力需要截断钢束,设置锚头,而在锚固断面附近经常可以看到裂缝。
因此,若处理不当,在这些结构的转角处或构件形状突变处、受力钢筋截断处容易出现裂缝。
实际工程中,次应力裂缝是产生荷载裂缝的最常见原因。
次应力裂缝多属张拉、劈裂、剪切性质。
次应力裂缝也是由荷载引起,仅是按常规一般不计算,但随着现代计算手段的不断完善,次应力裂缝也是可以做到合理验算的。
例如现在对预应力、徐变等产生的二次应力,不少平面杆系有限元程序均可正确计算,但在40年前却比较困难。
在设计上,应注意避免结构突变(或断面突变),当不能回避时,应做局部处理,如转角处做圆角,突变处做成渐变过渡,同时加强构造配筋,转角处增配斜向钢筋,对于较大孔洞有条件时可在周边设置护边角钢。
荷载裂缝特征依荷载不同而异呈现不同的特点。
这类裂缝多出现在受拉区、受剪区或振动严重部位。
但必须指出,如果受压区出现起皮或有沿受压方向的短裂缝,往往是结构达到承载力极限的标志,是结构破坏的前兆,其原因往往是截面尺寸偏小。
根据结构不同受力方式,产生的裂缝特征如下:1、中心受拉。
裂缝贯穿构件横截面,间距大体相等,且垂直于受力方向。
采用螺纹钢筋时,裂缝之间出现位于钢筋附近的次裂缝。
2、中心受压。
沿构件出现平行于受力方向的短而密的平行裂缝。
3、受弯。
弯矩最大截面附近从受拉区边沿开始出现与受拉方向垂直的裂缝,并逐渐向中和轴方向发展。
采用螺纹钢筋时,裂缝间可见较短的次裂缝。
当结构配筋较少时,裂缝少而宽,结构可能发生脆性破坏。
4、大偏心受压。
大偏心受压和受拉区配筋较少的小偏心受压构件,类似于受弯构件。
5、小偏心受压。
小偏心受压和受拉区配筋较多的大偏心受压构件,类似于中心受压构件。
6、受剪。
当箍筋太密时发生斜压破坏,沿梁端腹部出现大于45°方向的斜裂缝;当箍筋适当时发生剪压破坏,沿梁端中下部出现约45°方向相互平行的斜裂缝。
7、受扭。
构件一侧腹部先出现多条约45°方向斜裂缝,并向相邻面以螺旋方向展开。
8、受冲切。
沿柱头板内四侧发生约45°方向斜面拉裂,形成冲切面。
9、局部受压。
在局部受压区出现与压力方向大致平行的多条短裂缝。
二、温度变化引起的裂缝混凝土具有热胀冷缩性质,当外部环境或结构内部温度发生变化,混凝土将发生变形,若变形遭到约束,则在结构内将产生应力,当应力超过混凝土抗拉强度时即产生温度裂缝。
在某些大跨径桥梁中,温度应力可以达到甚至超出活载应力。
温度裂缝区别其它裂缝最主要特征是将随温度变化而扩张或合拢。
引起温度变化主要因素有:1、年温差。
一年中四季温度不断变化,但变化相对缓慢,对桥梁结构的影响主要是导致桥梁的纵向位移,一般可通过桥面伸缩缝、支座位移或设置柔性墩等构造措施相协调,只有结构的位移受到限制时才会引起温度裂缝,例如拱桥、刚架桥等。
我国年温差一般以一月和七月月平均温度的作为变化幅度。
考虑到混凝土的蠕变特性,年温差内力计算时混凝土弹性模量应考虑折减。
2、日照。
桥面板、主梁或桥墩侧面受太阳曝晒后,温度明显高于其它部位,温度梯度呈非线形分布。
由于受到自身约束作用,导致局部拉应力较大,出现裂缝。
日照和下述骤然降温是导致结构温度裂缝的最常见原因。
3、骤然降温。
突降大雨、冷空气侵袭、日落等可导致结构外表面温度突然下降,但因内部温度变化相对较慢而产生温度梯度。
日照和骤然降温内力计算时可采用设计规范或参考实桥资料进行,混凝土弹性模量不考虑折减。
4、水化热。
出现在施工过程中,大体积混凝土(厚度超过2.0米)浇筑之后由于水泥水化放热,致使内部温度很高,内外温差太大,致使表面出现裂缝。
施工中应根据实际情况,尽量选择水化热低的水泥品种,限制水泥单位用量,减少骨料入模温度,降低内外温差,并缓慢降温,必要时可采用循环冷却系统进行内部散热,或采用薄层连续浇筑以加快散热。
5、蒸汽养护或冬季施工时施工措施不当,混凝土骤冷骤热,内外温度不均,易出现裂缝。
6、预制T梁之间横隔板安装时,支座预埋钢板与调平钢板焊接时,若焊接措施不当,铁件附近混凝土容易烧伤开裂。
采用电热张拉法张拉预应力构件时,预应力钢材温度可升高至350℃,混凝土构件也容易开裂。
试验研究表明,由火灾等原因引起高温烧伤的混凝土强度随温度的升高而明显降低,钢筋与混凝土的粘结力随之下降,混凝土温度达到300℃后抗拉强度下降50%,抗压强度下降60%,光圆钢筋与混凝土的粘结力下降80%;由于受热,混凝土体内游离水大量蒸发也可产生急剧收缩。
三、收缩引起的裂缝在实际工程中,混凝土因收缩所引起的裂缝是最常见的。
在混凝土收缩种类中,塑性收缩和缩水收缩(干缩)是发生混凝土体积变形的主要原因,另外还有自生收缩和炭化收缩。
塑性收缩。
发生在施工过程中、混凝土浇筑后4~5小时左右,此时水泥水化反应激烈,分子链逐渐形成,出现泌水和水分急剧蒸发,混凝土失水收缩,同时骨料因自重下沉,因此时混凝土尚未硬化,称为塑性收缩。
塑性收缩所产生量级很大,可达1%左右。
在骨料下沉过程中若受到钢筋阻挡,便形成沿钢筋方向的裂缝。
在构件竖向变截面处如T梁、箱梁腹板与顶底板交接处,因硬化前沉实不均匀将发生表面的顺腹板方向裂缝。
为减小混凝土塑性收缩,施工时应控制水灰比,避免过长时间的搅拌,下料不宜太快,振捣要密实,竖向变截面处宜分层浇筑。
缩水收缩(干缩)。
混凝土结硬以后,随着表层水分逐步蒸发,湿度逐步降低,混凝土体积减小,称为缩水收缩(干缩)。
因混凝土表层水分损失快,内部损失慢,因此产生表面收缩大、内部收缩小的不均匀收缩,表面收缩变形受到内部混凝土的约束,致使表面混凝土承受拉力,当表面混凝土承受拉力超过其抗拉强度时,便产生收缩裂缝。
混凝土硬化后收缩主要就是缩水收缩。
如配筋率较大的构件(超过3%),钢筋对混凝土收缩的约束比较明显,混凝土表面容易出现龟裂裂纹。
自生收缩。
自生收缩是混凝土在硬化过程中,水泥与水发生水化反应,这种收缩与外界湿度无关,且可以是正的(即收缩,如普通硅酸盐水泥混凝土),也可以是负的(即膨胀,如矿渣水泥混凝土与粉煤灰水泥混凝土)。
炭化收缩。
大气中的二氧化碳与水泥的水化物发生化学反应引起的收缩变形。
炭化收缩只有在湿度50%左右才能发生,且随二氧化碳的浓度的增加而加快。
炭化收缩一般不做计算。
混凝土收缩裂缝的特点是大部分属表面裂缝,裂缝宽度较细,且纵横交错,成龟裂状,形状没有任何规律。
研究表明,影响混凝土收缩裂缝的主要因素有:1、水泥品种、标号及用量。
矿渣水泥、快硬水泥、低热水泥混凝土收缩性较高,普通水泥、火山灰水泥、矾土水泥混凝土收缩性较低。
另外水泥标号越低、单位体积用量越大、磨细度越大,则混凝土收缩越大,且发生收缩时间越长。
例如,为了提高混凝土的强度,施工时经常采用强行增加水泥用量的做法,结果收缩应力明显加大。
2、骨料品种。
骨料中石英、石灰岩、白云岩、花岗岩、长石等吸水率较小、收缩性较低;而砂岩、板岩、角闪岩等吸水率较大、收缩性较高。
另外骨料粒径大收缩小,含水量大收缩越大。
3、水灰比。
用水量越大,水灰比越高,混凝土收缩越大。
4、外掺剂。
外掺剂保水性越好,则混凝土收缩越小。
5、养护方法。
良好的养护可加速混凝土的水化反应,获得较高的混凝土强度。
养护时保持湿度越高、气温越低、养护时间越长,则混凝土收缩越小。
蒸汽养护方式比自然养护方式混凝土收缩要小。
6、外界环境。
大气中湿度小、空气干燥、温度高、风速大,则混凝土水分蒸发快,混凝土收缩越快。
7、振捣方式及时间。
机械振捣方式比手工捣固方式混凝土收缩性要小。
振捣时间应根据机械性能决定,一般以5~15s/次为宜。
时间太短,振捣不密实,形成混凝土强度不足或不均匀;时间太长,造成分层,粗骨料沉入底层,细骨料留在上层,强度不均匀,上层易发生收缩裂缝。
对于温度和收缩引起的裂缝,增配构造钢筋可明显提高混凝土的抗裂性,尤其是薄壁结构(壁厚20~60cm)。
构造上配筋宜优先采用小直径钢筋(φ8~φ14)、小间距布置(@10~@15 cm),全截面构造配筋率不宜低于0.3%,一般可采用0.3%~0.5%。
四、地基础变形引起的裂缝由于基础竖向不均匀沉降或水平方向位移,使结构中产生附加应力,超出混凝土结构的抗拉能力,导致结构开裂。
基础不均匀沉降的主要原因有:1、地质勘察精度不够、试验资料不准。
在没有充分掌握地质情况就设计、施工,这是造成地基不均匀沉降的主要原因。