文献

合集下载

查找参考文献的方法

查找参考文献的方法

查找参考文献的方法
查找参考文献的方法有多种,以下列举三种常见方法:
方法一:直接法
1. 抽查法:根据项目的特点,选择与项目文献信息可能出现或出现多次的相关时间段,利用检索工具进行重点检索。

2. 顺查法:采用检索系统,例如知网、百度学术等,按时间顺序由远及近进行文献信息检索。

这种方法可以用来搜集相关学科的文献。

举例来说,某一特定研究课题的起始年份已知,现在需要了解其发展的整个过程,然后利用顺查法,逐步地从开始到现在。

3. 倒查法:与顺查相反,倒查法是指从新到旧,从近到远,运用反时序检索工具对文献进行检索。

这种方法集中在最近发表的文章上,利用这种方法可以迅速获得新的信息。

方法二:追溯法
它可以很方便地扩展信息来源,并通过在已有文章末尾列出的参考文献逐个查找,基于文献之间的引用关系,可以像滚雪球一样,获得更多的信息,获得更多的相关文献。

方法三:综合法(又称循环法)
也就是直接法和追溯法的结合。

以上内容仅供参考,不同领域、不同专业查找参考文献的方法可能存在差异,建议请教专业人士以获得更有针对性的指导。

文献的功能

文献的功能

文献的功能文献,作为记录和传承人类文化和智慧的载体,具有重要的功能和意义。

下面将从保存知识、传播知识、促进学术交流和促进学科发展等方面介绍文献的功能。

首先,文献的功能之一是保存知识。

文献记录了人类的思想、智慧和经验,将过去的知识和成果永久地保存下来。

通过文献,我们可以了解历史上的重大事件和人物,学习成功的经验和失败的教训,领悟到人类智慧的辉煌。

文献作为知识的存储库,为后代提供了宝贵的资料和参考。

其次,文献的功能之二是传播知识。

文献作为信息的传递者,将知识和成果传达给更多的人。

通过文献,知识可以被广泛地传播和分享,帮助人们获取更多的信息和智慧。

无论是书籍、期刊、论文还是报纸、杂志等,都是文献的形式,它们以文字、图片、图表等形式传达信息,让人们能够更加方便地获取知识。

第三,文献的功能之三是促进学术交流。

文献是学术研究的重要基础,通过文献,学者们可以了解前人的研究成果和观点,与其进行对话和交流。

学术交流可以促进知识的共享和碰撞,激发创新思维和研究灵感。

学术期刊、学术会议等都是学术交流的重要渠道,它们通过发表和传播文献,使学术界形成了一个庞大而活跃的社区。

最后,文献的功能之四是促进学科发展。

文献是学科发展的重要推动力,它记录了学科的发展历程和成果,为学科的研究和教学提供了参考和指导。

通过研究文献,学者们可以了解学科的前沿动态和热点问题,从而开展创新的研究和探索。

文献的积累和发展,对于学科的进步和完善具有重要的推动作用。

综上所述,文献具有保存知识、传播知识、促进学术交流和促进学科发展等功能。

它是人类文化和智慧的重要载体,帮助人们汲取智慧的营养,推动社会和科学的进步。

因此,我们应当珍惜和尊重文献的价值,积极参与到文献的创作、传播和研究中。

文献类型

文献类型
letters等。iv.资料性(data journals)。data、
event等。
核心期刊:
《中文核心期刊要目总览》(2000)指出:“某学科 (或专业或专题)的核心期刊是指该学科所涉及的 期刊中,刊载论文较多的(信息量较大的),论文 学术水平较高的,并能反映本学科最新研究成果
及本学科前沿研究状况和发展趋势的,较受该学
版物。特点时信息存储密度高,存取速度快、具
有电子加工、出版和传递功能。电子出版物包括
电子图书、电子期刊、网络数据库、光盘数据库
等。
按文献的加工级别划分
• • • • 1.零次文献 2.一次文献 3.二次文献 4.三次文献
零次文献:也叫灰色文献,未经公开发表或 未交流于社会的文献。如私人笔记,设计草 图、实验记录、文章草稿、会议记录、书信 文书、以及档案等。其主要特点是内容新颖, 但不成熟,不公开交流,难以获得。 一次文献(Primary Document): 以著者本人的研究或研制成果为依据而 创作或撰写的文献,习惯上称做原始文献。 如期刊论文、科技报告、专利说明书、会议 论文、学位论文等。体现创作性。其主要特 点是内容新颖丰富,叙述具体详尽,参考价 值大,但数量庞大、分散。
(1)图书(book) 凡篇幅达48页以上并构成一个书目单 元的文献称为图书(Book)。图书阅读量占
到10%-14%。
特点:系统、全面、成熟,出版形式比较
固定,但出版周期长,传递情报速度比较 慢。
(2)期刊(periodical , journal or magazine)
特点:出版数量大,周期短,内容新颖,能迅
按照内容公开程度划分
1. 白色文献 2. 灰色文献 3. 黑色文献
白色文献
一切正式出版并在社会上公开流通的文 献。包括图书、报纸、期刊等。这类文献 通过出版社、书店、邮局等正规的渠道公 开发行,向社会所有成员公开,其蕴涵的 信息大白于天下,人人均可利用。

文献名词解释

文献名词解释

文献名词解释
文献是指已经出版的书籍、期刊、报纸、杂志、学位论文、研究报告、会议论文等印刷品或电子文本,是研究学术问题时参考的重要素材。

文献不仅记录了已经取得的研究成果,更可以为新的研究提供理论和方法的参考,为科学研究的交流与发展提供基础。

文献名词解释如下:
1. 书籍:是同一作者编写或由同一单位指导的具有完整体系的学术性作品,包括教科书、研究专著等。

2. 期刊:是定期出版,以文章为载体,面向特定学术领域进行学术交流的出版物。

包括学术期刊、科技期刊、文学刊物等。

3. 报纸:是定期出版,以新闻报道为主要内容的出版物,主要用于传播时事新闻、社会信息等。

4. 杂志:是以图文并茂,多样化主题为特点的周期性刊物,面向广大读者群体的文化娱乐产品。

5. 学位论文:是为了获得学位而进行科学研究并撰写的长篇论文,一般包括博士论文、硕士论文等。

6. 研究报告:是研究项目或计划完成后所做的总结和总结报告,主要用于研究成果的交流和推广。

7. 会议论文:是学术会议上发表或讨论的学术论文,主要用于学术研究领域的知识传播和学术交流。

8. 文献综述:是对某一学术领域或某一个问题进行综合性的文献调研和总结,旨在对该领域进行梳理和把握。

9. 引用文献:是在论文、报告或其他学术作品中对其他已经发表的文献内容进行引证,以支持自身研究发现的合法性和可靠
性。

10. 参考文献:是在论文、报告或其他学术作品中列举出曾经阅读或参考过的文献,以供读者查阅和参考。

常见的四种文献类型

常见的四种文献类型

常见的四种文献类型文献类型是指学术研究中最常见的四种文献形式,包括综述文章、实验研究论文、案例研究和评论性文章。

每种文献类型都有其独特的特点和用途,下面将从生动、全面和有指导意义的角度介绍这四种文献类型。

第一种文献类型是综述文章。

综述文章是以某个领域或主题为基础,系统地总结和分析相关研究的文献。

综述文章通常包括对已有研究的批判性评价,通过整合已有的研究成果,提供对研究进展的全面梳理。

综述文章能够为读者提供一个对某个领域的全面了解,并指导未来的研究方向。

第二种文献类型是实验研究论文。

实验研究论文是通过设计和实施实验来解答研究问题的文献。

实验研究论文需要详细描述实验设计、数据收集和分析方法等,以确保研究结果能够被复制。

这种类型的文献对于验证科学假设和揭示因果关系至关重要。

实验研究论文的生动性在于能够通过具体的实验过程和结果向读者展示研究的可行性和可靠性。

第三种文献类型是案例研究。

案例研究是通过对特定个体、组织或事件进行深入研究,从而推进理论发展的文献。

案例研究通常通过收集和分析多源数据(如访谈、观察、文件等)来生成详细的描述和解释。

这种类型的文献能够提供具体的实践经验和实证证据,为研究者和从业人员提供有指导性的经验和教训。

第四种文献类型是评论性文章。

评论性文章是对已有文献的评价和对话,探究现状和发展方向的文献。

评论性文章可以提供对某个领域的思考和观点,为学术社区提供重要的思想交流和辩论平台。

这种类型的文献能够促进学术进步和创新,引导学术研究的方向和发展。

综述文章、实验研究论文、案例研究和评论性文章是学术研究中最常见的四种文献类型。

它们各具特点,通过不同的方法和方式向读者展示研究成果、经验和思考。

对于研究者和学术从业人员来说,了解和运用这些文献类型能够提高研究的质量和价值。

对于读者来说,掌握不同类型文献的特点和用途,则有助于更好地理解和利用学术研究成果,推动学术界的进步和发展。

文献的基础知识

文献的基础知识

二次文献
例如:检索工具:书目、 索引、文摘、辞典等。
三次文献
指在有关的一次文献 或二次文献的基础上,分 析、综合提炼、重组而形 成的再生文献。又称“参 考性文献”或“研究文献 的文献”。
例如:文献指南、百 科全书、综述、述评 等。
特点: a 内容上的综合性 b 功效上的参考性
综述
是作者在博览群书的基础上,综合地 介绍和评述某学科领域国内外研究成果和 发展趋势,并表明作者自己的观点,对今 后的发展进行预测,或对有关问题提出中 肯意见或建议的论文。
会议文献
指在各种学术会议、 专题研讨会上发表的论 文和报告,它是最新研 究成果公布于世的一种 主要方式。
专利文献
是指一切与专利制度有关的文 件的统称,其内容集技术、经济、 法律于一体。包括专利说明书、专 利公报、专利分类表、专利检索工 具以及有关专利的法律性文件。
标准文献
标准是按规定程序制订, 经权威机构公认或主管部门批 准的在特定范围内执行的规格、 规则、技术要求等规范性文件。
什么是参考文献?
作者在撰写论文或专著时,在某一 学科问题研究上援引了他人或前人的相 关文献,就必须进行标引,并按照一定 的格式著录,形成文后的参考文献表。
参考文献的作用
★ 注明被引理论、观点、方法、数据的来源, 反映论文的真实科学依据。
★ 表明学科的继承性。
★ 表明作者对他人劳动成果的尊重。
★ 为编辑部、审稿专家和读者提供了文献信 息,推动资源共享。
期刊
特点 a、期刊以品种为单位形成知 识流; b、内容新颖、及时、广泛, 但不如图书成熟; c、期刊一般不修订再版。 d、科技期刊 是最重要的一次 文献。
核心期刊认定的标准
对中国(不含港澳台)出版的期刊中核心期刊的认 定,目前国内比较权威的有两种版本。一是中国科技 信息研究所每年出版一次的《中国科技期刊引证报 告》,报告的内容是对这些期刊进行多项指标的统计 和分析,其中最重要的是按类进行“影响因子”排名; 另一种是北京大学图书馆与北京高校图书馆期刊工作 研究会联合编辑出版的《中文核心期刊要目总览》 (不定期出版),其中对核心期刊的认定通过五项指 标综合评估。

查阅文献的方法

查阅文献的方法

查阅文献的方法
查阅文献的方法
一、综合性文献检索
1、收集信息
在收集信息之前,需要确定主题和搜索领域。

可以通过参考书籍、站点或学术论文、期刊文章等方式收集相关信息。

2、开展检索
进行文献检索时,可以从国内外各类文献数据库中寻找有关文献,一些典型的数据库包括:中国知网、万方数据库、EI(Engineering Index)、CSA(Compendex)等,也可以在学术搜索引擎中搜索,如Google学术、百度学术等。

3、分类整理
对收集到的信息进行分类整理,利用表格的形式把这些信息分门别类的列出来,针对每篇文献进行摘要,体现文献的主要内容,以便于以后查找、进行分析。

二、专题性文献检索
1、了解主题
在进行专题性文献检索之前,需要先了解专题的相关信息,例如,专题的基本原则、研究进展情况、对象等等。

2、确定搜索策略
针对不同的专题,就需要采用不同的搜索策略,例如在采用联想搜索的时候,可以首先搜索专题的一般概念,然后结合其他关键词等
来进行搜索,以找出最相关的文献。

3、查询文献
搜索的结果可以采用从宽到窄的搜索原则,不断扩大关键词搜索范围,从而找出更多有用的文献。

1文献定义

1文献定义

1文献定义:文献是以文字、图像、公式、声频、视频、代码等手段将信息、知识记录或描绘在一定的物质载体上,并能起到存储和传播信息情报和知识作用的一切载体。

文献包括图书、期刊、科技报告、专利、标准、学位论文、会议文件、政府出版物、样本、微缩资料、视听资料、机读型资料等。

2图书:最早的定义是图书是记录和传播人类知识的工具。

图书文献是人类记录和传播知识或情报的信息载体。

3期刊:期刊,也称(杂志),是指有固定名称、每期版式基本相同、定期或不定期的连续出版物。

它的内容通常是围绕某些学科或某一研究对象的,是由许多短篇编辑而成的。

每期有连续的卷,期号或年月顺序号。

期刊比图书出版周期短,内容新能及时反映最心动科技知识,研究成果和文学艺术的最新作品。

4核心期刊:核心期刊也称重点期刊,这种期刊上的科技情报密度较大,所含的情报数量较多,质量较高;所刊登的论文寿命较长,借阅率和被引用率较,代表着科学技术的发展水平。

5科技期刊:除具有期刊的条件外,主要是报道内容上有学术性,通讯性,消息性,资料性和科普性等五种。

6科技报告:是研究成果的正式报告或关于某项研究的阶段性进展总结报告。

1)AD报告:是美国军事系统的报告,专门收集美国陆海空三军的科研单位,公司企业,大专院校,外国科研机构和国际组织以及美国军事部门翻译的各国的部分文献。

2)PB报告:是政府部门的报告,它的资料来源,除了在第2次世界大战中战败国掠夺之外,主要是从美国政府研究机构;军事科研与情报部门;公司企业及承包单位;高等院校,实验室,研究所,国外研究机构等获得,其内容在六十年前包括基础研究,生产技术,工艺材料,尖端科学技术的探讨等方面。

在60年代以后PB报告的内容已主要是侧重民用工程技术方面,如土木建筑,城市规划,环境保护等,而航空,电子,原子能,军械等文献则收入很少。

3)NASA报告:是国家宇航天局的报告。

它的来源是他的研究中心与实验室,承包公司,企业和大学资助单位等,他收集的内容有科研成果,技术总结报告,专业技术文件,实验报告,数据资料,会议文献,实验成果资料,进展报告,年度报告,技术译文,专题文献目录等4)Doe报告:最早是AEC报告是原子能委员会的报告。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Synthesis and characterization of polyaniline and polyaniline eCarbon nanotubes nanostructures for electrochemical supercapacitorsMarcela A.Bavio a ,b ,Gerardo G.Acosta a ,b ,Teresita Kessler a ,c ,*aFacultad de Ingeniería,INTELYMEC-CIFICEN,UNCPBA,Avda.del Valle 5737,Olavarría,Buenos Aires,Argentina bCONICET,Av.Rivadavia 1917,C1033AAJ,Ciudad Autónoma de Buenos Aires,Argentina cCICPBA,Calle 526entre 10y 11,1900La Plata,Argentinah i g h l i g h t sg r a p h i c a l a b s t r a c tPANI and PANI e CNT nanostructures were prepared by a self-organization method.Nanoparticles and nanotubes were developed at room temperature. PANI e CNT nanocomposites dis-played improved capacitive proper-ties in acidsolution.a r t i c l e i n f oArticle history:Received 19April 2013Received in revised form 17June 2013Accepted 20June 2013Available online 29June 2013Keywords:Polyaniline nanotubes Nanocomposites Carbon nanotubes Supercapacitorsa b s t r a c tNanostructures of polyaniline (PANI)and PANI with embedded carbon nanotubes (CNT)were synthe-sized through a chemical method of self-organization.An oxidative polymerization process was per-formed in the monomer acid solution with the presence of a surfactant and the addition of multi-walled CNT.The CNT were added with and without pretreatment,CNTf and CNTnf,respectively.Furthermore,ammonium persulfate and sodium dodecyl sulfate were incorporated to the reaction solution as dispersant and oxidizing agents,respectively.Different nanostructures such as nanoparticles or nano-tubes were obtained depending on the CNT added,and characterized by scanning electron microscopy,transmission electron microscopy,UV e vis spectroscopy,infrared spectroscopy and electrochemical techniques.Spectroscopy results showed variations in the observed bands of the synthetized nano-structures attributed to changes in the molecular structures,to the state of doped PANI reached during polymerization and to the stabilization of these links by hydrogen bridge interactions.PANI and PANI e CNT composites were evaluated by electrochemical techniques to test their behavior in relation to supercapacitors properties.PANI e CNTf nanocomposites displayed improved capacitive properties in H 2SO 4solutions,namely 1744F g À1at 2A g À1.Also,the speci fic capacitance was strongly in fluenced by the developed morphologies.These characteristics point to their feasible application as supercapacitors materials.Ó2013Elsevier B.V.All rights reserved.1.IntroductionIn recent years,materials with special characteristics have been developed in relation to technological devices specially applied to environmental care and clean energy production,such as polluting gas sensors,fuel cells,solar cells,electrochemical capacitors [1e 4].*Corresponding author.Facultad de Ingeniería,INTELYMEC-CIFICEN,UNCPBA,Avda.del Valle 5737,Olavarría,Buenos Aires,Argentina.E-mail address:tkessler@fi.ar (T.Kessler).Contents lists available at SciVerse ScienceDirectJournal of Power Sourcesjournal h omepage:www.elsevier.co m/lo cate/jp owsour0378-7753/$e see front matter Ó2013Elsevier B.V.All rights reserved./10.1016/j.jpowsour.2013.06.119Journal of Power Sources 245(2014)475e 481For the latter case,these systems store electrical energy through double-layer charging steps,faradaic processes or a combination of both ways.The whole process is highly reversible and the charge/ discharge cycle can be repeated over and over again,virtually without limit.The electrochemical capacitors or supercapacitors differ from the conventional dielectric capacitors in their special energy storage modes leading to significantly higher values in energy density(usage life after one charge)and in power density(rate of discharge) terms[1,3].From practical and technological points of view,electrochemical capacitors are robust devices that can improve the effectiveness of battery-based systems by decreasing the number of required batte-ries and by reducing the frequency of their replacement.The carbon family offers a number of components to be applied in super-capacitors;they are,among others,activated carbon,carbon black, carbon nanotubes(CNT)and graphene.In particular,CNT are considered as promising materials for catalyst supports in fuel cell electrodes,storing hydrogen devices,sensors and as supercapacitors, due to their thermal stability,the chemical and mechanical proper-ties,their good conductivity and high surface area[2,5e7].A route to enhance the capacitance of a material is adding specific substances providing fast pseudo-faradaic redox reactions. Thus,ruthenium oxide and conductive polymers such as polyani-line,polypyrrole,polythiophene,or their derivatives are suitable materials to synthetize composites to provide higher capacitance [2,8,9].Polyaniline(PANI)is one of the most extensively studied con-ducting polymers,because it can be obtained in relatively simple and not expensive ways,it is stable at room temperature and it is an ionic-electronic conductor in a wide potential range[11e13].There are different chemical and electrochemical methods of synthesis.In this respect,the electrochemical techniques are applied to obtain high purity polymer samples,while the chemical routes offer the possibility to produce easily a large amount of substance.The polymeric nanostructures show an improved performance in technological applications,due to their unique characteristics derived from the nanoscale size;among others,high electrical conductivity,large specific surface,a mixed ionic-electronic con-ductivity mechanism and a high discharge capacity to mass ratio. Methods of hard and soft templates can be used for the preparation of conducting polymer nanostructures.In this respect,the poly-merization using microemulsions is considered the most promising route because it is a fast and easy way to prepare PANI nano-structures in large scale and at low cost compared to the conven-tional electrochemical methods[4].The development of composite materials based on conducting polymers and carbon nanotubes is today one of the main research interests due to the very different properties that can be profited in useful devices[8,14,15].In this paper,different PANI e CNT nano-structures were prepared by a chemical method of synthesis starting from the monomer solution with added carbon nanotubes,both pretreated and as-received ones.The structure and morphology of the obtained nanostructures were analyzed by UV e vis,FTIR,SEM and TEM.The electrochemical capacitance performances of the developed and chemically characterized nanostructures were investigated in acid solution showing an outstanding behavior.2.Experimental2.1.Synthesis of nanostructures of PANI and PANI e CNTPANI nanostructures were chemically synthesized from a dispersion prepared with0.045g of aniline,0.30mL of0.25M HCl and0.005g of sodium dodecyl sulfate(SDS)in18mL of distilled water under constant magnetic stirring at room temperature (25 C)for20min.Then,2mL of0.24M ammonium persulfate (APS)was added to the initial mixture.The resulting dispersion was stirred violently for half a minute.The polymerization process was carried out for24h at25 C without agitation.The obtained pre-cipitate wasfiltered and washed until thefiltrate solution became colorless.Finally,the residue was dried for24h at60 C.PANI e CNT nanostructures were synthetized applying the same procedure with the addition of0.1mg mLÀ1of either functionalized carbon nanotubes(CNTf)or non-functionalized carbon nanotubes (CNTnf)to the initial aqueous dispersion.The non-functionalized carbon nanotubes(CNTnf)were multi-walled carbon nanotubes used as Tf were obtained af-ter applying an oxidizing pre-treatment in 2.2M nitric acid to commercially available CNT.The amount of CNT was0.85mg mLÀ1 and the suspension was kept at room temperature for1h[16].Then, the preparation was stirred using an ultrasonic bath for30min and kept at room temperature for20h.Afterward,it wasfiltered and washed with abundant distilled water to achieve neutral pH in the filtrate solution.Finally,the treated carbon nanotubes were dried at 37 C for2h.2.2.Characterization methodsVarious physicochemical techniques were applied to charac-terize the prepared nanostructures.Scanning electron microscopy (SEM)images were obtained with a scanning electron microscope Jeol JSM-6460LV and the transmission electron microscopy(TEM) micrographs with a JEOL model100CX operated at100kV.The TEM images were processed with Image J to determine the particle size.FTIR spectra were recorded between4000and400cmÀ1using a Nicolet,Magna500(250e4000cmÀ1)equipment with CsI optics.UV e vis spectra were obtained for different samples in aqueous solution,using a spectrophotometer UV-1800PC MAPADA in the 250e900nm range.2.3.Preparation of electrodes and electrochemical measurementsThe working electrode was assembled as follows.Firstly,PANI and PANI e CNT nanostructures were scattered in pure isopropanol; then,a suitable amount of Nafion solution was added.Afterward, the dispersion was stirred using an ultrasonic bath for5min.The suspension was transferred with a micropipette on a mirror-polished glassy-carbon electrode.The Nafion content in thefinal mixture was5wt%and the amount of PANI or PANI e CNT nano-structures was0.2mg cmÀ2.Cyclic voltammetry and galvanostatic charge/discharge mea-surements were used to study the capacitive behavior of the nanocomposite materials.Runs were carried out in the0.0e1.0V (vs.RHE)voltage range in0.5M H2SO4.I/V profiles were obtained at varying the scan rates from10to100mV sÀ1.The galvanostatic charge/discharge curves were recorded at different current density values in the2e100A gÀ1range.All electrochemical experiments were performed using EG&G PAR Model362potentiostat/galvanostat connected to a three-electrode cell thermostatized at25 C.The counter electrode was a large Pt sheet and the reference electrode was a Ag/AgCl(sat.) electrode.3.Results and discussion3.1.SEM and TEM characterizationFig.1shows micrographs of different PANI and PANI e CNT structures to contribute to clarify the morphology influence in theM.A.Bavio et al./Journal of Power Sources245(2014)475e481 476capacitive response.The addition of CNT to the initial solution promotes the growth of various PANI e CNT nanostructures,depending on the carbon nanotubes ’pretreatment.Thus,nano-tubes of ca.15m m length are obtained when synthetizing either aniline solution without CNT or with the addition of CNTf.The mean outside diameter is ca.95nm (Fig.1a and c).However,the addition of CNTnf promotes the development of PANI e CNTnf nanoparticles of approximately 90nm in diameter (Fig.1b).To explain these facts,it must be taken into account that in the PANI synthesis mechanism,anilinium cations are formed in the first step of the polymerization process [4]and that the CNT chemical pre-treatment provokes the formation of carboxyl,hydroxyl and carbonyl groups on their walls [16].Thus,by incorporating CNTf to the reaction mixture,the negatively charged functional groups of the nanotubes interact with anilinium cations,allowing the adsorption of the CNTf on the walls,hence promoting the growth of polymer chains from them.Other researchers report this type of interaction when using oxidized carbon black and graphene oxide for the synthesis of various polyaniline nanocomposites such as nanotubes,nanospheres and nano fibers [17,18].In the TEM images of PANI e CNTf structures (Fig.1f),nanorods of 20e 25nm in diameter and 30e 40nm in length can be distin-guished as growing up from the nanotubes walls.Thus,the poly-merization process of aniline in dilute SDS/HCl aqueous solution at room temperature lead to the formation of PANI nanostructures covered with submicrotubes.The morphology and size of the PANI structure are in fluenced by the concentration of surfactant,the added inorganic acid and the temperature [19,20].When adding CNTnf,the structure of the developed PANI com-posites adopt a granular morphology formed by nanoparticle aggre-gates which rarely stayed isolated [4].In this respect,it is claimed that PANI nanoparticles require a preexisting support (such as nano fibers or nanoribbons)acting as substrate where heterogenous arrange-ments grew without any preferential direction.Moreover,thermo-dynamic considerations support the fact of a granular morphology tendency because a spherical cluster possesses a total surfaceenergyFig.1.SEM and TEM images of a,b)PANI,c,d)PANI e CNTnf and e,f)PANI e CNTf nanostructures.M.A.Bavio et al./Journal of Power Sources 245(2014)475e 481477lower than a long chain [17],possibly due to both the low solubility of PANI and the repulsion forces existing between the charges of the polymer chain [21,22].3.2.FTIR spectraThe identi fication of existing interactions in the synthesized nanostructures is done by infrared spectroscopy studies.Several bands appear in all the PANI nanostructures spectra (Fig.2)[4,23e 25].The location of the common bands and the corresponding identi fi-cation is as follows:1142cm À1(assigned as e N ]quinoid ]N e ),1305cm À1(CN stretching with aromatic conjugation),1500and 1588cm À1(C ]C stretching in benzoides and quinoid rings respec-tively),2847and 2916cm À1(CH stretching of e CH 3and e CH 2e ,respectively,which shows the presence of SDS in the synthesized products).As reported in Ref.[22],the anionic surfactant contribute doping the PANI chain via electrostatic interactions with the anilinium cation at the beginning of the polymerization process,and then,forming a supramolecular structure.In PANI and PANI e CNTf nanostructures spectra,a band at 1042cm À1is distinguishable;it corresponds to the substitution of S ]O groups in the 1,2,4-aromatic rings,indicating a doped PANI structure as a result of using APS during the synthesis.Another band located at 3250cm À1is assigned to the NH-stretching asso-ciated to different of intra-and inter-molecular hydrogen bonds in secondary amines.In the presence of a sulfonate group,a hydrogen bond such as the NH /O type can be proposed.The presence of hydrogen bonds is indicative of a self-organization process of PANI chains in supramolecular assemblies and can be associated to the stabilization of the nanotubes [19,26].For PANI e CNTf nanostructures,their spectra present two new clear bands,one at 825cm À1assigned to deformation out of the plane of CH e benzoides rings and the other one at 1248cm À1corresponding to CN e stretching in secondary aromatic amines [17].The appearance of these bands indicates that there are in-teractions between PANI and CNTf in the joint nanostructure.3.3.UV e vis spectraUV e vis spectra supply more evidences to elucidate the chemical nature of the prepared nanostructures.PANI nanostructures without added CNT present two adsorption zones in the UV e vis spectra (Fig.3).One of these bands located in the 294,360,436nmrange (possibly overlapping)is related to PANI chain protonation and the other band between 600and 850nm is attributed to the p -polaron transition [9,19].For PANI e CNTf nanostructures,the spectra show a maximum absorption peak at 360nm assigned to the p e p *transition in benzoides rings and,then,a broad peak between 600and 900nm attributed to a p -polaron transition.Another two shoulders can be observed at 290and 434nm related to the mentioned PANI chain protonation,indicating a doped state.Both PANI and PANI e CNTf nanotubes are in the emeraldine salt form which is the conductive PANI form [12,18,19].The linear nature of the emeraldine chains is responsible to act as pattern to form nano fibers in the early growing steps of the nanostructures [18].In PANI e CNTnf spectra,two absorption bands at 340and 676nm are well de fined (Fig.3);they are attributed to p e p *transitions in quinoid and benzoides rings,respectively,indicating the presence of the emeraldine form,i.e.the non-conductive PANI form [19].3.4.Cyclic voltammetric studiesVoltamperommetric runs of the prepared nanostructures are carried out between 0.0V and 1.0V at various scan rates in order to evaluate their electrochemical characteristics.The typical vol-tammograms of the nanocomposites are shown in Fig.4.The anodic and cathodic current peaks assigned to PANI leucoemer-aldine/emeraldine pair at ca.0.4V are clearly distinguished [12].At all scan rates,pronounced reversible redox waves are observed in the pro files of PANI e CNTf and PANI e CNTnf electrodes,in-dicating their better capacitive behavior as compared to PANI electrode.This fact may be due to the combined contributions from both PANI and CNT structures.That is,the synthetized PANI e CNTnf composite provides a large surface area allowing a better electrolyte access as well as providing lower internal resistance [15].3.5.Galvanostatic charge/discharge experimentsGalvanostatic charge/discharge measurements at different cur-rent densities are performed in order to understand the behavior of PANI,PANI e CNTs and PANI e CNTf nanostructures for super-capacitor applications.Typical potential versus time pro files for a constant current density of 2A g À1are shown in Fig.5.OtherFig.2.FTIR spectra of the synthesizednanostructures.Fig.3.UV e vis spectra of the synthesized nanostructures.M.A.Bavio et al./Journal of Power Sources 245(2014)475e 481478supercapacitor materials such as activated carbon,metal oxides,carbon nanotubes and carbon blacks exhibit the observed behavior that corresponds to the ideally triangular shaped charging/dis-charging pattern [8,27,28].In the present case,the curves are not straight lines indicating the occurrence of a faradaic reaction among the electrode materials.In addition,an initial potential drop can be observed caused by internal resistance [9].The electrical parameters of the capacitor,namely,speci fic capacitance (C m ),speci fic energy (E s )and speci fic power (P s )are calculated using Eqs.(1)e (3).C m ¼C m ¼I D t D Vm (1)E s ¼I D V D t m(2)P s ¼I D V (3)where C m is the speci fic capacitance,I is the charge/discharge current,D t is the discharge time,D V is the potential range and m is the mass of active material [9,29e 31].The simple self-organization chemical method provokes the formation of unique PANI and PANI/CNTs structures where the total mass and volume are involved in the charge storage and lead to the high SC values.In particular,at 2A g À1,speci fic capacitance values of 314,838and 1744F g À1were obtained for pure PANI,PANI e CNTnf and PANI e CNTf nanostructures,respectively (Table 1).It is of interest to compare our results with other SC values reported that involve different PANI and PANI composite dispositions under various experimental conditions.Thus,for PANI nanostructures,the SC values varied from ca.200to 2300F g À1[8,9,32e 35].When considering PANI e CNTs composites,the SC noti fied values are in the range of 200e 606F g À1[8,15,32,33].For CNTs,very unlike values are communicated [33,36].There are also high SC values informed for PANI electrodeposited,i.e.on carbon fiber cloth (1026.8F g À1),on vertically aligned CNTs (1030F g À1)on porous carbon rods (1600F g À1)[24,37,38].In the case of the outstanding behavior of the PANI e CNTf composites developed by the self-organizing method,several factors can be considered as respon-sible for the results.In particular,it is to point out the existing charge carriers in these arrays and the fact that the CNTs were pre-treated before use.Thus,it was reported that the charge carriers can either move within the polymer structure along the chains or jump from chain to chain by interchain hopping [39].Moreover,ab-initio calculations showed that quinoid structures present a large af finity for charges which acquire high mobility attributed to the delocalized polarons [40].Recently,it was proposed that the incorporation of highly conducting CNTs in the PANI matrix in-creases noticeably the conductivity of the samples because of a strong coupling between the CNTs and the polymer chains [41].The established interaction is considered as coming from a charge transfer process between the quinoid rings of PANI and the CNTs.On the other hand,the incorporated CNTs contribute to the SC values not only by adding to the double layer capacity due to the facile accessibility of the electrolyte in the internal and external porous structure,but by supplying faradaic pseudo-capacitance generated on the super ficial oxygenated groups developed during the acid pretreatment.Since long cycle-life is a very important parameter to be taken into account when using these materials as electrochemical ca-pacitors,the cycle charge/discharge test is employed to examine the stability of the prepared electrodes for 1000cycles at 2A g À1.The speci fic discharge capacitances of the different electrode ma-terials as a function of the number of cycles are presented in Fig.6.The capacitance of PANI e CNTf composites is greater than the values corresponding to PANI and PANI e CNTnf nanostructures.The loss of capacitance during the charge/discharge cycles is lowerthanFig.5.Galvanostatic charge/discharge curves of the nanostructured composite elec-trodes for a current density of 2A g À1in 0.5M H 2SO 4.Table 1Speci fic capacitances of the developed nanomaterials.I (A g À1)Nanomaterial PANI PANI e CNTnfPANI e CNTfC m (F g À1)231483817444134340101210721504902058603604042433201003638262Fig. 4.Cyclic voltammograms of the nanostructured composite electrodes at 20mV s À1in 0.5M H 2SO 4.M.A.Bavio et al./Journal of Power Sources 245(2014)475e 48147921%for the three checked materials.These results reveal that the service-life can be improved remarkably when having CNT,either CNTnf or CNTf,in the PANI nanostructures.An adaptation of the Ragone plot [31]is presented in Fig.7showing the relationship between the speci fic power density and speci fic energy density for PANI,PANI e CNTf and PANI e CNTnf nanostructures.PANI e CNTf composites show much higher speci fic power and speci fic energy values than PANI and PANI e CNTnf structures.For PANI e CNTf composites,a high speci fic power of 100kW kg À1and a speci fic energy of 485W h kg À1are obtained.It is to point out that for the same speci fic power value,the speci fic energy of PANI e CNTf composite electrodes is four times larger than the value corresponding to PANI electrodes.The better performance is attributed to the singular porous nanostructures,developed by the chemical method,offering a great many charge passways.The morphology of the prepared nano-structures with their characterized chemical interactions that fa-cilitates the charge transport processes and/or the occurrence of faradaic reactions.4.ConclusionsPolyaniline and polyaniline e carbon nanotubes nanostructures were chemically synthesized using a simple method of self-organization.Changes in the molecular structures,in the state of doped PANI during polymerization process and in the stabilization of these links by hydrogen bridge interactions led to different PANI and PANI e CNT nanostructures.Hence,nanotubes with an outer diameter of ca.95nm were obtained from acid solutions containing either aniline or the monomer with the addition of functionalized CNT.Their length varied from ca.10to 15microns.When incor-porating unfunctionalized CNT to the initial reaction solution,granular aggregates of ca.95nm in diameter were produced.The electrochemical characterization of the synthetized nanostructures has been carried out applying voltamperommetric and charge/discharge runs.The experimental capacitance and the service life data indicate that the developed nanostructures can be applied as supercapacitor materials.AcknowledgmentsThe authors acknowledge the support of SECAT-Facultad de Ingeniería -UNCPBA and CICPBA.References[1]M.Winter,R.J.Brodd,Chem.Rev.104(2004)4245e 4269.[2]Y.Zhang,H.Feng,X.Wu,L.Wang,A.Zhang,T.Xia,H.Dong,X.Li,L.Zhang,Int.J.Hydrogen Energy 34(2009)4889e 4899.[3]L.Pan,H.Qiu,Ch.Dou,Y.Li,L.Pu,J.Xu,Y.Shi,Int.J.Mol.Sci.11(2010)2636e2657.[4] slau,Z.Zujovic,J.Travas-Sejdic,Prog.Polym.Sci.35(2010)1403e1419.[5]J.-B.He,Ch.-L.Chen,J.-H.Liu,Sens.Actuators,B 99(2004)1e 5.[6]L.Agüí,P.Yáñez-Sedeño,J.M.Pingarrón,Anal.Chim.Acta 622(2008)11e 47.[7] A.Guha,W.Lu,T.Zawodzinski,D.Schiraldi,Carbon 45(2007)1506e 1517.[8] B.Dong,B.-L.He,C.-L.Xu,H.-L.Li,Mater.Sci.Eng.,B 143(2007)7e 13.[9]H.Mi,X.Zhang,S.Yang,X.Ye,J.Luo,Mater.Chem.Phys.112(2008)127e 131.[11]P.Chandrasekhar,Conducting Polymers,Fundamentals and Applications.APractical Approach,Kluwer Academic Publishers,Boston e Dordrecht e London,1999.[12] D.E.Stilwell,S.-M.Park,J.Electrochem.Soc.135(1988)2254e 2262.[13]M.Aldissi,Intrinsically Conducting Polymers:An Emerging Technology,NorthAtlantic Treaty Organization.Scienti fic Affairs Division,Burlington,Vermont,USA,1992.[14]G.Wu,L.Li,J.-H.Li,B.-Q.Xu,Carbon 43(2005)2579e 2587.[15]S.R.Sivakkumar,W.J.Kim,J.-A.Choi,D.R.MacFarlane,M.Forsyth,D.-W.Kim,J.Power Sources 171(2007)1062e 1068.[16]L.Vaccarini,C.Goze,R.Aznar,V.Micholet,C.Journet,P.Dernier,Synth.Met.103(1999)2492e 2493.[17]K.R.Reddy,B.C.Sin,K.S.Ryu,J.Noh,Y.Lee,Synth.Met.159(2009)1934e1939.[18]Y.F.Huang,C.W.Lin,Polymer 53(2012)2574e 2582.[19] C.Zhou,J.Han,R.Guo,Macromolecules 42(2009)1252e 1257.[20] D.Li,R.B.Kaner,J.Am.Chem.Soc.128(2006)968e 975.[21] slau,Z.D.Zujovic,J.Travas-Sejdic,Macromol.Rapid Commun.30(2009)1663e 1668.[22]S.P.Surwade,N.Manohar,S.K.Manohar,Macromolecules 42(2009)1792e1795.[23]R.Cruz-Silvaa,J.Romero-García,J.L.Angulo-Sánchez, E.Flores-Loyola,M.H.Farías,F.F.Castillón,J.A.Díaz,Polymer 45(2004)4711e 4717.[24]H.Zhang,G.Cao,Z.Wang,Y.Yang,Z.Shi,Z.Gu,mun.10(2008)1056e 1059.[25]L.Nikzad,M.R.Vaezi,B.Yazdani,Int.J.Mod.Phys.:Conf.Ser.5(2012)527e 535.[26]J.Stejskal,I.Sapurina,M.Trchová,E.N.Konyushenko,P.Holler,Polymer 47(2006)8253e 8262.[27] A.G.Pandolfo,A.F.Hollenkamp,J.Power Sources 157(2006)11e 27.[28]X.-M.Liu,X.-G.Zhang,Sh.-Y.Fu,Mater.Res.Bull.41(2006)620e 627.[29] A.Sumboja,X.Wang,J.Yang,P.S.Lee,Electrochim.Acta 65(2012)190e 195.[30]W.-Ch.Chen,T.-Ch.Wen,H.Teng,Electrochim.Acta 48(2003)641e 649.[31]V.Gupta,N.Miura,Electrochim.Acta 52(2006)1721e 1726.[32]Y.Zhou,B.He,W.Zhou,J.Huang,X.Li,B.Wu,H.Li,Electrochim.Acta 49(2004)257e 262.[33]V.Gupta,N.Miura,J.Power Sources 157(2006)616e 620.[34]K.Rajendra Prasad,N.Munichandraiah,J.Power Sources 112(2002)443e 451.Fig.6.Cycle-life curves of nanostructured composite electrodes at 2A g À1.Fig.7.Relationship between the speci fic power density and speci fic energy density of the nanostructured composite electrodes in 0.5M H 2SO 4.M.A.Bavio et al./Journal of Power Sources 245(2014)475e 481480[35]T.C.Girija,M.V.Sangaranarayanan,J.Power Sources159(2006)1519e1526.[36]Q.Chen,K.Xue,W.Shen,F.Tao,S.Yin,W.Xu,Electrochim.Acta49(2004)4157e4161.[37]Q.Cheng,J.Tang,J.Ma,H.Zhang,N.Shinya,L.Qin,J.Phys.Chem.C115(2011)23584e23590.[38]S.K.Mondal,K.Barai,N.Munichandraiah,Electrochim.Acta52(2007)58e64.[39]J.L.Bredas,G.B.Street,Acc.Chem.Res.18(1985)309e315.[40]M.Wohlgenannt,X.M.Jiang,Z.V.Vardeny,Phys.Rev.B69(2004)241204(R).[41]G.Chakraborty,K.Gupta, D.Rana, A.K.Meikap,Adv.Nat.Sci.Nanosci.Nanotechnol.3(2012)035015(8pp).M.A.Bavio et al./Journal of Power Sources245(2014)475e481481。

相关文档
最新文档