2008高考数学概念方法题型易误点技巧总结(十)排列、组合和二项式定理1
排列、组合和二项式定理要点梳理

排列、组合和二项式定理要点梳理北京市第八十中学 孙世林此文发表于《中学生数理化》排列、组合和二项式定理是高中数学的重要内容之一,也是高考必考的内容之一,排列、组合和二项式定理是进一步学习概率论和数理统计的基础知识,该部分内容不论其思想方法和解题都有特殊性,概念性强,抽象性强,思维方法新颖。
本文在研究近几年高考试题的基础上,将排列、组合和二项式定理知识要点梳理如下.一、复习建议1、立足课本,紧扣考纲,夯实基础,突出重点由于排列、组合和二项式定理的考题多为基础题、常见题,多属中档题范围,因此复习时应控制题目的难度,立足课本,依据考纲掌握常见题型,不要过多地加宽加深,学习的重点是基本原理和有附加条件的排列及组合的实际应用问题,同时重视本部分知识与立体几何、平面解析几何等知识的交汇点处的题目;二项式定理应重视二项式系数与项的系数的区别和联系、通项1r n r r r n T C a b -+=的正确使用。
由于排列组合应用题极易犯“重复”或“遗漏”的错误,并且结果数目较大,无法一一检验的特点,这就要求考生加深对概念的理解,掌握知识的内在联系和区别,科学周全的思考、分析问题。
2、重视数学思想方法的复习和应用本章主要的数学思想有:化归思想,比较分类思想,极限思想和模型化思维方法。
学习时应注意发散思维和逆向思维,通过分类、分步把复杂问题分解,恰当地应用集合观点、整体思想,从全集、补集等入手,使问题简化;同时运用变式题目,进行多种解法训练,从不同角度,不同侧面对题目进行全面的分析,结合典型题的错解分析,查找思维的缺陷,提高分析解决问题的能力。
3、常见排列组合应用题的解题策略有以下几种:(1) 特殊元素优先安排的策略(2) 合理分类与准确分布的策略(3) 排列、组合混合问题先选后排的策略(4) 正难则反,等价转化的策略(5) 相邻问题捆绑处理的策略(6) 不相邻问题插空处理的策略(7) 定序问题除法处理的策略(8) 分排问题直接处理的策略(9) “小集团”排列问题中先整体后局部的策略(10) 构造模型的策略二、典例分析例1:(2006年,湖北)安排5名歌手的演出顺序时,要求某名歌手不第一个出场,另一名歌手不最后一个出场,不同排法的种数是 .(用数字作答)思路分析:解决这种由限制条件的排列问题,可用直接法,这时往往是对符合要求的情况进行合理的分类,分步,也可以利用间接法求解,即把问题中不符要求的情况求出来,从总数中减去即可。
高考数学知识点:排列与组合知识总结

高考数学知识点:排列与组合知识总结排列组合与二项式定理知识点1.计数原理知识点①乘法原理:N=n1·n2·n3·…nM (分步)②加法原理:N=n1+n2 +n3+…+nM (分类)2. 排列(有序)与组合(无序)Anm=n(n-1)(n-2)(n-3)-…(n-m+1)=n!/(n-m)!Ann =n!Cnm = n!/(n-m)!m!Cnm= Cnn-mCnm+Cnm+1= Cn+1m+1 k k!=(k+1)!-k!3.排列组合混合题的解题原则:先选后排,先分再排排列组合题的要紧解题方法:优先法:以元素为主,应先满足专门元素的要求,再考虑其他元素。
以位置为主考虑,即先满足专门位置的要求,再考虑其他位置。
捆绑法(集团元素法,把某些必须在一起的元素视为一个整体考虑)插空法(解决相间问题)间接法和去杂法等等在求解排列与组合应用问题时,应注意:(1)把具体问题转化或归结为排列或组合问题;(2)通过分析确定运用分类计数原理依旧分步计数原理;(3)分析题目条件,幸免“选取”时重复和遗漏;(4)列出式子运算和作答。
经常运用的数学思想是:①分类讨论思想;②转化思想;③对称思想。
4.二项式定理知识点:①(a+b)n=Cn0ax+Cn1an-1b1+ Cn2an-2b2+ Cn3an-3b3+…+ Cnran-rb r+-…+ Cn n-1abn-1+ Cnnbn专门地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn②要紧性质和要紧结论:对称性Cnm=Cnn-m最大二项式系数在中间。
(要注意n为奇数依旧偶数,答案是中间一项依旧中间两项)所有二项式系数的和:Cn0+Cn1+Cn2+ Cn3+ Cn4+…+Cnr+…+Cnn=2n 奇数项二项式系数的和=偶数项而是系数的和Cn0+Cn2+Cn4+ Cn6+ Cn8+…=Cn1+Cn3+Cn5+ Cn7+ Cn9+…=2n -1③通项为第r+1项:Tr+1= Cnran-rbr 作用:处理与指定项、特定项、常数项、有理项等有关问题。
高考数学概念方法题型易误点技巧总结(十)排列组合二项式

数学概念方法题型易误点技巧总结(十)排列、组合和二项式定理1.排列数中、组合数中.(1)排列数公式;。
如(1)1!+2!+3!+…+n!()的个位数字为 (答:3);(2)满足的= (答:8)(2)组合数公式;规定,.如已知,求 n,m的值(答:m=n=2)(3)排列数、组合数的性质:①;②;③;④;⑤;⑥.2.解排列组合问题的依据是:ACBD分类相加(每类方法都能独立地完成这件事,它是相互独立的,一次的且每次得出的是最后的结果,只需一种方法就能完成这件事),分步相乘(一步得出的结果都不是最后的结果,任何一步都不能独立地完成这件事,只有各个步骤都完成了,才能完成这件事,各步是关联的),有序排列,无序组合.如(1)将5封信投入3个邮筒,不同的投法共有种(答:);(2)从4台甲型和5台乙型电视机中任意取出3台,其中至少要甲型与乙型电视机各一台,则不同的取法共有种(答:70);(3)从集合和中各取一个元素作为点的坐标,则在直角坐标系中能确定不同点的个数是___(答:23);(4)72的正约数(包括1和72)共有个(答:12);(5)的一边AB上有4个点,另一边AC上有5个点,连同的顶点共10个点,以这些点为顶点,可以构成_____个三角形(答:90);(6)用六种不同颜色把右图中A、B、C、D四块区域分开,允许同一颜色涂不同区域,但相邻区域不能是同一种颜色,则共有种不同涂法(答:480);(7)同室4人各写1张贺年卡,然后每人从中拿1张别人送出的贺年卡,则4张贺年卡不同的分配方式有种(答:9);(8)是集合到集合的映射,且,则不同的映射共有个(答:7);(9)满足的集合A、B、C共有组(答:)3.解排列组合问题的方法有:(1)特殊元素、特殊位置优先法(元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置)。
如(1)某单位准备用不同花色的装饰石材分别装饰办公楼中的办公室、走廊、大厅的地面及楼的外墙,现有编号为1到6的6种不同花色的石材可选择,其中1号石材有微量的放射性,不可用于办公室内,则不同的装饰效果有_____种(答:300);(2)某银行储蓄卡的密码是一个4位数码,某人采用千位、百位上的数字之积作为十位个位上的数字(如2816)的方法设计密码,当积为一位数时,十位上数字选0. 千位、百位上都能取0. 这样设计出来的密码共有_______种(答:100);(3)用0,1,2,3,4,5这六个数字,可以组成无重复数字的四位偶数_______个(答:156);(4)某班上午要上语、数、外和体育4门课,如体育不排在第一、四节;语文不排在第一、二节,则不同排课方案种数为_____(答:6);(5)四个不同的小球全部放入编号为1、2、3、4的四个盒中。
高考数学新课标复习资料——排列、组合和二项式定理

2008年高考数学新课标复习资料——排列、组合和二项式定理1.两个原理.(1)分类计数原理和分步计数原理是排列组合的基础和核心,既可用来推导排列数、组合数公式,也可用来直接解题。
它们的共同点都是把一个事件分成若干个分事件来进行计算。
只不过利用分类计算原理时,每一种方法都可能独立完成事件;如需连续若干步才能完成的则是分步。
利用分类计数原理,重在分“类”,类与类之间具有独立性和并列性;利用分步计数原理,重在分步;步与步之间具有相依性和连续性。
比较复杂的问题,常先分类再分步,分类相加,分步相乘. (2)一个模型: 影射B A f →:个数若A 有年n 个元素,B 有m 个元素,则从A 到B 能建立nm 个不同的影射①n 件不同物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解:nm 种) ②四人去争夺三项冠军,有多少种方法?③从集合A={1,2,3}到集合B={3,4}的映射f 中满足条件f (3)=3的影射个数是多少? ④求一个正整数的约数的个数 (3)含有可重元素......的排列问题. 对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中限重复数为n 1、n 2……n k ,且n = n 1+n 2+……n k , 则S 的排列个数等于!!...!!21k n n n n n=.如:已知数字3、2、2,求其排列个数3!2!1)!21(=+=n 又例如:数字5、5、5、求其排列个数?其排列个数1!3!3==n .2.排列数mnA 中1,n m n m ≥≥∈N 、、组合数m n C 中,1,0,n m n m n m ≥≥≥∈、N . (1)排列数公式!(1)(2)(1)()()!mn n A n n n n m m n n m =---+=≤-;!(1)(2)21n n A n n n n ==--⋅。
如(1)1!+2!+3!+…+n !(*4,n n N ≥∈)的个位数字为 (答:3); (2)满足2886xx A A -<的x = (答:8)(2)组合数公式()(1)(1)!()(1)21!!m mn n mm A n n n m n C m n A m m m n m ⋅-⋅⋅-+===≤⋅-⋅⋅⋅-;规定01!=,01n C =.如已知16mn mnm n C C A +++=,求 n ,m 的值(答:m =n =2)(3)排列数、组合数的性质: ①mn m nn C C -=;②111mm m nn n C C C ---=+;从n 个不同元素中取出m 个元素后就剩下n-m 个元素,因此从n 个不同元素中取出 n-m 个元素的方法是一一对应的,因此是一样多的就是说从n 个不同元素中取出n-m 个元素的唯一的一个组合.(或者从n+1个编号不同的小球中,n 个白球一个红球,任取m 个不同小球其不同选法,分二类,一类是含红球选法有1m n 111m nC C C--=⋅一类是不含红球的选法有mn C )根据组合定义与加法原理得;在确定n+1个不同元素中取m 个元素方法时,对于某一元素,只存在取与不取两种可能,如果取这一元素,则需从剩下的n 个元素中再取m-1个元素,所以有C 1-m n ,如果不取这一元素,则需从剩余n 个元素中取出m 个元素,所以共有C mn 种,依分类原理有m n m n m n C C C11+-=+.③11kk nn kC nC --=;111111+++=+k n k n C n C k④1121++++=++++r n r n r r r r rrC C C C C ;⑤!(1)!!n n n n ⋅=+-;⑥11(1)!!(1)!n n n n =-++. (4)常用的证明组合等式方法. ① 裂项求和法. 如:)!1(11)!1(!43!32!21+-=++++n n n (利用!1)!1(1!1n n n n --=-)n.n!=(n+1)!-n! ② 导数法. ③ 数学归纳法. ④倒序求和法. 1321232-=++++n nn n n n n nC C C C一般地:已知等差数列{a n }的首项a 1,公差为d ,a 1C 0n+a 2C 1n+a 3C 2n+…+a n +1C nn=(2a 1+nd )·2n -1.⑤ 递推法(即用m n m n m n C C C 11+-=+递推)如:413353433+=+++n n C C C C C .⑥ 构造二项式. 如:n nn n n n C C C C 222120)()()(=+++ 证明:这里构造二项式n n n x x x 2)1()1()1(+=++其中nx 的系数,左边为22110nn n n n n n n n n n n C C C C C C C C ⋅++⋅+⋅+⋅-- ,22120)()()(n n n n C C C +++= 而右边n n C 2=. 更一般地:rnm r n m n r m n r m C C C C C C C +-=+++01103.解排列组合问题的依据是:分类相加(每类方法都能独立地完成这件事,它是相互独立的,一次的且每次得出的是最后的结果,只需一种方法就能完成这件事),分步相乘(一步得出的结果都不是最后的结果,任何一步都不能独立地完成这件事,只有各个步骤都完成了,才能完成这件事,各步是关联的),有序排列,无序组合. 如(1)将5封信投入3个邮筒,不同的投法共有 种(答:53);(2)从4台甲型和5台乙型电视机中任意取出3台,其中至少要甲型与乙型电视机各一台,则不同的取法共有 种(答:70);(3)从集合{}1,2,3和{}1,4,5,6中各取一个元素作为点的坐标,则在直角坐标系中能确定不同点的个数是___(答:23);(4)72的正约数(包括1和72)共有 个(答:12);(5)A ∠的一边AB 上有4个点,另一边AC 上有5个点,连同A ∠的顶点共10个点,以这些点为顶点,可以构成_____个三角形(答:90);(6)用六种不同颜色把右图中A 、B 、C 、D 四块区域分开,允许同一颜色涂不同区域,但相邻区域不能是同一种颜色,则共有 种不同涂法(答:480);(7)同室4人各写1张贺年卡,然后每人从中拿1张别人送出的贺年卡,则4张贺年卡不同的分配方式有 种(答:9);(8)f是集合{},,M a b c =到集合{}1,0,1N =-的映射,且()()f a f b +()f c =,则不同的映射共有 个(答:7);(9)满足}4,3,2,1{=C B A 的集合A 、B 、C 共有 组(答:47)3.解排列组合问题的方法有:一般先选再排,即先组合再排列,先分再排。
2008届高考数学概念方法题型易误点技巧总结九立体几何

则 AC 2+BD 2=
_____(答: 50);
( 4) 如果a、b是异面直线, P 是不在a、b上的任意一点,下列四个结论:①过点 P 一定可以
作直线 l 与a、b都相交; ②过点 P 一定可以作直线 l 与a、b都垂直;③过点 P 一定可以作平
面 α与a、b都平行; ④过点 P 一定可以作直线 l 与a、b都平行。 其中正确的结论是 _____(答:
②);
( 5) 如果两条异面直线称作一对,那么正方体的十二条棱中异面直线的对数为 _____(答: 24);
( 6) 已知平面 平面 a,b , b a A,c 且 c // a, 求证: b、 c 是异面直线.
5、异面直线所成角 的求法 : (1)范围 : (0, ] ;
2 (2)求法 :计算异面直线所成角的关键是平移(中点平移,顶点平移以及补形法:把空间图形 补成熟悉的或完整的几何体, 如正方体、 平行六面体、 长方体等, 以便易于发现两条异面直线间的关 系)转化为相交两直线的夹角。 如
如( 1) 如果命题“若 x y, y ∥ z,则 x z ”不成立,那么字母 x、 y、 z 在空间所表示的几何图
形一定是 _____(答: x、 y 是直线, z 是平面); ( 2) 已知 a,b,c 是直线, α、β 是平面,下列条件中能得出直线 a⊥平面 α的是 A 、a⊥b, a⊥c其中b α,c α B、a⊥b ,b∥ α C、α⊥β ,a∥ β D、a∥b, b⊥ α(答: D); ( 3)AB 为⊙ O 的直径, C 为⊙ O 上的一点, AD ⊥面 ABC ,AE ⊥BD 于 E,AF⊥ CD 于 F,求证: BD ⊥平面 AEF 。
线段 B1C)。
10、直线与平面平行的判定和性质 : (1)判定 :① 判定定理 :如果平面内一条直线和这个平面平面平行,那么这条直线和这个平面 平行;② 面面平行的性质 :若两个平面平行,则其中一个平面内的任何直线与另一个平面平行。 (2)性质 :如果一条直线和一个平面平行,那么经过这条直线的平面和这个平面相交的交线和 这条直线平行。 在遇到线面平行时,常需作出过已知直线且与已知平面相交的辅助平面,以便运用 线面平行的性质 。如
高中数学排列组合与二项式定理知识

高中数学排列组合与二项式定理知识
排列组合与二项式定理是高中数学的一个重要学习内容。
知识点你都掌握了吗?下面是店铺为你整理的高中数学排列组合与二项式定理知识,一起来看看吧。
高中数学排列组合知识
高中数学二项式定理知识
高中数学排列组合与二项式定理解题技巧
1. 掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。
2. 理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。
3. 理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。
4. 掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。
5. 了解随机事件的发生存在着规律性和随机事件概率的意义。
6. 了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。
7. 了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。
8. 会计算事件在n次独立重复试验中恰好发生k次的概率.。
排列、组合、二项式定理讲解

排列、组合、二项式定理1.掌握分类计数原理与分步计数原理、并能用它分析和解决一些简单的应用问题.2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题.3.理解组合的意义,掌握组合数计算公式和组合数性质,并能用它们解决一些简单的应用问题.4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题.排列与组合高考重点考察学生理解问题、综合运用分类计数原理和分步计数原理分析问题和解决问题的能力及分类讨论思想.它是高中数学中从内容到方法都比较独特的一个组成部分,是进一步学习概率论的基础知识.由于这部分内容概念性强,抽象性强,思维方法新颖,同时解题过程中极易犯“重复”或“遗漏”的错误,而且结果数目较大,无法一一检验,因此学生要学好本节有一定的难度.解决该问题的关键是学习时要注意加深对概念的理解,掌握知识的内在联系和区别,严谨而周密地去思考分析问题.二项式定理是进一步学习概率论和数理统计的基础知识,高考重点考查展开式及通项,难度与课本内容相当.另外利用二项式定理及二项式系数的性质解决一些较简单而有趣的小题,在高考中也时有出现.第1课时 两个计数原理1.分类计数原理(也称加法原理):做一件事情,完成它可以有n 类办法,在第一类办法中有m 1种不同的方法,在第二类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法,那么完成这件事共有N = 种不同的方法.2.分步计数原理(也称乘法原理):做一件事情,完成它需要分成n 个步骤,做第一步有m 1种不同的方法,做第二步有m 2种不同的方法,……,做n 步有m n 种不同的方法,那么完成这件事共有N = 种不同的方法.3.解题方法:枚举法、插空法、隔板法.例1. 高三(1)、(2)、(3)班分别有学生48,50,52人(1) 从中选1人当学生代表的方法有多少种?(2) 从每班选1人组成演讲队的方法有多少种?(3) 从这150名学生中选4人参加学代会有多少种方法?(4) 从这150名学生中选4人参加数理化四个课外活动小组,共有多少种方法?解:(1)48+50+52=150种 (2)48×50×52=124800种 (3)4150C (4)4150A 变式训练1:在直角坐标x -o -y 平面上,平行直线x=n ,(n=0,1,2,3,4,5),y=n ,(n=0,1,2,3,4,5),组成的图形中,矩形共有( )A 、25个B 、36个C 、100个D 、225个解:在垂直于x 轴的6条直线中任意取2条,在垂直于y 轴的6条直线中任意取2条,这样的4 条直线相交便得到一个矩形,所以根据分步记数原理知道:得到的矩形共有22515152626=⨯=⋅C C 个, 故选D 。
高中数学排列组合及二项式定理知识点

高中数学排列组合及二项式定理知识点高中数学之排列组合二项式定理一、分类计数原理和分步计数原理:分类计数原理:完成某事有多种不同的方法,这些方法间是彼此独立的,任选其中一种方法都能达到完成此事的目的,那么完成此事的方法总数就是这些方法种数的和。
分步计数原理:完成某事必须分成几个步骤,每个步骤都有不同的方法,而每个步骤中的任何一种方法与下一步骤中的每一个方法都可以连接,只有依次完成所有各步,才能达到完成此事的目的,那么完成此事的方法总数就是这些方法种数的积。
区别:如果任何一类办法中的任何一种方法都能完成这件事,则选用分类计数原理,即类与类之间是相互独立的,即“分类完成”;如果只有当n个步骤都做完,这件事才能完成,则选用分步计数原理,即步与步之间是相互依存的,连续的,即“分步完成”。
二、排列与组合:1)排列与组合的区别和联系:都是研究从一些不同的元素中取出n个元素的问题;区别:前者有顺序,后者无顺序。
2)排列数、组合数:排列数的公式:Ann(n-1)(n-2)。
(n-m+1)=n。
注意:①全排列:Ann。
②记住下列几个阶乘数,1!=1,2!=2,3!=6,4!=24,5!=120,6!=720;排列数的性质:①AnnAn-1将从n个不同的元素中取出m(m≤n)个元素,分两步完成:第一步从n个元素中选出1个排在指定的一个位置上;第二步从余下n-1个元素中选出m-1个排在余下的m-1个位置上)②AnmAn-1An-1将从n个不同的元素中取出m(m≤n)个元素,分两类完成:第一类:m个元素中含有a,分两步完成:第一步将a排在某一位置上,有m不同的方法。
第二步从余下n-1个元素中选出m-1个排在余下的m-1个位置上)即有mAn-1种不同的方法。
第二类:m个元素中不含有a,从n-1个元素中取出m个元素排在m个位置上,有An-1种方法。
组合数的公式:Cmnmm!(n-m)!/m!组合数的性质:CnCn从n个不同的元素中取出m个元素后,剩下n-m个元素,也就是说。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A CB D高考数学概念方法题型易误点技巧总结(十)排列、组合和二项式定理1.排列数m n A 中1,n m n m ≥≥∈N 、、组合数mn C 中,1,0,n m n m n m ≥≥≥∈、N .(1)排列数公式!(1)(2)(1)()()!mn n A n n n n m m n n m =---+=≤- ;!(1)(2)21n n A n n n n ==--⋅ 。
如(1)1!+2!+3!+…+n !(*4,n n N ≥∈)的个位数字为 (答:3); (2)满足2886x x A A -<的x = (答:8)(2)组合数公式()(1)(1)!()(1)21!!mm n nm mA n n n m n Cm n Am m m n m ⋅-⋅⋅-+===≤⋅-⋅⋅⋅- ;规定01!=,01n C =.如已知16mnmn m n C C A +++=,求 n ,m 的值(答:m =n =2) (3)排列数、组合数的性质: ①m n m n n C C -=; ②111m m m n n n C C C ---=+; ③11k k n n kC nC --=;④1121++++=++++r n r n r r r r r r C C C C C ; ⑤!(1)!!n n n n ⋅=+-;⑥11(1)!!(1)!n n n n =-++.2.解排列组合问题的依据是:分类相加(每类方法都能独立地完成这件事,它是相互独立的,一次的且每次得出的是最后的结果,只需一种方法就能完成这件事),分步相乘(一步得出的结果都不是最后的结果,任何一步都不能独立地完成这件事,只有各个步骤都完成了,才能完成这件事,各步是关联的),有序排列,无序组合.如(1)将5封信投入3个邮筒,不同的投法共有 种(答:53);(2)从4台甲型和5台乙型电视机中任意取出3台,其中至少要甲型与乙型电视机各一台,则不同的取法共有 种(答:70);(3)从集合{}1,2,3和{}1,4,5,6中各取一个元素作为点的坐标,则在直角坐标系中能确定不同点的个数是___(答:23);(4)72的正约数(包括1和72)共有 个(答:12);(5)A ∠的一边AB 上有4个点,另一边AC 上有5个点,连同A ∠的顶点共10个点,以这些点为顶点,可以构成_____个三角形(答:90);(6)用六种不同颜色把右图中A 、B 、C 、D 四块区域分开,允许同一颜色涂不同区域,但相邻区域不能是同一种颜色,则共有 种不同涂法(答:480);(7)同室4人各写1张贺年卡,然后每人从中拿1张别人送出的贺年卡,则4张贺年卡不同的分配方式有种(答:9);(8)f是集合{}=到集合{}N=-的映射,且()()1,0,1,,M a b c+f a f b=,则不同的映射共有个(答:7);()f c(9)满足}4,3,2,1{的集合A、B、C共有组(答:47)AB=C3.解排列组合问题的方法有:(1)特殊元素、特殊位置优先法(元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置)。
如(1)某单位准备用不同花色的装饰石材分别装饰办公楼中的办公室、走廊、大厅的地面及楼的外墙,现有编号为1到6的6种不同花色的石材可选择,其中1号石材有微量的放射性,不可用于办公室内,则不同的装饰效果有_____种(答:300);(2)某银行储蓄卡的密码是一个4位数码,某人采用千位、百位上的数字之积作为十位个位上的数字(如2816)的方法设计密码,当积为一位数时,十位上数字选0. 千位、百位上都能取0. 这样设计出来的密码共有_______种(答:100);(3)用0,1,2,3,4,5这六个数字,可以组成无重复数字的四位偶数_______个(答:156);(4)某班上午要上语、数、外和体育4门课,如体育不排在第一、四节;语文不排在第一、二节,则不同排课方案种数为_____(答:6);(5)四个不同的小球全部放入编号为1、2、3、4的四个盒中。
①恰有两个空盒的放法有__________种;②甲球只能放入第2或3号盒,而乙球不能放入第4号盒的不同放法有_________种(答:84;96);(6)设有编号为1、2、3、4、5的五个茶杯和编号为1、2、3、4、5的5个杯盖,将五个杯盖盖在五个茶杯上,至少有两个杯盖和茶杯的编号相同的盖法有_________种(答:31)(2)间接法(对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉))。
如在平面直角坐标系中,由六个点(0,0),(1,2),(2,4),(6,3),(-1,-2),(-2,-1)可以确定三角形的个数为_____(答:15)。
(3)相邻问题捆绑法(把相邻的若干个特殊元素“捆绑”为一个大元素,然后再与其余“普通元素”全排列,最后再“松绑”,将特殊元素在这些位置上全排列)。
如(1)把4名男生和4名女生排成一排,女生要排在一起,不同的排法种数为_____(答:2880);(2)某人射击8枪,命中4枪,4枪命中中恰好有3枪连在一起的情况的不同种数为_____(答:20);(3)把一同排6张座位编号为1,2,3,4,5,6的电影票全部分给4个人,每人至少分1张,至多分2张,且这两张票具有连续的编号,那么不同的分法种数是_____(答:144)(4)不相邻(相间)问题插空法(某些元素不能相邻或某些元素要在某特殊位置时可采用插空法,即先安排好没有限制元条件的元素,然后再把有限制条件的元素按要求插入排好的元素之间)。
如(1)3人坐在一排八个座位上,若每人的左右两边都有空位,则不同的坐法种数有_______种(答:24);(2)某班新年联欢晚会原定的5个节目已排成节目单,开演前又增加了两个新节目。
如果将这两个节目插入原节目单中,那么不同的插法种数为_____(答:42)。
(5)多排问题单排法。
如若2n个学生排成一排的排法数为x,这2 n个学生排成前后两排,每排各n个学生的排法数为y,则x,y的大小关系为_____(答:相等);(6)多元问题分类法。
如(1)某化工厂实验生产中需依次投入2种化工原料,现有5种原料可用,但甲、乙两种原料不能同时使用,且依次投料时,若使用甲原料,则甲必须先投放. 那么不同的实验方案共有_______种(答:15);(2)某公司新招聘进8名员工,平均分给下属的甲、乙两个部门.其中两名英语翻译人员不能同给一个部门;另三名电脑编程人员也不能同给一个部门,则不同的分配方案有______种(答:36);(3)9名翻译中,6个懂英语,4个懂日语,从中选拨5人参加外事活动,要求其中3人担任英语翻译,选拨的方法有____________种(答:90);(7)有序问题组合法。
如(1)书架上有3本不同的书,如果保持这些书的相对顺序不便,再放上2本不同的书,有 种不同的放法(答:20);(2)百米决赛有6名运动A 、B 、C 、D 、E 、F 参赛,每个运动员的速度都不同,则运动员A 比运动员F 先到终点的比赛结果共有_____种(答:360);(3)学号为1,2,3,4的四名学生的考试成绩{89,90,91,92,93}(1,2,3,4)i x i ∈=且满足1234x x x x <≤<,则这四位同学考试成绩的所有可能情况有_____种(答:15);(4)设集合{}1,2,3,4,5,6,7,8A =,对任意x A ∈,有(1)(2)(3)f f f <<,则映射:f A A →的个数是_____(答:3588C );(5)如果一个三位正整数形如“321a a a ”满足2321a a a a <<且,则称这样的三位数为凸数(如120、363、374等),那么所有凸数个数为_____(答:240);(6)离心率等于q plog(其中91,91≤≤≤≤q p 且*,N q p ∈)的不同形状的的双曲线的个数为_____(答:26)。
(8)选取问题先选后排法。
如某种产品有4只次品和6只正品,每只产品均不相同且可区分,今每次取出一只测试,直到4只次品全测出为止,则最后一只次品恰好在第五次测试时,被发现的不同情况种数是_____(答:576)。
(9)至多至少问题间接法。
如从7名男同学和5名女同学中选出5人,至少有2名女同学当选的选法有_______种(答:596) (10)相同元素分组可采用隔板法。
如(1)10个相同的球各分给3个人,每人至少一个,有多少种分发?每人至少两个呢?(答:36;15);(2)某运输公司有7个车队,每个车队的车都多于4辆且型号相同,要从这7个车队中抽出10辆车组成一运输车队,每个车队至少抽1辆车,则不同的抽法有多少种?(答:84)4、分组问题:要注意区分是平均分组还是非平均分组,平均分成n 组问题别忘除以n !。
如4名医生和6名护士组成一个医疗小组,若把他们分配到4所学校去为学生体检,每所学校需要一名医生和至少一名护士的不同选派方法有_______种(答:37440);5.二项式定理:011()n n n r n r r n nn n n n a b C a C a b C a b C b --+=+++++ ,其中组合数rn C 叫做第r +1项的二项式系数;展开式共有n +1项,其中第r +l 项1(0,1,2,r n rrr n T C ab r -+==,)n 称为二项展开式的通项,二项展开式通项的主要用途是求指定的项. 特别提醒:(1)项的系数与二项式系数是不同的两个概念,但当二项式的两个项的系数都为1时,系数就是二项式系数。
如在()n ax b +的展开式中,第r+1项的二项式系数为r n C ,第r+1项的系数为r n rrn C ab -;而1()nx x+的展开式中的系数就是二项式系数;(2)当n 的数值不大时往往借助杨辉三角直接写出各项的二项式系数;(3)审题时要注意区分所求的是项还是第几项?求的是系数还是二项式系数? 如(1)371(2)x x-的展开式中常数项是____(答:14);(2)3410(1)(1)(1)x x x ++++++ 的展开式中的3x 的系数为______ (答:330); (3)数100111-的末尾连续出现零的个数是____(答:3); (4)403(72)x +展开后所得的x 的多项式中,系数为有理数的项共有____项(答:7);(5)若23456161520156(21)x x x x x x x N x -+-+-+∈≤且的值能被5整除,则x 的可取值的个数有____个(答:5);(6)若,1,0=+<y x xy 且二项式9)(y x +按x 降幂展开后,其第二项不大于第三项,则x 的取值范围是 (答:(1,)+∞);(7)函数1010()(1sin )(1sin )f x x x =-++的最大值是_______(答:1024).6、二项式系数的性质:(1)对称性:与首末两端“等距离”的两个二项式系数相等,即mn n mn C C -=;(2)增减性与最大值:当12n r +≤时,二项式系数C rn 的值逐渐增大,当12n r +≥时,C rn 的值逐渐减小,且在中间取得最大值。