通信原理教程+樊昌信+习题答案第三章
《通信原理》第六版-樊昌信、曹丽娜课后标准答案-第三章--随机过程[]
![《通信原理》第六版-樊昌信、曹丽娜课后标准答案-第三章--随机过程[]](https://img.taocdn.com/s3/m/0e3c87a3f111f18582d05a1c.png)
本章练习题:3-1.设是的高斯随机变量,试确定随机变量的概率密度函数,其中均为常数。
查看参考答案3-2.设一个随机过程可表示成式中,是一个离散随机变量,且试求及。
查看参考答案3-3.设随机过程,若与是彼此独立且均值为0、方差为的高斯随机变量,试求:(1)、(2)的一维分布密度函数;(3)和。
查看参考答案3-4.已知和是统计独立的平稳随机过程,且它们的均值分别为和,自相关函数分别为和。
(1)试求乘积的自相关函数。
(2)试求之和的自相关函数。
查看参考答案3-5.已知随机过程,其中,是广义平稳过程,且其自相关函数为=随机变量在(0,2)上服从均匀分布,它与彼此统计独立。
(1)证明是广义平稳的;(2)试画出自相关函数的波形;(3)试求功率谱密度及功率。
查看参考答案3-6.已知噪声的自相关函数为=(为常数)(1)试求其功率谱密度及功率;(2)试画出及的图形。
查看参考答案3-7.一个均值为,自相关函数为的平稳随机过程通过一个线性系统后的输出过程为(为延迟时间)(1)试画出该线性系统的框图;(2)试求的自相关函数和功率谱密度。
查看参考答案3-8. 一个中心频率为、带宽为的理想带通滤波器如图3-4所示。
假设输入是均值为零、功率谱密度为的高斯白噪声,试求:图3-4(1)滤波器输出噪声的自相关函数;(2)滤波器输出噪声的平均功率;(3)输出噪声的一维概率密度函数。
查看参考答案3-9. 一个RC低通滤波器如图3-5所示,假设输入是均值为零、功率谱密度为的高斯白噪声,试求:(1)输出噪声的功率谱密度和自相关函数;(2)输出噪声的一维概率密度函数。
图3-5查看参考答案3-10. 一个LR低通滤波器如图3-6所示,假设输入是均值为零、功率谱密度为的高斯白噪声,试求:(1)输出噪声的自相关函数;(2)输出噪声的方差。
图3-6查看参考答案3-11.设有一个随机二进制矩形脉冲波形,它的每个脉冲的持续时间为,脉冲幅度取的概率相等。
通信原理第3章(樊昌信第七版)

3.3.3 高斯随机变量
定义:高斯过程在任一时刻上的取值是一个正态分布的 随机变量,也称高斯随机变量,其一维概率密度函数为
1
(x a)2
f (x)
2
exp
2 2
式中 a - 均值
2 - 方差
f (x) 1 2
曲线如右图:
o
a
x
7
性质
f (x)对称于直线 x = a,即
f a x f a x
1 1 xa
erf
2 2 2σ
式中
erf (x)
2
x 0
et
2
dt
-误差函数,可以查表求出其值。10
用互补误差函数erfc(x)表示正态分布函数:
式中
F
(x)
1
1 2
erfc
x
a
2
erfc(x) 1 erf (x) 2 et2dt
x
当x > 2时,
erfc(x) 1 ex2 x
11
用Q函数表示正态分布函数:
➢ Q函数定义: Q(x) 1 et2 /2dt
2 x
➢ Q函数和erfc函数的关系:
Q(x)
1 2
erfc
x 2
erfc(x) 2Q( 2 x)
➢ Q函数和分布函数F(x)的关系:
F ( x)
1
1 2
erfc
x
a
2
1
Q
x
a
➢ Q函数值也可以从查表得到。
f (x) 1 2
f (x)dx 1
a
1
f (x)dx f (x)dx
Байду номын сангаас
《通信原理》课后习题答案及每章总结(樊昌信-国防工业出版社-第五版)第三章

《通信原理》习题参考答案第三章3—1。
设一恒参信道的幅频特性和相频特性分别为 ()()⎩⎨⎧-==d t K H ωωϕω0其中,K 0和t d 都是常数。
试确定信号s(t )通过该信道后的输出信号的时域表达式,并讨论之。
解:由信道的幅频特性和相频特性可以得出信道的传输函数为:()dt j e K H ωω-=0∴ ()()ωωπωd e H t H tj ⋅=⎰∞+∞-21 ωπωωd e e K t j t j d ⋅=⎰∞+∞--021 ()ωπωd e K d t t j -∞+∞-⎰=021 ()d t t K -=δ0∴信号s(t )通过该信道后的输出信号s o (t )的时域表达式为: ()()()t H t s t s o *= ()()d t t K t s -*=δ0()d t t s K -=0可见,信号s(t )通过该信道后信号幅度变为K 0,时间上延迟了t d 。
3—2。
设某恒参信道的幅频特性为()[]dt j e T H ωωω-+=0cos 1其中,t d 为常数。
试确定信号通过该信道后的输出信号表达式,并讨论之.解: ()()ωωπωd e H t H tj ⋅=⎰∞+∞-21 []ωωπωωd e e T tj t j d ⋅⋅+=-∞+∞-⎰0cos 121 ()()⎥⎦⎤⋅+⎢⎣⎡=⎰⎰∞+∞--∞+∞--ωωωπωωd e T d e d d t t j t t j 0cos 21 ()()()d d d t T t t T t t t --+-++-=002121δδδ∴信号s (t )通过该信道后的输出信号s 0(t )的表达式为:()()()t H t s t s o *=()()()()⎥⎦⎤⎢⎣⎡--+-++-*=d d d t T t t T t t t t s 002121δδδ ()()()d d d t T t s t T t s t t s --+-++-=002121可见,信号s(t)通过该信道后会产生延时.3-3。
通信原理教程(第三版)樊昌信 部分课后习题答案

第一章:信息量、平均信息速率、码元速率、信息速率 第二章:习题2.1 设随机过程X (t )可以表示成:()2cos(2), X t t t πθ=+-∞<<∞式中,θ是一个离散随机变量,它具有如下概率分布:P (θ=0)=0.5,P (θ=π/2)=0.5试求E [X (t )]和X R (0,1)。
解:E [X (t )]=P (θ=0)2cos(2)t π+P (θ= π/2)2cos(2)=cos(2)sin 22t t t ππππ+-cos t ω习题2.2 设一个随机过程X (t )可以表示成:()2cos(2), X t t t πθ=+-∞<<∞判断它是功率信号还是能量信号?并求出其功率谱密度或能量谱密度。
解:为功率信号。
[]/2/2/2/21()lim ()()1lim 2cos(2)*2cos 2()T X T T T T T R X t X t dt T t t dt T ττπθπτθ→∞-→∞-=+=+++⎰⎰222cos(2)j t j t e e πππτ-==+2222()()()(1)(1)j f j tj t j f X P f R e d ee e df f πτπππττττδδ∞-∞---∞-∞==+=-++⎰⎰习题2.6 试求X (t )=A cos t ω的自相关函数,并根据其自相关函数求出其功率。
解:R (t ,t+τ)=E [X (t )X (t+τ)] =[]cos *cos()E A t A t ωωτ+[]221cos cos (2)cos ()22A A E t R ωτωτωττ=++== 功率P =R(0)=22A习题2.10 已知噪声()t n 的自相关函数()ττk -e 2k R n =,k 为常数。
(1)试求其功率谱密度函数()f P n 和功率P ;(2)画出()τn R 和()f P n 的曲线。
樊昌信《通信原理》(第7版)章节题库(随机信号)【圣才出品】

第3章 随机信号一、选择题某二进制随机信号的功率谱密度计算公式为则该信号( )。
A .含有f s 谐波分量 B .不含f s 谐波分量 C .不含直流分量 D .含有2f s 谐波分量 【答案】B二、填空题1.平稳随机过程的统计特性不随时间的推移而不同,其一维分布与______无关,二维分布只与______有关。
【答案】时间;时间间隔【解析】平稳随机过程其一维概率密度函数与时间t 无关,即1111(,)()f x t f x =; 而二维分布函数只与时间间隔τ=t 2-t 1有关,即21212212(,;,)(,;)f x x t t f x x τ=。
2.一个均值为零、方差为σ2的窄带平稳高斯过程,其同相分量和正交分量是______过程,均值为______,方差为______。
【答案】平稳高斯;0;2n σ【解析】由结论可知,一个均值为零的窄带平稳高斯过程,它的同相分量和正交分量同样是平稳高斯过程,而且均值为零,方差也相同。
此外,在同一时刻上得到的同相分量和正交分量是互不相关的或统计独立的。
3.均值为零的平稳窄带高斯过程,其包络的一维分布是______,其相位的一维分布是______。
【答案】瑞利分布;均匀分布【解析】在窄带高斯随机过程中,对于均值为0、方差为σ2的平稳高斯窄带过程,其包络和相位的一维分布分别为瑞利分布和均匀分布,且两者统计独立。
4.高斯白噪声在______时刻上,随机变量之间不相关,且统计独立。
【答案】不同【解析】由白噪声的自相关函数()()02n R τδτ=知高斯白噪声在不同时刻上(即τ=0)变量之间不相关且统计独立。
5.设n (t )为高斯白噪声,则合成波通过中心频率为ω1的窄带滤波器后的输出包络服从______分布;若r (t )通过中心频率为ω2的窄带滤波器,则输出包络服从______分布。
【答案】莱斯分布(广义瑞利分布);瑞利分布【解析】正弦波加窄带高斯噪声的包络分布f (z )与信噪比有关。
《通信原理》樊昌信__课后习题答案

解:(1)g1(t)=g(t) G(f)
g2(t)= -g(t) -G(f)
功率谱密度:
双极性二进制信号的功率谱:
(2)有。
故
5.7设一个基带传输系统接收滤波器的输出码元波形h(t)如图5.3所示。
(1)试求该基带传输系统的传输函数H(f);
第一章 概论
1.3某个信息源由A、B、C、D等4个符号组成。这些符号分别用二进制码组00、01、10、11表示。若每个二进制码元用宽度为5ms的脉冲传输,试分别求出在下列条件下的平均信息速率。
(1)这4个符号等概率出现;
(2)这4个符号出现的概率分别为1/4、1/4、3/16、5/16。
解:每秒可传输的二进制位为:
(2) 若其信道传输函数C(f)=1,且发送滤波器和接收滤波器的传输函数相同,即GT(f)=GR(f),试求GT(f)和GR(f)的表示式。
解:(1)
(2)
故
5.8设一个基带传输系统的传输函数H(f)如图5.4所示。
(1)试求该系统接收滤波器输出码元波形的表示式;
(2) 若其中基带信号的码元传输RB=2f0,试用奈奎斯特准则衡量该系统能否保证无码间串扰传输。
解:信噪比为:r=2
解:输入信号码元序列:0 1 1 1 0 0 1 1 0 1 0 0 0
相对码元序列:0 0 1 0 1 1 1 0 1 1 0 0 0 0
相对相位序列:0π0πππ0ππ0 0 0 0
绝对相位序列:0πππ0 0ππ0π0 0 0
第七章同步
7.2设载波同步相位误差等于10o,信噪比r等于10dB。试求此时2PSK信号的误码率。
等效矩形带宽为:
通信原理教程+樊昌信+习题答案第三章

第三章习题习题3.1 设一个载波的表达式为()5cos1000c t t π=,基带调制信号的表达式为:m(t)=1+cos 200t π。
试求出振幅调制时已调信号的频谱,并画出此频谱图。
解: ()()()()()t t t c t m t s ππ1000cos 5200cos 1+==()t t t t t t ππππππ800c o s 1200c o s 251000c o s 51000c o s 200c o s 51000c o s 5++=+= 由傅里叶变换得()()()[]()()[]()()[]400400456006004550050025-+++-+++-++=f f f f f f f S δδδδδδ 已调信号的频谱如图3-1所示。
图3-1 习题3.1图习题3.2 在上题中,已调信号的载波分量和各边带分量的振幅分别等于多少? 解:由上题知,已调信号的载波分量的振幅为5/2,上、下边带的振幅均为5/4。
习题3.3 设一个频率调制信号的载频等于10kHZ ,基带调制信号是频率为2 kHZ 的单一正弦波,调制频移等于5kHZ 。
试求其调制指数和已调信号带宽。
解:由题意,已知m f =2kHZ ,f ∆=5kHZ ,则调制指数为52.52f m f m f ∆=== 已调信号带宽为 2()2(52)14 k m B f f =∆+=+=习题3.4 试证明:若用一基带余弦波去调幅,则调幅信号的两个边带的功率之和最大等于载波频率的一半。
证明:设基带调制信号为'()m t ,载波为c (t )=A 0cos t ω,则经调幅后,有'0()1()cos AM s t m t A t ω⎡⎤=+⎣⎦已调信号的频率 22'220()1()cos AM AM P s t m t A t ω⎡⎤==+⎣⎦22'222'22000cos ()cos 2()cos A t m t A t m t A t ωωω++因为调制信号为余弦波,设2(1)1000 kHZ 100f m B m f f =+∆==,故2''21()0, ()22m m t m t ==≤则:载波频率为 2220cos 2c A P A t ω==边带频率为 '222'2220()()cos 24s m t A A P m t A t ω=== 因此12s c P P ≤。
通信原理教程(第三版)樊昌信部分课后习题答案

A
T
O
T
t
5
(1)由图 5-21 得
图 5-2 习题图 1
g (t)
A1
2 T
t
,
t
T 2
0
其他
g(t) 的频谱函数为:
G(w) AT Sa2 wT 2 4
由 题 意 , P0 P1 P 1/ 2 , 且 有 g1(t) = g(t) , g 2 (t) =0 , 所 以
第一章: 信息量、平均信息速率、码元速率、信息速率 第二章:
习题 设随机过程 X(t)可以表示成:
X (t) 2cos(2t ), t
式中, 是一个离散随机变量,它具有如下概率分布:P( =0)=,
P( = /2)=
试求 E[X(t)]和 RX (0,1) 。
解 E[X(t)]=P( =0)2 cos(2t) +P( = cost
T /2 T /
2
2
cos(2
t
)
*
2
cos
2
(t
)
dt
2 cos(2 ) e j2t e j2t
P( f )
RX
(
)e
j
2
f
d
(e
j
2
t
e j2t )e j2
f d
( f 1) ( f 1)
1
习题 试求 X(t)=A cost 的自相关函数,并根据其自相关函数求 出其功率。
(1) 试写出该信号序列功率谱密度的表达式,并画出其曲线; (2) 该序列中是否存在 f 1 的离散分量若有,试计算其功率。
gT(t)
1
T / 2 图/ 25-4 习0 题图 / 2 T / 2 t 解:(1)基带脉冲波形 g(t) 可表示为:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6
2*10
10*
2000 sin 2000 t
10 kHZ
2000 2
mf
f fm
10*
10 10
3 3
10
10 rad 。
( 3)因为 FM 波与 PM 波的带宽形式相同, 即 BFM 的带宽为 B= 2(10+1)* 10
3
2(1 m f ) f m ,所以已调信号
22 kHZ
4
习题 3.9 已知调制信号 m(t)=cos(2000 π t)+cos(4000 , π 载波为 t) cos10 πt ,进行单 边带调制,试确定该单边带信号的表达试,并画出频谱图。 解: 方法一:若要确定单边带信号,须先求得 m(t) 的希尔伯特变换 m ’ ( t ) =cos ( 2000πt -π /2 ) +cos( 4000πt -π /2 ) =sin ( 2000πt ) +sin ( 4000πt ) 故上边带信号为 SUSB(t)=1/2m(t) coswct-1/2m’ (t)sinwct
10
《通信原理》习题第三章
= 1/2cos(12000 π t)+1/2cos(14000 下边带信号为
π t)
SLSB(t)=1/2m(t) coswct+1/2m ’ (t) sinwct =1/2cos(8000 π t)+1/2cos(6000 π t) 其频谱如图 3-2 所示。 π /2 (t)
由傅里叶变换得 S f 5 2 5 f f 500 400 f f 500 400 5 4 f 600 f 600
4 已调信号的频谱如图
3-1 所示。 S(f) 5 2
54
- 600 - 500- 400 0 400500600
图 3-1 习题 3.1 图
习题 3.2
在上题中,已调信号的载波分量和各边带分量的振幅分别等于多少? 5/2,上、下边带的振幅均为 5/4。
zt
xt yt F
1
F
-1
Z
-1
Z X
F
X Y
Y
Z
设一基带调制信号为正弦波, 其频率等于 10kHZ ,振幅等于 1V 。它对 10rad。试计算次相位调制信 5kHZ ,试求其带宽。
max
频率为 10mHZ 的载波进行相位调制,最大调制相移为 号的近似带宽。若现在调制信号的频率变为 解 :由题意, f m 瞬时相位偏移为 10 kHZ , A m (t ) 1 V 最大相移为 10 。
0
t
已调信号的频率
PAM
s
2 AM
(t )
1 m (t )
'
2
A cos
2
2 0
t
8
《通信原理》习题第三章
A cos 因为调制信号为余弦波,设
'
2
2
0t
m ( t ) A cos
'2
2
2
0t
2m ( t ) A cos
'
2
2
0
t
B f
m (t )
2(1 mf ) f m 1000 kHZ 100
0, A cos
若 f m =5kHZ ,则带宽为 B 2(1 m f ) f m 2(1 10)*5 110 kHZ
习题 3.7 若用上题中的调制信号对该载波进行频率调制,并且最大调制频移为 1mHZ 。试求此频率调制信号的近似带宽。 解 :由题意, 最大调制频移
f 1000 kHZ ,则调制指数 m f
f fm
《通信原理》习题第三章
第三章习题
习题 3.1 设一个载波的表达式为 c( t )
5cos1000 t ,基带调制信号的表达式为:
m(t)=1+ cos200 t 。试求出振幅调制时已调信号的频谱,并画出此频谱图。 解: st mt c t 1 cos200 t 5 cos 1000 t
5c o 1 s0 0 0 t 5c o 2 s 0 0t c o 1 s0 0 0 t 5c o 1 s0 0 0 t 5 2 c o1 s2 0 0 t c o8 s 0 0t
m
10 rad
k pm( t ) ,则 k p
d (t ) dt kp
m
瞬时角频率偏移为 d
sin
t 则最大角频偏
kp
m
。
因为相位调制和频率调制的本质是一致的,
根据对频率调制的分析, 可得调制指
9
《通信原理》习题第三章
数
mf
m
kp
m m
kp
10
因此,此相位调制信号的近似带宽为 B 2(1 m f ) f m 2(1 10)*10 220 kHZ
1000 /10 100
故此频率调制信号的近似带宽为 s( t ) 10cos(2 *10 t 10cos2 *10 t )
6 3 6 3
习题 3.8 设角度调制信号的表达式为
s( t )
10cos(2 *10 t 10cos2 *10 t ) 。 试求:
( 1)已调信号的最大频移; ( 2)已调信号的最大相移; ( 3)已调信号的带 宽。 解: ( 1)该角波的瞬时角频率为 (t ) 故最大频偏 ( 2)调频指数 故已调信号的最大相移
2 2 2
,故
2
m (t) t A
2
'2
m
1 2
2
则:载波频率为 边带频率为 因此
Ps Pc 1 2 Ps
P c
' 2
0
2 t m (t) A 2
' 2 2
m ( t ) A cos
2 0
A 4
2
。即调幅信号的两个边带的功率之和最大等于载波频率的一半。
习题 3.5 试证明;若两个时间函数为相乘关系,即 为卷积关系: Z( )=X ( )*Y( )。 证明 :根据傅立叶变换关系,有
F
1
z(t)=x(t)y(t) ,其傅立叶变换
X
Y Y
1 2 1 2 1 2 1 2 xt yt
1 2 X u
X uY 1 2 1 2 Y
u du e d ud Y e d
j t j t e u
j t
变换积分顺序 : F -1 X
X ue
j ut
du
X u e y t du
j ut
又因为 则 即 习题 3.6
解 :由上题知,已调信号的载波分量的振幅为 习题 3.3 设一个频率调制信号的载频等于
10
5kHZ 。试求其调制指数和已调信号带宽。
解 :由题意,已知 f m =2kHZ , f =5kHZ ,则调制指数为
mf f fm
m
5 2
2.5
已调信号带宽为
B
2( f
f )
2(5
2)
14 k
习题 3.4 试证明:若用一基带余弦波去调幅,则调幅信号的两个边带的功率之 和最大等于载波频率的一半。 证明 :设基带调制信号为 m ( t ) ,载波为 c(t)=A cos
sAM (t ) 1 m (t ) A cos
' ' 0
t ,则经调幅后,有