电磁兼容设计技术-308页文档资料共308页

合集下载

电磁兼容设计技术PPT课件

电磁兼容设计技术PPT课件

1
2
3
1
I1
I2
I3
A
I2
A
R2 B R3 C
I1
R1
2
3
B C
I3
串联单点接地 优点:简单 缺点:公共阻抗耦合
并联单点接地 优点:无公共阻抗耦合 缺点:接地线过多
58
串联单点、并联单点混合接地
模拟电路1
模拟电路2
模拟电路3
数字信息处理电路 马达驱动电路
数字逻辑控制电路 继电器驱动电路
59
线路板上的地线
连续频谱
31
脉冲信号的频谱
V(f) = 2Ad
tr
d
Sin(fd) fd
A
Sin(ftr) ftr
(V/MHz)
tr、d 的单位s,f的单位MHz,A的单位V
32
脉冲频谱的化简
V(f) = 2Ad
Sin(fd) fd
• 仅考虑最大值,sinX = 1 • 不考虑相位,仅考虑绝对值 • 当X趋于0时,sinX/X = 1
周期性脉冲信号的频谱
A
tr
Cn = 2A
d
T
(d+tr) T
Sin[n(d+tr)/T] n(d+tr)/T
Sin(ntr/T) ntr/T
35
脉冲信号的频谱包络线
dBV 20lg (2Ad/T)
-20dB/dec
1/d
-40dB/dec
1/tr
lg (f)
36
上升沿越陡高频越丰富
37
扩谱时钟
25
分贝(dB) 的概念
分贝的定义:分贝数 = 10lg
P2 P1

电磁兼容_精品文档

电磁兼容_精品文档

L
0.2l
ln
4l D
H
2-4-4
式中l和D的单位为m。
导线的总阻抗为:
Z RRF jL
Z RR2F L2
2-4-5 2-4-6
对于高频情况,│ωL│>>RRF,因此高频时 导线的阻抗为*:
Z
L
1
1 2
RRF
L
2
2-4-7
一般情况下, 对于高频信号, │ωL│>>RRF> >RDC, 因此导线的阻抗主要是电感的感抗。频 率越高, 感抗越大, 这对于信号的传输是很不利的。 因此要求负载阻抗应和传输线的特性阻抗匹配, 这样信号沿传输线传播没有反射, 直至终端为负 载电阻所吸收。
对于电阻性耦合, 以上各种公共阻抗(例如电 源内阻、公共接地回路的阻抗、公用地线的电阻…) 都很小, 属于分布阻抗(分布电阻…), 在电路图 上都被忽略, 但是在研究干扰时, 成为干扰信号的 耦合途径。
三、电容性型耦合:
f 较高时, 干扰信号和可以通过导线间的分布电 容从一个回路传到另一个回路, 称为电容性型耦合。
A与辐射频率、传播距离、地面参数、气候条件 等因素有关。
∴ 损耗媒质中的传播衰减为:
L
20
lg
4 r
GT
(dB)
GR
(dB)
A(dB)
2 4 25
2.辐射骚扰的传播途径 表2-4-6 电磁波波段的划分
波段名称 频率范围(Hz) 长波 100K~300K
波长范围 (m)
3000~ 1000
中波
可以看出, 导线的高频电阻比直流电阻大。下表 中列出了一根直径为0.2mm, 长度为l0cm的铜导线的 高频电阻。
表为直径为0.2mm, 长度为l0cm的铜导线的高频电阻

电磁兼容设计

电磁兼容设计

电磁兼容设计EMC的设计原则主要包括电磁妥协、电磁传导和电磁辐射三个方面。

其中,电磁妥协指系统或设备在其电磁环境中所具备的稳定可靠性和干扰抑制能力;电磁传导指电磁干扰通过导线、电缆等电路途径传输的过程;电磁辐射指电磁干扰通过空气中的辐射传输的过程。

EMC设计的目标是在满足设计要求的前提下,通过合理的电磁设计手段,使系统或设备能够在电磁环境中稳定可靠地工作,同时对周围环境产生的电磁干扰控制在一定范围内。

EMC设计的方法主要包括减少敏感性、抑制干扰、提高屏蔽和地线设计。

减少敏感防止设备受到外界电磁场的干扰,通常可以采取一些措施,如增加设备的抗干扰性能、优化电路布局和线路板设计等。

抑制干扰可通过增强设备的抑制功能,如增大屏蔽效果和电源滤波等手段来实现。

提高屏蔽能力是抑制电磁辐射和传导的有效手段,常见的屏蔽方法包括金属外壳屏蔽、电磁屏蔽材料应用、屏蔽接地等。

地线设计则是保证设备或系统的电磁兼容性的关键,应遵循地线独立性、地线的连续性、地线的低阻抗和建立合理的地线结构等原则。

EMC设计在现代工程中的重要性不言而喻。

如今,电子设备广泛应用于工业、航空航天、通信、医疗、军事等领域,其性能和可靠性对终端产品的质量和稳定运行起着至关重要的作用。

而在电磁环境复杂多变的情况下,需要通过合理的EMC设计手段来保证设备的正常工作。

EMC设计不仅能够提高设备的抗干扰能力,减少电磁相互干扰带来的工作不稳定等问题,也有助于提高设备的功能完整性、稳定性和可靠性,同时带来更好的性价比和用户体验。

在实际应用中,EMC设计涉及到多个方面的问题。

首先,需要对电磁场特性进行准确的测量和分析,以了解系统或设备所处的电磁环境。

其次,在电路设计和线路板布局方面,需要注意电磁兼容性的要求,采取合适的技术手段,如差分信号传输、噪声屏蔽等。

此外,还需要有效地管理和控制系统或设备产生的电磁辐射和传导干扰,选用合适的屏蔽材料和设计合理的地线结构。

最后,通过全面的测试和验证手段,验证设计方案的合理性和可行性,确保设备在正常工作和异常情况下的电磁兼容性能。

电磁兼容技术

电磁兼容技术

电磁兼容技术电磁兼容资料 EMC 设计技术EMC 设计技术内容提要主要内容包括:1. 电路设计(数字电路、模拟电路、开关电源、通信设备)和器件选择2. 电缆和连接器3. 滤波器和瞬态干扰抑制4. 屏蔽5. 线路板设计(包括传输线)6. 静电放电、机电设备和电源功率因数校正由于已经有很多关于以上问题的教科书,因此这里仅将问题提出并介绍最实用技术中的一些关键点,这些内容都是十分重要且实用的。

但我们在这里并不介绍这些技术为什么管用,而仅介绍这些技术是什么,怎样应用。

当然,了解这些技术的原理对于灵活应用这些技术是十分必要的,您可以参考其它教科书。

1 电路设计及 EMC 器件选择在新设计及开发项目的开始,正确选择有源与无源器件及完善的电路设计技术,将有利于以最低的成本获得 EMC 认证,减少产品因屏蔽和滤波所带来的额外的成本、体积和重量。

这些技术也可以提高数字信号的完整性及模拟信号信噪比,可以减少重复使用硬件及软件至少一次,这也将有助于新产品达到其功能技术要求,尽早投入市场。

这些 EMC 技术应视为公司竟争优势的一部分,有助于使企业获得最大的商业利益。

1.1 数字器件与 EMC 电路设计1.1.1 器件选择大部分数字 IC 生产商都至少能生产某一系列辐射较低的器件,同时也能生产几种抗 ESD 的 I/O 芯片,有些厂商供应 EMC 性能良好的 VLSI(有些 EMC 微处理器比普通产品的辐射低 40dB);大多数数字电路采用方波信号同步,这将产生高次谐波分量,如图 1 示。

时钟速率越高,边沿越陡,频率和谐波的发射能力也越高。

因此,在满足产品技术指标的前提下,尽量选择低速时钟。

在 HC 能用时绝不要使用 AC, CMOS4000 能行就不要用 HC。

要选择集成度高并有 EMC 特性的集成电路,比如:电源及地的引脚较近多个电源及地线引脚输出电压波动性小C:\通用电子_EMC 培训\EMC_Design_Tech_for_GE.doc Page 1 of 85电磁兼容资料 EMC 设计技术可控开关速率与传输线匹配的 I/O 电路差动信号传输地线反射较低对 ESD 及其他干扰现象的抗扰性输入电容小输出级驱动能力不超过实际应用的要求电源瞬态电流低(有时也称穿透电流)这些参数的最大、最小值应由其生产商一一指明。

EMC电磁兼容设计资料

EMC电磁兼容设计资料

EMC电磁兼容设计资料在EMC设计中,首要考虑的是设备本身产生的电磁辐射。

电子设备工作时会产生电磁辐射,通过合理的设计措施可以降低这种辐射的强度和频谱分布。

常用的设计措施包括但不限于:1.电磁波屏蔽:通过合理的屏蔽结构,减少电磁波辐射到设备外部的可能。

2.地线设计:合理设计地线,确保设备的电流回路畅通,减少电磁波辐射。

3.电源线滤波:加入适当的滤波器,减小设备对电源线上的干扰信号的传导。

4.线长控制:对于高频信号的传输线,控制其长度,避免信号传输过程中的反射和辐射。

另一方面,EMC设计也要考虑到设备受到外界电磁干扰的影响。

外界电磁干扰会对设备的正常运行产生不利影响,甚至可能导致设备故障。

为了保证设备的稳定性和可靠性,在EMC设计中需要采取一些措施来防止外界干扰。

这些措施包括但不限于:1.过滤器设计:采用适当的滤波器,将外界干扰信号滤除,使其不对设备产生干扰。

2.屏蔽设计:对关键元器件或信号线进行屏蔽,减少外界干扰信号的影响。

3.接地设计:合理设计设备的接地结构,降低外界干扰对设备的影响。

4.灵敏度测试:对设备进行EMC测试,评估其对外界干扰的抵抗能力,进一步优化设计。

除了上述设计措施外,EMC设计还需要遵循相关的法规标准。

各个国家和地区都有相应的EMC测试和认证标准,例如欧洲的CE认证、美国的FCC认证等。

为了确保设备在特定市场可以合法销售和使用,设计人员需要对这些标准有一定的了解,并在设计过程中遵守相应的要求。

EMC设计的重要性在于保证设备的正常运行和稳定性。

在今天越来越多的电子设备密集运用的环境下,电磁干扰的问题也变得日益突出。

通过EMC设计,可以降低设备干扰,提高设备抗干扰能力,提高设备的可靠性和稳定性,同时也有助于提高设备的市场竞争力。

因此,对于电子设备的设计人员来说,掌握EMC设计的相关原则和技术是非常重要的。

总之,EMC设计是保证电子设备在电磁环境中能够正常运行的关键技术之一、通过合理的设计措施和遵循相关标准,可以降低电磁辐射和电磁感应,提高设备的抗干扰能力,确保设备的稳定性和可靠性。

1.电磁兼容设计技术

1.电磁兼容设计技术

30MHz
民用设备电磁兼容测试的关键项目
——辐射骚扰
dBμV/m
50
FCC A
40 VDE0871/78 B
EN A
30
FCC B
EN B
20
30MHz
88MHz 216MHz 230MHz 470MHz 960MHz 1GHz
民用设备电磁兼容测试的关键项目
民用设备EMC要求的重点在于脉冲性质的干扰。
电磁兼容设计技术
邱扬 西安电子科技大学
电磁兼容设计技术
电磁兼容基本概念 电磁耦合机理与干扰发射 电磁屏蔽技术 滤波技术 互连电缆的设计技术
电磁频谱带宽变化示意图
带宽(Hz)
100G
15G
仅从1906~1947的41年时
间里,频谱范围就增大了2100
1.05G
倍!!!
200 M
电磁兼容控制方法
传统控制方法
现代控制方法
电磁兼容设计的层次及主要工作
• 内部封装 • 分布参数
• 屏蔽 • 电源滤波 • 印制板布局 • 部件布局 • 接地
• 互连 • 接地
元器件设计 部件级设计 印制板级设计 单元(模块)级设计 设备级设计 系统级设计
• 材料特性 • 内部封装 • 分布参数
• 接地 • 回路面积 • 解耦滤波 • 器件布局
腔内场到腔内线
的耦合
场-裸线耦合 场-屏蔽线耦合 场-双绞裸线耦合 场-双绞屏蔽线耦合 场-部分裸线部分屏蔽线耦合 线-线耦合
电磁兼容性定义
定义:电磁兼容性为设备在共同电磁环境中能一 起执行各自功能的共存状态。
EMC = EMS + EMI
同一台设备既要抗干扰能力强,又要 将对外产生的干扰控制在一定范围内。

电磁兼容 Microsoft Word 文档

电磁兼容 Microsoft Word 文档

电磁兼容是EMC电磁兼容技术是解决电磁干扰相关问题的一门技术。

电磁兼容设计的目的是解决电路之间的相互干扰,防止电子设备产生过强的电磁发射,防止电子设备对外界干扰过度敏感。

近年来,电磁兼容设计技术的重要性日益增加,这有两个方面的原因:第一,电子设备日益复杂,特别是模拟电路和数字电路混合的情况越来越多、电路的工作频率越来越高,这导致了电路之间的干扰更加严重,设计人员如果不了解有关的设计技术,会导致产品开发周期过长,甚至开发失败。

第二,为了保证电子设备稳定可靠的工作,减小电磁污染,越来越多的国家开始强制执行电磁兼容标准,特别是在美国和欧洲国家,电磁兼容指标已经成为法制性的指标,是电子产品厂商必须通过的指标之一1 什么是电磁兼容标准为了规范电子产品的电磁兼容性,所有的发达国家和部分发展中国家都制定了电磁兼容标准。

电磁兼容标准是使产品在实际电磁环境中能够正常工作的基本要求。

之所以称为基本要求,也就是说,产品即使满足了电磁兼容标准,在实际使用中也可能会发生干扰问题。

大部分国家的标准都是基于国际电工委员会(IEC)所制定的标准。

IEC有两个平行的组织负责制定EMC标准,分别是CISPR(国际无线电干扰特别委员会)和TC77(第77技术委员会)。

CISPR制定的标准编号为:CISPR Pub. XX ,TC77制定的标准编号为IEC XXXXX 。

关于CISPR:1934年成立。

目前有七个分会:A分会(无线电干扰测量方法与统计方法)、B分会(工、科、医射频设备的无线电干扰)、C分会(电力线、高压设备和电牵引系统的无线电干扰)、D分会(机动车和内燃机的无线电干扰)、E分会(无线接收设备干扰特性)、F分会(家电、电动工具、照明设备及类似电器的无线电干扰)、G分会(信息设备的无线电干扰)。

关于TC77:1981年成立。

目前有3个分会:SC77A(低频现象)、SC77B(高频现象)、SC77C(对高空核电磁脉冲的抗扰性)。

EMC电磁兼容设计

EMC电磁兼容设计

EMC电磁兼容设计
1、定义
电磁兼容是指在共存的电磁环境下,系统、设备、软件和电磁安全功能能够正常工作,没有不良的电磁干扰或传播的特性,从而使系统效率最大化,保护系统稳定性及安全性。

电磁兼容是电子设备、电磁环境和电磁介质之间的完整性,也是对电磁环境中电磁能量的传输特性和环境的控制特性的总称。

2、EMC标准
二、EMC设计
1、主要步骤
EMC设计的主要步骤包括:
(1)确定全局EMC策略:如确定EMC标准,确定EMC控制要素,明确EMC测试要求,制定EMC设计规则和技术指标;
(2)EMC设计:依据EMC设计规则,解决电路设计、外部过电压抗扰能力等问题;
(3)EMC测试:包括元器件及电路测试、安全性测试;
(4)效果评估:对测试结果进行综合分析,和规定的EMC标准进行对比;
(5)设计优化:对第四步的对比结果,调整抗扰能力,实现EMC设计目标。

2、常用EMC设计技术
(1)电路层面:优化电路架构、增加电路的抗干。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档