2019届一轮复习人教A版 对数与对数函数 学案

合集下载

高三数学人教版A版数学(理)高考一轮复习教案对数与对数函数1

高三数学人教版A版数学(理)高考一轮复习教案对数与对数函数1

第六节 对数与对数函数对数与对数函数(1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.(2)理解对数函数的概念;理解对数函数的单调性,掌握函数图象通过的特殊点. (3)知道对数函数是一类重要的函数模型.(4)了解指数函数y =a x 与对数函数y =log a x 互为反函数(a >0,且a ≠1). 知识点一 对数及对数运算 1.对数的定义一般地,如果a x =N (a >0,且a ≠1),那么数x 叫作以a 为底N 的对数,记作x =log a _N ,其中a 叫作对数的底数,N 叫作真数.2.对数的性质 (1)log a 1=0,log a a =1. (2)a log a N =N ,log a a N =N . (3)负数和零没有对数. 3.对数的运算性质如果a >0,且a ≠1,M >0,N >0,那么 (1)log a (MN )=log a M +log a N . (2)log aMN=log a M -log a N . (3)log a M n =n log a M (n ∈R ).(4)换底公式log a b =log m blog m a (a >0且a ≠1,b >0,m >0,且m ≠1).必记结论1.指数式与对数式互化:a x =N ⇔x =log a N . 2.对数运算的一些结论:①log am b n =nm log a b .②log a b ·log b a =1.③log a b ·log b c ·log c d =log a d .易误提醒 在运算性质log a M n =n log a M 中,易忽视M >0.[自测练习]1.(2015·临川一中模拟)计算⎝⎛⎭⎫lg 1125-lg 82÷4-12=________. 解析:本题考查指数和对数的运算性质.由题意知原式=(lg 5-3-lg 23)2÷2-1=(-3lg 5-3lg 2)2×2=9×2=18.答案:18 2.lg427-lg 823+lg 75=________. 解析:原式=lg 4+12lg 2-lg 7-23lg 8+lg 7+12lg 5=2lg 2+12(lg 2+lg 5)-2lg 2=12.答案:12知识点二 对数函数定义、图象与性质定义函数y =log a x (a >0,且a ≠1)叫作对数函数图 象a >10<a <1性 质定义域:(0,+∞)值域:R当x =1时,y =0,即过定点(1,0)当0<x <1时, y ∈(-∞,0); 当x >1时, y ∈(0,+∞) 当0<x <1时, y ∈(0,+∞); 当x >1时, y ∈(-∞,0) 在(0,+∞)上为增函数在(0,+∞)上为减函数易误提醒 解决与对数函数有关的问题时易漏两点: (1)函数的定义域. (2)对数底数的取值范围. 必记结论1.底数的大小决定了图象相对位置的高低;不论是a >1还是0<a <1,在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大.2.对数函数y =log a x (a >0,且a ≠1)的图象过定点(1,0),且过点(a,1),⎝⎛⎭⎫1a ,-1,函数图象只在第一、四象限.[自测练习]3.已知a >0,a ≠1,函数y =a x 与y =log a (-x )的图象可能是( )解析:函数y =log a (-x )的图象与y =log a x 的图象关于y 轴对称,符合条件的只有B. 答案:B4.函数y =log a x (a >0,且a ≠1)在[2,4]上的最大值与最小值的差是1,则a 的值为________.解析:(1)当a >1时,函数y =log a x 在[2,4]上是增函数,所以log a 4-log a 2=1,即log a 42=1,所以a =2. (2)当0<a <1时,函数y =log a x 在[2,4]上是减函数,所以log a 2-log a 4=1,即log a 24=1,所以a =12.由(1)(2)知a =2或a =12.答案:2或12考点一 对数式的化简与求值|1.(2015·内江三模)lg51 000-823=( )A.235 B .-175 C .-185 D .4 解析:lg 51 000-823=lg 1035-(23)23=35-4=-175.答案:B2.(log 23)2-4log 23+4+log 2 13=( )A .2B .2-2log 2 3C .-2D .2log 2 3-2解析:(log 23)2-4log 23+4=(log 23-2)2=2-log 23,又log 213=-log 23,两者相加即为B.答案:B3.(2015·高考浙江卷)若a =log 43,则2a +2-a =________. 解析:原式=2log 4 3+2-log 4 3=3+13=433.答案:433对数运算的一般思路(1)首先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算性质化简合并.(2)将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算性质,转化为同底对数真数的积、商、幂的运算.考点二 对数函数图象及应用|(1)(2016·福州模拟)函数y =lg |x -1|的图象是( )[解析] 因为y =lg |x -1|=⎩⎪⎨⎪⎧lg (x -1),x >1,lg (1-x ),x <1.当x =1时,函数无意义,故排除B 、D. 又当x =2或0时,y =0,所以A 项符合题意. [答案] A(2)当0<x ≤12时,4x <log a x ,则a 的取值范围是( )A.⎝⎛⎭⎫0,22 B.⎝⎛⎭⎫22,1C .(1,2)D .(2,2)[解析] 法一:构造函数f (x )=4x 和g (x )=log a x ,当a >1时不满足条件,当0<a <1时,画出两个函数在⎝⎛⎦⎤0,12上的图象,可知,f ⎝⎛⎭⎫12<g ⎝⎛⎭⎫12,即2<log a 12,则a >22,所以a 的取值范围为⎝⎛⎭⎫22,1.法二:∵0<x ≤12,∴1<4x ≤2,∴log a x >4x >1,∴0<a <1,排除选项C ,D ;取a =12,x =12,则有412=2,log 12 12=1,显然4x <log a x 不成立,排除选项A.[答案] B应用对数型函数的图象可求解的两类问题(1)对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.1.已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10,若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( )A .(1,10)B .(5,6)C .(10,12)D .(20,24)解析:作出f (x )的大致图象,不妨设a <b <c ,因为a ,b ,c 互不相等,且f (a )=f (b )=f (c ),由函数的图象可知10<c <12,且|lg a |=|lg b |,因为a ≠b ,所以lg a =-lg b ,可得ab =1,所以abc =c ∈(10,12).答案:C考点三 对数函数性质及应用|已知函数f (x )=log a (x +1)-log a (1-x ),a >0且a ≠1. (1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明; (3)当a >1时,求使f (x )>0的x 的解集. [解] (1)要使函数f (x )有意义,则⎩⎪⎨⎪⎧x +1>0,1-x >0,解得-1<x <1. 故所求函数f (x )的定义域为(-1,1).(2)由(1)知f (x )的定义域为(-1,1), 且f (-x )=log a (-x +1)-log a (1+x ) =-[log a (x +1)-log a (1-x )]=-f (x ), 故f (x )为奇函数.(3)因为当a >1时,f (x )在定义域(-1,1)内是增函数, 所以f (x )>0⇔x +11-x >1,解得0<x <1.所以使f (x )>0的x 的解集是(0,1).利用对数函数的性质研究对数型函数性质,要注意以下四点:一是定义域;二是底数与1的大小关系;三是如果需将函数解析式变形,一定确保其等价性;四是复合函数的构成,即它是由哪些基本初等函数复合而成的.2.已知函数f (x )=log a (8-ax )(a >0,a ≠1),若f (x )>1在区间[1,2]上恒成立,求实数a 的取值范围.解:当a >1时,f (x )=log a (8-ax )在[1,2]上是减函数, 由f (x )>1恒成立, 则f (x )min =log a (8-2a )>1, 解之得1<a <83.若0<a <1时,f (x )在x ∈[1,2]上是增函数, 由f (x )>1恒成立, 则f (x )min =log a (8-a )>1, 且8-2a >0,∴a >4,且a <4,故不存在.综上可知,实数a 的取值范围是⎝⎛⎭⎫1,83. 5.插值法比较幂、对数大小【典例】 (1)设a =0.50.5,b =0.30.5,c =log 0.3 0.2,则a ,b ,c 的大小关系是( ) A .c <b <aB .a <b <cC .b <a <cD .a <c <b(2)已知a =5log 23.4,b =5log 43.6,c =⎝⎛⎭⎫15log 30.3,则( ) A .a >b >c B .b >a >c C .a >c >bD .c >a >b(3)已知函数y =f (x )的图象关于y 轴对称,且当x ∈(-∞,0)时,f (x )+xf ′(x )<0成立,a =(20.2)·f (20.2),b =(log π3)·f (log π3),c =(log 39)·f (log 39),则a ,b ,c 的大小关系是( )A .b >a >cB .c >a >bC .c >b >aD .a >c >b[思路点拨] (1)利用幂函数y =x 0.5和对数函数y =log 0.3x 的单调性,结合中间值比较a ,b ,c 的大小;(2)化成同底的指数式,只需比较log 23.4、log 43.6、-log 3 0.3=log 3 103的大小即可,可以利用中间值或数形结合进行比较;(3)先判断函数φ(x )=xf (x )的单调性,再根据20.2,log π3,log 39的大小关系求解. [解析] (1)根据幂函数y =x 0.5的单调性, 可得0.30.5<0.50.5<10.5=1,即b <a <1; 根据对数函数y =log 0.3x 的单调性, 可得log 0.30.2>log 0.30.3=1,即c >1. 所以b <a <c .(2)c =⎝⎛⎭⎫15log 3 0.3=5-log 3 0.3=5log 3 103. 法一:在同一坐标系中分别作出函数y =log 2 x ,y =log 3x ,y =log 4x 的图象,如图所示. 由图象知: log 2 3.4>log 3 103>log 43.6. 法二:∵log 3 103>log 33=1,且103<3.4, ∴log 3103<log 3 3.4<log 2 3.4. ∵log 4 3.6<log 4 4=1,log 3103>1,∴log 4 3.6<log 3 103. ∴log 2 3.4>log 3103>log 4 3.6. 由于y =5x 为增函数,∴5log 2 3.4>5log 3103>5log 4 3.6. 即5log 2 3.4>⎝⎛⎭⎫15log 3 0.3>5log 4 3.6,故a >c >b . (3)因为函数y =f (x )关于y 轴对称, 所以函数y =xf (x )为奇函数.因为[xf (x )]′=f (x )+xf ′(x ),且当x ∈(-∞,0)时, [xf (x )]′=f (x )+xf ′(x )<0,则函数y =xf (x )在(-∞,0)上单调递减; 因为y =xf (x )为奇函数,所以当x ∈(0,+∞)时,函数y =xf (x )单调递减. 因为1<20.2<2,0<log π3<1,log 39=2,所以0<log π 3<20.2<log 3 9,所以b >a >c ,选A. [答案] (1)C (2)C (3)A[方法点评] (1)比较幂、对数的大小可以利用数形结合和引入中间量利用函数单调性两种方法.(2)解题时要根据实际情况来构造相应的函数,利用函数单调性进行比较,如果指数相同,而底数不同则构造幂函数,若底数相同而指数不同则构造指数函数,若引入中间量,一般选0或1.[跟踪练习] 设a >b >0,a +b =1且x =⎝⎛⎭⎫1a b,y =log ⎝⎛⎭⎫1a +1b ab ,z =log 1b a ,则x ,y ,z 的大小关系是( )A .y <x <zB .z <y <xC .y <z <xD .x <y <z解析:用中间量比较大小.由a >b >0,a +b =1,可得0<b <12<a <1,所以1b >2>1a >1,所以x =⎝⎛⎭⎫1a b>1,y =log ⎝⎛⎭⎫1a +1b ab =log ⎝⎛⎭⎫1ab ab =-1,0>z =log 1b a >log 1bb =-1,则y<z <x ,故选C.答案:CA 组 考点能力演练1.函数f (x )=log a |x |+1(0<a <1)的图象大致为( )解析:由函数f (x )的解析式可确定该函数为偶函数,图象关于y 轴对称.设g (x )=log a |x |,先画出x >0时,g (x )的图象,然后根据g (x )的图象关于y 轴对称画出x <0时g (x )的图象,最后由函数g (x )的图象向上整体平移一个单位即得f (x )的图象,结合图象知选A.答案:A2.设a =30.5,b =0.53,c =log 0.5 3,则a ,b ,c 的大小关系为( ) A .b <c <a B .b <a <c C .c <b <aD .c <a <b解析:因为a =30.5>30=1,0<b =0.53<0.50=1,c =log 0.5 3<log 0.5 1=0,所以c <0<b <1<a ,故选C.答案:C3.(2015·郑州二检)若正数a ,b 满足2+log 2a =3+log 3b =log 6 (a +b ),则1a +1b 的值为( )A .36B .72C .108D.172解析:设2+log 2a =3+log 3b =log 6(a +b )=k ,可得a =2k -2,b =3k -3,a +b =6k ,所以1a +1b =a +b ab =6k 2k -23k -3=108.所以选C. 答案:C4.(2015·长春质检)已知函数f (x )=log a |x |在(0,+∞)上单调递增,则( ) A .f (3)<f (-2)<f (1) B .f (1)<f (-2)<f (3) C .f (-2)<f (1)<f (3) D .f (3)<f (1)<f (-2)解析:因为f (x )=log a |x |在(0,+∞)上单调递增,所以a >1,f (1)<f (2)<f (3). 又函数f (x )=log a |x |为偶函数,所以f (2)=f (-2),所以f (1)<f (-2)<f (3). 答案:B5.已知函数f (x )=log 2 ⎝⎛⎭⎫21-x +t 是奇函数,则使f (x )<0的x 的取值范围是( )A .(-1,0)B .(0,1)C .(-∞,0)D .(-∞,0)∪(1,+∞)解析:由f (-x )=-f (x )得log 2 ⎝ ⎛⎭⎪⎫21+x +t =-log 2 ⎝ ⎛⎭⎪⎫21-x +t ,所以21+x +t =121-x +t,整理得1-x 2=(2+t )2-t 2x 2,可得t 2=1且(t +2)2=1,所以t =-1,则f (x )=log 21+x1-x<0,即⎩⎪⎨⎪⎧1+x1-x>01+x 1-x <1,解得-1<x <0.答案:A6.(2015·深圳一模)lg 2+lg 5+20+⎝⎛⎭⎫5132×35=________. 解析:lg 2+lg 5+20+⎝⎛⎭⎫5132×35=lg 10+1+523×513=32+5=132. 答案:1327.若log a (a 2+1)<log a 2a <0,则实数a 的取值范围是________. 解析:∵a 2+1>1,log a ()a 2+1<0,∴0<a <1. 又log a 2a <0,∴2a >1,∴a >12.∴实数a 的取值范围是⎝⎛⎭⎫12,1.答案:⎝⎛⎭⎫12,18.(2015·成都摸底)关于函数f (x )=lg x 2+1x,有下列结论: ①函数f (x )的定义域是(0,+∞);②函数f (x )是奇函数;③函数f (x )的最小值为lg 2;④当x >0时,函数f (x )是增函数.其中正确结论的序号是________(写出所有你认为正确的结论的序号).解析:函数f (x )=lg x 2+1x的定义域为(0,+∞),其为非奇非偶函数,即得①正确,②不正确;由f (x )=lg x 2+1x =lg ⎝⎛⎭⎫x +1x ≥lg ⎝⎛⎭⎫2 x ×1x =lg 2,得③正确;函数u =x +1x 在x ∈(0,1)时为减函数,在x ∈(1,+∞)时为增函数,函数y =lg u 为增函数,所以函数f (x )在x ∈(0,1)时为减函数,在x ∈(1,+∞)时为增函数,即得命题④不正确.故应填①③.答案:①③9.设f (x )=log a (1+x )+log a (3-x )(a >0,a ≠1),且f (1)=2.(1)求a 的值及f (x )的定义域;(2)求f (x )在区间⎣⎡⎦⎤0,32上的最大值. 解:(1)∵f (1)=2,∴log a 4=2(a >0,a ≠1),∴a =2.由⎩⎪⎨⎪⎧1+x >0,3-x >0,得x ∈(-1,3), ∴函数f (x )的定义域为(-1,3).(2)f (x )=log 2(1+x )+log 2(3-x )=log 2(1+x )(3-x )=log 2[-(x -1)2+4],∴当x ∈(-1,1]时,f (x )是增函数;当x ∈(1,3)时,f (x )是减函数,∴函数f (x )在⎣⎡⎦⎤0,32上的最大值是f (1)=log 24=2. 10.已知f (x )=log a x (a >0且a ≠1),如果对于任意的x ∈⎣⎡⎦⎤13,2都有|f (x )|≤1成立,求a的取值范围.解:由已知f (x )=log a x ,当0<a <1时,⎪⎪⎪⎪f ⎝⎛⎭⎫13-|f (2)|=log a 13+log a 2=log a 23>0, 当a >1时,⎪⎪⎪⎪f ⎝⎛⎭⎫13-|f (2)|=-log a 13-log a 2=-log a 23>0,故⎪⎪⎪⎪f ⎝⎛⎭⎫13>|f (2)|总成立.则y =|f (x )|的图象如图. 要使x ∈⎣⎡⎦⎤13,2时恒有|f (x )|≤1,只需⎪⎪⎪⎪f ⎝⎛⎭⎫13≤1,即-1≤log a 13≤1,即log a a -1≤log a 13≤log a a , 当a >1时,得a -1≤13≤a ,即a ≥3; 当0<a <1时,得a -1≥13≥a ,得0<a ≤13. 综上所述,a 的取值范围是⎝⎛⎦⎤0,13∪[3,+∞). B 组 高考题型专练1.(2014·高考福建卷)若函数y =log a x (a >0,且a ≠1)的图象如图所示,则下列函数图象正确的是( )解析:由y =log a x 的图象可知log a 3=1,所以a =3.对于选项A :y =3-x =⎝⎛⎭⎫13x 为减函数,A 错误;对于选项B :y =x 3,显然满足条件;对于选项C :y =(-x )3=-x 3在R 上为减函数,C 错误;对于选项D :y =log 3(-x ),当x =-3时,y =1,D 错误.故选B.答案:B2.(2014·高考山东卷)已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图象如图,则下列结论成立的是( )A .a >1,c >1B .a >1,0<c <1C .0<a <1,c >1D .0<a <1,0<c <1解析:由题图可知,函数在定义域内为减函数,所以0<a <1.又当x =0时,y >0,即log a c >0,所以0<c <1.答案:D3.(2015·高考北京卷)如图,函数f (x )的图象为折线ACB ,则不等式f (x )≥log 2 (x +1)的解集是( )A .{x |-1<x ≤0}B .{x |-1≤x ≤1}C .{x |-1<x ≤1}D .{x |-1<x ≤2}解析:在平面直角坐标系中作出函数y =log 2(x +1)的图象如图所示.所以f (x )≥log 2 (x +1)的解集是{x |-1<x ≤1},所以选C.答案:C4.(2015·高考浙江卷)log 2 22=________,2log 2 3+log 4 3=________. 解析:log 222=log 22-12=-12,2log 2 3+log 4 3=232log 2 3=2log 2 332=27=3 3. 答案:-12 3 3 5.(2015·高考北京卷)2-3,312,log 25三个数中最大的数是________. 解析:因为2-3=123=18,312=3≈1.732,而log 24<log 25,即log 25>2,所以三个数中最大的数是log 25.答案:log 25。

一轮对数及对数函数复习导学案

一轮对数及对数函数复习导学案

对数及对数函数复习导学案【高考要求】对数函数(B )【教学目标】1. 理解对数的概念及其运算性质;了解对数换底公式,知道一般对数可以转化成自然对数或常用对数.2.了解对数函数模型的实际案例;了解对数函数的概念;理解对数函数的性质,会画对数函数的图象.3.了解指数函数y =a x 与对数函数y =log a x 互为反函数(a > 0,a ≠1)(不要求一般地讨论反函数的定义,不要求求已知函数的反函数).【教学重难点】对数函数的性质及其应用【知识梳理】1.对数(1)对数的定义:(2)指数式与对数式的等价关系为: .两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化.(3)对数运算性质:①log a (MN )= ②log aNM = ③log a M n = (M >0,N >0,a >0,a ≠1)④对数换底公式:log b N = (a >0,a ≠1,b >0,b ≠1,N >0).(4)特别的 a a log = 1log a =2.对数函数(1)对数函数的定义(2)对数函数的图象※底数互为倒数的两个对数函数的图象关于 轴对称.(3)对数函数的性质:①定义域:②值域:③过点 ,即当x = 时,y = .④当a >1时,在 上是增函数;当0<a <1时,在 上是减函数.【自学质疑】1. 已知35,a b m ==且112,a b+=则m =2. 已知()log (1)(0,1),a f x x a a =->≠那么()f x 的定义域为 ,当(0,1)a ∈时,()f x 为 (填增、减函数);当(0,1)a ∈,且x ∈ 时,()0f x <3. 已知[]732log log (log )0,x =则1x -=4. 设函数2log (1),2()1()1,22x x x f x x -≥⎧⎪=⎨-<⎪⎩,若0()1f x >,则0x ∈ 【交流展示与互动探究】例1、(1)求值11lg 9lg 24021;2361lg 27lg 35+-+-+(2)已知23log 3,log 7,m n ==求42log 56变式:计算:15log 25= ;1lg9lg 22100-= 例2、当(1,2)x ∈时,不等式2(1)log a x x -≤恒成立,则a ∈【迁移应用】1、若0.70.7 1.1log 0.8,log 0.8, 1.1,a b c ===则,,a b c 的大小关系是2、若函数22()log f x x =的值域是[]0,1,则()f x 的定义域是3、设0,1,a a >≠函数2lg(23)()x x f x a -+=有最大值,则不等式2log (57)0a x x -+>的解集为4、若函数2()lg(21)f x ax x =++的定义域是R ,则实数a 的取值范围 ;若函数2()lg(21)f x ax x =++的值域是R ,则实数a 的取值范围 ;5、(20XX 年陕西数学文3)若a 、b 、c 均为不等于0的实数,则下列等式恒成立的是( )A .b a log b c log =a c log B. b a log a c log =b c logC .)(log bc a =b a log c a log D. )(log c b a +=b a log +c a log。

2019年高考数学一轮: 第2章 第6节 对数与对数函数学案 理

2019年高考数学一轮: 第2章  第6节 对数与对数函数学案 理

第六节 对数与对数函数[考纲传真] (教师用书独具)1.理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.2.理解对数函数的概念及其单调性,掌握对数函数图像通过的特殊点,会画底数为2,10,12的对数函数的图像.3.体会对数函数是一类重要的函数模型.4.了解指数函数y =a x(a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数.(对应学生用书第22页)[基础知识填充]1.对数的概念如果a (a >0,a ≠1)的b 次幂等于N ,即a b=N ,那么数b 叫作以a 为底N 的对数,记作log a N =b ,其中a 叫作对数的底数,N 叫作真数. 2.对数的性质与运算法则(1)对数的运算法则如果a >0且a ≠1,M >0,N >0,那么 ①log a (MN )=log a M +log a N ; ②log a M N=log a M -log a N ; ③log a M n=n log a M (n ∈R );④log am M n =n mlog a M (m ,n ∈R 且m ≠0). (2)对数的性质①a log a N =N ;②log a a N=N (a >0,且a ≠1). (3)对数的重要公式①换底公式:log b N =log a N log a b (a ,b >0,a ,b ≠1,N >0);②log a b =1log b a ,推广log a b ·log b c ·log c d =log a d .3.对数函数的定义、图像与性质定义 函数y =log a x (a >0且a ≠1)叫作对数函数图像a >1 0<a <1性质定义域:(0,+∞)值域:R当x=1时,y=0,即过定点(1,0)当0<x<1时,y<0;当x>1时,y>0当0<x<1时,y>0;当x>1时,y<0在(0,+∞)上为增函数在(0,+∞)上为减函数4.指数函数y=a x(a>0且a≠1)与对数函数y=log a x(a>0且a≠1)互为反函数,它们的图像关于直线y=x对称.[知识拓展] 对数函数的图像与底数大小的比较多个对数函数图像比较底数大小的问题,可通过比较图像与直线y=1交点的横坐标进行判定.如图2­6­1,作直线y=1,则该直线与四个函数图像交点的横坐标为相应的底数.故0<c<d<1<a<b.图2­6­1[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)函数y=log2(x+1)是对数函数.( )(2)log2x2=2log2x.( )(3)当x>1时,log a x>0.( )(4)函数y=ln1+x1-x与y=ln(1+x)-ln(1-x)的定义域相同.( )(5)对数函数y=log a x(a>0且a≠1)的图像过定点(1,0),且过点(a,1),⎝⎛⎭⎪⎫1a,-1,函数图像不在第二、三象限.( )[答案](1)×(2)×(3)×(4)√(5)√2.(log29)·(log34)=( )A .14 B .12 C .2D .4D [原式=lg 9lg 2·lg 4lg 3=2lg 3lg 2×2lg 2lg 3=4.]3.已知a =2-13,b =log 213,c =log 1213,则( )A .a >b >cB .a >c >bC .c >b >aD .c >a >bD [∵0<a =2-13<20=1,b =log 213<log 21=0,c =log 1213>log 1212=1,∴c >a >b .]4.(教材改编)若log a 34<1(a >0,且a ≠1),则实数a 的取值范围是( )A .⎝ ⎛⎭⎪⎫0,34 B .(1,+∞)C .⎝ ⎛⎭⎪⎫0,34∪(1,+∞) D .⎝ ⎛⎭⎪⎫34,1 C [当0<a <1时,log a 34<log a a =1,∴0<a <34;当a >1时,log a 34<log a a =1,∴a >1.即实数a 的取值范围是⎝ ⎛⎭⎪⎫0,34∪(1,+∞).] 5.函数y =log a (x -1)+2(a >0,a ≠1)的图像恒过的定点是________.(2,2) [当x =2时,函数y =log a (x -1)+2(a >0,a ≠1)的值为2,所以图像恒过定点(2,2).](对应学生用书第23页)对数的运算(1)设2a =5b=m ,且1a +1b=2,则m 等于( )A .10B .10C .20D .100(2)计算:⎝ ⎛⎭⎪⎫lg 14-lg 25÷100-12=________. 【导学号:79140049】(1)A (2)-20 [(1)∵2a =5b=m ,∴a =log 2m ,b =log 5m , ∴1a +1b =1log 2m +1log 5m =log m 2+log m 5=log m 10=2, ∴m =10.(2)原式=(lg 2-2-lg 52)×10012=⎝ ⎛⎭⎪⎫lg 122·52×10=(lg 10-2)×10=-2×10=-20.][规律方法] 对数运算的一般思路 1拆:首先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算性质化简合并. 2合:将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算性质,转化为同底对数真数的积、商、幂的运算. 3转化:a b=N ⇔b =log a N a >0,且a ≠1是解决有关指数、对数问题的有效方法,在运算中应注意互化.[跟踪训练] (1)(2018·云南二检)已知函数f (x )=lg(1+4x 2-2x )+1,则f (3)+f (-3)=( ) A .-1 B .0 C .1D .2(2)计算:(log 32+log 92)·(log 43+log 83)=________.(1)D (2)54 [(1)f (3)+f (-3)=lg(37-6)+lg(37+6)+2=lg[(37-6)(37+6)]+2=lg 1+2=2,故选D .(2)原式=⎝ ⎛⎭⎪⎫lg 2lg 3+lg 2lg 9·⎝ ⎛⎭⎪⎫lg 3lg 4+lg 3lg 8=⎝ ⎛⎭⎪⎫lg 2lg 3+lg 22lg 3·⎝ ⎛⎭⎪⎫lg 32lg 2+lg 33lg 2=3lg 22lg 3·5lg 36lg 2=54.]对数函数的图像及应用(1)(2017·广东韵关南雄模拟)函数f (x )=x a满足f (2)=4,那么函数g (x )=|log a (x +1)|的图像大致为( )(2)(2017·衡水调研)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x,x ≤0,且关于x 的方程f (x )+x-a =0有且只有一个实根,则实数a 的取值范围是________.【导学号:79140050】(1)C (2)(1,+∞) [(1)法一:∵f (2)=4,∴2a=4,解得a =2,∴g (x )=|log 2(x+1)|=⎩⎪⎨⎪⎧log 2(x +1),x ≥0,-log 2(x +1),-1<x <0,∴当x ≥0时,函数g (x )单调递增,且g (0)=0;当-1<x <0时,函数g (x )单调递减.故选C .法二:由f (2)=4,即2a=4得a =2,∴g (x )=|log 2(x +1)|,函数g (x )是由函数y =|log 2x |向左平移一个单位得到的,只有C 项符合,故选C .(2)如图,在同一坐标系中分别作出y =f (x )与y =-x +a 的图像,其中a 表示直线在y 轴上截距,由图可知,当a >1时,直线y =-x +a 与y =log 2x 只有一个交点.][规律方法] 利用对数函数的图像可求解的两类问题 1对一些可通过平移、对称变换作出其图像的对数型函数,在求解其单调性单调区间、值域最值、零点时,常利用数形结合思想求解.2一些对数型方程、不等式问题常转化为相应的函数图像问题,利用数形结合法求解. a 则下列结论成立的是( )图2­6­2A .a >1,c >1B .a >1,0<c <1C .0<a <1,c >1D .0<a <1,0<c <1D [由该函数的图像通过第一、二、四象限知该函数为减函数,∴0<a <1,∵图像与x 轴的交点在区间(0,1)之间,∴该函数的图像是由函数y =log a x 的图像向左平移不到1个单位后得到的,∴0<c <1.]对数函数的性质及应用◎角度1 比较对数值的大小(2016·全国卷Ⅰ)若a >b >0,0<c <1,则( ) A .log a c <log b c B .log c a <log c b C .a c<b cD .c a>c bB [∵0<c <1,∴当a >b >1时,log a c >log b c ,A 项错误; ∵0<c <1,∴y =log c x 在(0,+∞)上单调递减,又a >b >0, ∴log c a <log c b ,B 项正确;∵0<c <1,∴函数y =x c在(0,+∞)上单调递增, 又∵a >b >0,∴a c>b c,C 项错误;∵0<c <1,∴y =c x 在(0,+∞)上单调递减, 又∵a >b >0,∴c a<c b ,D 项错误.] ◎角度2 解简单的对数不等式若f (x )=lg x ,g (x )=f (|x |),当g (lg x )>g (1)时,则x 的取值范围是________.⎝ ⎛⎭⎪⎫0,110∪(10,+∞) [当g (lg x )>g (1)时,f (|lg x |)>f (1),由f (x )为增函数得|lg x |>1,从而lg x >1或lg x <-1,解得0<x <110或x >10.]◎角度3 探究对数型函数的性质已知函数f (x )=log 4(ax 2+2x +3). (1)若f (1)=1,求f (x )的单调区间;(2)是否存在实数a ,使f (x )的最小值为0?若存在,求出a 的值;若不存在,说明理由.[解] (1)∵f (1)=1,∴log 4(a +5)=1,因此a +5=4,a =-1, 这时f (x )=log 4(-x 2+2x +3).由-x 2+2x +3>0,得-1<x <3, 函数f (x )的定义域为(-1,3). 令g (x )=-x 2+2x +3,则g (x )在(-1,1)上单调递增,在(1,3)上单调递减. 又y =log 4x 在(0,+∞)上单调递增,∴f (x )的单调递增区间是(-1,1),单调递减区间是(1,3). (2)假设存在实数a 使f (x )的最小值为0, 则h (x )=ax 2+2x +3应有最小值1,因此应有⎩⎪⎨⎪⎧a >0,3a -1a=1,解得a =12.故存在实数a =12使f (x )的最小值为0.[规律方法] 对数值大小比较的主要方法 1化同底数后利用函数的单调性. 2化同真数后利用图像比较. 3借用中间量0或1等进行估值比较.易错警示:利用对数函数的性质研究对数型函数性质,要注意以下四点:一是定义域;二是底数与1的大小关系;三是如果需将函数解析式变形,一定确保其等价性;四是复合函数的构成,即它是由哪些基本初等函数复合而成的.另外,注意对数性质的正用、逆用、变形用. [跟踪训练] (1)已知a =log 29-log 23,b =1+log 27,c =2+log 213,则( )A .a >b >cB .b >a >cC .c >a >bD .c >b >a(2)已知函数f (x )=log a (8-ax )(a >0,且a ≠1),若f (x )>1在区间[1,2]上恒成立,则实数a 的取值范围为________.(1)B (2)⎝ ⎛⎭⎪⎫1,83 [(1)a =log 29-log 23=log 233,b =1+log 27=log 227,c =12+log 213=log 226,因为函数y =log 2x 是增函数,且27>33>26,所以b >a >c ,故选B .(2)当a >1时,f (x )=log a (8-ax )在[1,2]上是减函数,由于f (x )>1恒成立,所以f (x )min =log a (8-2a )>1,故1<a <83.当0<a <1时,f (x )=log a (8-ax )在[1,2]上是增函数,由于f (x )>1恒成立,所以f (x )min =log a (8-a )>1,即a >4,且8-2a >0,a <4,显然这样的a 不存在.故a 的取值范围为⎝ ⎛⎭⎪⎫1,83.]。

2019届高三数学一轮复习教案+课时作业 第9节 对数与对数函数

2019届高三数学一轮复习教案+课时作业 第9节 对数与对数函数

第9节对数与对数函数最新考纲 1.理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用;2.理解对数函数的概念及其单调性,掌握对数函数图象通过的特殊点,会画底数为2,10,12的对数函数的图象;3.体会对数函数是一类重要的函数模型;4.了解指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0,且a≠1)互为反函数.知识梳理1.对数的概念如果a x=N(a>0,且a≠1),那么x叫做以a为底N的对数,记作x=log a N,其中a叫做对数的底数,N叫做真数.2.对数的性质、换底公式与运算性质(1)对数的性质:①a log a N=N;②log a a b=b(a>0,且a≠1).(2)对数的运算法则如果a>0且a≠1,M>0,N>0,那么①log a(MN)=log a M+log a N;②log a MN=log a M-log a N;③log a M n=n log a M(n∈R);④log a m M n=nm log a M(m,n∈R,且m≠0).(3)换底公式:log b N=log a Nlog a b(a,b均大于零且不等于1).3.对数函数及其性质(1)概念:函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).(2)对数函数的图象与性质4.反函数指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数,它们的图象关于直线y =x 对称. [常用结论与微点提醒] 1.换底公式的两个重要结论 (1)log a b =1log ba ;(2)log a mb n =nm log a b .其中a >0,且a ≠1,b >0,且b ≠1,m ,n ∈R .2.在第一象限内,不同底的对数函数的图象从左到右底数逐渐增大.3.对数函数y =log a x (a >0,且a ≠1)的图象过定点(1,0),且过点(a ,1),⎝ ⎛⎭⎪⎫1a ,-1,函数图象只在第一、四象限.诊 断 自 测1.思考辨析(在括号内打“√”或“×”) (1)log 2x 2=2log 2x .( )(2)函数y =log 2(x +1)是对数函数.( ) (3)函数y =ln1+x1-x与y =ln(1+x )-ln(1-x )的定义域相同.( ) (4)当x >1时,若log a x >log b x ,则a <b .( ) 解析 (1)log 2x 2=2log 2|x |,故(1)错.(2)形如y =log a x (a >0,且a ≠1)为对数函数,故(2)错.(4)当x >1时,log a x >log b x ,但a 与b 的大小不确定,故(4)错. 答案 (1)× (2)× (3)√ (4)×2.(必修1P73T3改编)已知a =2-13,b =log 213,c =log 1213,则( )A.a >b >cB.a >c >bC.c >b >aD.c >a >b解析 ∵0<a <1,b <0,c =log 1213=log 23>1.∴c >a >b . 答案 D3.已知函数y =log a (x +c )(a ,c 为常数,其中a >0,且a ≠1)的图象如图,则下列结论成立的是( )A.a >1,c >1B.a >1,0<c <1C.0<a <1,c >1D.0<a <1,0<c <1解析 由题图可知,函数在定义域内为减函数,所以0<a <1.又当x =0时,y >0,即log a c >0,所以0<c <1. 答案 D4.(2017·全国Ⅰ卷)已知函数f (x )=ln x +ln(2-x ),则( ) A.f (x )在(0,2)上单调递增 B.f (x )在(0,2)上单调递减C.y =f (x )的图象关于直线x =1对称D.y =f (x )的图象关于点(1,0)对称解析 由题意知,f (x )=ln x +ln(2-x )的定义域为(0,2),f (x )=ln[x (2-x )]= ln[-(x -1)2+1],由复合函数的单调性知,函数f (x )在(0,1)上单调递增,在(1,2)上单调递减,所以排除A ,B ;又f (2-x )=ln(2-x )+ln x =f (x ),所以f (x )的图象关于直线x =1对称,C 正确,D 错误. 答案 C5.计算:log 222=________;2log 23+log 43=________.解析 log 222=log 22-log 22=12-1=-12; 2log 23+log 43=2log 23·2log 43=3×2log 43=3×2log 23=3 3.答案 -12 3 3考点一 对数的运算【例1】 (1)计算:⎝ ⎛⎭⎪⎫lg 14-lg 25÷100-12=________.(2)(2017·全国Ⅰ卷)设x ,y ,z 为正数,且2x =3y =5z ,则( ) A.2x <3y <5z B.5z <2x <3y C.3y <5z <2xD.3y <2x <5z解析 (1)原式=(lg 2-2-lg 52)×10012=lg ⎝ ⎛⎭⎪⎫122×52×10=lg 10-2×10=-2×10=-20.(2)令t =2x =3y =5z , ∵x ,y ,z 为正数,∴t >1.则x =log 2t =lg t lg 2,同理,y =lg t lg 3,z =lg tlg 5. ∴2x -3y =2lg t lg 2-3lg t lg 3=lg t (2lg 3-3lg 2)lg 2×lg 3=lg t (lg 9-lg 8)lg 2×lg 3>0,∴2x >3y .又∵2x -5z =2lg t lg 2-5lg t lg 5=lg t (2lg 5-5lg 2)lg 2×lg 5=lg t (lg 25-lg 32)lg 2×lg 5<0,∴2x <5z ,∴3y <2x <5z . 答案 (1)-20 (2)D规律方法 1.在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算法则化简合并.2.先将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算法则,转化为同底对数真数的积、商、幂再运算.3.a b =N ⇔b =log a N (a >0,且a ≠1)是解决有关指数、对数问题的有效方法,在运算中应注意互化.【训练1】 (1)(2016·浙江卷)已知a >b >1.若log a b +log b a =52,a b =b a ,则a =________,b =________.(2)(2018·日照调研)已知函数f (x )=⎩⎨⎧2x,x ≥4,f (x +1),x <4,则f (2+log 23)的值为( )A.24B.16C.12D.8解析 (1)设log b a =t ,则t >1,因为t +1t =52, 所以t =2,则a =b 2. 又a b=b a,所以b 2b=b b2,即2b =b 2,解得b =2,a =4.(2)因为3<2+log 23<4,所以f (2+log 23)=f (3+log 23)=23+log 23=8×2log 23=24. 答案 (1)4 2 (2)A考点二 对数函数的图象及应用【例2】 (1)(2018·郑州一模)若函数y =a |x |(a >0,且a ≠1)的值域为{y |y ≥1},则函数y =log a |x |的图象大致是( )(2)(2018·衡水调研)已知函数f (x )=⎩⎨⎧log 2x ,x >0,3x ,x ≤0,且关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的取值范围是________. 解析 (1)由于y =a |x |的值域为{y |y ≥1}, ∴a >1,则y =log a x 在(0,+∞)上是增函数, 又函数y =log a |x |的图象关于y 轴对称. 因此y =log a |x |的图象应大致为选项B.(2)如图,在同一坐标系中分别作出y =f (x )与y =-x +a 的图象,其中a 表示直线在y 轴上截距.由图可知,当a >1时,直线y =-x +a 与y =log 2x 只有一个交点.答案 (1)B (2)(1,+∞)规律方法 1.在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.2.一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.【训练2】 (1)(2018·湛江模拟)已知函数f (x )=log a (2x +b -1)(a >0,a ≠1)的图象如图所示,则a ,b 满足的关系是( ) A.0<a -1<b <1 B.0<b <a -1<1 C.0<b -1<a <1 D.0<a -1<b -1<1(2)函数f(x)=2ln x的图象与函数g(x)=x2-4x+5的图象的交点个数为()A.3B.2C.1D.0解析(1)由函数图象可知,f(x)在R上单调递增,又y=2x+b-1在R上单调递增,故a>1.函数图象与y轴的交点坐标为(0,log a b),由函数图象可知-1<log a b<0,即log a a-1<log a b<log a1,所以,a-1<b<1.综上有0<a-1<b<1.(2)在同一直角坐标系下画出函数f(x)=2ln x与函数g(x)=x2-4x+5=(x-2)2+1的图象,如图所示.∵f(2)=2ln 2>g(2)=1,∴f(x)与g(x)的图象的交点个数为2.答案(1)A(2)B考点三对数函数的性质及应用(多维探究)命题角度1比较对数值的大小【例3-1】(2016·全国Ⅰ卷)若a>b>0,0<c<1,则()A.log a c<log b cB.log c a<log c bC.a c<b cD.c a>c b解析由y=x c与y=c x的单调性知,C,D不正确;∵y=log c x是减函数,得log c a<log c b,B正确;log a c=lg clg a,log b c=lg clg b,∵0<c<1,∴lg c<0.又a>b>0,∴lg a>lg b,但不能确定lg a,lg b的正负,∴log a c与log b c的大小不能确定.答案 B命题角度2 解对数不等式【例3-2】 若log a (a 2+1)<log a 2a <0,则a 的取值范围是( ) A.(0,1) B.⎝ ⎛⎭⎪⎫0,12 C.⎝ ⎛⎭⎪⎫12,1D.(0,1)∪(1,+∞)解析 由题意得a >0且a ≠1,故必有a 2+1>2a , 又log a (a 2+1)<log a 2a <0,所以0<a <1, 同时2a >1,∴a >12.综上,a ∈⎝ ⎛⎭⎪⎫12,1.答案 C命题角度3 对数型函数性质的综合应用 【例3-3】 已知函数f (x )=log a (3-ax ).(1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围;(2)是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由. 解 (1)∵a >0且a ≠1,设t (x )=3-ax , 则t (x )=3-ax 为减函数,x ∈[0,2]时,t (x )的最小值为3-2a , 当x ∈[0,2]时,f (x )恒有意义, 即x ∈[0,2]时,3-ax >0恒成立. ∴3-2a >0.∴a <32.又a >0且a ≠1,∴a ∈(0,1)∪⎝ ⎛⎭⎪⎫1,32.(2)t (x )=3-ax ,∵a >0, ∴函数t (x )为减函数.∵f (x )在区间[1,2]上为减函数,∴y =log a t 为增函数,∴a >1,x ∈[1,2]时,t (x )最小值为3-2a ,f (x )最大值为f (1)=log a (3-a ),∴⎩⎨⎧3-2a >0,log a(3-a )=1,即⎩⎪⎨⎪⎧a <32,a =32.故不存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1.规律方法 1.确定函数的定义域,研究或利用函数的性质,都要在其定义域上进行.2.如果需将函数解析式变形,一定要保证其等价性,否则结论错误.3.在解决与对数函数相关的比较大小或解不等式问题时,要优先考虑利用对数函数的单调性来求解.在利用单调性时,一定要明确底数a 的取值对函数增减性的影响,及真数必须为正的限制条件.【训练3】 (1)设a =log 32,b =log 52,c =log 23,则( ) A.a >c >b B.b >c >a C.c >b >aD.c >a >b(2)(2018·长春模拟)若函数f (x )=log a (x 2-26x +a )有最小值12,则实数a 的值等于________.解析 (1)a =log 32<log 33=1,b =log 52<log 55=1, 又c =log 23>log 22=1, 所以c 最大.由1<log 23<log 25,得1log 23>1log 25,即a >b ,所以c >a >b .(2)令g (x )=x 2-26x +a ,则f (x )=log a [g (x )]. ①若a >1,由于函数f (x )有最小值12, 则g (x )应有最小值a ,而g (x )=x 2-26x +a =(x -6)2+a -6,当x =6时,取最小值a -6, 因此有⎩⎪⎨⎪⎧a >1,a =a -6,解得a =9.②若0<a <1,由于函数f (x )有最小值12, 则g (x )应有最大值a ,而g (x )不存在最大值,不符合题意,综上,实数a =9. 答案 (1)D (2)9基础巩固题组 (建议用时:40分钟)一、选择题1.(2018·濮阳检测)“log 2(2x -3)<1”是“4x >8”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件解析 log 2(2x -3)<1⇔32<x <52.又4x >8⇔x >32,所以⎝ ⎛⎭⎪⎫32,52⎝ ⎛⎭⎪⎫32,+∞,故“log 2(2x -3)<1”是“4x >8”的充分不必要条件. 答案 A2.设2a =5b =m ,且1a +1b =2,则m 等于( )A.10B.10C.20D.100解析 由已知,得a =log 2m ,b =log 5m , 则1a +1b =1log 2m +1log 5m =log m 2+log m 5=log m 10=2.解得m =10.答案 A3.(2018·成都诊断)函数f (x )=x a 满足f (2)=4,那么函数g (x )=|log a (x +1)|的图象大致为( )解析 由f (2)=2a =4,得a =2.所以g (x )=|log 2(x +1)|,则g (x )的图象由y =|log 2x |的图象向左平移一个单位得到,C 满足.答案 C4.(2018·广东省际名校联考)已知f (x )满足对∀x ∈R ,f (-x )+f (x )=0,且当x ≤0时,f (x )=1e x +k (k 为常数),则f (ln 5)的值为( )A.4B.-4C.6D.-6解析 易知函数f (x )是奇函数,故f (0)=e 0+k =1+k =0,即k =-1, 所以f (ln 5)=-f (-ln 5)=-(e ln 5-1)=-4.答案 B5.已知a ,b >0且a ≠1,b ≠1,若log a b >1,则( )A.(a -1)(b -1)<0B.(a -1)(a -b )>0C.(b -1)(b -a )<0D.(b -1)(b -a )>0解析 ∵a >0,b >0且a ≠1,b ≠1.由log a b >1得log a b a >0.∴a >1,且b a >1或0<a <1且0<b a<1, 则b >a >1或0<b <a <1.故(b -a )(b -1)>0.答案 D二、填空题6.lg 52+2lg 2-⎝ ⎛⎭⎪⎫12-1=________. 解析 lg 52+2lg 2-⎝ ⎛⎭⎪⎫12-1=lg 52+lg 22-2 =lg ⎝ ⎛⎭⎪⎫52×4-2=1-2=-1. 答案 -17.(2018·山西康杰中学联考)设函数f (x )=lg(x 2-x )-lg(x -1),且f (x 0)=2,则x 0=________.解析 易知x >1,且f (x )=lg(x 2-x )-lg(x -1)=lg x ,∴f (x 0)=lg x 0=2,则x 0=100. 答案 1008.若函数f (x )=log a ⎝ ⎛⎭⎪⎫x 2+32x (a >0,a ≠1)在区间⎝ ⎛⎭⎪⎫12,+∞内恒有f (x )>0,则f (x )的单调递增区间为________.解析 令M =x 2+32x ,当x ∈⎝ ⎛⎭⎪⎫12,+∞时,M ∈(1,+∞),f (x )>0,所以a >1,所以函数y =log a M 为增函数,又M =⎝ ⎛⎭⎪⎫x +342-916,因此M 的单调递增区间为⎝ ⎛⎭⎪⎫-34,+∞. 又x 2+32x >0,所以x >0或x <-32,所以函数f (x )的单调递增区间为(0,+∞).答案 (0,+∞)三、解答题9.设f (x )=log a (1+x )+log a (3-x )(a >0,a ≠1),且f (1)=2.(1)求a 的值及f (x )的定义域;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,32上的最大值. 解 (1)∵f (1)=2,∴log a 4=2(a >0,a ≠1),∴a =2.由⎩⎨⎧1+x >0,3-x >0,得-1<x <3,∴函数f (x )的定义域为(-1,3).(2)f (x )=log 2(1+x )+log 2(3-x )=log 2[(1+x )(3-x )]=log 2[-(x -1)2+4],∴当x ∈(-1,1]时,f (x )是增函数;当x ∈(1,3)时,f (x )是减函数,故函数f (x )在⎣⎢⎡⎦⎥⎤0,32上的最大值是f (1)=log 24=2. 10.已知函数f (x )是定义在R 上的偶函数,且f (0)=0,当x >0时,f (x )=log 12x . (1)求函数f (x )的解析式;(2)解不等式f (x 2-1)>-2.解 (1)当x <0时,-x >0,则f (-x )=log 12(-x ). 因为函数f (x )是偶函数,所以f (-x )=f (x )=log 12(-x ), 所以函数f (x )的解析式为f (x )=⎩⎪⎨⎪⎧log 12x ,x >0,0,x =0,log 12(-x ),x <0.(2)因为f (4)=log 124=-2,f (x )是偶函数, 所以不等式f (x 2-1)>-2转化为f (|x 2-1|)>f (4).又因为函数f (x )在(0,+∞)上是减函数,所以|x 2-1|<4,解得-5<x <5,即不等式的解集为(-5,5).能力提升题组(建议用时:20分钟)11.(2018·合肥调研)已知函数f (x )=ln(a x +b )(a >0且a ≠1)是R 上的奇函数,则不等式f (x )>a ln a 的解集是( )A.(a ,+∞)B.(-∞,a )C.当a >1时,解集是(a ,+∞),当0<a <1时,解集是(-∞,a )D.当a >1时,解集是(-∞,a ),当0<a <1时,解集是(a ,+∞)解析 依题意,f (0)=ln(1+b )=0,解得b =0,于是f (x )=ln a x =x ln a .∴f (x )>a ln a ⇔x ln a >a ln a .当a >1时,x >a ;当0<a <1时,x <a .答案 C12.(2018·九江七校联考)若函数f (x )=log 2(x 2-ax -3a )在区间(-∞,-2]上是减函数,则实数a 的取值范围是________.解析 由题意得x 2-ax -3a >0在区间(-∞,-2]上恒成立且函数y =x 2-ax -3a 在(-∞,-2]上递减,则a 2≥-2且(-2)2-(-2)a -3a >0,解得实数a 的取值范围是[-4,4).答案 [-4,4)13.已知函数f (x )=ln x +1x -1. (1)求函数f (x )的定义域,并判断函数f (x )的奇偶性;(2)对于x ∈[2,6],f (x )=ln x +1x -1>ln m (x -1)(7-x )恒成立,求实数m 的取值范围.解 (1)由x +1x -1>0,解得x <-1或x >1, ∴函数f (x )的定义域为(-∞,-1)∪(1,+∞),当x ∈(-∞,-1)∪(1,+∞)时,f (-x )=ln -x +1-x -1=ln x -1x +1=ln ⎝ ⎛⎭⎪⎫x +1x -1-1=-ln x +1x -1=-f (x ). ∴f (x )=ln x +1x -1是奇函数. (2)由于x ∈[2,6]时,f (x )=ln x +1x -1>ln m (x -1)(7-x )恒成立, ∴x +1x -1>m (x -1)(7-x )>0, ∵x ∈[2,6],∴0<m <(x +1)(7-x )在x ∈[2,6]上恒成立.令g (x )=(x +1)(7-x )=-(x -3)2+16,x ∈[2,6],由二次函数的性质可知,x ∈[2,3]时函数g (x )单调递增,x ∈[3,6]时函数g (x )单调递减,即x ∈[2,6]时,g (x )min =g (6)=7,∴0<m <7.故实数m 的取值范围为(0,7).。

2019-2020学年高考数学一轮复习-对数和对数函数教案

2019-2020学年高考数学一轮复习-对数和对数函数教案

2019-2020学年高考数学一轮复习 对数和对数函数教案教学内容学习指导 即使感悟 【学习目标】1、理解对数的概念及其运算性质。

2、理解对数函数的概念和性质。

并能利用对数函数的图像研究性质。

3、使学生形成“自主学习”与“合作学习”的良好习惯。

【学习重点】对数函数的图形和性质。

x【学习难点】对数函数的图像和性质及应用。

【回顾预习】 一回顾知识: 1、对数(1)定义:一般地,如果a x =N (a >0,且a ≠1),那么数x 叫做 ,记作 ,其中a 叫做对数的 ,N 叫做 . (2)、几种常见对数 对数形式 特点 记法一般对数 以a (a >0,且a ≠1)为底的对数自然对数 以 为底的对数常用对数 以 为底的对数(3)对数的运算性质如果a >0,且a ≠1,M >0,N >0,那么①log a (MN )= ②nma log = ; ③log a M n = (n ∈R );④nm b a log = ⑤=n a a log ;⑥log a a N = ⑦换底公式:=N M log 2、对数函数图像 1>a 10<<a定义域 值域过定点 单调性回顾知识3、对数函数y =log a x (a >0,且a ≠1)和指数函数互为反函数,它们的图象在同一坐标系中关于直线 对称. 基础自测:1.以下等式(其中a >0,且a ≠1;x >y >0):①log a 1=0;②log a x ·log a y =log a (x +y );③log a (x +y )=log a x +log a y ;④log a a =1⑤()yaxa y x alog log log =-⑥()y x a yxa -=log log 其中正确命题的个数是 ( B ) A .1 B .2 C .3D .42.(2009年湖南卷)若log 2a <0,121>⎪⎭⎫⎝⎛b则 ( D )A .a >1,b >0B .a >1,b <0C .0<a <1,b >0D .0<a <1,b <03已知111222log log log b a c <<,则 ( A )A.222b a c >>B.222a b c >>C.222c b a >>D.222c a b>> 4、()2321log -=x y 函数的定义域是 ⎥⎦⎤⎝⎛1,32【自主合作探究】 例1、计算:(1)222(lg 2)lg 2lg5(lg 2)lg 21++-+; =1(2)321lg5(lg8lg1000)(lg 2)lg lg 0.066++++. =1例2、已知函数1()log 1axf x x+=-(0,1)a a >≠(1)求()f x 的定义域; (2)讨论()f x 的单调性;(3)求使()0f x 的x 的取值范围.解析:(1)(1+x)/(1-x)>0 (x+1)/(x-1)<0 ∴-1<x<1定义域为(-1,1)(2)f(x)+f(-x)=loga[(1+x)/(1-x)+loga[(1-x)/(1+x)] =loga[(1+x)/(1-x)*(1-x)/(1+x)] =loga(1)=0 ∴f(-x)=-f(x) ∴f(x)是奇函数t=(1+x)/(1-x)=[2-(1-x)]/(1-x) =-1+2/(1-x)=x ∈(-1,1)时,x 增大,1-x 递减, 1/(1-x)递增,-1+1/(1-x)递增 ∴t=(1+x)/(1-x)是增函数 当a>1时,y=logat 递增,f(x)=loga[(1+x)/(1-x)]是增函数 当0<a<1时,y=logat 是减函数∴ f(x)=loga[(1+x)/(1-x)]是减函数 例3、已知f (x )=log 4(2x +3-x 2),求: (1)求函数的定义域(2)求函数f (x )的单调区间; 解:(1)∵∴-1<x <3∴函数f (x )的定义域为(-1,3)(2)函数f (x )在(-1,1)上单调递增;函数f (x )在(1,3)上单调递减。

2019年人教版高三数学(文)第一轮复习对数与对数函数优质课教案

2019年人教版高三数学(文)第一轮复习对数与对数函数优质课教案

对与对函一、知识梳:(阅读教材必修1第62页—第76页)1、对与对的运算性质(1)、一般地,如果 (a>0,且) 那么x叫做以a为底的对,记做x= ,其中a叫做对的底,叫做对的真。

(2)、以10为底的对叫做常用对,并把记为lgN, 以e为底的对称为自然对,并把记为lnN.(3)、根据对的定义,可以得到对与指和关系:(4)、零和负没有对; =1; =0;=N(5)、对的运算性质:如果,M>0,N>0 ,那么=+==n(n)换底公式:=对恒等式:=N2、对函与对函的性质(1)、一般地,我们把函f(x)=)叫做对函,其中x是自变量,函的定义域是(0,+。

(2)、对函的图象及性质图象的性质:①定义域②值域③单调性④奇偶性⑤周期性⑥特殊点⑦特殊线图象分a1 与a<1两种情况。

3、反函:对函f(x)=)与指函f(x)=)互为反函。

原函的定义域是反函的值域,原函的值域是反函的定义域。

互为反函的图象在同一坐标系关于直线y=x 对称。

【关于反函注意大纲的要求】二、题型探究 探究一:对的运算例1:(15年安徽文科)=-+-1)21(2lg 225lg 。

【答案】-1 【解析】试题分析:原式=12122lg 5lg 2lg 22lg 5lg -=-=-+=-+- 考点:对运算.例2:【2014辽宁高考】已知132a -=,21211log ,log 33b c ==,则( )A .a b c >>B .a c b >>C .c a b >>D .c b a >>例3:【2015高考浙江】若4log 3a =,则22a a -+= . 【答案】334.【考点定位】对的计算 探究二:对函及其性质例4:【2014江西高考】函)ln()(2x x x f -=的定义域为( ) A.)1,0( B. ]1,0[ C. ),1()0,(+∞-∞ D.),1[]0,(+∞-∞例5:下列关系 中,成立的是 (A )、lo>> (B) >> lo (C) lo> > (D) lo>探究三、应用对函的单调性解方程、不等式问题例7:【15年天津文科】已知定义在R 上的函||()21()x m f x m -=-为实数为偶函,记0.5(log 3),a f =2b (log 5),c (2)f f m ==,则,,a b c ,的大小关系为( )(A) b c a << (B) b c a << (C) b a c << (D)b c a <<【答案】B 【解析】试题分析:由()f x 为偶函得0m =,所以2,4,0a b c ===,故选B. 考点:1.函奇偶性;2.对运算.例8:【2014陕西高考】已知,lg ,24a x a ==则x =________.三、方法提升: 1、处对函问题时要特别注意函的定义域问题,尤其在大题中【最后的导题】,一定要首先考虑函的定义域,然后在定义域中研究问题,以避免忘记定义域出现错误; 2、在2015年高考小题中,考察主要是针对对的大小比较、指与对的关系,中档难度。

2019-2020年高三数学一轮复习 对数与对数函数1(学生)导学案 新人教版

2019-2020年高三数学一轮复习 对数与对数函数1(学生)导学案 新人教版

2019-2020年高三数学一轮复习 对数与对数函数1(学生)导学案 新人教版一、学习目标:(1)理解对数的概念及其运算性质,会用换底公式将一般对数化成自然对数或常用对数及相应的对数式的化简。

(2)理解对数函数的概念,体会对数函数是另一类重要的函数模型,掌握对数函数的单调性与特殊点。

二、自主学习:1.计算:(1)= ;(2)1324lg 2493-= (3)= (4)=2.设,且,则3. 方程的解是4.已知,则 ; 已知=5. 已知,那么等于 ;三、合作探究例1 设,,且,求的最小值.例2.设、、为正数,且满足.(1)求证:22log (1)log (1)1b c a c a b+-+++= (2)若,,求、、的值.例3.比较与的大小。

log log ()a a x x a 2122<<变式: 若,且,,都是正数,试比较,,的大小.四、课堂总结(1)对数与对数运算:1.; 2.. 3.,.4.当0,0,1,0>>≠>N M a a 时:()(1)log log log a a a MN M N =+(2)log log log a a a M M N N ⎛⎫=- ⎪⎝⎭; .5.换底公式: ()0,1,0,1,0>≠>≠>b c c a a .6. .(2)不同底的对数运算问题,应化为同底对数式进行运算;重视指数式与对数式的互化; 运用对数的运算公式解题时,要注意公式成立的前提.五、检测巩固1. 若(a>0) ,则2. 已知,下面四个等式中:①;②; ③ ; ④.其中正确命题的个数为 ( )A .1个B .2个C .3个D .4个3. (xx 年山东文科卷)已知,则8(2)(4)(8)(2)f f f f ++++的值等于 .4. 已知,且1log (1),log ,1a a x m n x+==-等于( ) A . B . C . D .5. 设且那么等于( )A .B .C .D ..。

高考数学一轮复习第二章函数导数及其应用第六节对数与对数函数学案文含解析新人教A版

高考数学一轮复习第二章函数导数及其应用第六节对数与对数函数学案文含解析新人教A版

高考数学一轮复习第二章函数导数及其应用第六节对数与对数函数学案文含解析新人教A 版第六节 对数对数函数2019考纲考题考情1.对数的概念 (1)对数的定义如果a x=N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数。

(2)几种常见对数(1)对数的性质 ①alog aN=N (a >0且a ≠1,N >0)。

②log a a N=N (a >0,且a ≠1)。

(2)对数的重要公式①换底公式:log b N =log a Nlog a b (a ,b 均大于零,且不等于1,N >0)。

②log a b =1log b a,推广log a b ·log b c ·log c d =log a d 。

(3)对数的运算法则如果a >0,且a ≠1,M >0,N >0,那么 ①log a (MN )=log a M +log a N 。

②log a M N=log a M -log a N 。

③log a M n=n log a M (n ∈R )。

④log am M n =n mlog a M (m ,n ∈R )。

3.对数函数的图象与性质4.y =a x与y =log a x (a >0,a ≠1)的关系指数函数y =a x与对数函数y =log a x 互为反函数,它们的图象关于直线y =x 对称。

1.指数与对数的等价关系:a x=N ⇔x =log a N 。

2.换底公式的三个重要结论 (1)log a b =1log b a; (2)log am b n=n mlog a b ;(3)log a b ·log b c ·log c d =log a d 。

3.对数函数的图象与底数大小的比较如图,作直线y =1,则该直线与四个函数图象交点的横坐标为相应的底数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七节对数与对数函数.对数1在y轴右侧,过定点(1,0)1.判断下面结论是否正确(请在括号中打“√”或“×”) (1)函数y =log 2(x +1)是对数函数.( ) (2)log 2x 2=2log 2x .( ) (3)当x >1时,log a x >0.( )(4)函数y =ln 1+x1-x 与y =ln(1+x )-ln(1-x )的定义域相同.( )答案:(1)× (2)× (3)× (4)√2.已知a >0,a ≠1,函数y =a x 与y =log a (-x )的图象可能是( )解析:选B 函数y =log a (-x )的图象与y =log a x 的图象关于y 轴对称,符合条件的只有B.3.函数y =lg|x |( )A .是偶函数,在区间(-∞,0)上单调递增B .是偶函数,在区间(-∞,0)上单调递减C .是奇函数,在区间(0,+∞)上单调递减D .是奇函数,在区间(0,+∞)上单调递增解析:选B y =lg|x |是偶函数,由图象知在(-∞,0)上单调递减,在(0,+∞)上单调递增.4.设a =log 2π,b =log 12π,c =π-2,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .a >c >bD .c >b >a解析:选C 因为a =log 2π>1,b =log 12π<0,c =π-2=1π2>0,但c <1,所以b <c<a .5.函数y =log 0.5(4x -3)的定义域为______.解析:要使函数有意义,须满足⎩⎪⎨⎪⎧4x -3>0,log 0.5(4x -3)≥0,解得34<x ≤1.答案:⎝⎛⎦⎤34,16.函数y =log a (x -1)+2(a >0,且a ≠1)的图象恒过的定点是________.解析:当x =2时,函数y =log a (x -1)+2(a >0,且a ≠1)的值为2,所以图象恒过定点(2,2).答案:(2,2)考点一 对数式的化简与求值 (基础送分型考点——自主练透)[考什么·怎么考]23A.14 B.12 C .2D .4解析:选D 法一:原式=lg 9lg 2·lg 4lg 3=2lg 3·2lg 2lg 2·lg 3=4.法二:原式=2log 23·log 24log 23=2×2=4.2.计算:⎝⎛⎭⎫lg 14-lg 25÷100-12=________. 解析:原式=lg ⎝⎛⎭⎫14×125×10012=lg 10-2×10=-2×10=-20. 答案:-203.计算:log 23·log 38+(3)3log 4=________.解析:原式=lg 3lg 2·3lg 2lg 3+331log 42log 34=3+33log 2l =3+2=5.答案:54.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3-x +1,x ≤0,则f (f (1))+f ⎝⎛⎫log 3 12的值是________. 解析:因为f (1)=log 21=0,所以f (f (1))=f (0)=2.因为log 312<0,所以f ⎝⎛⎭⎫log 312=331-log 2+1=33log 2+1=2+1=3.所以f (f (1))+f ⎝⎛⎭⎫log 312=2+3=5. 答案:5[怎样快解·准解]1.解题“2思路”(1)首先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算性质化简合并.(2)将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算性质,转化为同底对数真数的积、商、幂的运算.2.易错“2提醒”(1)对数的运算性质以及有关公式都是在式子中所有的对数符号有意义的前提下才成立的,不能出现log 212=log 2[(-3)×(-4)]=log 2(-3)+log 2(-4)的错误.(2)利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用.考点二 对数函数的图象及应用 (重点保分型考点——师生共研)1.函数f (x )=log a |x |+1(0<a <1)的图象大致为( )解析:选A 由函数f (x )的解析式可确定该函数为偶函数,图象关于y 轴对称.设g (x )=log a |x |,先画出x >0时,g (x )的图象,然后根据g (x )的图象关于y 轴对称画出x <0时g (x )的图象,最后由函数g (x )的图象向上整体平移一个单位即得f (x )的图象,结合图象知选A.2.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x ,x ≤0,关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的取值范围是________.解析:问题等价于函数y =f (x )与y =-x +a 的图象有且只有一个交点,结合函数图象可知a >1.答案:(1,+∞)[解题师说]1.准确审题是关键(1)要识别对数型函数f (x )=log a |x |+1的图象,一般从最基本的对数函数y =log a x 的图象入手,抓住图象上的三个关键点(a,1),(1,0),⎝⎛⎭⎫1a ,-1,函数的定义域及单调性,并利用平移、对称变换等手段得到所要求的函数图象,特别地要注意a >1和0<a <1的两种不同情况.(2)方程f (x )+x -a =0有且只有一实根,采用直接求解无法得到,常把这种问题转化为y =f (x )与y =-x +a 两函数图象的关系问题,利用数形结合法求解.2.利用结论是捷径 对数函数图象的特征(1)底数与1的大小关系决定了图象的升降,即a >1时,图象上升;0<a <1时,图象下降.(2)对数函数在同一直角坐标系中的图象如图,其中图象的相对位置与底数大小有关,图中0<c <d <1<a <b .在x 轴上侧,图象从左到右相应的底数由小变大; 在x 轴下侧,图象从右到左相应的底数由小变大. (无论在x 轴的上侧还是下侧,底数都按顺时针方向变大)[冲关演练]1.函数f (x )=ln|x -1|的图象大致是( )解析:选B 当x >1时,f (x )=ln(x -1), 又f (x )的图象关于x =1对称,故选B.2.已知函数f (x )=loga (2x +b -1)(a >0,且a ≠1)的图象如图所示,则a ,b 满足的关系是( )A .0<a -1<b <1B .0<b <a -1<1C .0<b -1<a <1D .0<a -1<b -1<1解析:选A 令g (x )=2x +b -1,这是一个增函数,而由图象可知函数f (x )=log a (g (x ))是单调递增的,所以必有a >1. 又由函数图象与y 轴交点的纵坐标介于-1和0之间, 即-1<f (0)<0,所以-1<log a b <0, 故a -1<b <1,因此0<a -1<b <1.考点三 对数函数的性质及应用 (题点多变型考点——追根溯源)角度(一) 比较对数值的大小1.已知a =log 29-log 23,b =1+log 27,c =12+log 213,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .c >a >bD .c >b >a解析:选B a =log 29-log 23=log 233,b =1+log 27=log 227,c =12+log 213=log 226,因为函数y =log 2x 在(0,+∞)上是增函数, 且27>33>26,所以b >a >c . [题型技法]比较对数值大小的方法角度(二) 简单对数不等式的解法2.已知不等式log x (2x 2+1)<log x (3x )<0成立,则实数x 的取值范围是________.解析:原不等式⇔⎩⎪⎨⎪⎧ 0<x <1,2x 2+1>3x >1①或⎩⎪⎨⎪⎧x >1,2x 2+1<3x <1②,解不等式组①得13<x <12,不等式组②无解,所以实数x 的取值范围为⎝⎛⎭⎫13,12.答案:⎝⎛⎭⎫13,12[题型技法] 求解对数不等式的两种类型及方法3.若函数f (x )=log 12(-x 2+4x +5)在区间(3m -2,m +2)内单调递增,则实数m 的取值范围为( )A.⎣⎡⎦⎤43,3B.⎣⎡⎦⎤43,2C.⎣⎡⎭⎫43,2D.⎣⎡⎭⎫43,+∞解析:选C 由-x 2+4x +5>0,解得-1<x <5.二次函数y =-x 2+4x +5的对称轴为x =2.由复合函数单调性可得函数f (x )=log 12(-x 2+4x +5)的单调递增区间为(2,5).要使函数f (x )=log 12(-x 2+4x +5)在区间(3m -2,m+2)内单调递增,只需⎩⎪⎨⎪⎧3m -2≥2,m +2≤5,3m -2<m +2,解得43≤m <2.[题型技法]解决与对数函数有关的综合问题单调性的步骤1.无论题型如何变化,都是围绕对数函数的单调性,变换不同的角度来应用.角度(一)与角度(二)是对数函数单调性的直接应用,利用单调性来比较大小、解不等式;角度(三)是对数函数单调性的迁移应用,根据单调性来求参数的范围,所以弄清对数函数的单调性是解题的关键,并注意有时需对底数字母参数进行讨论.2.与对数型函数有关的恒成立问题多与其定义域和值域有关.对于函数y =log a f (x )(a >0,且a ≠1),若定义域为R ,则f (x )>0在R 上恒成立;若值域为R ,则f (x )能取遍所有正实数.[冲关演练]1.若a =log 0.30.2,b =log π3,c =log 0.3e ,则a ,b ,c 的大小关系为( ) A .a >b >c B .b >a >c C .c >a >bD .b >c >a解析:选A 由对数函数的性质可得a =log 0.30.2>log 0.30.3=1,b =log π3∈(0,1),c =log 0.3e<0,所以a >b >c .2.设函数f (x )=⎩⎪⎨⎪⎧41-x,x ≤1,1-log 41x ,x >1,则满足不等式f (x )≤2的实数x 的取值集合为________.解析:原不等式等价于⎩⎪⎨⎪⎧x ≤1,41-x ≤2或⎩⎪⎨⎪⎧x >1,1-log 41x ≤2,解得12≤x ≤1或1<x ≤4,即实数x 的取值集合为⎩⎨⎧⎭⎬⎫x | 12≤x ≤4.答案:⎩⎨⎧⎭⎬⎫x | 12≤x ≤43.已知函数f (x )=log a (8-ax )(a >0,且a ≠1),若f (x )>1在区间[1,2]上恒成立,则实数a 的取值范围为________.解析:当a >1时,f (x )=log a (8-ax )在[1,2]上是减函数, 由f (x )>1在[1,2]上恒成立,则f (x )min =log a (8-2a )>1, 解得1<a <83,当0<a <1时,f (x )在[1,2]上是增函数,由f (x )>1在[1,2]上恒成立,则f (x )min =log a (8-a )>1, 且8-2a >0,故不存在实数a 满足题意. 综上可知,实数a 的取值范围是⎝⎛⎭⎫1,83. 答案:⎝⎛⎭⎫1,83(一)普通高中适用作业A 级——基础小题练熟练快1.函数y =log 3(2x -1)+1的定义域是( ) A .[1,2] B .[1,2) C.⎣⎡⎭⎫23,+∞ D.⎝⎛⎭⎫23,+∞解析:选C 由⎩⎪⎨⎪⎧log 3(2x -1)+1≥0,2x -1>0,即⎩⎨⎧log 3(2x -1)≥log 313,x >12,解得x ≥23.2.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=( ) A .log 2x B.12x C .log 12xD .2x -2解析:选A 由题意知f (x )=log a x (a >0,且a ≠1), ∵f (2)=1,∴log a 2=1,∴a =2. ∴f (x )=log 2x .3.如果log 12x <log 12y <0,那么( )A .y <x <1B .x <y <1C .1<x <yD .1<y <x解析:选D ∵log 12x <log 12y <log 121,∴x >y >1.4.若函数y =a |x |(a >0,且a ≠1)的值域为{y |0<y ≤1},则函数y =log a |x |的图象大致是( )解析:选A 由函数y =a |x |(a >0,且a ≠1)的值域为{y |0<y ≤1},知0<a <1,由此可知y =log a |x |的图象大致是A.5.设函数f (x )=log a |x |(a >0,且a ≠1)在(-∞,0)上单调递增,则f (a +1)与f (2)的大小关系是( )A .f (a +1)>f (2)B .f (a +1)<f (2)C .f (a +1)=f (2)D .不能确定解析:选A 由已知得0<a <1,所以1<a +1<2,又易知函数f (x )为偶函数,故可以判断f (x )在(0,+∞)上单调递减,所以f (a +1)>f (2).6.(2018·郑州模拟)已知函数f (x )=lg 1-x 1+x ,若f (a )=12,则f (-a )=( )A .2B .-2C.12 D .-12解析:选D ∵f (x )=lg 1-x1+x 的定义域为-1<x <1,∴f (-x )=lg 1+x 1-x =-lg 1-x1+x =-f (x ),∴f (x )为奇函数,∴f (-a )=-f (a )=-12.7.lg 2+lg 5+20+⎝⎛⎭⎫5132×35=________. 解析:原式=lg 10+1+523×513=32+5=132.答案:1328.已知函数f (x )=log a (x +b )(a >0,且a ≠1)的图象过两点(-1,0)和(0,1),则log b a =________.解析:f (x )的图象过两点(-1,0)和(0,1). 则f (-1)=log a (-1+b )=0, 且f (0)=log a (0+b )=1,所以⎩⎪⎨⎪⎧ b -1=1,b =a ,即⎩⎪⎨⎪⎧b =2,a =2.所以log b a =1. 答案:19.(2018·安徽两校阶段性测试)已知f (x )是定义在R 上的奇函数,且当x <0时,f (x )=2x ,则f (log 49)=________.解析:因为log 49=log 23>0,又f (x )是定义在R 上的奇函数,且当x <0时,f (x )=2x ,所以f (log 49)=f (log 23)=-22log 3-=-21log23=-13.答案:-1310.设函数f (x )满足f (x )=1+f ⎝⎛⎭⎫12·log 2x ,则f (2)= ________.解析:因为f (x )=1+f ⎝⎛⎭⎫12·log 2x , 所以f ⎝⎛⎭⎫12=1+f ⎝⎛⎭⎫12·log 212,得f ⎝⎛⎭⎫12=12, 所以f (x )=1+12log 2x ,所以f (2)=1+12log 22=32.答案:32B 级——中档题目练通抓牢1.已知a =log 23+log 23,b =log 227-log 233,c =log 32,则a ,b ,c 的大小关系是( ) A .a =b <c B .a =b >c C .a <b <cD .a >b >c解析:选B 因为a =log 23+log 23=log 233=32log 23>1,b =log 227-log 233=log 233=a ,c =log 32<log 33=1,所以a =b >c .2.已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图象如图,则下列结论成立的是( )A .a >1,c >1B .a >1,0<c <1C .0<a <1,c >1D .0<a <1,0<c <1解析:选D 由对数函数的性质得0<a <1,因为函数y =log a (x +c )的图象在c >0时是由函数y =log a x 的图象向左平移c 个单位得到的,所以根据题中图象可知0<c <1.3.若函数f (x )=log a ⎝⎛⎭⎫x 2+32x (a >0,且a ≠1)在区间⎝⎛⎭⎫12,+∞内恒有f (x )>0,则f (x )的单调递增区间为( )A .(0,+∞)B .(2,+∞)C .(1,+∞)D.⎝⎛⎭⎫12,+∞ 解析:选A 令M =x 2+32x ,则M >0,所以x >0或x <-32.当x ∈⎝⎛⎭⎫12,+∞时,M ∈(1,+∞),f (x )>0,所以a >1,又M =x 2+32x 图象的对称轴为x =-34,且开口向上,故由复合函数的单调性知,函数f (x )的单调递增区间为(0,+∞).4.设2a =5b =m ,且1a +1b =2,则m =________. 解析:因为2a =5b =m , 所以a =log 2m ,b =log 5m ,所以1a +1b =1log 2m +1log 5m =log m 2+log m 5=log m 10=2,所以m 2=10,m =10.答案:105.设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12(-x ),x <0,若f (a )>f (-a ),则实数a 的取值范围是________________.解析:由f (a )>f (-a )得⎩⎪⎨⎪⎧ a >0,log 2a >log 12a 或⎩⎪⎨⎪⎧a <0,log 12(-a )>log 2(-a ), 即⎩⎪⎨⎪⎧ a >0,log 2a >-log 2a 或⎩⎪⎨⎪⎧a <0,-log 2(-a )>log 2(-a ).解得a >1或-1<a <0. 答案:(-1,0)∪(1,+∞)6.设f (x )=log a (1+x )+log a (3-x )(a >0,且a ≠1),且f (1)=2. (1)求a 的值及f (x )的定义域; (2)求f (x )在区间⎣⎡⎦⎤0,32上的最大值. 解:(1)∵f (1)=2,∴log a 4=2(a >0,且a ≠1), ∴a =2.由⎩⎪⎨⎪⎧1+x >0,3-x >0,得-1<x <3, ∴函数f (x )的定义域为(-1,3). (2)f (x )=log 2(1+x )+log 2(3-x )=log 2[(1+x )(3-x )]=log 2[-(x -1)2+4], ∴当x ∈(-1,1]时,f (x )是增函数; 当x ∈(1,3)时,f (x )是减函数,故函数f (x )在⎣⎡⎦⎤0,32上的最大值是f (1)=log 24=2. 7.已知函数f (x )=log a (a 2x +t ),其中a >0且a ≠1. (1)当a =2时,若f (x )<x 无解,求t 的取值范围;(2)若存在实数m ,n (m <n ),使得x ∈[m ,n ]时,函数f (x )的值域也为[m ,n ],求t 的取值范围.解:(1)∵log 2(22x +t )<x =log 22x ,∴22x +t <2x 无解,等价于22x +t ≥2x 恒成立,即t ≥-22x +2x =g (x )恒成立,即t ≥g (x )max ,∵g (x )=-22x +2x =-⎝⎛⎭⎫2x -122+14, ∴当2x =12,即x =-1时,g (x )取得最大值14,∴t ≥14,故t 的取值范围为⎣⎡⎭⎫14,+∞.(2)由题意知f (x )=log a (a 2x +t )在[m ,n ]上是单调增函数,∴⎩⎪⎨⎪⎧ f (m )=m ,f (n )=n ,即⎩⎪⎨⎪⎧a 2m +t =a m,a 2n +t =a n,问题等价于关于k 的方程a 2k -a k +t =0有两个不相等的实根,令a k =u >0,则问题等价于关于u 的二次方程u 2-u +t =0在u ∈(0,+∞)上有两个不相等的实根,即⎩⎪⎨⎪⎧ u 1+u 2>0,u 1·u 2>0,Δ>0,即⎩⎪⎨⎪⎧t >0,t <14,得0<t <14.∴t 的取值范围为⎝⎛⎭⎫0,14. C 级——重难题目自主选做1.(2018·广东省级名校模拟)已知函数f (x )=(e x -e -x )x ,f (log 5x )+f (log 15x )≤2f (1),则x的取值范围是( )A.⎣⎡⎦⎤15,1 B .[1,5]C.⎣⎡⎦⎤15,5D.⎝⎛⎦⎤-∞,15∪[5,+∞) 解析:选C ∵f (x )=(e x -e -x )x ,∴f (-x )=-x (e -x -e x )=(e x -e -x )x =f (x ),∴函数f (x )是偶函数.∵f ′(x )=(e x -e -x )+x (e x +e -x )>0在(0,+∞)上恒成立.∴函数f (x )在(0,+∞)上单调递增. ∵f (log 5x )+f (log 15x )≤2f (1),∴2f (log 5x )≤2f (1),即f (log 5x )≤f (1), ∴|log 5x |≤1,∴15≤x ≤5.故选C.2.(2018·沈阳质检)已知函数f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则nm =________.解析:f (x )=|log 3x |=⎩⎪⎨⎪⎧-log 3x ,0<x <1,log 3x ,x ≥1,所以f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,由0<m <n 且f (m )=f (n ),可得⎩⎪⎨⎪⎧0<m <1,n >1,log 3n =-log 3m ,则⎩⎪⎨⎪⎧0<m <1,n >1,mn =1,所以0<m 2<m <1,则f (x )在[m 2,1)上单调递减,在(1,n ]上单调递增,所以f (m 2)>f (m )=f (n ),则f (x )在[m 2,n ]上的最大值为f (m 2)=-log 3m 2=2,解得m =13,则n =3,所以n m =9.答案:9(二)重点高中适用作业A 级——保分题目巧做快做1.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=( ) A .log 2x B.12x C .log 12xD .2x -2解析:选A 由题意知f (x )=log a x (a >0,且a ≠1), ∵f (2)=1,∴log a 2=1,∴a =2.∴f (x )=log 2x .2.若函数f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上递减,则a 的取值范围为( ) A .[1,2) B .[1,2] C .[1,+∞)D .[2,+∞)解析:选A 令函数g (x )=x 2-2ax +1+a =(x -a )2+1+a -a 2,对称轴为x =a ,要使函数在(-∞,1]上递减,则有⎩⎪⎨⎪⎧ g (1)>0,a ≥1,即⎩⎪⎨⎪⎧2-a >0,a ≥1,解得1≤a <2,即a ∈[1,2). 3.(2018·广东韶关南雄模拟)函数f (x )=x a 满足f (2)=4,那么函数g (x )=|log a (x +1)|的图象大致为( )解析:选C ∵f (2)=4,∴2a =4,解得a =2,∴g (x )=|log 2(x +1)|=⎩⎪⎨⎪⎧log 2(x +1),x ≥0,-log 2(x +1),-1<x <0,∴当x ≥0时,函数g (x )单调递增,且g (0)=0;当-1<x <0时,函数g (x )单调递减.故选C.4.已知a =log 23+log 23,b =log 227-log 233,c =log 32,则a ,b ,c 的大小关系是( ) A .a =b <c B .a =b >c C .a <b <cD .a >b >c解析:选B 因为a =log 23+log 23=log 233=32log 23>1,b =log 227-log 233=log 233=a ,c =log 32<log 33=1,所以a =b >c .5.已知函数f (x )=log a (2x -a )在区间⎣⎡⎦⎤12,23上恒有f (x )>0,则实数a 的取值范围是( )A.⎝⎛⎭⎫13,1B.⎣⎡⎭⎫13,1 C.⎝⎛⎭⎫23,1D.⎣⎡⎭⎫23,1解析:选A 当0<a <1时, 函数f (x )在区间⎣⎡⎦⎤12,23上是减函数, 所以log a ⎝⎛⎭⎫43-a >0,即0<43-a <1, 解得13<a <43,故13<a <1;当a >1时,函数f (x )在区间⎣⎡⎦⎤12,23上是增函数, 所以log a (1-a )>0,即1-a >1,解得a <0,此时无解. 综上所述,实数a 的取值范围是⎝⎛⎭⎫13,1.6.已知函数f (x )=log a (x +b )(a >0,且a ≠1)的图象过两点(-1,0)和(0,1),则log b a =________.解析:f (x )的图象过两点(-1,0)和(0,1).则f (-1)=log a (-1+b )=0,且f (0)=log a (0+b )=1,所以⎩⎪⎨⎪⎧ b -1=1,b =a ,即⎩⎪⎨⎪⎧b =2,a =2.所以log b a =1. 答案:17.函数f (x )=log 2 x ·log 2(2x )的最小值为________.解析:依题意得f (x )=12log 2x ·(2+2log 2x )=(log 2x )2+log 2x =⎝⎛⎭⎫log 2x +122-14≥-14,当且仅当log 2x =-12,即x =22时等号成立,因此函数f (x )的最小值为-14.答案:-148.设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12(-x ),x <0,若f (a )>f (-a ),则实数a 的取值范围是________________.解析:由f (a )>f (-a )得⎩⎪⎨⎪⎧ a >0,log 2a >log 12a 或⎩⎪⎨⎪⎧a <0,log 12(-a )>log 2(-a ),即⎩⎪⎨⎪⎧ a >0,log 2a >-log 2a 或⎩⎪⎨⎪⎧a <0,-log 2(-a )>log 2(-a ).解得a >1或-1<a <0. 答案:(-1,0)∪(1,+∞)9.已知函数f (x )=log 21+ax x -1(a 为常数)是奇函数.(1)求a 的值与函数f (x )的定义域;(2)若当x ∈(1,+∞)时,f (x )+log 2(x -1)>m 恒成立,求实数m 的取值范围. 解:(1)∵函数f (x )=log 21+axx -1是奇函数,∴f (-x )=-f (x ),∴log 21-ax -x -1=-log 21+ax x -1,即log 2ax -1x +1=log 2x -11+ax ,∴a =1,f (x )=log 21+xx -1.令1+xx -1>0,得⎩⎪⎨⎪⎧ 1+x >0,x -1>0,或⎩⎪⎨⎪⎧1+x <0,x -1<0,解得x <-1或x >1.∴函数f (x )的定义域为{x |x <-1或x >1}. (2)∵f (x )+log 2(x -1)=log 2(1+x ), 当x >1时,x +1>2,∴log 2(1+x )>log 22=1. ∵当x ∈(1,+∞)时,f (x )+log 2(x -1)>m 恒成立, ∴m ≤1.∴m 的取值范围是(-∞,1].10.已知函数f (x )是定义在R 上的偶函数,f (0)=0,当x >0时,f (x )=log 12x .(1)求函数f (x )的解析式; (2)解不等式f (x 2-1)>-2.解:(1)当x <0时,-x >0,则f (-x )=log 12(-x ).因为函数f (x )是偶函数,所以f (-x )=f (x ). 所以函数f (x )的解析式为f (x )=⎩⎨⎧log 12x ,x >0,0,x =0,log 12(-x ),x <0.(2)因为f (4)=log 124=-2,f (x )是偶函数,所以不等式f (x 2-1)>-2可化为f (|x 2-1|)>f (4). 又因为函数f (x )在(0,+∞)上是减函数, 所以|x 2-1|<4,解得-5<x <5, 即不等式的解集为{x |-5<x <5}. B 级——拔高题目稳做准做1.若函数f (x )=log a ⎝⎛⎭⎫x 2+32x (a >0,且a ≠1)在区间⎝⎛⎭⎫12,+∞内恒有f (x )>0,则f (x )的单调递增区间为( )A .(0,+∞)B .(2,+∞)C .(1,+∞)D.⎝⎛⎭⎫12,+∞解析:选A 令M =x 2+32x ,则M >0,所以x >0或x <-32.当x ∈⎝⎛⎭⎫12,+∞时,M ∈(1,+∞),f (x )>0,所以a >1,又M =x 2+32x 图象的对称轴为x =-34,且开口向上,故由复合函数的单调性知,函数f (x )的单调递增区间为(0,+∞).2.设方程10x =|lg(-x )|的两个根分别为x 1,x 2,则( ) A .x 1x 2<0 B .x 1x 2=0 C .x 1x 2>1D .0<x 1x 2<1解析:选D 作出y =10x 与y =|lg(-x )|的大致图象如图所示. 显然x 1<0,x 2<0. 不妨设x 1<x 2,则x 1<-1,-1<x 2<0, 所以10x 1=lg(-x 1), 10x 2=-lg(-x 2),此时10x 1<10x 2,即lg(-x 1)<-lg(-x 2), 由此得lg(x 1x 2)<0,所以0<x 1x 2<1.3.设2a =5b =m ,且1a +1b =2,则m =________. 解析:因为2a =5b =m ,所以a =log 2m ,b =log 5m ,所以1a +1b =1log 2m +1log 5m =log m 2+log m 5=log m 10=2,所以m 2=10,m =10.答案:104.(2018·沈阳质检)已知函数f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则nm =________.解析:f (x )=|log 3x |=⎩⎪⎨⎪⎧-log 3x ,0<x <1,log 3x ,x ≥1,所以f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,由0<m <n 且f (m )=f (n ),可得⎩⎪⎨⎪⎧0<m <1,n >1,log 3n =-log 3m ,则⎩⎪⎨⎪⎧0<m <1,n >1,mn =1,所以0<m 2<m <1,则f (x )在[m 2,1)上单调递减,在(1,n ]上单调递增,所以f (m 2)>f (m )=f (n ),则f (x )在[m 2,n ]上的最大值为f (m 2)=-log 3m 2=2,解得m =13,则n =3,所以n m =9.答案:95.已知函数f (x )=log a (a 2x +t ),其中a >0且a ≠1. (1)当a =2时,若f (x )<x 无解,求t 的取值范围;(2)若存在实数m ,n (m <n ),使得x ∈[m ,n ]时,函数f (x )的值域也为[m ,n ],求t 的取值范围.解:(1)∵log 2(22x +t )<x =log 22x ,∴22x +t <2x 无解,等价于22x +t ≥2x 恒成立,即t ≥-22x +2x =g (x )恒成立,即t ≥g (x )max ,∵g (x )=-22x +2x =-⎝⎛⎭⎫2x -122+14, ∴当2x =12,即x =-1时,g (x )取得最大值14,∴t ≥14,故t 的取值范围是⎣⎡⎭⎫14,+∞. (2)由题意知f (x )=log a (a 2x +t )在[m ,n ]上是单调增函数,∴⎩⎪⎨⎪⎧ f (m )=m ,f (n )=n ,即⎩⎪⎨⎪⎧a 2m +t =a m,a 2n +t =a n,问题等价于关于k 的方程a 2k -a k +t =0有两个不相等的实根,令a k =u >0,则问题等价于关于u 的二次方程u 2-u +t =0在u ∈(0,+∞)上有两个不相等的实根,即⎩⎪⎨⎪⎧ u 1+u 2>0,u 1·u 2>0,Δ>0,即⎩⎪⎨⎪⎧t >0,t <14,得0<t <14.∴t 的取值范围为⎝⎛⎭⎫0,14.6.已知函数f (x )=3-2log 2x ,g (x )=log 2x .(1)当x ∈[1,4]时,求函数h (x )=[f (x )+1]·g (x )的值域;(2)如果对任意的x ∈[1,4],不等式f (x 2)·f (x )>k ·g (x )恒成立,求实数k 的取值范围. 解:(1)h (x )=(4-2log 2x )·log 2x =-2(log 2x -1)2+2, 因为x ∈[1,4],所以log 2x ∈[0,2], 故函数h (x )的值域为[0,2]. (2)由f (x 2)·f (x )>k ·g (x ), 得(3-4log 2x )(3-log 2x )>k ·log 2x ,令t =log 2x ,因为x ∈[1,4],所以t =log 2x ∈[0,2], 所以(3-4t )(3-t )>k ·t 对一切t ∈[0,2]恒成立, ①当t =0时,k ∈R ;②当t ∈(0,2]时,k <(3-4t )(3-t )t 恒成立, 即k <4t +9t -15,因为4t +9t ≥12,当且仅当4t =9t ,即t =32时取等号,所以4t +9t -15的最小值为-3.所以k <-3. 综上,实数k 的取值范围为(-∞,-3).。

相关文档
最新文档