222椭圆几何性质(讲课用)

合集下载

2.2.2椭圆的几何性质

2.2.2椭圆的几何性质

故椭圆的离心率 e=13,故选 A.
三、题型一:求离心率的值
分析:
四、题型二:求离心率的范围
能否得到a,b,c 的齐次不等关 系?
几何法一:临界化原则
几何法二:特殊化原则
代数方法——横坐标的取值
设P(x0, y0 ), 则F1(c,0), F (c,0)
PF1 PF2 0 x02 y02 c2 0
=
32������-������ 2������
=
12,解
得������
������
=
34,故离心率
e=34.
三、题型一:求离心率的值
【答案】 A 由题意,不妨设直线 l 的方程为 y=k(x+a),k>0,分别令
x=-c 与 x=0,得|FM|=k(a-c),|OE|=ka.
设 OE 的中点为 G,
由△OBG∽△FBM,得12|���|���������������������|| = ||������������������������||,
即 ������������
2������(������-������)
=
������+������ ������,整理,得������������
=
13,
从代数方法转化为横坐标的范围.
五、课堂练习
C C
六、课堂小结
七、作业
完成学案课后作业
|F1F2|=2c e=ac∈(0,1) c2=a2-b2
e越大,椭圆越扁
二、学习自测
二、学习自测
二、学习自测
【答案】 C 设直线 x=32������与 x 轴交于点 M,则∠PF2M=60°,在
Rt△PF2M

高二数学选修课件:2-2-2椭圆的几何性质

高二数学选修课件:2-2-2椭圆的几何性质

第二章
圆锥曲线与方程
2.根据曲线的方程,研究曲线的几何性质,并正确地
画出它的图形,是解析几何的基本问题之一.本节就是根 据椭圆的标准方程来研究它的几何性质.其性质可分为两 类:一类是与坐标系无关的本身固有性质,如长短轴长、 焦距、离心率;一类是与坐标系有关的性质,如顶点、焦
人 教 B 版 数 学
点.
第二章
圆锥曲线与方程
当 AB 与 x 轴不垂直时,设直线 AB 的方程为 y=kx +m, |m| 3 3 2 2 由已知 2= 2 ,得 m =4(k +1). 1+k 把 y=kx+m 代入椭圆方程, 整理, 得(3k2+1)x2+6kmx +3m2-3=0. -6km 3(m2-1) ∴x1+x2= 2 ,x1x2= 2 . 3k +1 3k +1 ∴|AB|2=(1+k2)(x2-x1)2
人 教 B 版 数 学
∴椭圆长轴在 y 轴上,其中 a=9,b=3,c=6 2, ∴长轴长 2a=18,短轴长 2b=6,焦点坐标为 F1(0, -6 2)、F2(0,6 2),顶点坐标为 A1(-3,0)、A2(3,0)、B1(0, -9)、B2(0,9). c 6 2 2 2 离心率为 e=a= 9 = 3 .
焦点的位置
范围
焦点在x轴上
-a≤x≤a且-b ≤y≤b A1(-a,0)、A2(a,0)
焦点在y轴上 -b≤x≤b且-a≤ y≤a
人 教 B 版 数 学
顶点
轴长 焦点
A1(0,-a)、A2(0, B1(0,-b)、B2(0,b) a) B1(-b,0)、B2(b,0) 短轴长= 2b,长轴长= 2a . F1(-c,0),F2(c,0) F1(0,-c),F2(0,c)
2
12 12 ≤3+ = 1 2×3+6 9k2+k2+6

椭圆的几何性质ppt课件

椭圆的几何性质ppt课件

的对称轴,坐标原点是对称中心. 椭圆的对称中
(3)顶点
在方程①中,令
= 0,得
轴有两个交点,可以记作
=−


1 (0,
− ),
交点,即
的顶点.
= ,可知椭圆
2 (0,
1, 2

=−
1(

− ,0),

). 因此,椭圆
= ,可知椭圆
2(
,0);令

= 0 ,得
轴也有两个交点,可以记
与它的对称轴共有 4 个
=− , = , =− , =
x
a 且 b
y
b ,这说明,椭圆
所围成的矩形内,如图所示.
(2)对称性
如果 ( , ) 是方程①的一组解,则不难看出,( − , ),( , − ),( − , − )
都是方程的解,这说明椭圆
因此,
轴、
心也称为椭圆的中心.
关于
轴是椭圆
轴、
轴、坐标原点对称,如图所示.
1 , 2 ,如图所示,这四个点都称为椭圆
注意到
1 2
椭圆的长轴,线段
=2 ,
1
而且椭圆的长轴长为 2
2
1 2
=2
,而且
>
> 0 ,所以线段
1 2
称为
称为椭圆的短轴. 显然,椭圆的两个焦点在它的长轴上,
,短轴长为 2 .
于是, ,
距为 2 ,则
分别是椭圆的半长轴长和半短轴长,如果设椭圆的焦
是椭圆的半焦距,由
轴上的椭圆是一致的,如图所示.
例 1 求下列方程表示的椭圆的长轴长、半短轴长、焦点坐标以及离心率:

§2.2.2 椭圆的简单几何性质(2)

§2.2.2 椭圆的简单几何性质(2)

>0 =0 <0
解:联立方程组 x ⋅ x = − 1 1 1 2 5 y = x − 消去 消去y 2 2 5x − 4x −1 = 0 ----- (1) x2+4y2=2 有两个根, 因为 ∆=36>0,所以方程(1)有两个根, ,所以方程( 则原方程组有两组解. 所以该直线与椭圆相交. 则原方程组有两组解 所以该直线与椭圆相交
42 + 52 尝试遇到困难怎么办? 尝试遇到困难怎么办?
及椭圆, 作出直线 l 及椭圆, 观察图形,数形结合思考 观察图形,数形结合思考.
d=
4 x0 − 5 y0 + 40
=
4 x0 − 5 y0 + 40 41

x0 2 25
+
y0 2 9
=1
几何画板显示图形 几何画板显示图形
x2 y2 3.已知椭圆 例 3.已知椭圆 + = 1 ,直线 l: 4 x − 5 y + 40 = 0 ,椭圆 : 25 9 上是否存在一点, 的距离最小?最小距离是多少? 上是否存在一点,到直线 l 的距离最小?最小距离是多少? 解:设直线 m 平行于直线 l,则 m l 直线 m 的方程可写成 4 x − 5 y + k = 0
1 已知直线y=x- 与椭圆 2+4y2=2,判断它们4 与椭圆x 例2.已知直线 已知直线 , x1 + x2 = 2 5 由韦达定理 的位置关系。 的位置关系。
1 1 7 变式1:交点坐标是什么? 变式 :交点坐标是什么? A(1, ), B(− , − ) 2 5 10 6 变式2:相交所得的弦的弦长是多少? 变式 :相交所得的弦的弦长是多少? | AB |= 5 5

椭圆的几何性质优秀课件公开课

椭圆的几何性质优秀课件公开课
切线斜率与法线斜率互为相反数的倒数。
3
切线、法线与椭圆关系
切线、法线都与椭圆在切点处有且仅有一个公共 点。
应用举例:求解相关问题
求给定点的切线方程
给定椭圆上一点,求该点的切线方程。
求给定斜率的切线方程
给定椭圆的方程和切线的斜率,求切线的 方程。
求椭圆与直线的交点
利用切线、法线解决最值问题
给定椭圆和直线的方程,求它们的交点坐 标。
加空间的变化和美感。
椭圆在物理学中的应用
天体运动轨道
椭圆是描述天体运动轨道的重要几何形状之一, 如行星绕太阳的轨道就是椭圆形的。
光学性质
椭圆的光学性质也被广泛应用于物理学中,如椭 圆形的透镜、反射镜等。
电磁学
在电磁学中,椭圆也被用于描述电场和磁场的分 布。
椭圆在工程学中的应用
机械工程
01
椭圆在机械工程中应用广泛,如椭圆形的齿轮、轴承等机械零
工程学
在工程学中,椭圆也经常被用来描述一些物体的形状或运动轨迹。例如,一些机械零件的 截面形状就是椭圆形的;在航空航天领域,飞行器的轨道也可能是椭圆形的。
数学及其他领域
在数学领域,椭圆作为一种重要的几何图形,经常被用来研究一些数学问题。此外,在物 理学、经济学等其他领域,椭圆也有着广泛的应用。
02
从椭圆外一点向椭圆引切线,切线长 相等。这个定理在解决与椭圆切线有 关的问题时非常有用。
03
椭圆上点与焦点关系
点到两焦点距离之和为定值
椭圆上任意一点到两 个焦点的距离之和等 于椭圆的长轴长。
通过该性质,可以推 导出椭圆的其他几何 性质。
这是椭圆定义的基础 ,也是椭圆最基本的 几何性质之一。
点到两焦点距离差与长轴关系

椭圆的几何性质 教案(教学设计) 【第九届全国高中青年数学教师优秀课展示与培训活动】

椭圆的几何性质  教案(教学设计)  【第九届全国高中青年数学教师优秀课展示与培训活动】

2.2.2 椭圆的几何性质江苏省丹阳高级中学张宏鹏苏教版普通高中课程标准实验教科书选修2-1【教学内容解析】1. 平面解析几何的基本思想是在平面上引进“坐标”概念,并借助坐标在平面上的点和有序数对(x,y)之间建立一一对应的关系.于是,平面上的一条曲线就可以由带两个变量的一个代数方程来表示.这样,我们就可以利用方程来研究几何2. 圆锥曲线是高中数学平面解析几何中的核心内容,也是一类重要的数学模型,其研究方法充分体现了解析几何的基本思想,在天文、物理等其它学科技术领域中占有重要地位,在生产或生活实际中有着大量应用.3. 椭圆的几何性质是在学生学习了椭圆的定义和标准方程之后,第一次真正意义上感受解析几何的基本思想——从方程出发研究椭圆的几何性质.是继必修二第二章《平面解析几何初步》之后,进一步渗透并应用这种思想,是后续学习双曲线、抛物线的知识铺垫、能力基础和方法指导,是数形结合的数学思想方法的典范,也是进一步完善学生的知识结构、深化数学思想方法、提升多种数学素养的重要载体. 在本章中起着承上启下、完善建构、形成范例的作用.4. 能根据椭圆的标准方程获得椭圆的几何性质,发现椭圆方程与椭圆几何性质的关系,揭示椭圆几何性质的形成过程是本节课的教学重点.【教学目标设置】1.能根据椭圆方程初步理解椭圆的范围、对称性、顶点、离心率等简单几何性质;a b c,,能解释椭圆标准方程中的几何意义;2. 在探究椭圆性质的活动中,经历从图形直观抽象几何性质的过程,提取出利用代数方法研究几何性质的一般方法,建立离心率模型;3. 在这过程中,进一步感受数形结合、函数与方程、类比归纳等数学思想方法的丰富内涵.4. 树立严谨求实的理性精神,获得自主探究的成功和喜悦,提高数学学习兴趣.【学生学情分析】(1)学生已有的认知基础本节课的授课对象是四星级高中高二年级的学生,已经知道了直线和圆的相关知识、椭圆的定义和标准方程;理解数形结合思想、数形转化方法的重要作用,初步感知了解析几何的基本任务,具有一定的图形分析和代数推理能力.同时在函数和不等式的学习过程中已经积累了利用等量关系寻找不等关系、图像的对称性等研究函数性质的基本经验.这些都为本节课提供了充分的基础知识和思想方法准备.(2)达成目标所需要的认知基础要达成本节课的目标,这些已有的知识、能力和经验基础不可或缺,但这毕竟是他们第一次利用代数方程研究曲线的几何性质,经验缺乏,研究目标不明确,抽象建立离心率模型的素养不够.所以还需要具备观察、概括、抽象、推理等能力,能运用数形结合、类比归纳等数学思想,以及独立思考、合作交流、反思质疑等良好的数学学习习惯.(3)教学难点与突破策略基于达成目标的认知困难,本节课的教学难点是:1.发现和揭示椭圆方程与椭圆几何性质的关系,搭建“数”与“形”的桥梁;2.椭圆离心率的发现与探究,突破“定性”到“定量”的转化;突破难点的相应策略如下:1.通过画图、辨图,不断制造认知冲突,从解决问题需要出发,建立学生通过曲线方程研究几何性质的直接经验;2.引导学生经过操作确认、思辨论证的过程初步建立与椭圆圆扁程度的对应b a关系,再利用与的等量关系,建立离心率的模型,并结合几何画板动态演示,b a c a丰富学生的直观感悟与经历;3.发动学生通过问题串进行交流、汇报,展示思维过程,相互启发.【教学策略分析】1.精心设置问题系列 自然驱动从明确解析几何的基本任务入手,精心设置问题串,引导学生操作、观察、比较、猜想、推理,解构教材,学习知识,形成能力,发展认识.2.充分开展学生活动 自主探究站在学生的角度,从学生已有的认知出发,给学生提供了课堂参与的机会和自我领悟的空间,让学生在动手操作、观察比较、类比辨析、交流合作中理解知识,掌握研究方法.3.适时提炼思想方法 自觉升华在利用方程探究几何性质的过程中,教师在适当的时候对过程方法实时总结或迁移,由形到数,再以数释形,数形结合始终贯穿其中并逐层递进,帮助学生在交流和反思中领悟数学思想方法在数学学习中的指导作用.【教学过程分析】引言:美国数学教育家莫里斯·克莱茵说:解析几何彻底改变了数学的研究方法, 即通过坐标系,把几何问题代数化.而建立曲线方程,便是代数化的手段之一.前面两节课,利用椭圆的定义(是什么?),我们画出了椭圆的形状,推导出了椭圆的标准方程(是什么?).【学生活动】回忆、思考、口答.【设计意图】通过复习回顾,激活作为本节课逻辑起点的基础知识;通过对解析几何本质的揭示,初步明确本节课的研究内容.一、情境引入,明确方向问题1 除了利用定义,你能根据椭圆方程画出它的简图吗? 2212516x y +=【学生活动】学生在坐标纸上尝试画出椭圆,展台展示学生的作品,引导学生欣赏,点评,交流.【设计意图】中学数学教育的首要任务是培养数学直观.通过画图辨图,与学生已有的椭圆印象对比,让学生发现问题,进而关注椭圆的一些重要特性,从而明确研究椭圆几何性质的主要内容;通过“为什么”的追问,自然引导学生从方程本身的角度去考虑,从而明确研究的主要方法.二、问题驱动 合作探究问题2 一般地,以椭圆为例,你准备研究它的哪些性质?如何22221(0)x y a b a b+=>>研究?【学生活动】学生自主探究,感知“几何性质”研究的方向和方法,得出结论,说明理由.探究1:我们能否从椭圆方程本身来探讨椭圆的范围呢?方法提炼:通过观察方程形式特点,由方程构造不等式,体现了研究几何问题的“代数”方法,其实质是:已知,求的取值范围. 22221(0)x y a b a b+=>>y x ,探究2:椭圆具有怎样的对称性?能否用代数法说明?方法提炼: 图形对称的本质是点的对称:对于曲线上任意一点也在曲线上图形关于轴对称. (,) (,)y P x y P x y '−−−→-轴⇒y 探究3:研究曲线上的某些关键点,可以确定曲线的位置和变化趋势.你觉得该椭圆上会有哪些关键点?方法提炼:分析四点的特性,形成顶点的概念.顶点是曲线与对称轴的交点,而不是曲线与坐标轴的交点.类比迁移二次函数图像的顶点.二次函数2(2)1y x =--【设计意图】自主思考,相互交流,探究结论.教师适当点拨引导,深化认识.范围和对称性的探究,经历了由直观(图形)、推理(数量)、抽象(性质)的思维过程;顶点概念的。

椭圆的几何性质讲义

椭圆的几何性质讲义

椭圆的几何性质讲义本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March28.1 椭圆方程及性质一、明确复习目标1.掌握椭圆的定义、标准方程,了解椭圆的参数方程2.掌握椭圆的简单几何性质;掌握a ,b ,c ,e 等参数的几何意义及关系.二.建构知识网络1. 椭圆的两种定义:(1)平面内与两定点F 1,F 2的距离的和等于定长()212F F a >的点的轨迹,即点集M ={P | |PF 1|+|PF 2|=2a ,2a >|F 1F 2|};(212F F a =时为线段21F F ,212F F a <无轨迹)。

其中两定点F 1,F 2叫焦点,定点间的距离叫焦距。

(2)平面内一动点到一个定点和一定直线的距离的比是小于1的正常数的点的轨迹,即点集M ={P | e dPF =,0<e <1的常数}。

(1=e 为抛物线;1>e 为双曲线)2. 标准方程:(1)焦点在x 轴上,中心在原点:12222=+by a x (a >b>0);焦点F 1(-c ,0), F 2(c ,0)。

其中22b a c -=(一个∆Rt )(2)焦点在y 轴上,中心在原点:12222=+bx a y (a >b >0);焦点F 1(0,-c ),F 2(0,c )。

其中22b a c -=(3)两种标准方程可用统一形式表示:Ax 2+By 2=1 (A >0,B >0,A ≠B当A <B 时,椭圆的焦点在x 轴上,A >B 时焦点在y 轴上),这种形式用起来更方便。

33.性质:对于椭圆:12222=+by a x (a >b >0)如下性质必须熟练掌握:①范围; ②对称轴,对称中心; ③顶点;④焦点; ⑤准线方程; ⑥离心率; (参见课本) 此外还有如下常用性质:⑦焦半径公式: |PF 1|=左r =a +ex 0,|PF 2|=右r =a-ex 0;(由第二定义推得)c a PF c a PF -=+=min max ,⑧焦准距c b p 2=;准线间距c a 22=;通径长22b a⨯;⑨最大角()12122max F PF F B F ∠=∠ 证:设|PF 1|=r 1,|PF 2|=r 2,则222221212121212221222124()24cos 222211,"",.()2r r c r r r r c P r r r r b b r r r r a +-+--==≤-=-==+时取角最大对于椭圆:12222=+bx a y (a >b >0)的性质可类似的给出(请课后完成)。

椭圆的简单几何性质(教案)

椭圆的简单几何性质(教案)

椭圆的简单几何性质教学目标:1. 理解椭圆的定义及其基本性质。

2. 掌握椭圆的长轴、短轴、焦距等几何参数的计算方法。

3. 能够运用椭圆的性质解决相关几何问题。

教学重点:1. 椭圆的定义及其基本性质。

2. 椭圆几何参数的计算方法。

教学难点:1. 椭圆性质的应用。

教学准备:1. 教学课件或黑板。

2. 尺子、圆规等绘图工具。

教学过程:一、导入1. 引导学生回顾圆的性质,提出问题:“如果将圆的半径缩小,圆的形状会发生什么变化?”2. 学生讨论并得出结论:圆的形状会变成椭圆。

二、新课讲解1. 引入椭圆的定义:椭圆是平面上到两个固定点(焦点)距离之和为常数的点的轨迹。

2. 讲解椭圆的基本性质:a) 椭圆的两个焦点对称,且位于椭圆的长轴上。

b) 椭圆的长轴是连接两个焦点的线段,短轴是垂直于长轴的线段。

c) 椭圆的半长轴a和半短轴b是椭圆的几何参数,焦距2c与a、b之间的关系为c^2=a^2-b^2。

3. 演示如何用尺子和圆规绘制椭圆,并引导学生动手实践。

三、案例分析1. 给出一个椭圆,让学生计算其长轴、短轴和焦距。

2. 学生分组讨论并解答,教师巡回指导。

四、课堂练习1. 布置课堂练习题,让学生运用椭圆的性质解决问题。

2. 学生独立完成练习题,教师批改并给予反馈。

五、总结与拓展1. 总结本节课所学的椭圆的基本性质和几何参数的计算方法。

2. 提出拓展问题:“椭圆在实际应用中有什么意义?”,引导学生思考和探索。

教学反思:本节课通过导入、新课讲解、案例分析、课堂练习和总结与拓展等环节,使学生掌握了椭圆的基本性质和几何参数的计算方法。

在教学过程中,注意引导学生主动参与、动手实践,提高学生的学习兴趣和积极性。

通过课堂练习和拓展问题,培养学生的思维能力和解决问题的能力。

但在教学过程中,也要注意对学生的个别辅导,确保每个学生都能跟上教学进度。

六、椭圆的离心率1. 引入离心率的定义:椭圆的离心率e是焦距c与半长轴a之比,即e=c/a。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

P3(-x,-y)-2 -3
-4
B2
12 B1
P(x,y)
A2
345 x
P2 x, y
坐标轴是 椭圆的两 条对称轴, 原点是椭 圆的对称 中心,它 的对称中 心叫做椭 圆的中心。
2 对称性:椭圆关于x轴、y轴、原点对称
观察-猜想-归纳
活动三:观察方程 x2 y对2 应的1 椭圆图像,
25
4
与坐标轴有几个交点,坐标是什么?
x
B1 (0,-b)
1、范围 :-a≤x≤a, -b≤y≤b 2、对称性:椭圆关于x轴、y轴、原点对称。 3、顶点: A1(-a,0) A2(a,0),
B1(0,-b) B2(0,b)
y
4
3 B2
2
A1
1
A2
-5 -4 -3 -2 -1-1 1 2 3 4 5 x
-2
-3 B1
-4
*顶点:椭圆与它的对称轴的四个交点,叫做椭圆的顶点。
椭圆的标准方程
2.写出椭圆的标准方程 焦点在x轴上时是__xa_22+__by_22=__1_(_a_>_b>_0_)___. 焦点在y轴上时是__ay22_+__xb_22=__1_(a_>_b_>_0_)___.
3.椭圆中a,b,c的关系是: a2=b2+c2
观察-猜想-归纳
活动一:从x、y范围来观察方程 x2 y 2 对应1 的椭圆图像,它可能具有哪些性质2?5 4
焦距是: 2 5;离心率等于:
焦点坐标是:(0, ;5顶) 点坐标是:
;2
; 30
6
(0,;6) (1,0)
外切矩形的面积等于: 4 。6
例2 . 求适合下列条件的椭圆的标准方程: (1) 经过点P(-3,0)、Q(0,-2); (2) 长轴长等于20,离心率等于 。3 5
请你谈谈 这节课的收获?

4
3 B2
2
A1
1
A2
-5 -4 -3 -2 -1-1 1 2 3 4 5 x
-2
-3 B1
-4
3 顶点:A1(-5,0) A2(5,0),
B1(0,-2) B2(0,2)
活动4:归纳
椭圆 x2 y2 1(ab0)简单的几何性质
a2 b2
y
B2 (0,b)
A1
(-a,0) F1
o
A(2a,0)
F2
1)e 越接近 1,c 就越接近 a,从而 b就越小, 椭圆就越扁
2)e 越接近 0,c 就越接近 0,从而 b就越大,椭 圆就越圆
e是刻画椭圆扁平程度的量
问 : 对 于 椭 圆 C 1:9 x2y23 6 与 椭 圆 C 2 : 1 x6 21 y 2 22 ,
C 更 接 近 于 圆 的 是 2 。
x2 a2
by22
1(ab0)
|x|≤ a,|y|≤ b
关于x 轴、y 轴成轴对称;关于原点
成中心对称
(a,0)、(-a,0)、(0,b)、(0,-b)
(c,0)、(-c,0)
长半轴长为a,短半轴长为b. a>b e c a
a2=b2+c2
分层作业 : 教材48页:必做题3、4
选作题7
y
4
3 B2
2
A1
1
A2
-5 -4 -3 -2 -1-1 1 2 3 4 5 x
-2
-3 B1
-4
1 范围:-5 ≤x≤5, -2≤y≤2
观察-猜想-归纳
活动二:从对称性观察方程
x2 25
y4对2 应的1椭圆
图像,它可能具有哪些性质?
y
4
P1(-x,y)
3 2
A1
1
-5 -4 -3 -2 -1-1
*长轴、短轴:线段A1A2、B1B2分别叫做椭圆的长轴和短 轴。
a、b分别叫做椭圆的长半轴长和短半轴长。
4、椭圆的离心率
离心率:椭圆的焦距与长轴长的比:e c
叫做椭圆的离心率。
a
[1]离心率的取值范围:0<e<1
[2]e与a,b的关系: ec a2b2 1b2
a
a2
a2
[3]离心率对椭圆形状的影响:
知识应用
例1、已知椭圆方程为 x2 y2 , 1则
25 16
它的长轴长是: 10 ;短轴长是: 8 ;
3
焦距是: 6 ;离心率等于:
5

焦点坐标是: ( 3 , 0 ) ;顶点坐标是:( 5 , 0 ) (0, 4);
练习1.已知椭圆方程为6x2+y2=6
它的长轴长是: 2 6 ;短轴长是:
相关文档
最新文档