主跨960m钢悬索公路大桥设计与技术特点

合集下载

悬索桥介绍

悬索桥介绍

定义:是以受拉主缆为主要承重构件的桥梁 组成:桥塔、主缆、加劲梁、锚碇、吊索、鞍座 受力特征:荷载由由吊索传至缆,缆再传至锚碇及塔 结构特点:构造简单,受力明确;跨越能力大 ,能充
分发挥材料的强度
11.2 悬索桥的基本类型
类型
按锚固形式分类 按孔跨布置形式分类
1.按锚固形式分类
地锚式
✓主缆拉力由梁端锚碇传递给地基 ✓适用于地基具有良好的持力岩层,大跨度桥梁
吊索钢丝绳断面
骑跨式索夹
销铰式索夹
海沧大桥的主缆索夹模型
4. 加劲梁 主要功能:提供桥面、防止桥面发生过大挠曲变形和
扭曲变形
要求:有足够的抗扭刚度或自重,良好的气动稳定性 结构形式:钢结构
美式:钢桁梁 英式:钢箱梁
扁平钢箱梁
钢桁梁
5. 锚碇
功能作用:固定主缆的端头,防止其移动 分类:
建成年
1998 在建 1997 2004 1981 1999 1997 1964 1937
?
概述
11.1 概述
悬索桥概述 悬索桥组成 悬索桥受力特征 悬索桥特点
概述:
悬索桥的跨越能力大、抗震性能好、轻型美观、已越 来越成为特大跨度(超1000m)桥梁的首选桥型。
目前,全世界最大跨度的悬索桥是1998年4月建成的日 本名石海峡大桥,该桥的结构形为:960m+1991m+960m 的三跨双铰悬索桥。
B RB
取部分悬索桥作为隔离体, 并对E点取矩得:
V1 Hp B
(V1 V2 )x H P y M P(x S ) M (V1 V2 )x P(x S ) H P y
RA x P(x S ) H P y
A V2
S
M0 HP y

第六讲 悬索桥设计

第六讲 悬索桥设计

第4章悬索桥的设计第1节总体设计1.1 悬索桥设计的总体构思1)设计原则和适用范围安全(强度、稳定性)适用(适应使用要求)经济(造价合理)环保(适应并保护环境)耐久美观第4章悬索桥的设计第1节总体设计1.1 悬索桥设计的总体构思2)美学比例跨度比、扁平截面加劲梁、锚碇、桥塔等3)总体尺寸主跨跨度、跨度比、矢跨比、梁高宽、加劲梁分跨及支承、吊索布置、主缆与加劲梁连接第4章悬索桥的设计第1节总体设计1.1 悬索桥设计的总体构思3)总体尺寸主跨跨度:主缆内力与跨度成正比跨度比:边跨与中跨跨度之比0.3—0.45,越小,加劲梁挠度越小。

矢跨比:减小,上挠显著减小,下挠变化不明显(图4-6),1/10左右第4章悬索桥的设计第1节总体设计1.1 悬索桥设计的总体构思跨度比与单位桥长用钢量的关系第4章悬索桥的设计第1节总体设计1.1 悬索桥设计的总体构思竖向挠度与各种参数及比值的关系第4章悬索桥的设计第1节总体设计1.1 悬索桥设计的总体构思竖向最大转角与各种参数及比值的关系第4章悬索桥的设计第1节总体设计1.1 悬索桥设计的总体构思矮寨大桥跨度比(非对称布置方式)第4章悬索桥的设计第1节总体设计1.1 悬索桥设计的总体构思悬索桥常用跨度比第4章悬索桥的设计第1节总体设计1.1 悬索桥设计的总体构思矢跨比与单位长度用钢量的关系第4章悬索桥的设计第1节总体设计1.1 悬索桥设计的总体构思(西堠门大桥方案)矢跨比与加劲梁挠度的关系第4章悬索桥的设计第1节总体设计1.1 悬索桥设计的总体构思(西堠门大桥方案)矢跨比与桥塔纵向位移的关系第4章悬索桥的设计第1节总体设计1.1 悬索桥设计的总体构思(西堠门大桥方案)矢跨比与梁端纵向位移的关系第4章悬索桥的设计第1节总体设计1.1 悬索桥设计的总体构思(西堠门大桥方案)矢跨比与梁端竖向转角的关系第4章悬索桥的设计第1节总体设计1.1 悬索桥设计的总体构思(西堠门大桥方案)矢跨比与加劲梁横向位移第4章悬索桥的设计第1节总体设计1.1 悬索桥设计的总体构思(西堠门大桥方案)矢跨比与自振特性第4章悬索桥的设计第1节总体设计1.1 悬索桥设计的总体构思3. 总体尺寸梁高宽:桁梁4-14m,箱梁2.5-4.5m,施工方案影响大加劲梁分跨及支承:多采用连续梁吊索布置:吊索最佳间距,用材经济性、架设条件主缆与加劲梁连接:中央扣、缓冲梁(加劲梁两端)跨中、边跨短吊索处设置缆扣第4章悬索桥的设计第1节总体设计1.1 悬索桥设计的总体构思3)总体尺寸部分已建钢箱梁悬索桥的梁高与梁宽第4章悬索桥的设计第1节总体设计1.1 悬索桥设计的总体构思3)总体尺寸部分已建钢桁梁悬索桥的梁高与梁宽第4章悬索桥的设计第1节总体设计1.1 悬索桥设计的总体构思主缆与加劲梁的纵向约束形式第4章悬索桥的设计第1节总体设计1.1 悬索桥设计的总体构思柔性中央扣结构示意图第4章悬索桥的设计第1节总体设计1.1 悬索桥设计的总体构思刚性中央扣结构示意图第4章悬索桥的设计第1节总体设计1.1 悬索桥设计的总体构思——初步设计流程第4章悬索桥的设计第1节总体设计1.1 悬索桥设计的总体构思——技术设计流程第4章悬索桥的设计第1节总体设计1.2 悬索桥的设计计算有限位移理论的有限元分析方法《公路悬索桥设计细则》以现行规范为基准,进行计算分析和结构设计第4章悬索桥的设计第1节总体设计1.2 悬索桥的设计计算悬索桥的空间杆系模型a)鱼骨式b)双梁式c) 三梁式第4章悬索桥的设计第1节总体设计1.2 悬索桥的设计计算桥塔处梁塔竖向主从及节点刚臂连接第4章悬索桥的设计第2节桥塔的设计2.1 桥塔的结构形式一般设计为柔性结构;塔型:圬工、摇摆、钢塔、混凝土塔2.2 桥塔的设计1)受力分析拟定外力及位移、设定截面(刚度)、塔顶及塔基加劲、应力和屈曲验算、腹杆截面、承载力验算第4章悬索桥的设计第2节桥塔的设计2.2 桥塔的设计桥塔结构设计的计算模型第4章悬索桥的设计第2节桥塔的设计2.2 桥塔的设计桥塔抗弯刚度与弯矩关系第4章悬索桥的设计第2节桥塔的设计2.1 桥塔的结构形式2.2 桥塔的设计2)桥塔设计实例——虎门大桥尺寸拟定:塔高、塔型(塔柱、系梁、构造)荷载及组合:顺、横向第4章悬索桥的设计第2节桥塔的设计2.2 桥塔的设计虎门大桥——桥塔尺寸的拟定序号桥名主跨跨度(m)塔高(m)桥塔高/跨塔顶截面尺寸(m)塔底截面尺寸(m)塔柱底中距(m)横系梁根数顺桥横桥顺桥横桥1坦克维尔桥6081230.202 4.65 3.05 4.65 6.5524.702 2小贝尔特桥600112.70.188 4.5 4.0 4.5 6.5536.022 3恒比尔桥1410155.50.110 4.75 4.5 6.0 6.024.404 4青马桥1377195.90.1439.0 6.018.0 6.040.04 5汕头海湾桥45295.10.210 6.0 3.5 6.0 3.527.73 6西陵长江桥9001280.142 6.0 4.08.46 4.026.923 7虎门桥888147.550.166 5.6 5.68.5 5.640.63 8江阴大桥1385183.80.1348.5 6.014.5 6.039.93 9海沧大桥648128.030.197 5.4 5.011.07.5042.742 10宜昌大桥960142.230.148 6.0 5.08.84 5.03 11润扬大桥1490207.280.1399.5 6.012.32 6.0041.433第4章悬索桥的设计第2节桥塔的设计2.2 桥塔的设计桥塔计算的荷载组合第4章悬索桥的设计第2节桥塔的设计2.2 桥塔的设计施工阶段各截面的内力与应力第4章悬索桥的设计第2节桥塔的设计2.2 桥塔的设计运营阶段各截面的内力与应力第4章悬索桥的设计第3节主缆、吊索和索夹的设计3.1 主缆设计平行钢丝1)设计参数2)主缆材料及构造材料:钢丝、锚头构造:丝股、主缆截面、热铸锚头3)主缆丝股技术、工艺要求及成品检验4)锚头技术、工艺要求及成品检验第4章悬索桥的设计第3节主缆、吊索和索夹的设计3.1 主缆设计平行钢丝1)设计参数缆索系统钢丝抗拉强度设计值(MPa)抗拉强度标准值f k抗拉强度设计值f d15708501670900177095518601005第4章悬索桥的设计第3节主缆、吊索和索夹的设计3.1 主缆设计2)主缆材料虎门桥主缆锚头套筒构造图新型锚头:环氧树脂砂浆锚头第4章悬索桥的设计第3节主缆、吊索和索夹的设计3.2 吊索设计1)吊索布置形式:多为平行索,斜吊索受力不合理2)连接方式与主缆连接:骑跨式、销接与加劲梁连接:据加劲梁截面形式确定3)吊索截面抗拉强度分项系数:骑跨式2.95,销接式2.20第4章悬索桥的设计第3节主缆、吊索和索夹的设计3.2 吊索设计4)吊索长度(1)设计长度:弹性模量(2)影响因素:施工5)吊索材料及构造6)吊索设计第4章悬索桥的设计第3节主缆、吊索和索夹的设计3.3 索夹设计2)螺栓预拉力损失影响因素:镀锌层蠕动、材料松弛、主缆变细索夹变形、主缆钢丝排列变化、温差3)降低索夹连接螺栓预拉力损失的设计措施提高螺栓初拧应力和螺栓握距4)索夹抗滑安全度的设计措施——安全系数第4章悬索桥的设计第4节加劲梁的设计4.1 设计计算及考虑因素计算内容:(1) 加劲梁在使用活载之下的弯矩、剪力和扭矩;(2) 横向风力的效应;(3) 起控制作用的强度验算;(4) 加劲梁在不同荷载下的变位。

宜昌长江公路大桥工程设计与技术特点)

宜昌长江公路大桥工程设计与技术特点)

宜昌长江公路大桥工程设计与技术特点)
一、设计特点:
1.跨度大:宜昌长江公路大桥采用斜拉梁结构,主桥跨度为1280米,创造了斜拉桥主跨跨度最长的世界纪录,同时也解决了长江船舶通行问题。

2.多跨连续梁:除了主桥外,宜昌长江公路大桥还有接近线路连续梁、互通立交桥、匝道桥等多个跨径不同的连续梁,这种设计方式能够减少桥
墩数量,提高通行效率。

3.多孔桥台:宜昌长江公路大桥桥墩采用多个孔洞的设计,减小了桥
台的面积,从而减少了对长江流量的影响,并提高了桥梁的稳定性。

4.高度协调:为了减小对长江水运的干扰,宜昌长江公路大桥主桥梁
高度与长江轮船的最高水线高度相协调,确保长江航道的畅通。

二、技术特点:
1.梁体制造技术:宜昌长江公路大桥的主梁采用了先进的预制箱梁制
造技术,首次在中国大规模推广应用。

该技术能够提高梁体质量,缩短施
工周期,并保证梁体的一致性。

2.斜拉缆索技术:宜昌长江公路大桥的主塔采用了斜拉缆索技术,这
种技术能够提高桥梁的承载能力和抗风能力,同时减小了桥塔的尺寸,提
高了桥梁的美观性。

3.抗风设计技术:宜昌长江公路大桥采用了先进的抗风设计技术,通
过风洞试验对桥梁的稳定性进行了多次模拟和评估,确保桥梁在强风条件
下的安全性。

4.钢结构防腐技术:宜昌长江公路大桥的钢结构部分采用了先进的防腐技术,在海洋环境和恶劣气候条件下,能够有效防止钢结构的腐蚀和老化,提高桥梁的使用寿命和安全性。

通过以上设计与技术特点的应用,宜昌长江公路大桥在跨越长江、解决航运问题、提高通行效率、保证桥梁稳定性等方面取得了显著的成果,成为中国公路工程的一座标志性建筑。

悬索吊桥工程方案

悬索吊桥工程方案

悬索吊桥工程方案引言悬索吊桥是一种采用悬索和悬臂梁构成的桥梁工程,它的特点是能够跨越较大的跨径,同时具有良好的结构性能和美观的外观。

悬索吊桥在现代桥梁工程中具有广泛的应用,特别适合用于跨越峡谷、江河、山谷等自然地形复杂的地区。

本文将从悬索吊桥工程的设计、施工和维护等方面进行详细的介绍。

一、悬索吊桥设计方案1. 地质勘察首先,进行地质勘察,确定悬索吊桥的建设地点,并对地质条件进行详细的调查和分析。

根据地质条件,综合考虑地质构造、地层岩性、断裂构造、地下水情况等因素,选择合适的桥址。

2. 结构设计在悬索吊桥的结构设计中,需要考虑各种荷载和作用,包括静荷载、动荷载、风荷载等因素。

同时,还需要根据跨越河谷、山谷等地形特点,确定合适的桥梁形式和跨径,并进行结构的优化设计。

3. 材料选用悬索吊桥的主要构件包括悬索、主梁、桥面板、索塔等部分,这些构件的选材直接关系到桥梁的安全和可靠性。

在选用材料时,需要考虑材料的强度、耐腐蚀性、耐疲劳性等性能,以保证桥梁的使用寿命。

4. 建设方案根据地质勘察和结构设计结果,确定悬索吊桥的建设方案,包括桥梁的布置方式、各构件的施工顺序、施工方法等。

在确定建设方案时,需要充分考虑地形地貌、自然环境等因素,保证工程的施工安全和效率。

二、悬索吊桥施工方案1. 施工准备在进行悬索吊桥的施工前,需要进行施工准备工作,包括场地清理、设备材料调运、施工工艺论证、安全技术交底等工作。

同时,还需要制定详细的施工方案和施工进度计划,保证施工工作的有序进行。

2. 桥墩基础施工悬索吊桥的桥墩基础是桥梁的支撑结构,在施工中需要特别重视。

根据地质勘察结果,选择合适的桥墩基础形式,采用合理的基础施工工艺,保证桥墩的牢固和稳定。

3. 主梁和桥面板施工主梁和桥面板是悬索吊桥的主要构件,其施工需要吊装设备和工人的高超技术。

在施工中,需要采用科学合理的吊装方案,保证主梁和桥面板的安全、平稳吊装到位。

4. 悬索拉设悬索是悬索吊桥的重要构件,悬索的索拉设需要精密的计算和精细的施工。

宜昌长江公路大桥工程设计与技术特点

宜昌长江公路大桥工程设计与技术特点

宜昌长江公路大桥工程设计与技术特点摘要:宜昌长江公路大桥是沪蓉国道在宜昌跨越长江的工程,主桥采纳主跨960m钢悬索桥。

本文重点介绍该桥的建设条件、要紧设计构造和设计、施工、科研的特点。

关键词:道路桥梁一、桥位概况宜昌长江公路大桥是沪蓉国道骨干线在宜昌长江河段跨越长江经湖北省西段进入重庆市的特大型一级公路桥梁,是国家"九五"重点建设工程。

桥址位于宜昌市虎牙滩,距城区约15km,上游距葛洲坝22km、三峡大坝40km,下游距枝城长江大桥约45km。

二、要紧设计标准1.公路品级:一级公路。

2.荷载品级:汽-超20,挂-120;人群:/平方米。

3.大桥设计时速: 80km/h。

4.大桥桥面宽度:钢箱梁全宽30m,按四车道布置,双侧风嘴上各设一人行道,桥面净宽26m。

5.接线路基宽:,四车道。

6.地震烈度:大体烈度为6度,按7度设防。

7.温度:桥位区域极端最低温度一℃,极端最高温度℃,年平均气温℃。

8.风况:设计基准风速为29m/s,成桥颤振查验风速为44m/s。

三、工程设计1.主桥整体布置悬索桥主跨跨度为960m,主梁简支在双侧桥塔横梁或交壤墩承台上。

主桥南岸通过三孔30m简支梁桥同南岸互通工程相接,北岸通过跨度为16,20,25(m)空心板组合的引桥跨318国道、接北岸接线工程。

主桥桥梁全长1206m。

2.悬索桥要紧设计参数结构型式:单跨双绞悬索桥;主缆跨径( m):+960+,主缆矢跨比: 1/10;主缆直径(mm):655(索夹外,间隙率20%),647(索夹内,间隙率18%);主缆中心距(m):吊索直径(mm):45;吊索间距(m):(边吊索距桥塔中心15.69);桥塔高度(m):北塔112.415(承台顶面以上),南塔142.227(承台顶面以上);加劲梁全宽(m):加劲梁中心高(m):。

3.结构设计(l)桥塔结构由于南北两岸地形条件及地质情形不尽相同,南北两桥塔结构上略有区别:南塔承台以上塔高142.227m,有三道横梁,行车道主梁及南岸引桥支承在下横梁上;北塔承台以上塔高112.415m,设上、中两道横梁,行车道主梁及北引桥支承在交壤墩上。

悬索桥在公路桥梁工程设施中的应用与优势

悬索桥在公路桥梁工程设施中的应用与优势

悬索桥在公路桥梁工程设施中的应用与优势悬索桥是当今世界上最具标志性的桥梁类型之一,其独特的设计和巨大的跨度使其成为现代公路桥梁工程中的重要组成部分。

悬索桥以其独特的美学外观和高度的结构稳定性而闻名,并且在解决长跨度桥梁需求的情况下具有明显的应用优势。

本文就悬索桥在公路桥梁工程设施中的应用与优势进行探讨。

首先,悬索桥在公路桥梁工程中具有非常广泛的应用。

悬索桥的主要特点是通过悬挂在主塔上的主缆来支撑桥面,从而承受桥面上的交通载荷。

相比于其他类型的桥梁,悬索桥能够提供更大的跨度,因此适用于长跨度的公路桥梁工程,如大峡谷、江河等横跨的桥梁。

此外,悬索桥还可以适用于各种不同地理环境和地质条件的建设,如海湾、丘陵、深水区等。

这对于缺乏土地资源的城市和地区来说尤为重要。

其次,悬索桥在公路桥梁工程中的优势不容忽视。

首先,悬索桥能够提供较大的通航空间。

由于主桥梁横跨在航道上,因此需要保证船舶和其他水上交通工具的通过。

悬索桥的设计可以有效地提供航道空间,允许船舶顺利通过,而不会对交通产生太大的干扰。

其次,悬索桥的结构稳定性强。

由于主缆的特殊设计,悬索桥的自重被有效地分散到主塔和锚点上,从而能够在风力、地震等自然力的作用下保持稳定。

这对于长跨度、高高度的桥梁来说尤为重要。

此外,悬索桥的施工和维护成本相对较低。

由于其特殊的设计结构和材料选择,悬索桥在施工和维护过程中的成本相对较低。

同时,悬索桥的设计和施工过程也相对简化,可以缩短整个工期。

悬索桥在公路桥梁工程中的应用不仅局限于城市交通建设,还广泛涉及到旅游景点的开发和建设。

悬索桥的独特外观和视觉效果使其成为旅游景点的亮点。

例如,世界著名的金门大桥和曼哈顿大桥就是悬索桥的典型代表。

这些桥梁不仅具有实用价值,还成为当地的地标性建筑物,吸引了大量的游客和观光者。

因此,悬索桥的建设不仅仅是交通建设的一部分,也是地方经济和旅游业发展的重要组成部分。

然而,悬索桥在公路桥梁工程中也存在一些挑战和问题。

悬索桥的发展及设计规范相关问题介绍PPT课件

悬索桥的发展及设计规范相关问题介绍PPT课件
(2) 加劲梁以单跨悬吊为主,部分城市桥梁采用三跨悬吊 (3) 桥塔基本为混凝土结构,注重美学效果 (4) 主缆施工方法为PPWS法
创新与发展
(1)三塔、主缆连续多跨悬索桥的发展 (2)轨索运梁施工方法的成功应用 (3)分体式钢箱梁的首次应用 (4)组合截面加劲梁悬索桥的设计建造
西南交通大学
沈3锐5 利
和二桥。
西南交通大学
恒比尔桥
博斯普鲁斯一桥
沈2锐2 利
丹麦1970年修建了小贝尔特桥,跨度600m,但中间有许多技术创新。 日本 1973年修建了跨度712m的关门桥后,80年代修建了一系列的大跨 度悬索 桥,主要是本四联络线的桥,最有名和最大规模的要数南北备赞桥,
是公铁两用桥,主缆直径达1070mm。(跨度分别为1100m和990m)
日本关门桥
西南交通大学
小贝尔特桥
沈2锐3 利
-tiJ il.
(5)20世纪90年代以亚洲为主的悬索桥----第四次发展高峰 日本 明石海峡桥,跨度990+1990+990m 来岛一二三桥等 丹 麦 大 贝 尔 特 桥 , 跨 度 535+1624+535m 香 港 青 马 大 桥 355.5+1377m,公铁两用桥 江阴长江大桥 主跨1385m 润扬长江公路大桥 主跨1490m 浙江舟山西堠门大桥 主跨1650m 这一时期跨度超千米的有近10座之多,中国悬索桥的跨度发展达到 世 界先进水平。
西南交通大学
沈3锐2 利
1883年,布鲁克林桥,跨度486m, 混合体简系约理论 1903年,威廉姆斯堡桥,主跨488m
1909年,曼哈顿桥, 主跨448m 1931年,美国乔治.华盛顿桥,跨度1067m
挠度理论

悬索桥施工方案

悬索桥施工方案
2. 制定应急预案,包括自然灾害、事故灾难、公共卫生事件等,明确应急响应程序和责任人员;
3. 建立应急救援队伍,配备必要的应急救援设备、物资,提高应急救援能力;
4. 定期开展应急演练,提高施工人员应对突发事件的能力;
5. 加强与地方政府、相关部门的沟通协调,确保应急资源充足,应急响应迅速。
文明环保施工与风险应急管理措施:
6. 定期对应急预案进行修订和完善,适应施工过程中可能出现的新风险;
7. 建立信息报告制度,确保在突发事件发生时,及时向上级报告,为决策依据。
1. 加强施工现场环境保护,严格执行环保法规,降低施工对环境的影响;
2. 对施工现场进行定期的安全、环保检查,发现问题及时整改;
3. 提高施工人员环保意识,开展环保教育培训,鼓励施工人员积极参与环保活动;
4. 建立风险防控体系,对施工现场进行实时监控,及时发现并处理风险隐患;
5. 加强应急管理工作,确保在突发事件发生时,能够迅速启动应急预案,降低损失;
2. 施工现场保持清洁卫生,合理规划施工场地,确保施工材料、设备堆放整齐;
3. 采取有效措施降低施工噪声、粉尘、废水等污染,保护周边环境;
4. 施工过程中,遵守当地环保法规,减少对生态环境的影响;
5. 开展绿色施工,推广使用环保材料、节能设备,提高资源利用率。
风险应急管理:
1. 开展风险评估,识别可能ቤተ መጻሕፍቲ ባይዱ现的风险因素,制定针对性的风险防范措施;
悬索桥施工方案
编 辑:__________________
时 间:__________________
一、工程概况与目标
悬索桥施工方案旨在为我国某地区跨度约800米的悬索桥建设项目全面、专业的施工指导。工程位于关键交通要道,连接两岸地区,对缓解交通压力、促进区域经济发展具有重要意义。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

主跨960m钢悬索公路大桥设计与技术特点【摘要】公路大桥是国道跨越的工程,主桥采用主跨960m钢悬索桥。

本文重点介绍该桥的建设条件、主要设计构造以及设计、施工、科研的特点。

【关键词】悬索桥桥塔加劲梁锚碇主缆吊索索鞍支座一、桥位概况公路大桥是国道主干线在河段跨越的特大型一级公路桥梁,是国家"九五"重点建设工程。

桥址位于郊区,距城区约13km。

二、主要设计标准1.公路等级:一级公路。

2.荷载等级:汽-超20,挂-120;人群:3.5kN/平方米。

3.大桥设计时速: 80km/h。

4.大桥桥面宽度:钢箱梁全宽30m,按四车道布置,两侧风嘴上各设一人行道,桥面净宽26m。

5.接线路基宽:24.5m,四车道。

6.地震烈度:基本烈度为6度,按7度设防。

7.温度:桥位区域极端最低温度一14.6℃,极端最高温度43.9℃,年平均气温16.5℃。

8.风况:设计基准风速为29m/s,成桥颤振检验风速为44m/s。

三、工程设计1.主桥总体布置悬索桥主跨跨度为960m,主梁简支在两侧桥塔横梁或交界墩承台上。

主桥南岸通过三孔30m简支梁桥同南岸互通工程相接,北岸通过跨度为16,20,25(m)空心板组合的引桥跨国道、接北岸接线工程。

主桥桥梁全长1211m。

2.悬索桥主要设计参数结构型式:单跨双绞悬索桥;主缆跨径( m): 246.255+960+246.255,主缆矢跨比: 1/10;主缆直径(mm):655(索夹外,空隙率20%),647(索夹内,空隙率18%);主缆中心距(m):24.4 吊索直径(mm):45;吊索间距(m):12.06(边吊索距桥塔中心15.69);桥塔高度(m):北塔112.415(承台顶面以上),南塔142.227(承台顶面以上);加劲梁全宽(m): 30.00 加劲梁中心高(m):3.0。

3.结构设计(l)桥塔结构由于南北两岸地势条件及地质情况不尽相同,南北两桥塔结构上略有区别:南塔承台以上塔高142.227m,有三道横梁,行车道主梁及南岸引桥支承在下横梁上;北塔承台以上塔高112.415m,设上、中两道横梁,行车道主梁及北引桥支承在交界墩上。

南北两塔均采用分离式承台,每一承台长19.1m、宽9.1m、高7m,其下设8根直径2.5m 的桩基础。

北塔上游塔柱下桩基长18.6m;下游塔柱下桩基长14.6m。

南岸桥塔16根桩基长度均为27m。

两塔身塔柱均为空心矩形箱结构。

塔顶顺桥向6m宽,并按1:100的坡度分别加宽至塔脚8.40m(北塔)、8.84m(南塔)。

塔顶横桥向等宽5m。

塔柱壁厚度按上、中、下三道横梁分为三种,壁厚分别为0.7m、0.8m、1.0m。

为有效地扩散塔顶主鞍传递的巨大压力,塔顶设有12.8高渐变段。

塔冠设有3.4m高实体段。

上横梁高5.4m、宽5.08m;中横梁高7.5m、宽6.08m,壁厚均为0.8m。

南岸下横梁高6.8m,宽7.19m,壁厚为1.0m。

为改善桥塔外观效果,在塔柱的四角及外侧中央设有0.3m * 0.5m,3m * 0.15m的凹槽。

塔柱竖向主筋采用φ32,间距15cm。

水平箍筋采用φ16,除桥塔根部变化段间距15cm外,其余均为20cm。

同时在间距20cm的水平箍筋之间设置了两根φ6.5防裂分布箍筋。

横梁主筋采用φ25,间距15cm;箍筋采用φ16,间距15cm。

在各道横梁上设有根数不等的钢绞线预应力束。

塔身及横梁为50号混凝土,承台为30号混凝土,桩基为25号混凝土。

全桥桥塔50号混凝土10554立方米,30号混凝土4867立方米,25号混凝土4768立方米。

(2)加劲梁加劲行车道主梁为类似鱼鳍形扁平钢箱梁结构。

主梁结构全宽为30.0m,中心梁高3m,高宽比为1:10。

顶板宽度为22m,设2%的双向横坡。

上斜腹板水平宽度为1.2m。

悬臂人行道宽度为2.8m,设1.5%的向内单向横坡。

桥面为正交异性板,顶板及上斜腹板厚12mm,行车道U形加劲肋中心间距0.59m,板厚6mm。

底板及下斜腹板板厚10m m。

底板、斜腹板球扁钢加劲肋中心间距一般为0.4m,球扁钢规格为16a。

加劲梁横隔板间距4.02m,无吊索处板厚为10mm,有吊杆处板厚为12mm。

为有效改善桥面板在汽车荷载作用下的变形及受力状况,在每两道横梁之间没有一道矮加劲肋。

矮肋高0.45m,板厚16mm。

人行道顶板板厚12mm,其下横向设有间距为2.01m一道、板厚12mm的横肋板。

顶板纵向设有球扁钢加劲肋,间距0.3m。

加劲梁上的锚箱是钢箱梁重要的传力结构,本设计进行了特殊设计处理。

锚箱主要由三块承力板、一块承锚板组成。

三块承力板门距为50cm,中间一块板厚32mm,另两块板厚20mm。

三块承力板均穿过加劲梁斜腹板,其中间一块与横隔板相连接。

承力锚板厚50mm,其上设有多道板厚20mm的加劲板。

为适应加劲梁端部结构的复杂受力的需要,对长7.33m的端节段进行了特殊加强设计。

端节段设有6道横隔板,横隔板板厚为16mm或20mm,并结合支座系统连接的需要进行局部加劲处理。

加劲梁钢材材质为Q345-E,结构钢材共用10390t。

加劲梁顶板上铺设7cm厚改性沥青混凝土铺装层,人行道上铺设3cm 厚的沥青砂。

(3)锚碇南北锚碇所处的地质情况不尽相同。

北锚碇基坑基岩在高程54.8m以下整体性较好,无明显的夹层及破碎带,基岩为泥钙质胶结砾岩;高程54.8m以上基岩破碎,且多为红色粉砂岩。

南岸整个岩体整体性差,基岩破碎,有多条夹层及断层,岩体以泥钙质为主,夹有粉砂岩或红砂岩的砾岩。

南北基岩均为强度较低的软质岩。

故南北两锚碇均设计为重力式钢筋混凝土锚碇。

为保证锚碇上方行车道的宽度,锚碇采用埋置式,利用其上方回填路基上压重,以减少锚碇混凝土的数量。

锚碇结构最大长度为65m、宽39m,前缘高42m,后部高22.8m。

每一锚碇混凝土为42584立方米,锚固体及前支承墙为40号混凝土,其他各部分均采用25号混凝土。

本锚碇为少筋结构,仅在锚碇内外表面设置直径22cm间距20cm的分布钢筋网。

为防止大体积混凝土产生有害的裂纹,在锚碇内外表面及每一施工层面上设置了规格为BQ3030(间距 75 * 150)的金属扩张网。

后锚室在锚固体系张拉完成以后用低标号混凝土回填密封,前锚室设有通风除潮设备。

在锚碇支承墙前缘,结合保护路面以下主缆的需要,设有地下展览室。

(4)主缆及吊索主缆为预制平行钢丝束,每根为104束127φ5.1平行镀锌钢丝集结成束、定型包扎带绑扎、两端嵌固热铸锚头而成。

钢丝为强度1600MPa 普通松弛镀锌钢丝。

为方便施工,在热铸锚上设有与锚固体系连接为一体的连接器。

主缆防护层由防护油漆、φ4软质镀锌钢丝、表面防锈腻子构成。

吊索为中心配合绳芯(CFRC)钢丝绳,单根钢丝绳直径45mm。

每侧每一个吊点有4根吊索。

主缆钢丝共6670t,吊索钢丝绳约195t。

(5)主索鞍及散索鞍主索鞍和散索鞍由鞍头、鞍体、底座组成。

鞍头、鞍体分开浇铸、焊结成一体的铸焊组合结构。

为方便加工、运输、主鞍吊装施工,主鞍分左右两半制造,吊装就位后用高强螺栓联接为一体。

主鞍鞍体与底座之间,主鞍施工期间设有聚四氟乙稀滑板。

散索鞍鞍体采用摆式结构,以适应施工期间及成桥后的微量位移。

主鞍最大吊装重量为32t,散鞍最大吊装重量为43t。

为使主缆在鞍内能保证相对固定、不滑动,在鞍槽内设有竖向镀锌隔板,并在主缆调股到位后顶部用锌质填块填平、压紧。

主索鞍及散索鞍鞍体铸钢材质采用ZG275-485H,底座铸钢材质采用ZG230-450,槽盖等材质采用Q235-A。

(6)锚固体系锚碇内锚固系统是由64根预应力锚固体系组成,其中单锚24个,双锚40个。

单锚采用16根公称直径15.24mm的低松弛高强钢丝锚固,双锚采用五根公称直径15.24mm的低松弛高强钢丝锚固。

在锚碇结构中,设有型钢骨架以便锚固预应力管道的精确定位施工。

前锚面设有锚固连接器与主缆相连接。

(7)主桥伸缩缝为适应主跨加劲梁在活载作用下的大变形,加劲梁两端各设一道最大伸缩量为1360mm的大位移伸缩缝。

(8)支座为传递主梁端节段受力、约束主梁端节段的变形、保证梁端伸缩缝正常工作,在主梁每一端节段设有两个竖向支座、两个梁侧辅助支撑、两个风支座。

竖向支座能适应加劲梁在温度及荷载作用下的纵向位移及面内梁端转动,能承受一定的竖向拉压反力。

风支座主要承受横向风载。

梁侧辅助支撑主要用于控制由于风载或活载偏载作用下的梁端扭转,能适应梁端纵向位移及转动,承受结构扭转倾覆拉力,不能承受压力。

支座系统均为材质要求较高的铸焊结构。

四、设计、施工及科研的技术特点1.设计与施工的技术特点(1)加劲梁采用鱼鳍式断面,并在两道横隔板之间增设了一道矮肋,改善了加劲梁受力及气动性能,同时减少了钢材用量。

(2)对加劲梁母材及焊材的S,P等有害的杂质进行严格的控制,为提高加劲梁焊接质量创造了条件,使焊接工艺控制达到了较高的水平。

(3)桥塔采用大块整体钢模板(9m高)进行施工,极大地提高了工效和结构表面的平整度;采用钢管支承进行桥塔横梁施工,消除了支架非弹性变形,同时提高了工效。

(4)桥塔塔上设有直径6.5mm的防裂分布钢筋,成功地克服了桥塔在施工过程中易出现收缩裂纹的通病。

(5)锚碇基坑的开挖广泛采用预裂爆破和光面爆破技术,使锚碇高(高88m)、陡(边坡率0.75~0.8)的基坑开挖成功,并保证了高陡边坡的稳定。

(6)采用埋置式锚碇,既确保了工程结构的安全可靠,又极大地减少了锚碇混凝土数量,并为成功解决锚碇大体积混凝土开裂问题创造了有利的条件。

(7)采用综合的降低大体积混凝土水化热和防止混凝土开裂的技术,使得浇注两锚碇10万多方混凝土均未发现一条裂纹,锚碇大体积混凝土浇注的质量得到了突破性的提高。

具体的措施为:调整混凝土的设计龄期为60d,降低水泥用量;采用低热微膨胀水泥;对大体积混凝土进行分块分层浇注,并在每层混凝土中加一层防裂金属扩张网;采用循环水,对大体积混凝土进行降温等。

(8)国内第一次采用强度高、弹性模量高且稳定的中心配合绳芯(CFRC)钢丝绳作为吊索钢丝绳;同时,吊索锚头设计为可适当调节的锚杯,克服了吊索不能调节长度的缺点。

(9)采用构造简单、受力明确、造价经济的滑转支座系统,满足结构受力及变形需要。

(10)桥面铺装采用7cm厚的双层SAM结构,人行道采用彩色沥青砂结构铺设。

(11)在施工猫道的设计施工中,采取增加适当数量的猫道横向天桥的道数而不设风缆的办法,来提高猫道的抗风稳定性。

这样既保证猫道施工过程中的安全,又简化了设计与施工,有利于缩短工期和降低造价。

2.科研试验***公路大桥关键技术研究是交通部"九五"行业联合攻关项目。

在部、省有关主管部门领导的支持下,该科研项目进展顺利,全面开展了有关科研试验工作,取得了一些成果,并成功地指导***大桥的建设工作。

相关文档
最新文档