电力系统的潮流计算

合集下载

第7章电力系统的潮流计算

第7章电力系统的潮流计算

7.2.1电力线路的电压降落及电压损耗
(1) 电压降落:电力线路的首末端、或电力网任意两节点间电压的向量差。
电压降落 的纵分量
dU 2 U 1 U 2 (S2/U 2 )2 Z
P2 jQ2 U 2
P2R Q2 U 2
(R jX)
X电 j压横P2降 分XU落量2Q的2R
U jU
U1 (U2 U)2 (U2 )2
Sb2
i1
l
i1 l
i1 l
电力系统分析 7.4.2两端供电网络的最终潮流分布计算
第7章 电力系统的潮流计算
(1)功率分点 求出了功率分布之后,有的负荷功率是由两个方向流入的,如图7.4.2中的C 点,这样的点叫功率分点,并用 △标出。
(2)两端供电网络的最终潮流分布计算
如果已知功率分点电压,由功率分点将电网解开为两个开式网络。从功率 分点分别由两侧逐段向电源端推算电压降落和功率损耗。。
4如果已知末端电压和负荷,从末端开始逐段交替计算电压降落和功率损耗。向 电源端推算功率分布和各节点电压。如果有变压器,还应进行电压归算。
电力系统分析
第7章 电力系统的潮流计算
7.4 简单闭式网络的潮流计算
A
A1
b
c
A2
b
c
Sb (a)环式网络
Sc 图 简单的闭式网络
Sb
Sc
(b)两端供电网络
电力系统分析 7.4.1两端供电网络的初步功率分布计算
*
*
*
*
Sb2
Za1 S1 (Za1 Z12 )S2
*
*
*
(Ua Ub)UN
*
*
*
Sb2,LD Scir
Za2 Z12 Zb2

电力系统潮流计算机算法

电力系统潮流计算机算法

电力系统潮流计算机算法电力系统潮流计算是电力系统分析中最基本的一项计算,其目的是确定电力系统中各母线电压的幅值和相角、各元件中的功率以及整个系统的功率损耗等。

随着计算机技术的发展,电力系统潮流计算算法也在不断更新和完善。

以下是电力系统潮流计算的一些常用算法:1. 牛顿-拉夫逊法(Newton-Raphson Method):这是一种求解非线性方程组的方法,应用于电力系统潮流计算中。

该方法在多数情况下没有发散的危险,且收敛性较强,可以大大节约计算时间,因此得到了广泛的应用。

2. 快速迪科法(Fast Decoupled Method):这是一种高效的电力系统潮流计算方法,将电力系统分为几个子系统进行计算,从而提高了计算速度。

3. 最小二乘法(Least Squares Method):这是一种用于求解线性方程组的方法,通过最小化误差平方和来获得最优解。

在电力系统潮流计算中,可用于优化电压幅值和相角。

4. 遗传算法(Genetic Algorithm):这是一种全局优化搜索算法,应用于电力系统潮流计算中,可以解决一些复杂和非线性问题。

5. 粒子群优化算法(Particle Swarm Optimization):这是一种启发式优化算法,通过模拟鸟群觅食行为来寻找最优解。

在电力系统潮流计算中,可用于优化网络参数和运行条件。

6. 模拟退火算法(Simulated Annealing):这是一种全局优化搜索算法,应用于电力系统潮流计算中,可以在较大范围内寻找最优解。

7. 人工神经网络(Artificial Neural Network):这是一种模拟人脑神经网络的计算模型,可用于电力系统潮流计算。

通过训练神经网络,可以实现对电力系统中复杂非线性关系的建模和预测。

以上所述算法在电力系统潮流计算中起着重要作用,为电力系统运行、设计和优化提供了有力支持。

同时,随着计算机技术的不断发展,未来还将出现更多高效、精确的电力系统潮流计算算法。

电力系统的潮流计算

电力系统的潮流计算

第11章 电力系统的潮流计算§11.0 概述§11.1 开式网络的电压和功率分布计算 §11.2 闭式网络潮流的近似计算方法 §11.3 潮流计算的数学模型 §11.4 牛顿一拉夫逊法的潮流计算 §11.5 P-Q 分解法潮流§11.0 概述1、定义:根据给定的运行条件求取给定运行条件下的节点电压和功率分布。

2、意义:电力系统分析计算中最基本的一种:规划、扩建、运行方式安排。

3、所需: ① 根据系统状态得到已知条件:网络、负荷、发电机。

② 电路理论:节点电流平衡方程。

③ 非线性方程组的列写和求解。

4、已知条件: ① 负荷功率LD LD jQ P +② 发电机电压5、历史:手工计算:近似方法(§11.1,§11.2)计算机求解:严格方法§11.1 开式网络的电压和功率分布计算注重概念,计算机发展和电力系统复杂化以前的方法。

1、已知末端功率和未端电压, 见1.11Fig 解说:已知4V 和各点功率434343V X Q R P V +=∆3V 2V 1V 4V11R jx +2R jx +3R jx +23S 4S434343V R Q X P V -=δ34232343)(V V V V V V ∆+≈+∆+=δ)(332424243jX R V Q P S LOSS ++=4333S S S S LOSS ++='由此可见:利用上节的单线路计算公式,从末端开始逐级往上推算。

2、已知末端功率和首端电压以图11.1讲解,已知V 1和各点功率迭代法求解:① 假定末端为额定电压,按上小节方法求得始端功率及全网功率分布 ② 用求得的始端功率和已知的始端电压,计算线路末端电压和全网功率分布 ③ 用第二步求得的末端电压重复第一步计算④ 精度判断:如果各线路功率和节点电压与前一次计算小于允许误差,则停止计算,反之,返回第2步重复计算。

第三章简单电力系统的潮流计算

第三章简单电力系统的潮流计算


~ S LDc

j
B2 2
U
2 N
S~b

S~LDb

j
B1 2
U
2 N

j
B2 2
U
2 N
由此将问题转化为:已知
U A ,
j
B1 2
U
2 N
,
S~b ,
S~c
的潮流计算。
~
A SA
~ S1
S~1
S~1
b
~ S2
S~2
S~2
c
U A
Z1
Z2
a.反推功率:

j
B1 2
UHale Waihona Puke 2 NS~bS~c
~ S1

S~1
S~2
I1
I1 Z
B j
S~Y 1
2
S~2 ②
I2
B j
2
~ S2
U 2
S~Y 2
求导纳中的功 率损耗S~Y1,S~Y 2;
末端:S~Y 2

U 2
(
j
B 2
U 2 )


j
B 2

U
2 2
首端:S~Y 1

U 1

(
j
B 2
U1 )
jB
~ S LD

30
j15MVA
2
~ SY 2
已知 r1 0.27 / km, x1 0.423 / km
b1 2.69 106 s / km, l 150km, 双回线路
解:R 1 0.27150 20.25 X 1 0.423150 31.725

电力系统潮流计算

电力系统潮流计算

电力系统潮流计算电力系统潮流计算是电力系统运行分析中的重要环节。

它通过对电力系统中各节点的电压、相角以及功率等参数进行计算和分析,从而得出电力系统的稳态运行状态。

本文将从潮流计算的基本原理、计算方法、应用及其发展等方面进行阐述。

一、潮流计算的基本原理电力系统潮流计算的基本原理是基于潮流方程建立的。

潮流方程是一组非线性的方程,描述了电力系统中各节点的电压、相角以及功率之间的关系。

潮流计算的目的就是求解这组非线性方程,以确定电力系统的电压幅值、相角及有功、无功功率的分布情况。

二、潮流计算的基本方法潮流计算的基本方法主要有直接法、迭代法以及牛顿-拉夫逊法。

直接法是通过直接求解潮流方程得到电力系统的潮流状况,但对于大规模复杂的电力系统来说,直接法计算复杂度高。

迭代法是通过对电力系统的节点逐个进行迭代计算,直到满足预设的收敛条件。

牛顿-拉夫逊法是一种较为高效的迭代法,它通过近似潮流方程的雅可比矩阵,实现了计算的高效和稳定。

三、潮流计算的应用潮流计算在电力系统运行与规划中起着重要作用。

首先,潮流计算可以用于电力系统的稳态分析,确定电力系统在各种工况下的电压、相角等参数,以判断电力系统是否存在潮流拥挤、电压失调等问题。

其次,潮流计算还可以用于电力系统的优化调度,通过调整电力系统的发电机出力、负荷组织等参数,以改善电力系统的经济性和可靠性。

此外,潮流计算还可以用于电力系统规划,通过对电力系统进行潮流计算,可以为新建电源、输电线路以及变电站等设备的规划和选择提供科学依据。

四、潮流计算的发展随着电力系统的规模不断扩大和复杂度的提高,潮流计算技术也得到了迅速的发展。

传统的潮流计算方法在计算效率和计算精度上存在一定的局限性。

因此,近年来研究者提出了基于改进的迭代方法、高精度的求解算法以及并行计算等技术,以提高潮流计算的速度和准确性。

此外,随着可再生能源的不断融入电力系统,潮流计算还需要考虑多种能源的互联互通问题,这对潮流计算提出了新的挑战,需要进一步的研究和改进。

电力系统潮流计算

电力系统潮流计算
( k 1) x 迭代计算反复进行,通式是:
(k ) f ( x ) (k ) x f ( x ( k ) )
迭代过程的收敛判据为 f ( x ( k ) ) 1
x ( k ) 2

牛顿—拉夫逊法实质上就是切线法,是一种逐步线性化的 方法。牛顿法不仅用于求解单变量方程,它也是求解多变 量非线性方程的有效方法。

(0) (0) (0) (0) f1 ( x1(0) x1(0) , x2 x2 , , xn xn )0 (0) (0) (0) (0) f 2 ( x1(0) x1(0) , x2 x2 , , xn xn )0
(0) (0) (0) (0) f n ( x1(0) x1(0) , x2 x2 , , xn xn )0
牛顿-拉夫逊法潮流计算
一、牛顿—拉夫逊法的基本原理 单变量非线性方程: x=x(0)+ Δx(0) 即 f(x=x(0)+ Δx(0) ) = 0 f(x)=0 (11—29) 解的近似值x(0),它与真解的误差为Δx(0)
展成泰勒级数
f (x
(0)
x ) f ( x ) f ( x )x

f1 (0) xn )0 xn 0 f (0) 2 xn )0 xn 0
(0) f n ( x1(0) , x2 ,
写成矩阵形式:
f n f (0) x1(0) n x2 x1 0 x2 0 f1 x1 0 (0) (0) (0) f1 ( x1 , x2 , , xn ) f 2 (0) (0) (0) f 2 ( x1 , x2 , , xn ) x 1 0 (0) (0) (0) f ( x , x , , x n 1 2 n ) f n x1 0

电力系统的潮流计算

电力系统的潮流计算

所需知识
(1)根据系统状况得到已知元件:网络、负荷、发电机 (2)电路理论:节点电流平衡方程 (3)非线性方程组的列写和求解
I YU
*
、U , 线性方程 待求量 I
2/104
,U S ,待求量S , 非线性方程 YU * U
潮流计算目的
确定运行方式、检查是否过压或过载、继电保护 整定依据、稳定计算初值、规划和经济运行分析基础
5/104
如图所示的简单电力系统
将电势源和阻抗的串联变换成电流源和 导纳的并联,得到的等值网络:
略去变压器的励磁功率和 线路电容,负荷用阻抗
y E I 1 10 1
y E I 4 40 4
以零电位为参考点,根据基尔霍夫电流 定律,得到 4个独立节点的电流平衡方 程:
y12 (V2 V1 ) y20 V2 y23 (V2 V3 ) y24 (V2 V4 ) 0 y23 (V3 V2 ) y24 (V3 V4 ) 0 y24 (V4 V2 ) y34 (V4 V3 ) y40 V4 I 4 y10 V1 y12 (V1 V2 ) I 1
第三章 电力系统的潮流计算
重点: 1、节点导纳矩阵的形成与修改; 2、节点的分类和功率方程; 3、修正方程的形成及雅克比矩阵的计算; 4、牛顿-拉夫逊法计算潮流分布的步骤。 5、P-Q分解法求解潮流
1/104
潮流计算 定义
根据给定的运行条件求取给定运行条件下的节点 电压和功率分布
意义
电力系统分析计算中最基本的一种:规划、Y22 y20 y23 y24 y12 ; Y33 y23 y34 ;Y44 y40 y24 y34 ; Y44 y40 y24 y34 ;Y12 Y21 y12 ; Y23 Y32 y23 ;Y24 Y42 y24 ; Y34 Y43 y34

电分第11章_电力系统的潮流计算

电分第11章_电力系统的潮流计算

西北农林科技大学水利与建筑工程学院
动力与电气工程系 王斌
电力系统的潮流计算—开式网络的电压和功率分布计算
开式网络的电压和功率分布计算步骤
Step1:制定一相等值电路;
Step2:计算运算负荷Sb,Sc ,Sd ; Step3:回代计算:设定各节点电压初值(VN),从末端d节点开始,计算各支路功率损耗 和首末端功率,直到A点;
收敛判据
西北农林科技大学水利与建筑工程学院
max Vi ( k 1) Vi ( k ) ,i b, c, d
动力与电气工程系 王斌


电力系统的潮流计算—开式网络的电压和功率分布计算
开式网络的电压和功率分布计算步骤
Step2:计算运算负荷Sb,Sc ,Sd ;近似假定各节点电压为VN,并联支路充电功率计入相
等) Step3:回代计算:按照支路编号顺序,计算各支路 功率损耗和首末端功率;
c A 7 b 6 4 5 e
1
d 2 3
f g
( k ) S (j k ) Sij
(k ) Sij
mN j
S
h
(k ) ( k ) Sij ( k ) Sij ;Sij
(k ) jm
Sd;S3 S3 SL3 S3
Sc S3 ;S2 S2 SL2 S1 Sb S2 ;S1 S1 SL1 S2
2 2 2 P32 Q3 2 P22 Q2 P Q 1 1 SL3 ( R3 jX 3 ) SL2 ( R j X ) S ( R1 jX1 ) 2 2 2 L1 2 2 VN VN VN
1
ZI SI
V 3
3
I
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 电力系统潮流分析与计算电力系统潮流计算是电力系统稳态运行分析与控制的基础,同时也是安全性分析、稳定性分析电磁暂态分析的基础(稳定性分析和电磁暂态分析需要首先计算初始状态,而初始状态需要进行潮流计算)。

其根本任务是根据给定的运行参数,例如节点的注入功率,计算电网各个节点的电压、相角以及各个支路的有功功率和无功功率的分布及损耗。

潮流计算的本质是求解节点功率方程,系统的节点功率方程是节点电压方程乘以节点电压构成的。

要想计算各个支路的功率潮流,首先根据节点的注入功率计算节点电压,即求解节点功率方程。

节点功率方程是一组高维的非线性代数方程,需要借助数字迭代的计算方法来完成。

简单辐射型网络和环形网络的潮流估算是以单支路的潮流计算为基础的。

本章主要介绍电力系统的节点功率方程的形成,潮流计算的数值计算方法,包括高斯迭代法、牛顿拉夫逊法以及PQ 解藕法等。

介绍单电源辐射型网络和双端电源环形网络的潮流估算方法。

4-1 潮流计算方程--节点功率方程1. 支路潮流所谓潮流计算就是计算电力系统的功率在各个支路的分布、各个支路的功率损耗以及各个节点的电压和各个支路的电压损耗。

由于电力系统可以用等值电路来模拟,从本质上说,电力系统的潮流计算首先是根据各个节点的注入功率求解电力系统各个节点的电压,当各个节点的电压相量已知时,就很容易计算出各个支路的功率损耗和功率分布。

假设支路的两个节点分别为k 和l ,支路导纳为kl y ,两个节点的电压已知,分别为kV 和lV ,如图4-1所示。

图4-1 支路功率及其分布那么从节点k 流向节点l 的复功率为(变量上面的“-”表示复共扼):)]([lk kl k kl k kl V V y V I V S -== (4-1) 从节点l 流向节点k 的复功率为:)]([kl kl l lk l lk V V y V I V S -== (4-2) 功率损耗为:2)()(klkl l k kl l k lk kl kl V y V V y V V S S S ∆=--=+=∆ (4-3)因此,潮流计算的第一步是求解节点的电压和相位,根据电路理论,可以采用节点导纳方程求解各个节点的电压。

2. 节点功率方程根据电路理论,要想求系统各个节点的电压,需要利用系统的节点导纳方程。

图4-2 电网络示意图如图4-2所示的电网络,有N 个节点,假如已知各个节点的注入电流源的电流,以及各个支路的支路导纳,那么可以根据节点导纳方程求出电网各个节点的电压:S I YV = (4-4)其中⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=NN N N N N Y Y Y Y Y Y Y Y Y 212222111211Y 为电网络的节点导纳矩阵,kk Y (N k ,2,1=)为自导纳,是与k 节点所有连接支路导纳之和,kl Y (l k ≠)为互导纳,等于负的连接k 和l 节点的所有支路导纳之和。

T 21],,,[N V V V =V 为各个节点的电压相量,T ,21],,,[N S S S S I I I =I 为注入到各个节点的总电流。

2.1 节点复功率方程要想计算各个节点电压,除了需要知道系统参数及节点导纳矩阵以外,还需要知道节点的注入电流源的电流。

然而电力系统中,节点的注入电流是不知道的,已知的是各个节点的注入功率。

这就需要将节点电压方程转化为节点功率方程。

方程4-4中第k (N k ,,2,1 =)个节点的方程可以写作:Sk N kN k kk k k N l l klI V Y V Y V Y V Y V Y =+++++=∑=22111(4-5) 在方程4-5两端乘以k V ,得到: Sk Sk Sk Sk k N l l kl k jQ P S I V V Y V -===∑= 1(4-6)假如在电力系统中,各个节点的注入复功率都已知,那么就可以用方程4-6组成的方程组求解各个节点的电压。

然而实际情况并非如此,已知的条件是:有的节点的注入复功率S 是已知的,有的节点的电压幅值和注入有功功率是已知的,有的节点的电压和相角是已知的。

根据这三种不同的情况,电力系统中各个节点分为三种类型:PQ 节点、PV 节点和V δ节点。

所谓PQ 节点,就是该节点的注入复功率S 是已知的,这样的节点一般为中间节点或者是负荷节点。

PV 节点,指该节点已知的条件是注入节点的有功功率P 和该节点的电压幅值V ,这样的节点通常是发电机节点。

V δ节点指的是该节点的电压幅值和相角是已知的,这样的节点通常是平衡节点,在每个局部电网中只有一个这样的节点。

当然,PQ 节点和PV 节点在一定条件下还可以互相转化,例如,当发电机节点无法维持该节点电压时,发电机运行于功率极限时,发电机节点的有功和无功变成了已知量,而电压幅值则未知,此时,该节点由PV 节点转化为PQ 节点。

再比如某个负荷节点,运行要求电压不能越限,当该节点的电压幅值处于极限位置,或者电力系统调压要求该节点的电压恒定,此时该负荷节点就由PQ 节点转化为PV 节点。

假如全系统有N 个节点,其中有M 个PQ 节点,N-M-1个PV 节点,1个平衡节点,每个节点有四个参数:电压幅值V 、相位角δ(用极坐标表示电压,如果用直角坐标表示电压相量则是e 和f )注入有功功率S P 和无功功率S Q ,任何一个节点的四个参数中总有两个是已知的,因此N 个节点,有2N 个未知变量,N 个复数方程(即2N 个实数方程,实部和虚部各一个),通过解这个复数方程就可得到另外2N 个参数。

这就是潮流计算的本质。

但在实际求解过程中,由于我们求解的对象是电压,因此,实际上不需要2N 个功率方程,对于M 个PQ 节点,有2M 个功率方程(M 个实部有功功率方程,M 个虚部无功功率方程);对于N-M-1个PV 节点,由于电压有效值V 已知,因此只有N-M-1个有功功率方程;对于平衡节点,由于电压和相角已知,不需要功率方程。

因此总计有2M+N-M-1=N+M-1个功率方程。

如果电压相量用极坐标表示,即kk k V V δ∠= ,则M 个PQ 节点有2M 个未知数(M 个电压有效值,M 个电压相角),N-M-1个PV 节点有N-M-1个未知数(电压有效值已知,未知数为电压相角),平衡节点没有未知数,因此未知数的个数也是N+M-1个,与方程数一致。

如果复电压用直角坐标表示,kk k jf e V += ,则有2(N-1)个未知数,还需要增加N-M-1个电压方程,即222k k k f e V +=。

2.2 用直角坐标表示的电力系统节点功率方程对于PQ 节点,已知的是注入节点的功率P 和Q ,将km km km jB G Y +=和kk k jf e V += 带入节点功率方程的复数表示式中,可以得到有功功率和无功功率两个方程:⎪⎪⎩⎪⎪⎨⎧+--=-=++-=-=∑∑∑∑-=-=-=-=11111111)()()()(N m m km m km k N m m km m km k Lk Gk Sk N m m km m km k N m m km m km k Lk Gk Sk e B f G e f B e G f Q Q Q e B f G f f B e G e P P P (4-7) 上式中Sk P 和Sk Q 为注入到节点k 的净功率,即注入和消耗的代数和。

Gk P 、Gk Q 表示注入的功率,Lk P 和Lk Q 为消耗的功率。

对于PV 节点,除了有功功率方程外,因为已知该节点的电压幅值,还有一个电压方程:222k k k f e V += (4-8)方程4-7可以抽象的表示为:⎩⎨⎧=∆=∆----0),,,,(0),,,,(11111111N N k N N k f e f e Q f e f e P (4-9) 方程4-8可以抽象的表示为0),,,,(1111=∆--N N k f e f e V (4-10)因此,对于一个具有N 个节点的电力系统,其中M 个PQ 节点,N-M-1个PV 节点,1个平衡节点,有方程如下:节点的方程个PQ 2M 0),,,,(0),,,,(0),,,,(0),,,,(111111111111111111⎪⎪⎭⎪⎪⎬⎫=∆=∆=∆=∆--------N N M N N M N N N N f e f e Q f e f e P f e f e Q f e f e P 节点方程个PV 1)-M -2(N 0),,,,(0),,,,(0),,,,(0),,,,(11111111111111111111⎪⎪⎭⎪⎪⎬⎫=∆=∆=∆=∆--------+--+N N N N N N N N M N N M f e f e V f e f e P f e f e V f e f e P (4-11) N 个节点,平衡节点的电压幅值和相角已知,即其横分量和纵分量已知,因此平衡节点不参与计算。

N-1个节点的电压的横分量和纵分量为未知数,共2N-2个未知数。

2M 个PQ 节点方程,2(N-M-1)个PV 节点方程,共计2N-2个方程。

解这个方程组,就可以得到电力系统N 个节点的电压相量,根据各个节点的电压相量和已知的注入功率,就可以计算出各个支路的潮流分布,及各个支路的功率损耗。

2.3 极坐标表示的节点功率方程对于PQ 节点,已知的是注入节点的功率P 和Q ,将km km km jB G Y +=和kk k V V δ∠= 带入节点功率方程的复数表示式中,可以得到实部和虚部两个方程:⎪⎪⎩⎪⎪⎨⎧δ-δ=-=δ+δ=-=∑∑==N m km km km km m k Lk Gk Sk N m km km km km m k Lk Gk Sk B G V V Q Q Q B G V V P P P 11)cos sin ()sin cos ( (4-12) 上式中,V 代表电压幅值,m k km δ-δ=δ。

对于PV 节点,由于节点的电压幅值已知,因此只有有功功率方程而没有无功功率方程。

同样,方程4-12可以抽象的表示为:0),,,,(111=δδ,∆-N M k V V P (4-13a)0),,,,(111=δδ,∆-N M k V V Q (4-13b)因此,对于一个具有N 个节点的电力系统,其中M 个PQ 节点,N-M-1个PV 节点,1个平衡节点,有方程如下:节点方程个PQ 2M 0),,,,,(0),,,,,(0),,,,,(0),,,,,(11111111111111⎪⎪⎭⎪⎪⎬⎫=δδ∆=δδ∆=δδ∆=δδ∆----N M M N M M N M N M V V Q V V P V V Q V V P 节点方程个PV 10),,,,,(0),,,,,(1111-N 1111M --⎪⎭⎪⎬⎫=δδ∆=δδ∆--+M N V V P V V P N M N M (4-14)除了平衡节点外,N-1个节点中,有M 个PQ 节点的电压幅值和相角都是未知数,N-M-1个PV 节点的相角为未知数,因此共有2M+N-M-1=N+M-1个未知数,2M+N-M-1=N+M-1个方程。

相关文档
最新文档