生物氧化和磷酸化

合集下载

生物氧化与氧化磷酸化

生物氧化与氧化磷酸化

生物氧化与氧化磷酸化知识要点生物氧化的实质是脱氢、失电子或与氧结合,消耗氧生成CO 2和H 2O ,与体外有机物的化学氧化(如燃烧)相同,释放总能量都相同。

生物氧化的特点是:作用条件温和,通常在常温、常压、近中性pH 及有水环境下进行;有酶、辅酶、电子传递体参与,在氧化还原过程中逐步放能;放出能量大多转换为ATP 分子中活跃化学能,供生物体利用。

体外燃烧则是在高温、干燥条件下进行的剧烈游离基反应,能量爆发释放,并且释放的能量转为光、热散失于环境中。

(一)氧化还原电势和自由能变化1.自由能生物氧化过程中发生的生化反应的能量变化与一般化学反应一样可用热力学上的自由能变化来描述。

自由能(free energy )是指一个体系的总能量中,在恒温恒压条件下能够做功的那一部分能量,又称为Gibbs 自由能,用符号G 表示。

物质中的自由能(G )含量是不易测定的,但化学反应的自由能变化(ΔG )是可以测定的。

ΔG 很有用,它表示从某反应可以得到多少有用功,也是衡量化学反应的自发性的标准。

例如,物质A 转变为物质B 的反应:B A −→← ΔG =G B —G A当ΔG 为负值时,是放能反应,可以产生有用功,反应可自发进行;若ΔG 为正值时,是吸能反应,为非自发反应,必须供给能量反应才可进行,其逆反应是自发的。

][][ln B A RT G G o +∆=∆ 如果ΔG =0时,表明反应体系处于动态平衡状态。

此时,平衡常数为K eq ,由已知的K eq 可求得ΔG °:ΔG °=-RT ln K eq2. 2.化还原电势在氧化还原反应中,失去电子的物质称为还原剂,得到电子的物质称为氧化剂。

还原剂失去电子的倾向(或氧化剂得到电子的倾向)的大小,则称为氧化还原电势。

将任何一对氧化还原物质的氧化还原对连在一起,都有氧化还原电位的产生。

如果将氧化还原物质与标准氢电极组成原电池,即可测出氧化还原电势。

标准氧还原电势用E °表示。

生物化学笔记生物氧化氧化磷酸化

生物化学笔记生物氧化氧化磷酸化

一、定义与生物氧化相偶联的磷酸化作用称为氧化磷酸化作用。

其作用是利用生物氧化放出的能量合成ATP:NADH+H++3ADP+3Pi+1/2 O 2=NAD++4H2O+3ATP其中NADH放能52.7千卡,ATP吸能21.9千卡,占42%。

氧化磷酸化与底物水平磷酸化不同,前者ATP的形成与电子传递偶联,后者与磷酸基团转移偶联,即磷酸基团直接转移到ADP上,形成ATP。

二、P/O比***指一对电子通过呼吸链传递到氧所产生的ATP分子数。

NADH的P/O比为3,ATP是在3个不连续的部位生成的:第一个部位是在NADH和辅酶Q之间(NADH脱氢酶);第二个在辅酶Q和细胞色素C之间(细胞色素C还原酶);第三个在细胞色素a和氧之间(细胞色素c氧化酶)。

三、偶联的调控(一)呼吸控制电子传递与ATP形成在正常细胞内总是相偶联的,二者缺一不可。

ATP与ADP浓度之比对电子传递速度和还原型辅酶的积累与氧化起着重要的调节作用。

ADP作为关键物质对氧化磷酸化的调节作用称为呼吸控制。

呼吸控制值是有ADP 时氧的利用速度与没有时的速度之比。

完整线粒体呼吸控制值在10以上,损伤或衰老线粒体可为1,即失去偶联,没有磷酸化。

根据线粒体用氧情况,可将呼吸功能分为5种状态。

状态3和4的转变也使线粒体的结构发生变化。

缺乏ADP时线粒体基质充满,称为常态;呼吸加速时,基质压缩50%,内膜和嵴的折叠更加紧密曲折,称为紧缩态。

(二)解偶联和抑制根据化学因素对氧化磷酸化的影响方式,可分为三类:解偶联剂、氧化磷酸化抑制剂和离子载体抑制剂。

1.解偶联剂:使电子传递和ATP形成分离,只抑制后者,不抑制前者。

电子传递失去控制,产生的自由能变成热能,能量得不到储存。

解偶联剂对底物水平磷酸化无影响。

代表如2,4-二硝基苯酚(DNP),可将质子带入膜内,破坏H+跨膜梯度的形成,又称质子载体。

2.氧化磷酸化抑制剂:直接干扰ATP的形成,因偶联而抑制电子传递。

第八章 氧化磷酸化

第八章 氧化磷酸化

三、电子流动的方向
NADH (-0.32)→CoQ(+0.10)→b(+0.07)→C1(+0.23)→C(+0.25)→a(+0.29) →a3(+0.55) →O2(+0.82)
CoQ与b+0.10+0.07, 在电位水平较接近的传递体之间,电子能可 逆往返传递而达到准平衡状态。
(1) 这个电子流向按它们的还原电势大小可 排成序列,正好符合它们对电子亲和力的 不断增加顺序。
1. 电子传递体的顺序
2.呼吸链中氢和电子的传递是有严格顺序和 方向的,上图总结了电子传递体组成及其顺 序:
(1)四个复合体组成;
(2) 电子来自两个方向:复合体Ⅰ、复合体Ⅱ;
(3) 复合体Ⅰ、Ⅱ、Ⅲ中含有FeS蛋白帮助 电子的传递;
(4) ATP形成的部分。
电子传递系统呼吸作用复合体
名称
反应顺 序
自由能:
在一个体系中,能够用来做功的 那一部分能量叫自由能。 △G=0 当一个化学反应达到平衡时; △G<0 反应能自发进行,能做有用 功; △G>0 反应不能自发进行,必须供 给反应能量。
氧化还原电位: 在氧化还原反应中,自由能的变
化与反应物供出或得到电子的趋势成 比例。这种趋势称为氧化还原电位, 通常用E表示。生物体内的标准氧化 还原电位用Eo’表示, Eo’值越小,电 负性越大,供出电子的倾向越大,即 还原力越强; Eo’值越大,电正性越 大,得到电子的倾向越大,即氧化能 力越强。电子总是由低电位向高电位 流动。
a. NADH+H++FMN==NAD++FMNH2 两个电子一个质子
b. 琥珀酸+FAD===延胡索酸+FADH2 两个电子两个质子

氧化磷酸化的名词解释生物化学

氧化磷酸化的名词解释生物化学

氧化磷酸化的名词解释生物化学
氧化磷酸化是一种生物化学过程,涉及细胞内能量的产生和利用。

在这个过程中,细胞通过氧化还原反应将有机物质转化为能量,同时伴随着磷酸化的过程,将高能磷酸键转移给ADP(腺苷二磷酸),生成ATP(腺苷三磷酸)。

ATP是细胞内主要的能量货币,用于维持细胞的各种生命活动。

氧化磷酸化过程需要氧气的参与,因此也称为需氧呼吸。

它分为两个阶段:氧化阶段和磷酸化阶段。

在氧化阶段,有机物质经过一系列的氧化还原反应被分解为水和二氧化碳,同时释放出能量。

这些能量一部分用于合成ATP,另一部分则以热能的形式散失。

在磷酸化阶段,ADP与磷酸根离子结合生成ATP,这个过程需要酶的催化,并且需要消耗一部分能量。

氧化磷酸化的重要性在于它为细胞提供了能量,并且是许多生物体能量代谢的主要方式。

它不仅为细胞提供了能量,还参与了细胞内的许多其他生化反应,如糖代谢、脂肪代谢和氨基酸代谢等。

这些反应与氧化磷酸化一起构成了细胞代谢的网络,维持了细胞的正常生命活动。

总之,氧化磷酸化是一个复杂而重要的生物化学过程,它为细胞提供了能量,并参与了细胞内的许多其他生化反应。

了解氧化磷酸化的过程有助于我们更好地理解细胞代谢的机制,也为相关领域的研究提供了重要的理论基础。

生物氧化与氧化磷酸化

生物氧化与氧化磷酸化

第八章生物氧化与氧化磷酸化第一节生物氧化概述一切生物都靠能量维持生存,生物体所需的能量大都来自体内糖、脂肪、蛋白质等有机物的氧化。

生物体内的氧化和生物体外的燃烧在化学本质上虽然最终产物都是水和CO2,所释放的能量也完全相等,但二者所进行的方式却大不相同。

糖、脂肪、蛋白质在生物体内彻底氧化之前,都先经过分解代谢,在不同的分解代谢过程中都伴有代谢物的脱氢过程和辅酶NAD+或FAD的还原。

这些携带着氢离子和电子的还原型辅酶,在最终将氢离子和电子传递给氧时,都经历一段相同的过程,即生物氧化过程。

一、生物氧化的概念人们把有机分子在体内氧化分解成CO2和H2O并释放出能量的过程称为生物氧化(biological oxidation)。

生物氧化实际上是需氧细胞呼吸作用中的一系列氧化-还原反应,是在细胞或组织中发生的,所以又称为细胞氧化或细胞呼吸,有时也称为组织呼吸。

二、生物氧化的特点生物氧化是发生在生物体内的氧化-还原反应,它具有自然界物质发生氧化-还原反应的共同特征,这主要表现在被氧化的物质总是失去电子,而被还原的物质总是得到电子,并且物质被氧化时,总伴随能量的释放。

有机物在生物体内完全氧化和在体外燃烧而被彻底氧化,在化学本质上是相同的。

例如1mol的葡萄糖在体内氧化和在体外燃烧都是产生CO2和H2O,放出的总能量都是2 867.5kJ。

这并不奇怪,因为氧化作用释放的能量等于这一物质所含化学能与其氧化产物所含的化学能差,放出的总能量的多少与该物质氧化的途径无关,只要在氧化后所生成的产物相同,放出的总能量必然相同。

但是,由于生物氧化是在活细胞内进行的,故它与有机物在体外燃烧有许多不同之处,即生物氧化有它本身的特点:(1)有机物在空气中燃烧时,CO2和H2O的生成是空气中氧直接与碳、氢原子结合的产物。

而有机物在细胞中氧化时,CO2是在代谢过程中经脱羧反应释放出来的,H2O的生成则是通过更复杂的过程完成的。

(2)生物氧化是在一系列酶的催化下、在恒温恒压下进行的反应,而有机分子在体外燃烧时需要高温。

第9章生物氧化讲义与氧化磷酸化

第9章生物氧化讲义与氧化磷酸化

Chemiosmotic model
跨膜pH梯度的测定 解偶联剂的应用
化学渗透的多种现象
The Role of Mitochondria in Apoptosis(细胞凋亡) and Oxidative
Stress(氧化胁迫)
Mitochondrial cytochrome c, released into the cytosol, participates in activation of one of the proteases (caspase 9) involved in apoptosis.
Reactive oxygen species produced in mitochondria are inactivated by a set of protective enzymes, including superoxide Dismutase(SOD) and glutathione peroxidase.
• 反应模式如下:
过氧化氢酶催化 2 H 2 O 2
过氧化物酶催化

2 H 2 O + O 2
抗氰呼吸途径
I、Ⅱ、Ⅲ、Ⅳ为正常呼吸链的四个复合物; FPma 为一种具有 中等氧化还原电位的黄素蛋白; CRO 为抗氰氧化酶
THANKS
3. 质子不能自由通过内膜。泵出的质子不能 返回,从而形成了跨膜的质子浓度梯度,即: ΔpH,外正内负。此电位差包含着电子传递 过程中所释放的能量,象电池两极的离子浓 度差造成电位差而含有电能一样。
4. 质子通过特殊的通道返回内膜的途中, 驱动ATP合酶,合成ATP。由质子浓度 梯度所释放的自由能偶联ADP和Pi形成 ATP,质子的化学势梯度也随之消失。
S2H N+ A (N 或 D D P A + )

第八章 氧化磷酸化

第八章 氧化磷酸化

5
10
13



+0.02
+0.20
0.57



(2) 电子来自两个方向: 复合体Ⅰ、复合体Ⅱ
(3) 复合体Ⅰ、Ⅱ、Ⅲ中含有 FeS蛋白帮助电子的传递。
(4) ATP形成的部分。
线粒体内膜呼吸链的电子传递过程与 ADP的磷酸化过程偶联示意图
3.呼吸链的抑制剂:
能够切断呼吸链中某一部位电 子流的物质称为电子传递抑制剂(呼 吸链抑制剂)。如果把电子传递链中 断,那么,正常的生命现象活动就要 受到干扰或因此而告终。已知呼吸链 上有三处进行氧化磷酸化的偶联反应, 在三个部位分别受到不同的抑制剂抑 制。
(2) 这个顺序从热力学关系上看也是合理的, 大量的实验已经证明,它也符合细胞本身 的电子传递顺序。
电子载体的氧化还原电位
氧化还原对
NAD+/NADH FMN/FMNH2(酶结合型) Fe3+-S/Fe2+-S(平均)
CoQ/CoQH2 Cyt b(Fe3+)/Cyt b(Fe2+) Fe3+-S/Fe2+-S Cyt c1(Fe3+)/Cyt c1(Fe2+) Cyt c(Fe3+)/Cyt c(Fe2+) Cyt a(Fe3+)/Cyt a(Fe2+) Cu2+/Cu+(平均) Cyt a3(Fe3+)/Cyt a3(Fe2+) 1/2O2/H2O
总之:能荷由ATP、ADP和AMP的相对数量决
定,它在代谢中起控制作用。高能荷抑制ATP的生成( 分解代谢)途径而激活ATP利用(合成代谢)途径。
第一节 电子传递链 (呼吸链)

第21章 生物氧化——氧化磷酸化

第21章  生物氧化——氧化磷酸化

二、生物氧化中CO2的生成 生物氧化中 的生成 (1)直接脱羧作用 • 糖、脂质和蛋白质经过一系列的氧化分解形成含羧基的 中间产物,然后在脱羧酶的催化下,直接从含羧基的中 中间产物,然后在脱羧酶的催化下,直接从含羧基的中 间产物上脱去羧基。例如丙酮酸和草酰乙酸的脱羧。 间产物上脱去羧基。例如丙酮酸和草酰乙酸的脱羧。
CoQ可以接受两个 可以接受两个 氧还型CoQ或叫醌型 电子形成 氧还型 或叫醌型 电子形成QH ,也 2 可接受一个电子, 可接受一个电子, 或由QH2给出一个 或由 电子形成稳定的半 醌中间产物。 醌中间产物。
半醌中间体(Q-·) 半醌中间体( )
还原型CoQ(QH2) ( 还原型
3、复合物II——琥珀酸 还原酶 、复合物 琥珀酸-Q还原酶 琥珀酸
第21章 生物氧化 章 生物氧化——氧化磷酸化 氧化磷酸化 一、氧化磷酸化
1、概念:是指在细胞内的有机分子经氧化分解形成, 、概念 是指在细胞内的有机分子经氧化分解形成 是指在细胞内的有机分子经氧化分解形成, 生成CO2,H2O并释放出能量使 并释放出能量使ADP和Pi生成 生成ATP 生成 并释放出能量使 和 生成 的过程。 的过程。 ★因生物氧化在细胞中进行,又称细胞氧化或细胞 生物氧化在细胞中进行 又称细胞氧化或细胞 呼吸。 呼吸。 真核细胞,需氧生物氧化多在线粒体内进行, ★真核细胞,需氧生物氧化多在线粒体内进行, 在原核细胞中,需氧生物氧化在细胞膜上进行。 在原核细胞中,需氧生物氧化在细胞膜上进行。
• 电子由 电子由FADH2转移到 转移到CoQ上释放的自由能不足以合成 上释放的自由能不足以合成ATP,所 上释放的自由能不足以合成 , 以这步反应无ATP生成,这步反应的意义是:保证了 生成, 以这步反应无 生成 这步反应的意义是:保证了FADH2上 的具有相对较高势能的电子绕过复合物I进入电子传递链 的具有相对较高势能的电子绕过复合物 进入电子传递链
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 生物氧化与氧化磷酸化
主要内容和要求:重点讨论线
粒体电子传递体系的组成、电子传
递机理和氧化磷酸化机理。对非线 粒体氧化体系作一般介绍。
思考

目录
第一节 生物氧化概述 第二节 线粒体电子传递体系 第三节 氧化磷酸化作用
第四节 非线粒体氧化体系(自学)
§6.1 生物氧化概述
一、生物氧化的概念和特点
烟酰胺脱氢酶类
特点 :以 NAD+ 或 NADP+为辅酶,存在于线
粒体、基质或胞液中。
传递氢机理:
NAD(P)
+
+ 2H+ +2e
NAD(P)H + H+
黄素蛋白酶类
特点: 以FAD或FMN为辅基,酶蛋白为细胞膜组成蛋白 递氢机理:FAD(FMN)+2H
FAD(FMN)H2
类别:黄素脱氢酶类(如NADH脱氢酶、琥珀酸脱氢酶)
e-
三羧酸 循环
二、生物能学简介:
1、生物能的转换及生物系统中的能流
2、自由能的概念及化学反应自由能的计算
1、自由能(free energy)的概念
定义式:Δ G=Δ H-TΔ S
物理意义:-Δ G=W* (体系中能对环境作功的能量)
自由能的变化能预示某一过程能否自发进行,即:
Δ G<0,反应能自发进行
NAD+
3、H2O的生成
代谢物在脱氢酶催化下脱下的氢由相应的氢载 体( NAD+、NADP+、FAD、FMN 等)所接受,再通过 一系列递氢体或递电子体传递给氧而生成H2O 。
例: CH3CH2OH
乙醇脱氢酶
CH3CHO
NAD+
NADH+H+
NAD+
2e
电子传递链
1\2 O2 O=
2H+
H2 O
生物氧化的三个阶段 脂肪 多糖 蛋白质
NADH
FADH2
2e-
NADH呼吸链电子传递过程中自由能变化
总反应: NADH+H++1/2O2→NAD++H2O Δ G°′=-nFΔ E°′ =-2×96.5×[0.82-(-0.32)] =-220.07千焦· mol-1
FADH2呼吸链电子传递过程中自由能变化
总反应:FADH2+1/2O2→FAD+H2O ΔG°′=-nFΔE°′ = -2×96.5×[0.82-(-0.18)] =-193.0千焦· mol-1
基本公式:Δ G°′=-nFΔ E°′ (Δ E°′=E+°′-E-°′) 例:计算NADH氧化反应的Δ G°′
计算磷酸葡萄糖异构酶反应的自由能变化
例题: 反应G-1-PG-6-P在380C达到平衡时, G-1-P占 5%,G-6-P占95%,求 G0。如果反应未达到平 衡,设[G-1- P]=0.01mol.L, [G-6-P]=0.001mol.L, 求反应的 G是多少?
例题:计算下反应式Δ G°′ NADH+H++1/2O2====NAD++H2O
正极反应:1/2O2+2H++2e H2O E+°′ 0.82 负极反应:NAD++H++2e NADH E-°′ -0.3 Δ G°′-nFΔ E°′ -2×96485×[0.82-(-0.32)] -220 KJ· mol-1
琥珀酸 FAD CoQH2 2Fe3+
细胞色素
O21 2 O2
H2 O
Fe
延胡索酸 FADH2
S
CoQ
b- c1 - c-aa3
2Fe2+
2H+
NADH呼吸链和FADH2呼吸链
FADH2呼吸链 FADH2 ↓ FeS ↓ NADH→FMN→FeS→CoQ→Cytb→FeS→Cytc1→Cytc→Cytaa3→O2 NADH呼吸链
生物氧化过程中 释放出的自由能
ADP + Pi 类别: 底物水平磷酸化
ATP + H2O
电子传递水平磷酸化
磷氧比( P/O )
呼吸过程中无机磷酸(Pi)消耗量和分子氧(O2)消耗量的比
值称为磷氧比。由于在氧化磷酸化过程中,每传递一对电子消耗一 个氧原子,而每生成一分子ATP消耗一分子Pi ,因此P/O的数值相当 于一对电子经呼吸链传递至分子氧所产生的ATP分子数。
二、生物能学简介 三、 高能化合物
生物氧化的特点和方式
糖类、脂肪、蛋白质等有机物质在细胞中进行氧化分解生 成 CO2 和 H2O 并释放出能量的过程称为生物氧化( biological oxidation),其实质是需氧细胞在呼吸代谢过程中所进行的 一系列氧化还原反应过程。
1、生物氧化的特点
2、生物氧化过程中CO2的生成和H2O的生成 3、有机物在体内氧化释能的三个阶段
解:达平衡时
=Keq=19
Δ G°′= - RTlnKeq =-2.3038.314 311 log19 =-7.6KJ.mol-1 未达平衡时 =Qc=0.1
Δ G′=Δ G°′+ RTlnQc (Qc-浓度商) =-7.6+ 2.3038.314 311 log0.1 =-13.6KJ.MOL-1
生物系统中的能流
三、高能化合物
生化反应中,在水解时或基团转移反应中可
释放出大量自由能( >21 千焦 / 摩尔)的化合物称
为高能化合物。
1、高能化合物的类型 2、ATP的特点及其特殊作用
高 能 化 合 物 类 型
ATP的特点
在 pH=7 环境中, ATP 分子中的三个磷酸基团完 全解离成带 4 个负电荷的离子形式( ATP4-),具有 较大势能,加之水解产物稳定,因而水解自由能很 大(Δ G°′=-30.5千焦/摩尔)。

实测得NADH呼吸链: P/O~ 3 2eATP ADP+Pi ATP ADP+Pi ATP
NADH
ADP+Pi
1 O2 2
H2 O
实测得FADH2呼吸链: P/O~ 2
FADH2
ADP+Pi ATP
2eADP+Pi ATP
1 O2 2
H2 O
氧化磷酸化的偶联机理
1、化学渗透假说 2、氧化磷酸化的抑制 解偶联剂和离子载体抑制剂
传递电子机理:
Fe3+
+e -e
Fe2+
Cu2+
+e -e
Cu+
CoQ的结构和递氢原理
CoQ+2H
CoQH2
铁硫蛋白的结构及递电子机理
1Fe 0S24Cys 4Fe 4S24Cys 2Fe 2S24Cys
S Fe
传递电子机理:Fe3+
+e
-e
Fe2+
细胞色素的结构和递电子机理
传递电子机理:Fe3+
O O O + + + 腺嘌呤—核糖— O — P — O — P — O — P — O-
O-
O-
OMg2+
ATP4- + H2O = ADP3- + Pi2- + H+ ATP3- + H2O = ADP2- + Pi3- + H+
G =-30.5kJ•MOL-1 G =-33.1kJ•MOL-1
一、线粒体结构特点 二、电子传递呼吸链的概念
三、呼吸链的组成
四、机体内两条主要的呼吸链及其能量变化 五、电子传递抑制剂
线粒体呼吸链
线粒体基质是呼吸 底物氧化的场所,底物在 这里氧化所产生的NADH和 FADH2 将质子和电子转移 到内膜的载体上,经过一 系列氢载体和电子载体的 传递,最后传递给 O2 生成 H2O。 这种由载体组成的 电子传递系统称电子传递 链 ( eclctron transfer chain), 因为其功能和呼 吸作用直接相关,亦称为 呼吸链。
Δ G>0,反应不能自发进行
Δ G=0,反应处于平衡状态。
化学反应自由能的计算
a.利用化学反应平衡常数计算 基本公式:Δ G′=Δ G°′+ RTlnQc Δ G°′= - RTlnKeq 例:计算磷酸葡萄糖异构酶反应的自由能变化 b.利用标准氧化还原电位(E°)计算(限于氧化还原反
应) (Qc-浓度商)
2,4-二硝基苯酚的解偶联作用
ATP的特殊作用
★ ATP是细胞内的“能量通货” ★ ATP是细胞内磷酸基团转移的中间载体 14 磷酸烯醇式丙酮酸
磷 12 ~P 酸 10 3-磷酸甘 ~P 基 油酸磷酸 团 8 转 6 移 能 4
2
~P ATP
磷酸肌酸 (磷酸基团储备物)
~P ~P
6-磷酸葡萄糖 3-磷酸甘油
0
§6.2 线粒体电子传递体系
细胞色素类 铁硫蛋白 (Fe-S)
Cyt c1 Cyt c Cyt aa3 O2
NADH呼吸链
还原型代 谢底物
MH2
NAD+
FMNH2
CoQ
2Fe2+
细胞色素
1 2 O2
Fe
NADH+H+ FMN
S
CoQH2
b- c- c1 -aa3
2Fe3+
氧化型代 谢底物
M
O2-
2H+
H2 O
FADH2呼吸链
大分子降解 成基本结构 单位
脂肪酸、甘油
葡萄糖、 其它单糖
氨基酸
乙酰CoA
相关文档
最新文档