13-数学试卷
山东省13年-17年春考数学真题试卷

山东省2013年普通高校招生(春季)考试一、选择题1.若集合{}1234M =,,,,{}123N =,,,则下列关系中正确的是 (A ) MN M = (B ) M N N = (C ) N ⊂≠ M (D ) N ⊃≠ M 2.若p 是假命题,q 是真命题,则下列命题为真命题的是(A ) q ⌝ (B ) p q ⌝∧ (C ) ()p q ⌝∨ (D ) p q ∧3.过点()12P ,且与直线310x y +-=平行的直线方程是(A ) 350x y +-= (B ) 370x y +-=(C ) 350x y -+= (D ) 350x y --=4.“2a c b +=”是“a ,b ,c 成等差数列”的(A ) 充分不必要条件 (B ) 必要不充分条件(C ) 充要条件 (D ) 既不充分也不必要条件5.函数y 的定义域为(A ) []15-, (B ) []51--, (C ) (][)15-∞-+∞,, (D ) (][)51-∞-+∞,, 6.已知点()()1234M N ,,,,则12→MN 的坐标是 (A ) ()11, (B ) ()12, (C ) ()22, (D ) ()23,7.若函数2sin 3y x πω⎛⎫=+ ⎪⎝⎭的最小正周期为π,则ω的值为 (A ) 1 (B ) 2 (C ) 12(D ) 4 8.已知点()16M -,,()32N ,,则线段MN 的垂直平分线方程为(A ) 40x y --= (B ) 30x y -+=(C ) 50x y +-= (D ) 4170x y +-=9.五边形ABCDE 为正五边形,以A ,B ,C ,D ,E 为顶点的三角形的个数是(A ) 5 (B ) 10 (C ) 15 (D ) 2010.二次函数()()31y x x =--的对称轴是(A ) 1x =- (B ) 1x = (C ) 2x =- (D ) 2x =11.已知点()92P m m -+,在第一象限,则m 的取值范围是 (A ) 29m -<< (B ) 92m -<< (C ) 2m >- (D ) 9m <12.在同一坐标系中,二次函数()21y a x a =-+与指数函数xy a =的图像可能是(A) (B) (C) (D)13.将卷号为1至4的四卷文集按任意顺序排放在书架的同一层上,则自左到右卷号顺序恰为1,2,3,4的概率等于(A)18(B)112(C)116(D)12414.已知抛物线的准线方程是2x=,则该抛物线的标准方程是(A) 28y x= (B) 28y x=- (C) 24y x= (D) 24y x=-15.已知()tan2πα+=,则2cosα等于(A)45(B)35(C)25(D)1516.在下列函数图像中,表示奇函数且在()0+∞,上为增函数的是(A) (B) (C) (D)17.()521x-的二项展开式中3x的系数是(A) 80- (B) 80 (C) 10- (D) 1018.下列四个命题:① 过平面外一点,有且只有一条直线与已知平面平行;② 过平面外一点,有且只有一条直线与已知平面垂直;③平行于同一个平面的两个平面平行;④垂直于同一个平面的两个平面平行.其中真命题的个数是(A) 1 (B) 2 (C) 3 (D) 419.设01a b<<<,那么log5a与log5b的大小关系是(A) log5a<log5b(B) log5a=log5b(C) log5a>log5b(D) 无法确定20.满足线性约束条件⎩⎨⎧x+y-2≤0x≥0y≥0的可行域如图所示,则线性目标函数22z x y=-取得最大值时的最优解是(A) ()00, (B) ()11, (C) ()20, (D) ()02,第20题图21.若()0a b ab >≠,则下列关系中正确的是(A ) a b > (B ) 22ac bc > (C ) 11a b< (D ) c a c b -<-22. 22. 在△ABC中,已知34a b c ==,,ABC 的面积是(A(BC) (D) 23.若点()3log 3n P m ,关于原点的对称点为()19P '-,,则m 与n 的值分别为 (A ) 13,2 (B ) 3,2 (C ) 13-,2- (D ) 3-,2- 24.某市2012年的专利申请量为10万件,为了落实“科教兴鲁”战略,该市计划2017年专利申请量达到20万件,其年平均增长率最少为(A ) 12.25 % (B ) 13.32 % (C ) 14.87 % (D ) 18.92 %25.如图所示,点P 是等轴双曲线上除顶点外的任一点, 12A A ,是双曲线的顶点,则直线1PA 与2PA 的斜 率之积为(A ) 1 (B ) 1-(C ) 2 (D ) 2-卷二(非选择题,共75分)二、填空题(本大题5小题,每题4分,共20分.请将答案填在答题卡相应题号的横线上)26.已知函数()2f x x =,则()1f t -= . 27.某射击运动员射击5次,命中的环数分别为9,8,6,8,9.这5个数据的方差为 .28.一个球的体积与其表面积的数值恰好相等,该球的直径是 .29.设直线0x y --与圆2225x y +=的两个交点为A B ,,则线段AB 的长度为 . 30.已知向量→a ()cos sin θθ=,,→b ()03=,,若→a ·→b 取最大值,则 →a 的坐标是 .三、解答题(本大题5小题,共55分.请在答题卡相应的题号处写出解答过31.(本小题9分) 在等比数列{}n a 中,24a =,38a =.求:(1) 该数列的通项公式;(2) 该数列前10项的和. 32.(本小题11分) 已知点()43P ,是角α终边上一点,如图所示,求sin 26πα⎛⎫- ⎪⎝⎭的值.)33.(本小题11分) 如图所示,已知棱长为1的正方体1111ABCD A B C D -.(1) 求三棱锥1C BCD -的体积;(2) 求证:平面1C BD ⊥平面11A B CD .34.(本小题12分) 某市为鼓励居民节约用电,采用阶梯电价的收费方式.居民当月用电量不超过100度的部分,按基础电价收费;超过100度不超过150度的部分,按0.8元/度收费;超过150度的部分按1.2元/度收费.该市居民当月用电量x (度)与应付电费y (元)的函数图像如图所示.(1) 求该市居民用电的基础电价是多少元/度?(2) 某居民8月份的用电量为210度,求应付电费多少元?(3) 当(]100150x ∈,时,求x 与y 的函数关系式(x 为自变量).35.(本小题12分) 已知椭圆的一个焦点为()10F . (1) 求该椭圆的标准方程;(2) 圆2245x y +=的任一条切线与该椭圆均有两个交点A ,B ,求证:OA OB ⊥(O 为坐标原点). A B C D C 1A 1B 1 D 1 第33题图机密★启用前山东省2015年普通高校招生(春季)考试数学试题注意事项:1.本试卷分卷一(选择题)和卷二(非选择题)两部分,满分120分,考试时间120分钟.考试结束后,请将本试卷和答题卡一并交回.2.本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确到0.01.卷一(选择题,共60分)一、选择题(本大题共20个小题,每小题3分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出,填涂在答题卡上)1.集合{}1,2,3A =,{}1,3B =,则A B 等于( )A.{1,2,3}B.{1,3}C.{1,2}D.{2}【考查内容】集合的交集【答案】B2.不等式15x -<的解集是( ) A.(6-,4) B.(4-,6) C.(,6)(4,)--+∞∞ D.(,4)(6,)--+∞∞【考查内容】绝对值不等式的解法【答案】B 【解析】1551546x x x -<⇒-<-<⇒-<<.3.函数1y x=的定义域是( ) A.{}10x x x -≠且… B.{}1x x -… C.{}>10x x x -≠且 D.{}>1x x -【考查内容】函数的定义域【答案】A【解析】10x +…且0x ≠得该函数的定义域是{}10x x x -≠且….4.“圆心到直线的距离等于圆的半径”是“直线与圆相切”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考查内容】充分、必要条件【答案】C【解析】“圆心到直线的距离等于圆的半径”⇒“直线与圆相切”,“直线与圆相切” ⇒“圆心到直线的距离等于圆的半径”.5.在等比数列{}n a 中,241,3a a ==,则6a 的值是( )A.5-B.5C.9-D.9【考查内容】等比数列的性质【答案】D【解析】2423a q a ==,2649a a q ==. 6.如图所示,M 是线段OB 的中点,设向量,OA a OB b ==,则AM 可以表示为( )第6题图 15SD1 A.12a b + B.12a b -+ C.12a b - D.12a b -- 【考查内容】向量的线性运算【答案】B 【解析】12AM OM OA b a =-=-. 7.终边在y 轴的正半轴上的角的集合是( ) A.2,2x x k k ⎧π⎫=+π∈⎨⎬⎩⎭Z B.,2x x k k ⎧π⎫=+π∈⎨⎬⎩⎭Z C.2,2x x k k ⎧π⎫=-+π∈⎨⎬⎩⎭Z D.,2x x k k ⎧π⎫=-+π∈⎨⎬⎩⎭Z【考查内容】终边相同的角的集合【答案】A【解析】终边在y 轴正半轴上的角的集合是2,2x k k ⎧π⎫+π∈⎨⎬⎩⎭Z . 8.关于函数22y x x =-+,下列叙述错误的是( )A.函数的最大值是1B.函数图象的对称轴是直线1x =C.函数的单调递减区间是[1,)-+∞D.函数的图象经过点(2,0)【考查内容】二次函数的图象和性质【答案】C【解析】222(1)1y x x x =-+=--+,最大值是1,对称轴是直线1x =,单调递减区间是[1,)+∞,(2,0)在函数图象上.9.某值日小组共有5名同学,若任意安排3名同学负责教室内的地面卫生,其余2名同学负责教师外的走廊卫生,则不同的安排方法种数是( )A.10B.20C.60D.100【考查内容】组合数的应用【答案】A【解析】从5人中选取3人负责教室内的地面卫生,共有35C 10=种安排方法.(选取3人后剩下2名同学干的活就定了)10.如图所示,直线l 的方程是( )第10题图 15SD20y -=20y -=310y --=D.10x -=【考查内容】直线的倾斜角,直线的点斜式方程 【答案】D【解析】由图可得直线的倾斜角为30°,斜率3tan 30k ==,直线l 与x 轴的交点为(1,0),由直线的点斜式方程可得l :01)y x -=-,即10x -=. 11.对于命题p ,q ,若p q ∧是假命题,p q ∨是真命题,则( )A. p ,q 都是真命题B. p ,q 都是假命题C. p ,q 一个是真命题一个是假命题D.无法判断【考查内容】逻辑联结词 【答案】C【解析】由p q ∧是假命题可知p ,q 至少有一个假命题,由p q ∨是真命题可知p ,q 至少有一个真命题,∴p ,q 一个是真命题一个是假命题.12.已知函数()f x 是奇函数,当0x >时,2()2f x x =+,则(1)f -的值是( ) A.3- B.1- C.1 D.3 【考查内容】奇函数的性质 【答案】A【解析】2(1)(1)(12)3f f -=-=-+=-.13.已知点(,2)P m -在函数13log y x =的图象上,点A 的坐标是(4,3),则AP 的值是()B.C.D.【考查内容】对数的运算,向量的坐标运算,向量的模 【答案】D【解析】∵点(,2)P m -在函数13log y x =的图象上,∴2131log 2,()93m m -=-==,∴P 点坐标为(9,2)-,(5,5),52AP AP =-=14.关于x ,y 的方程221x my +=,给出下列命题:①当0m <时,方程表示双曲线; ②当0m =时,方程表示抛物线;③当01m <<时,方程表示椭圆; ④当1m =时,方程表示等轴双曲线;⑤当1m >时,方程表示椭圆. 其中,真命题的个数是( ) A.2 B.3 C.4 D.5【考查内容】椭圆、双曲线和抛物线的标准方程,等轴双曲线的概念 【答案】B【解析】当0m <时,方程表示双曲线;当0m =时,方程表示两条垂直于x 轴的直线;当01m <<时,方程表示焦点在y 轴上的椭圆;当1m =时,方程表示圆;当1m >时,方程表示焦点在x 轴上的椭圆.①③⑤正确.15.5(1)x -的二项展开式中,所有项的二项式系数之和是( ) A.0 B.1- C.32- D.32 【考查内容】二项式定理 【答案】D【解析】所有项的二项式系数之和为012345555555C C C C C C 32+++++=.16.不等式组1030x y x y -+>⎧⎨+-<⎩表示的区域(阴影部分)是( )A B C D 15SD3 15SD4 15SD5 15SD6 【考查内容】不等式组表示的区域 【答案】C【解析】可以用特殊点(0,0)进行验证:0010-+>,0030+-<,非严格不等式的边界用虚线表示,∴该不等式组表示的区域如C 选项中所示.17.甲、乙、丙三位同学计划利用假期外出游览,约定每人从泰山、孔府这两处景点中任选一处,则甲、乙两位同学恰好选取同一处景点的概率是( ) A.29 B.23C.14D.12【考查内容】古典概率【答案】D【解析】甲、乙两位同学选取景点的不同种数为224⨯=,其中甲、乙两位同学恰好选取同一处景点的种数为2,故所求概率为2142=. 18.已知向量(cos,sin ),(cos ,sin ),12121212a b 5π5πππ==则a b 的值等于( )A.12C.1D.0【考查内容】余弦函数的两角差公式,向量的内积的坐标运算【答案】A【解析】1 sin cos cos sin sin1212121262 a bπππππ=+==.19.已知,αβ表示平面,m,n表示直线,下列命题中正确的是()A.若mα⊥,m n⊥,则nαP B.若mα⊂,nβ⊂,αβP,则m nPC.若αβP,mα⊂,则mβP D.若mα⊂,nα⊂,mβP,nβP,则αβP【考查内容】空间直线、平面的位置关系【答案】C【解析】A. 若mα⊥,m n⊥,则nαP或n在α内;B. 若mα⊂,nβ⊂,αβP,则m nP或m与n异面;D. 若mα⊂,nα⊂,mβP,nβP,且m、n相交才能判定αβP;根据两平面平行的性质可知C正确.20.已知1F是双曲线22221(0,0)x ya ba b-=>>的左焦点,点P在双曲线上,直线1PF与x轴垂直,且1PF a=,则双曲线的离心率是()C.2D.3【考查内容】双曲线的简单几何性质【答案】A【解析】1F的坐标为(,0)c -,设P点坐标为(,)cy-,2222()1yca b--=,解得2bya=,由1P F a=可得2baa=,则a b=卷二(非选择题,共60分)二、填空题(本大题共5个小题,每小题4分,共20分.请将答案填在答题卡相应题号的横线上)21.直棱柱的底面是边长为a的菱形,侧棱长为h,则直棱柱的侧面积是.【考查内容】直棱柱的侧面积【答案】4ah22.在△ABC中,105A∠=,45C∠=,AB=则BC= .【考查内容】正弦定理【解析】由正弦定理可知,sin sinAB BCC A=,sin sin1056sinAB ABCC===23.计划从500名学生中抽取50名进行问卷调查,拟采用系统抽样方法,为此将他们逐一编号为1-500,并对编号进行分段,若从第一个号码段中随机抽出的号码是2 ,则从第五个号码段中抽取的号码应是.【考查内容】系统抽样【答案】42【解析】从500名学生中抽取50名,则每两相邻号码之间的间隔是10,第一个号码是2,则第五个号码段中抽取的号码应是241042+⨯=.24.已知椭圆的中心在坐标原点,右焦点与圆22670x y x +--=的圆心重合,长轴长等于圆的直径,则短轴长等于 . 【考查内容】椭圆的简单几何性质【答案】【解析】圆22670x y x +--=的圆心为(3,0),半径为4,则椭圆的长轴长为8,即3,4c a ==,b =.25.集合,,M N S 都是非空集合,现规定如下运算: {}()()()M N S x x MN NS SM ⊗⊗=∈.且()x MNS ∉.若集合{}{},A x a x b B x c x d =<<=<<,{}C x e x f =<<,其中实数a ,b ,c ,d ,e ,f ,满足:①0,0,a b c d e f <<<;②a b c d e -=-=-;③a b c d e +<+<+.则A B C ⊗⊗= .【考查内容】不等式的基本性质,集合的交集和并集【答案】{}x c x e b x d <<或剟【解析】∵a b c d +<+,∴a c d b -<-;∵a b c d -=-,∴a c b d -=-;∴b d d b -<-,b d <;同理可得d f <,∴b d f <<.由①③可得0a c e b d f <<<<<<.则{}A B x c x b =<<,{}B C x e x d =<<,{}CA x e x b =<<.ABC ⊗⊗={}x c x e bx d <<或剟.三、解答题(本大题共5小题,共40分.请在答题卡相应的题号处写出解答过程)26.(本小题6分)某学校合唱团参加演出,需要把120名演员排成5排,并且从第二排起,每排比前一排多3名,求第一排应安排多少名演员. 【考查内容】等差数列的实际应用【解】由题意知各排人数构成等差数列{}n a ,设第一排人数是1a ,则公差3d =,前5项和5120S =,因为1(1)2n n n S na d -=+,所以154120532a ⨯=+⨯,解得118a =. 答:第一排应安排18名演员.27.(本小题8分)已知函数2sin(2),y x x ϕ=+∈R ,02ϕπ<<.函数的部分图象如图所示.求: (1)函数的最小正周期T 及ϕ的值; (2)函数的单调递增区间.15SD7 第27题图【考查内容】正弦型函数的图象和性质 【解】(1)函数的最小正周期22T π==π,因为函数的图象过点(0,1),所以2sin 1ϕ=,即1sin 2ϕ=,又因为02ϕπ<<,所以6ϕπ=. (2)因为函数sin y x =的单调递增区间是[2,2],22k k k ππ-+π+π∈Z .所以222262k x k πππ-+π++π剟,解得36k x k ππ-+π+π剟, 所以函数的单调递增区间是[,],36k k k ππ-+π+π∈Z .28.(本小题8分)已知函数()x f x a =(0a >且1a ≠)在区间[2,4]-上的最大值是16. (1)求实数a 的值;(2)若函数22()log (32)g x x x a =-+的定义域是R ,求满足不等式log (12)1a t -…的实数t 的取值范围.【考查内容】指数函数的单调性 【解】(1)当01a <<时,函数()f x 在区间[2,4]-上是减函数, 所以当2x =-时,函数()f x 取得最大值16,即216a -=,所以14a =. 当1a >时,函数()f x 在区间[2,4]-上是增函数,所以当4x =时,函数()f x 取得最大值16,即416a =,所以2a =.(2)因为22()l o g (32)g x xx a =-+的定义域是R ,即2320x x a -+>恒成立.所以方程2320x x a -+=的判别式0∆<,即2(3)420a --⨯<,解得98a >,又因为14a =或2a =,所以2a =.代入不等式得2log (12)1t -…,即0122t <-…,解得1122t -<…,所以实数t 的取值范围是11[,)22-.29.(本小题9分)如图所示,在四棱锥S ABCD -中,底面ABCD 是正方形,平面SAD ⊥平面ABCD ,2,3SA SD AB ===.(1)求SA 与BC 所成角的余弦值; (2)求证:AB SD ⊥.15SD8 第29题图【考查内容】异面直线所成的角,直线与平面垂直的判定和性质【解】(1)因为AD BC P ,所以SAD ∠即为SA 与BC 所成的角,在△SAD 中,2SA SD ==, 又在正方形ABCD 中3AD AB ==,所以222222232cos 2223SA AD SD SAD SA AD +-+-∠==⨯⨯34=,所以SA 与BC 所成角的余弦值是34.(2)因为平面SAD ⊥平面ABCD ,平面SAD平面ABCD AD =,在正方形ABCD 中,AB AD ⊥,所以AB ⊥平面SAD ,又因为SD ⊂平面SAD ,所以AB SD ⊥.30.(本小题9分)已知抛物线的顶点是坐标原点O ,焦点F 在x 轴的正半轴上,Q 是抛物线上的点,点Q 到焦点F 的距离是1,且到y 轴的距离是38.(1)求抛物线的标准方程;(2)若直线l 经过点M (3,1),与抛物线相交于A ,B 两点,且OA OB ⊥,求直线l 的方程.15SD10 第30题图【考查内容】抛物线的定义、标准方程和性质,直线与抛物线的位置关系【解】(1)由已知条件,可设抛物线的方程为22y px =,因为点Q 到焦点F 的距离是1, 所以点Q 到准线的距离是1,又因为点Q 到y 轴的距离是38,所以3128p =-,解得54p =,所以抛物线方程是252y x =. (2)假设直线l 的斜率不存在,则直线l 的方程为3x =,与252y x =联立,可解得交点A 、B的坐标分别为,易得32OA OB =,可知直线OA 与直线OB 不垂直,不满足题意,故假设不成立,从而,直线l 的斜率存在.设直线l 的斜率为k ,则方程为1(3)y k x -=-,整理得31y kx k =-+,设1122(,),(,),A x y B x y 联立直线l 与抛物线的方程得23152y kx k y x =-+⎧⎪⎨=⎪⎩①② ,消去y ,并整理得22225(62)96102k x k k x k k --++-+=,于是2122961k k x x k -+=.由①式变形得31y k x k+-=,代入②式并整理得2251550ky y k --+=, 于是121552k y y k-+=,又因为OA OB ⊥,所以0OA OB =,即12120x x y y +=, 229611552k k k k k -+-++=,解得13k =或2k =. 当13k =时,直线l 的方程是13y x =,不满足OA OB ⊥,舍去.当2k =时,直线l 的方程是12(3)y x -=-,即250x y --=,所以直线l 的方程是250x y --=.机密★启用前山东省2016年普通高校招生(春季)考试数学试题注意事项:1.本试卷分卷一(选择题)和卷二(非选择题)两部分。
2024年上海市中考真题数学试卷含答案解析

2024年上海市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.如果x y >,那么下列正确的是( )A .55x y +<+B .55x y -<-C .55x y >D .55x y->-【答案】C【分析】本题主要考查了不等式的基本性质,根据不等式两边加(或减)同一个数(或式子),不等号的方向不变.不等式两边乘(或除以)同一个正数,不等号的方向不变.不等式两边乘(或除以)同一个负数,不等号的方向改变.【详解】解:A .两边都加上5,不等号的方向不改变,故错误,不符合题意;B .两边都加上5-,不等号的方向不改变,故错误,不符合题意;C .两边同时乘上大于零的数,不等号的方向不改变,故正确,符合题意;D .两边同时乘上小于零的数,不等号的方向改变,故错误,不符合题意;故选:C .2.函数2()3xf x x -=-的定义域是( )A .2x =B .2x ≠C .3x =D .3x ≠3.以下一元二次方程有两个相等实数根的是( )A .260x x -=B .290x -=C .2660x x -+=D .2690x x -+=【答案】D【分析】本题考查了一元二次方程判别式判断根的情况,解答本题的关键是熟练掌握一元二次方程()200ax bx c a ++=≠,当240b ac ∆=->时,方程有两个不相等实数根;当240b ac ∆=-=时,方程的两个相等的实数根;当24<0b ac ∆=-时,方程没有实数根.分别计算出各选项中的根的判别式的值,即可判断.【详解】解:A .()2Δ6410360=--⨯⨯=> ,该方程有两个不相等实数根,故A 选项不符合题意;B .()2Δ0419360=-⨯⨯-=> ,该方程有两个不相等实数根,故B 选项不符合题意;C .()2Δ6416120=--⨯⨯=> ,该方程有两个不相等实数根,故C 选项不符合题意;D .()2Δ64190=--⨯⨯= ,该方程有两个相等实数根,故D 选项不符合题意;故选:D .4.科学家同时培育了甲乙丙丁四种花,从甲乙丙丁选个开花时间最短的并且最平稳的.种类甲种类乙种类丙种类丁种类平均数 2.3 2.3 2.8 3.1方差1.050.781.050.78A .甲种类B .乙种类C .丙种类D .丁种类【答案】B【分析】本题主要考查了用平均数和方差做决策,根据平均数的定义以及方差的定义做决策即可. 解题的关键是掌握方差的意义:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】解:∵由表格可知四种花开花时间最短的为甲种类和乙种类,四种花的方差最小的为乙种类和丁种类,方差越小越稳定,∴乙种类开花时间最短的并且最平稳的,故选:B .5.四边形ABCD 为矩形,过A C 、作对角线BD 的垂线,过B D 、作对角线AC 的垂线,如果四个垂线拼成一个四边形,那这个四边形为( )A .菱形B .矩形C .直角梯形D .等腰梯形【答案】A【分析】本题考查矩形性质、等面积法、菱形的判定等知识,熟练掌握矩形性质及菱形的判定是解决问题的关键.由矩形性质得到OBC OAD S S = ,OC OB OA OD ===,进而由等面积OBC OAD S S ∴= ,OC OB OA OD === 过A C 、作对角线BD 的垂线,过1122OBC OAD S S OC BF OB CH ∴==⋅=⋅ ∴CH BF AE DG ===,6.在ABC 中,3AC =,4BC =,5AB =,点P 在ABC 内,分别以A B P 、、为圆心画,圆A 半径为1,圆B 半径为2,圆P 半径为3,圆A 与圆P 内切,圆P 与圆B 的关系是( )A .内含B .相交C .外切D .相离∴221417+=,二、填空题7.计算:()324x =.【答案】664x 【分析】本题考查了积的乘方以及幂的乘方,掌握相关运算法则是解题关键.先将因式分别乘方,再结合幂的乘方计算即可.【详解】解:()326464x x =,故答案为:664x .8.计算()()a b b a +-= .【答案】22b a -【分析】根据平方差公式进行计算即可.【详解】解:()()a b b a +-()()b a b a =+-22b a =-,故答案为:22b a -.【点睛】本题考查平方差公式,此为基础且重要知识点,必须熟练掌握.91=,则x = .【答案】1【分析】本题主要考查了二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.由二次根式被开方数大于0可知210x ->,则可得出211x -=,求出x 即可.【详解】解:根据题意可知:210x ->,∴211x -=,解得:1x =,故答案为:1.10.科学家研发了一种新的蓝光唱片,一张蓝光唱片的容量约为5210⨯GB ,一张普通唱片的容量约为25GB ,则蓝光唱片的容量是普通唱片的倍.(用科学记数法表示)11.若正比例函数y kx =的图像经过点(7,13)-,则y 的值随x 的增大而 .(选填“增大”或“减小”)12.在菱形ABCD 中,66ABC ∠=︒,则BAC ∠= .13.某种商品的销售量y (万元)与广告投入x (万元)成一次函数关系,当投入10万元时销售额1000万元,当投入90万元时销售量5000万元,则投入80万元时,销售量为 万元.【答案】4500【分析】本题考查求一次函数解析式及求函数值,设y kx b =+,根据题意找出点代入求出解析式,然后把80x =代入求解即可.【详解】解:设y kx b =+,把()10,1000,()90,5000代入,得101000905000k b k b +=⎧⎨+=⎩,解得50500k b =⎧⎨=⎩,∴50500y x =+,当80x =时,50805004500y =⨯+=,即投入80万元时,销售量为4500万元,故答案为:4500.14.一个袋子中有若干个白球和绿球,它们除了颜色外都相同随机从中摸一个球,恰好摸到绿球的概率是35,则袋子中至少有个绿球.∴绿球的个数的最小值为3,∴袋子中至少有3个绿球,故答案为:3.15.如图,在平行四边形ABCD 中,E 为对角线AC 上一点,设AC a = ,BE b =u u r r,若2AE EC =,则DC =(结果用含a ,b的式子表示).16.博物馆为展品准备了人工讲解、语音播报和AR 增强三种讲解方式,博物馆共回收有效问卷1000张,其中700人没有讲解需求,剩余300人中需求情况如图所示(一人可以选择多种),那么在总共2万人的参观中,需要AR 增强讲解的人数约有人.【答案】200017.在平行四边形ABCD 中,ABC ∠是锐角,将CD 沿直线l 翻折至AB 所在直线,对应点分别为C ',D ¢,若::1:3:7AC AB BC '=,则cos ABC ∠= .根据::1:3:7AC AB BC '=由翻折的性质知:FCD ∠=CD 沿直线l 翻折至AB 所在直线,BC F FC D FCD '''∴∠+∠=∠根据::1:3:7AC AB BC '=,不妨设同理知:72CF BF C F '===,过F 作AB 的垂线交于E ,122BE BC '∴==,18.对于一个二次函数2()y a x m k =-+(0a ≠)中存在一点(),P x y '',使得0x m y k '-='-≠,则称2x m '-为该抛物线的“开口大小”,那么抛物线211323y x x =-++“开口大小”为.三、解答题20.解方程组:2234026x xy y x y ⎧--=⎨+=⎩①②.【答案】4x =,1y =或者6x =-,6y =.【分析】本题考查了二元二次方程,求解一元二次方程,解题的关键是利用代入法进行求解.【详解】解:2234026x xy y x y ⎧--=⎨+=⎩①②,由②得:62x y =-代入①中得:()()226236240y y y y ----=,()2223624418640y y y yy -+-+-=,2642360y y -+=,()26760y y -+=,()()6610y y --=解得:1y =或6y =,当1y =时,6214x =-⨯=,当6y =时,6266x =-⨯=-,∴方程组的解为4,1x y ==或者6,6x y =-=.21.在平面直角坐标系xOy 中,反比例函数ky x=(k 为常数且0k ≠)上有一点()3,A m -,且与直线24y x =-+交于另一点(),6B n .(1)求k 与m 的值;(2)过点A 作直线l x ∥轴与直线24y x =+交于点C ,求sin OCA ∠的值.∵l x ∥轴,x 轴y ⊥轴,∴A 、C 、D 的纵坐标相同,均为把2y =代入24y x =-+解得1x =,∴()1,2C ,22.同学用两幅三角板拼出了如下的平行四边形,且内部留白部分也是平行四边形(直角三角板互不重叠),直角三角形斜边上的高都为h.(1)求:①两个直角三角形的直角边(结果用h表示);②小平行四边形的底、高和面积(结果用h表示);(2)请画出同学拼出的另一种符合题意的图,要求:①不与给定的图形状相同;②画出三角形的边.如图2,DEF 为含则2EF h =,DE =综上,等腰直角三角板直角边为②由题意可知MNG NGH ∠=∠∴四边形MNGH 是矩形,由图可得,2323MN h h =-(2)解:如图,即为所作图形.23.如图所示,在矩形ABCD 中,E 为边CD 上一点,且AE BD ⊥.(1)求证:2AD DE DC=⋅;(2)F为线段AE延长线上一点,且满足12EF CF BD==,求证:CE AD=.在矩形ABCD 中,ADE ∠ AE BD ⊥,∴90DAE ADB ∠+∠=ADB AED ∴∠=∠,FEC AED ∠=∠,24.在平面直角坐标系中,已知平移抛物线213y x =后得到的新抛物线经过50,3A ⎛⎫- ⎪⎝⎭和(5,0)B .(1)求平移后新抛物线的表达式;(2)直线x m =(0m >)与新抛物线交于点P ,与原抛物线交于点Q .①如果PQ 小于3,求m 的取值范围;②记点P 在原抛物线上的对应点为P ',如果四边形P BPQ '有一组对边平行,求点P 的坐标.∴22114545333333PQ x x x x =-++=+,∵PQ 小于3,∴45333x +<,∴1x <,∵()0x m m =>,∴01m <<;由题意可得:P 在B 的右边,当BP '∴BP x '⊥轴,∴5P B x x '==,∴255,3P '⎛⎫ ⎪⎝⎭,由平移的性质可得:2552,33P ⎛⎫+- ⎪⎝⎭如图,当P Q BP '∥时,则P QT '∠=过P '作P S QP '⊥于S ,∴90P SQ BTP '∠=∠=︒,∴QS PTP S BT=',25.在梯形ABCD 中,AD BC ∥,点E 在边AB 上,且13AE AB =.(1)如图1所示,点F 在边CD 上,且13DF CD =,联结EF ,求证:EF BC ∥;(2)已知1AD AE ==;①如图2所示,联结DE ,如果ADE V 外接圆的心恰好落在B ∠的平分线上,求ADE V 的外接圆的半径长;②如图3所示,如果点M 在边BC 上,联结EM 、DM 、EC ,DM 与EC 交于N ,如果4BC =,且2CD DM DN =⋅,DMC CEM ∠=∠,求边CD 的长.∵AD BC∥,∴AE DE EB EG=,∵13AE AB=,13DF CD=∴12AEEB=,12DFFC=,∵AD BC ∥,∴PAD PBC ∽,∴14PA AD PB BC ==,由①知3AB =,∴134PA PA =+,。
2023-2024学年江苏省苏州市高一(上)期中数学试卷【答案版】

2023-2024学年江苏省苏州市高一(上)期中数学试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合U =R ,集合A ={0,1,2,3},B ={x |x >1},则图中阴影部分所表示的集合为( )A .{0}B .{0,1}C .{2,3}D .{0,1,2}2.函数f(x)=x−11+x的定义域为( )A .(1,+∞)B .(﹣1,1)C .(﹣1,+∞)D .(﹣∞,﹣1)∪(1,+∞)3.“|x |>2”的一个充分不必要条件是 ( ) A .﹣2<x <2B .﹣4<x ≤﹣2C .x >﹣2D .x >24.19世纪德国数学家狄利克雷提出了一个有趣的函数D (x )={1,x 是有理数,0,x 是无理数.若函数f (x )=D (x )﹣x 2,则下列实数中不属于函数f (x )值域的是( ) A .0B .﹣1C .﹣2D .﹣35.若f (x )是定义在[﹣6,6]上的偶函数,且f (5)>f (2),下列各式中一定成立的是( ) A .f (﹣2)<f (5) B .f (0)<f (6) C .f (4)<f (5)D .f (0)<f (4)6.已知函数f (x )=x 4+x 2﹣2,x ∈R ,则满足f (2x )<f (x +2)的x 的取值范围为( ) A .(0,2)B .(−23,2)C .(﹣∞,0)∪(2,+∞)D .(−∞,−23)∪(2,+∞)7.给定函数f (x )=x 2﹣2,g (x )=−12x +1,用M (x )表示函数f (x ),g (x )中的较大者,即M (x )=max {f (x ),g (x )},则M (x )的最小值为( ) A .0B .7−√178C .14D .28.已知f (x )={x 2+4x +3,x ≤0,|3−2x |,x >0,若x 1<x 2<x 3<x 4,且f (x 1)=f (x 2)=f (x 3)=f (x 4),则1x 1+1x 2+1x 3+1x 4的取值范围是( )A.(−∞,53)B.(﹣∞,2)C.(−∞,133)D.(53,133)二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.设a,b为正数,且a>b,下列不等式中一定成立的是()A.ba4>ab4B.ba <b+1a+1C.a+1a>b+1b D.b−a b<a−b a10.将某几何图形置于坐标系xOy中,直线l:x=t从左向右扫过,将该几何图形分成两部分,其中位于直线l左侧部分的面积为S,若函数S=f(t)的大致图象如图所示,则该几何图形可以是()A.B.C.D.11.定义在R上的函数f(x)满足:对任意的x,y∈R,f(x+y)=f(x)+f(y),则下列结论一定正确的有()A.f(0)=0B.f(x﹣y)=f(x)﹣f(y)C.f(x)为R上的增函数D.f(x)为奇函数12.某数学兴趣小组对函数f(x)=1−x|x|+1进行研究,得出如下结论,其中正确的有()A.f(﹣2023)+f(2023)=2B.∃x1≠x2,都有f(x1)=f(x2)C.f(x)的值域为(0,2)D.∀x1,x2∈(0,+∞),都有f(x1+x22)≤f(x1)+f(x2)2三、填空题:本题共4小题,每小题5分,共20分.13.若幂函数f(x)=xα(α∈R)是奇函数,且在(﹣∞,0)上单调递减,则α的值可以是.(只要写一个即可)14.命题“∃x >1,x 2<1”的否定为 .15.函数f (x )=[x ]的函数值表示不超过x 的最大整数,例如,[﹣3.5]=﹣4,[2.1]=2,若集合A ={y |y =[2x 2−3x 2+1],x ∈R },则A 中元素的个数是 . 16.已知函数f (x )=﹣x +2,g (x )=x 2+5x+10x+3+m ,若对任意x 1∈[1,2],存在x 2∈(﹣2,3),使得f (x 1)=g (x 2),则实数m 的取值范围 .四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)设全集为U =R ,集合A ={x |x <﹣3或x >5},B ={x |﹣2<x <10}. (1)求(∁U A )∩B ;(2)已知C ={x |a <x <a +1},若C ⊆B ,求实数a 的取值范围. 18.(12分)若正数a ,b 满足ab =4a +b +t ,t ∈R . (1)当t =0时,求a +4b 的最小值; (2)当t =5时,求ab 的取值范围.19.(12分)已知二次函数f (x )=ax 2+bx +c 的图象与直线y =﹣4有且仅有一个公共点,且不等式f (x )<0的解集为[﹣1,3]. (1)求f (x )的解析式;(2)关于x 的不等式f (x )<(m ﹣1)x ﹣3﹣m 的解集中恰有两个整数,求实数m 的取值范围. 20.(12分)立德中学学生在社会实践活动中,通过对某商店一种换季商品销售情况的调查发现:该商品在过去的两个月内(以60天计)的日销售价格P (x )(元)与时间x (天)的函数关系近似满足P (x )=1+2x.该商品的日销售量 Q (x )(个)与时间x (天)部分数据如下表所示:给出以下两种函数模型:①Q (x )=a (x ﹣25)2+b ,②Q (x )=a |x ﹣30|+b .(1)请你根据上表中的数据,从中选择你认为最合适的一种函数模型来描述该商品的日销售量Q (x )与时间x 的关系,并求出该函数的解析式;(2)求该商品的日销售收入f (x )(1≤x ≤60,x ∈N *)的最小值.21.(12分)定义:对于函数f 1(x ),f 2(x ),h (x ),如果存在实数a ,b ,使得af 1(x )+bf 2(x )=h (x ),那么称h (x )为f 1(x )和f 2(x )的生成函数.(1)给出函数f 1(x )=−14x 2−12x +154,f 2(x )=x 2﹣4x ﹣5,h (x )=x 2﹣10x +5,请判断h (x )是否为f(x)和f2(x)的生成函数?并说明理由;(2)设f1(x)=x(x>0),f2(x)=1x(x>0),当a=2,b=8时,f1(x)和f2(x)的生成函数为h (x).若对于任意正实数x1,x2且x1+x2=2,是否存在实数m,使得h(x1)h(x2)>m恒成立?若存在,求出m的最大值;若不存在,请说明理由.22.(12分)已知f(x)=x(|x﹣4a|+2),a∈R.(1)若f(1)=3,判断f(x)的奇偶性;(2)若f(x)在[1,3]上的最小值是3,求正数a的值.2023-2024学年江苏省苏州市高一(上)期中数学试卷参考答案与试题解析一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合U =R ,集合A ={0,1,2,3},B ={x |x >1},则图中阴影部分所表示的集合为( )A .{0}B .{0,1}C .{2,3}D .{0,1,2}解:由Venn 图可知,阴影部分所表示的集合为A ∩(∁U B )={0,1,2,3}∩{x |x ≤1}={0,1}. 故选:B . 2.函数f(x)=2x√x−1√1+x的定义域为( )A .(1,+∞)B .(﹣1,1)C .(﹣1,+∞)D .(﹣∞,﹣1)∪(1,+∞)解:要使原函数有意义,则{x −1>01+x >0,解得x >1.∴函数f(x)=2x√x−1√1+x的定义域为(1,+∞).故选:A .3.“|x |>2”的一个充分不必要条件是 ( ) A .﹣2<x <2B .﹣4<x ≤﹣2C .x >﹣2D .x >2解:由|x |>2解得:x <﹣2或x >2,找“|x |>2”的一个充分不必要条件,即找集合{x |x <﹣2或x >2}的真子集, ∵{x |x >2}⫋{x |x <﹣2或x >2},∴“|x |>2”的一个充分不必要条件是{x |x >2}. 故选:D .4.19世纪德国数学家狄利克雷提出了一个有趣的函数D (x )={1,x 是有理数,0,x 是无理数.若函数f (x )=D (x )﹣x 2,则下列实数中不属于函数f (x )值域的是( ) A .0B .﹣1C .﹣2D .﹣3解:由题意得f(x)={1−x2,x是有理数−x2,x是无理数,A:由于f(1)=0,A正确;B:由f(x)=﹣1,当x是有理数时,1﹣x2=﹣1,则x=±√2,不合题意;当x是无理数时,﹣x2=﹣1,则x=±1,不合题意;C:因为f(√2)=﹣2,故﹣2为函数的一个函数值;D:由f(√3)=﹣3,故﹣3为函数的一个函数值.故选:B.5.若f(x)是定义在[﹣6,6]上的偶函数,且f(5)>f(2),下列各式中一定成立的是()A.f(﹣2)<f(5)B.f(0)<f(6)C.f(4)<f(5)D.f(0)<f(4)解:因为f(x)是定义在[﹣6,6]上的偶函数,所以f(﹣5)=f(5),f(﹣2)=f(2),因为f(5)>f(2),所以f(5)>f(﹣2),故A正确,因为无法判断函数的单调性,故其余选项不能判断.故选:A.6.已知函数f(x)=x4+x2﹣2,x∈R,则满足f(2x)<f(x+2)的x的取值范围为()A.(0,2)B.(−23,2)C.(﹣∞,0)∪(2,+∞)D.(−∞,−23)∪(2,+∞)解:因为f(﹣x)=x4+x2﹣2,所以f(﹣x)=f(x),所以f(x)为偶函数,当x>0时,y=x4,y=x2单调递增,所以函数f(x)=x4+x2﹣2在(0,+∞)上单调递增,在(﹣∞,0)上单调递减,因为f(2x)<f(x+2),所以|2x|<|x+2|,所以(2x)2<(x+2)2,整理得3x2﹣4x﹣4<0,解得−23<x<2,所以x的取值范围为(−23,2).故选:B.7.给定函数f (x )=x 2﹣2,g (x )=−12x +1,用M (x )表示函数f (x ),g (x )中的较大者,即M (x )=max {f (x ),g (x )},则M (x )的最小值为( ) A .0B .7−√178C .14D .2解:令x 2﹣2=−12x +1,解得x =﹣2或x =32, 作出函数M (x )的图象如图所示:由图象可知,当x =32时,M (x )取得最小值为M (32)=14.故选:C .8.已知f (x )={x 2+4x +3,x ≤0,|3−2x |,x >0,若x 1<x 2<x 3<x 4,且f (x 1)=f (x 2)=f (x 3)=f (x 4),则1x 1+1x 2+1x 3+1x 4的取值范围是( )A .(−∞,53) B .(﹣∞,2)C .(−∞,133)D .(53,133)解:画出f (x )={x 2+4x +3,x ≤0|3−2x |,x >0的图象,如图所示:设f(x1)=f(x2)=f(x3)=f(x4)=a,则a∈(0,3),令x2+4x+3=3,解得x=﹣4或0,因为y=x2+4x+3的对称轴为x=﹣2,由对称性可得x1+x2=﹣4,且x1∈(﹣4,﹣3),x2∈(﹣1,0),其中1x1+1x2=x1+x2x1x2=−4x1x2=−4(−4−x2)x2=4(x2+2)2−4,因为x2∈(﹣1,0),所以(x2+2)2﹣4∈(﹣3,0),故1x1+1x2=4(x2+2)2−4∈(﹣∞,−43),又2x3−3=3−2x4,故1x3+1x4=3,所以1x1+1x2+1x3+1x4∈(﹣∞,53).故选:A.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.设a,b为正数,且a>b,下列不等式中一定成立的是()A.ba4>ab4B.ba <b+1a+1C.a+1a>b+1b D.b−a b<a−b a解:对于A,因为a,b为正数,且a>b,则ba4﹣ab4=ab(a3﹣b3)>0,故A正确;对于B,b(a+1)﹣a(b+1)=b﹣a<0,则B正确;对于C,(a+1a)﹣(b+1b)=(a﹣b)−a−bab=(a﹣b)(1−1ab),由于1−1ab的符号不确定,故C错误;对于D,(b−ab)﹣(a−ba)=(b﹣a)−a2−b2ab=(b﹣a)(1+a+bab),由于b﹣a<0,ab>0,a+b>0,则(b﹣a)(1+a+bab)<0,则D正确.故选:ABD.10.将某几何图形置于坐标系xOy中,直线l:x=t从左向右扫过,将该几何图形分成两部分,其中位于直线l左侧部分的面积为S,若函数S=f(t)的大致图象如图所示,则该几何图形可以是()A.B.C.D.解:由已知图像可知面积S的增速经历三种变化,首先面积S增速越来越大,之后面积S匀速增加,最后面积S增速越来越小,A选项:由圆的性质可知,面积S的增速先越来越大,后越来越小,A选项不符合;B选项:面积S增速越来越大,之后面积S匀速增加,最后面积S增速越来越小,B选项符合;C选项:面积S增速越来越大,之后面积S匀速增加,最后面积S增速越来越小,C选项符合;D选项:面积S增速越来越小,之后面积S匀速增加,最后面积S增速越来越大,D选项不符合.故选:BC.11.定义在R上的函数f(x)满足:对任意的x,y∈R,f(x+y)=f(x)+f(y),则下列结论一定正确的有()A.f(0)=0B.f(x﹣y)=f(x)﹣f(y)C.f(x)为R上的增函数D.f(x)为奇函数解:令x=y=0,可得f(0)=2f(0),即f(0)=0,故A正确;令y=﹣x,可得f(0)=f(x)+f(﹣x)=0,即f(﹣x)=﹣f(x),且定义域为R,则f(x)为奇函数,故D正确;由f(x)为奇函数,可得f(x﹣y)=f(x)+f(﹣y)=f(x)﹣f(y),故B正确;设f(x)=﹣x,满足对任意的x,y∈R,都有f(x+y)=f(x)+f(y),但f(x)=﹣x为递减函数,故C错误.故选:ABD.12.某数学兴趣小组对函数f(x)=1−x进行研究,得出如下结论,其中正确的有()|x|+1A.f(﹣2023)+f(2023)=2B.∃x1≠x2,都有f(x1)=f(x2)C.f(x)的值域为(0,2)D .∀x 1,x 2∈(0,+∞),都有f(x 1+x 22)≤f(x 1)+f(x 2)2 解:根据题意,可得f(x)=1−x|x|+1的定义域为R , 对于A ,因为f(−x)=1−−x |−x|+1=1+x |x|+1,所以f (﹣x )+f (x )=2,对任意x ∈R 成立,故f (﹣2023)+f (2023)=2成立,A 正确;对于B ,化简得f(x)={1x+1,x ≥02+1x−1,x <0,可知f (x )在(﹣∞,0)上与在[0,+∞)上都是减函数,所以f (x )在R 上为减函数,不存在x 1≠x 2,使f (x 1)=f (x 2)成立,故B 错误;对于C ,由f(x)={1x+1,x ≥02+1x−1,x <0,可知当x ∈(﹣∞,0)时,−1<1x−1<0,f (x )=2+1x−1∈(1,2),当x ∈[0,+∞)时,f (x )=1x+1∈(0,1],所以f (x )在R 上的值域为(0,2),C 正确; 对于D ,当x ∈(0,+∞)时,f (x )=1x+1,其图像是由反比例函数y =1x 向左平移1个单位而得, 图象是单调递减的曲线且以x 轴为渐近线,可知f (x )是凹函数, 可知∀x 1,x 2∈(0,+∞),都有f(x 1+x 22)≤f(x 1)+f(x 2)2成立,故D 正确. 故选:ACD .三、填空题:本题共4小题,每小题5分,共20分.13.若幂函数f (x )=x α(α∈R )是奇函数,且在(﹣∞,0)上单调递减,则α的值可以是 .(只要写一个即可) 解:当α=﹣1时,则f (x )=1x为奇函数,且在(﹣∞,0)上单调递减,符合题意. 故答案为:﹣1(答案不唯一).14.命题“∃x >1,x 2<1”的否定为 . 解:“∃x >1,x 2<1”的否定为:∀x >1,x 2≥1. 故答案为:x >1,x 2≥1.15.函数f (x )=[x ]的函数值表示不超过x 的最大整数,例如,[﹣3.5]=﹣4,[2.1]=2,若集合A ={y |y =[2x 2−3x 2+1],x ∈R },则A 中元素的个数是 . 解:∵2x 2−3x 2+1=2(x 2+1)−5x 2+1=2−5x 2+1,x 2+1≥1,0<5x 2+1≤5,∴−3≤2−5x 2+1<2, ∴−3≤2x 2−3x 2+1<2, ∴A ={﹣3,﹣2,﹣1,0,1},A 中元素的个数为5. 故答案为:5.16.已知函数f (x )=﹣x +2,g (x )=x 2+5x+10x+3+m ,若对任意x 1∈[1,2],存在x 2∈(﹣2,3),使得f (x 1)=g (x 2),则实数m 的取值范围 .解:∵f (x )=﹣x +2为减函数,∴当x ∈[1,2]时,其值域A =[0,1]; ∵x ∈(﹣2,3),∴x +3∈(1,6), 令t =x +3,则t ∈(1,6),g (x )=x 2+5x+10x+3+m ,可化为y =(t−3)2+5(t−3)+10t +m =t +4t+m ﹣1(1<t <6), 由对勾函数的性质可知,h (t )=t +4t+m ﹣1在区间(1,2]上单调递减,在区间[2,6)上单调递增, ∴h (t )min =h (2)=3+m ,又h (1)=4+m ,h (6)=173+m ,h (6)>h (1), ∴h (t )∈[3+m ,173+m ),∴当x ∈(﹣2,3)时,g (x )的值域为B =[3+m ,173+m );∵对任意x 1∈[1,2],存在x 2∈(﹣2,3),使得f (x 1)=g (x 2), ∴A ⊆B , ∴{3+m ≤0173+m >1,解得−143<m ≤﹣3.故答案为:(−143,﹣3]. 四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)设全集为U =R ,集合A ={x |x <﹣3或x >5},B ={x |﹣2<x <10}. (1)求(∁U A )∩B ;(2)已知C ={x |a <x <a +1},若C ⊆B ,求实数a 的取值范围. 解:(1)因为集合A ={x |x <﹣3或x >5},B ={x |﹣2<x <10}, 所以∁U A ={x |﹣3≤x ≤5},(∁U A )∩B =(﹣2,5];(2)因为C ⊆B ,所以{a +1≤10a ≥−2,解得﹣2≤a ≤9,即a 的取值范围[﹣2,9].18.(12分)若正数a ,b 满足ab =4a +b +t ,t ∈R . (1)当t =0时,求a +4b 的最小值;(2)当t =5时,求ab 的取值范围. 解:(1)当t =0时,4a +b =ab , 所以4b +1a=1,所以a +4b =(a +4b )(1a +4b )=17+4ba +4ab ≥17+2√4b a ⋅4ab =25,当且仅当4a b=4b a且ab =4a +b ,即a =b =5时取等号;(2)当t =5时,ab =4a +b +5≥2√4ab +5,当且仅当b =4a ,即a =52,b =10时取等号, 解得ab ≥25,故ab 的取值范围为[25,+∞).19.(12分)已知二次函数f (x )=ax 2+bx +c 的图象与直线y =﹣4有且仅有一个公共点,且不等式f (x )<0的解集为[﹣1,3]. (1)求f (x )的解析式;(2)关于x 的不等式f (x )<(m ﹣1)x ﹣3﹣m 的解集中恰有两个整数,求实数m 的取值范围. 解:(1)根据题意,可得f (x )<0的根为﹣1和3,且ax 2+bx +c +4=0有两个相等的实数根, 故{−1+3=−ba −1×3=c a ,且b 2﹣4a (c +4)=0,解得a =1,b =﹣2,c =﹣3,f (x )=x 2﹣2x ﹣3;(2)f (x )<(m ﹣1)x ﹣3﹣m ,即x 2﹣2x ﹣3<(m ﹣1)x ﹣3﹣m ,整理得x 2﹣(m +1)x +m <0, 若m =1,不等式化为(x ﹣1)2<0,解集为空集,不符合题意; 若m ≠1,不等式化为(x ﹣m )(x ﹣1)<0,当m <1时,解集为(m ,1),若恰有两个整数在区间(m ,1),则﹣2≤m <﹣1; 当m >1时,解集为(1,m ),若恰有两个整数在区间(1,m ),则3<m ≤4. 综上所述,实数m 的取值范围是[﹣2,﹣1)∪(3,4].20.(12分)立德中学学生在社会实践活动中,通过对某商店一种换季商品销售情况的调查发现:该商品在过去的两个月内(以60天计)的日销售价格P (x )(元)与时间x (天)的函数关系近似满足P (x )=1+2x.该商品的日销售量 Q (x )(个)与时间x (天)部分数据如下表所示:给出以下两种函数模型:①Q (x )=a (x ﹣25)2+b ,②Q (x )=a |x ﹣30|+b .(1)请你根据上表中的数据,从中选择你认为最合适的一种函数模型来描述该商品的日销售量Q (x )与时间x 的关系,并求出该函数的解析式;(2)求该商品的日销售收入f (x )(1≤x ≤60,x ∈N *)的最小值.解:(1)模型①:Q (x )=a (x ﹣25)2+b ,x =25时,Q (25)=b =1670, x =20时,Q (20)=25a +1670=1680,解得a =0.4; 所以Q (x )=0.4(x ﹣25)2+1670;计算Q (45)=0.4×202+1670=1830>1690, Q (60)=0.4×352+1670=2160>1720;模型②:Q (x )=a |x ﹣30|+b ,表示在x =30两侧“等距”的函数值相等, 由{Q(25)=5a +b =1670Q(20)=10a +b =1680,解得a =2,b =1660, 所以Q (x )=2|x ﹣30|+1660,所以Q (45)=15×2+1660=1690,Q (60)=30×2+1660=1720; 所以利用模型②最合适,此时Q (x )=2|x ﹣30|+1660;(2)由(1)知,该商品的日销售收入f (x )=P (x )•Q (x )=(1+2x)(2|x ﹣30|+1660)={3440x −2x +1716,1≤x ≤302x +3200x+1604,30<x ≤60, 当1≤x ≤30时,f (x )是单调递减函数,最小值为f (30)=344030−60+1716≈1771, 当30<x ≤60时,f (x )=2x +3200x +1604≥2√2x ⋅3200x +1604=1764,当且仅当2x =3200x,即x =40时“=”成立,综上,f (x )的最小值是1764.21.(12分)定义:对于函数f 1(x ),f 2(x ),h (x ),如果存在实数a ,b ,使得af 1(x )+bf 2(x )=h (x ),那么称h (x )为f 1(x )和f 2(x )的生成函数. (1)给出函数f 1(x )=−14x 2−12x +154,f 2(x )=x 2﹣4x ﹣5,h (x )=x 2﹣10x +5,请判断h (x )是否为f (x )和f 2(x )的生成函数?并说明理由;(2)设f 1(x )=x (x >0),f 2(x )=1x (x >0),当a =2,b =8时,f 1(x )和f 2(x )的生成函数为h (x ).若对于任意正实数x 1,x 2且x 1+x 2=2,是否存在实数m ,使得h (x 1)h (x 2)>m 恒成立?若存在,求出m 的最大值;若不存在,请说明理由.解:(1)h (x )是f 1(x ),f 2(x )的生成函数,理由如下:若h (x )是f 1(x ),f 2(x )的生成函数,则存在实数a ,b 使得h (x )=af 1(x )+bf 2(x )成立, 所以x 2−10x +5=a(−14x 2−12x +154)+b(x 2−4x −5),即{ −14a +b =1−12a −4b =−10154a −5b =5,解得a =4,b =2, 所以h (x )是f 1(x ),f 2(x )的生成函数.(2)f 1(x )=x (x >0),f 2(x)=1x (x >0),当a =2,b =8时的生成函数ℎ(x)=2x +8x, 假设存在实数m ,使得对任意正实数x 1,x 2,满足x 1+x 2=2,h (x 1)h (x 2)≥m 恒成立, 所以ℎ=ℎ(x 1)ℎ(x 2)=4x 1x 2+64x 1x 2+16(x 1x 2+x2x 1)=4x 1x 2+64x 1x 2+16[(x 1+x 2)2x 1x 2−2]=4x 1x 2+128x 1x 2−32,令t =x 1x 2,t =x 1x 2≤(x 1+x 22)2=1, 因为ℎ=4t +128I−32在(0,1]单调递减, 所以h 的最小值为100,所以m 的最大值为100. 22.(12分)已知f (x )=x (|x ﹣4a |+2),a ∈R . (1)若f (1)=3,判断f (x )的奇偶性;(2)若f (x )在[1,3]上的最小值是3,求正数a 的值. 解:(1)根据题意,f (x )=x (|x ﹣4a |+2),其定义域为R , 若f (1)=3,即|1﹣4a |+2=3,解得a =0或a =12, 当a =0时,f (x )=x |x |+2x ,因为f (﹣x )=﹣x |﹣x |﹣2x =﹣x |x |﹣2x =﹣f (x ),所以f (x )是奇函数, 当a =12时,f (x )=x |x ﹣2|+2x ,所以 f (﹣1)=﹣5,f (1)≠f (﹣1),f (1)≠﹣f (﹣1), 所以f (x )既不是奇函数,也不是偶函数; (2)由题意得f (x )={x 2−(4a −2)x ,x ≥4a −x 2+(4a +2)x ,x <4a,对于f (x )=x 2﹣(4a ﹣2)x ,其对称轴为x =2a ﹣1,开口向上, 对于f (x )=﹣x 2﹣(4a +2)x ,其对称轴为x =2a +1,开口向下, 又由f (x )在[1,3]上的最小值是3,则有f (1)=|1﹣4a |+2≥3, 解可得a ≤0或a ≥12,又由a为正数,则a≥1 2,当a=12时,f(x)=x|x﹣2|+2x,易得f(x)在[1,3]上递增,且f(1)=3,符合题意;当a>12时,有4a>2a+1>2a﹣1,f(x)在(﹣∞,2a+1]单调递增,在[2a+1,4a]单调递减,在[4a,+∞)单调递增.有1<2a+1且f(4a)=8a>4>3,则f(x)在[1,3]上的最小值只能在x=1处取到,但f(1)=4a+2>3,与之矛盾;故a>12不符合题意,综合可得:a=1 2.。
2021年中考数学真题试卷(13)(解析版)

第1页,共7页2021年中考数学真题试卷考试时间120分钟。
满分120分。
注意事项:1、答题前,考生需在答题卡左侧划线处完整填写自己的信息,并将自己的准考证号填写清楚,在准考证号区域用2B 铅笔填涂考号。
要求粘贴条形码的市、县(区),考生应认真核对条形码上的姓名、准考证号,将条形码粘贴在指定位置上。
2、答题时必须使用黑色中性(签字)笔或黑色墨迹钢笔书写,字迹工整,笔迹清楚。
3、按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。
4、保持答题卡卡面清洁,不折叠,不破损。
一、选择题(本题共8小题,每小题3分,共24分.在每小题给出的四个选项中只有一个是符合题目要求的)1.下列各式中正确的是( )A.a 3·a 2=a 6B. 3ab-2ab=1C.123162+=+a a a D. a(a-3)= a 2-3a 2.小明为了解本班同学一周的课外阅读量,随机抽取班上15名同学进行调查,并将调查结果绘制成折线统计图(如图),则下列说法正确的是( )A.中位数是3,众数是2B. 众数是1,平均数是2C.中位数是2,众数是2D. 中位数是3,平均数是2.5人数(人) 4 6 ·· · ·E FA第2页,共7页3.现有4条线段,长度依次是2、4、6、7,从中任选三条,能组成三角形的概率是( )A.41 B. 21 C. 53 D. 434. 如图摆放的一副学生用直角三角板∠F=30°,∠C=45°,AB 与DE 相交于点G ,当EF ∥BC 时,∠EGB 的度数是( )A.135°B. 120°C. 115°D. 105°5.如图,菱形ABCD 的边长为13,对角线AC=24,点E 、F 分别是边CD 、BC 的中点,连接EF 并延长与AB 的延长线相交于点G ,则EG=( )A.13B.10C.12D.56.已知:如图,等腰直角三角形ABC 中,∠C =90°,AC=2,以点C 为圆心画弧与斜边AB 相切于点D ,则图中阴影部分的面积为( )A.41π-B.41-π C.42π- D. 41π+AB GE D CF第5题·DACB第6题图FE第3页,共7页7.如图,函数11+=x y 与函数xy 22=的图象相交于点M (1,m ),N (-2,n ).若21y y >,则x 的取值范围是( )A.x <-2或0<x <1B. x <-2或x >1C.-2<x <0或0<x <1D. -2<x <0或x >18.如图2是图1长方体的三视图,若用S 表示面积,S 主=a 2,S 左=a 2+a ,则S 俯=( ) A. a 2+a B. 2a 2C. a 2+2a+1 D. 2a 2+a 二、填空题(本题共8小题,每小题3分,共24分) 9.分解因式:3a 2-6a+3=_________. 10.若二次函数k x xy ++-=22的图象与x 轴有两个交点,则k 的取值范围是________.11.有三张大小、形状完全相同的卡片.卡片上分别写有数字4、5、6,从这三张卡片中随机先后不放回地抽取两张,则两次抽出数字之和为奇数的概率是_______.12.我国古代数学经典著作《九章算术》中记载了一个“圆材埋壁”的问题:“今有圆材埋在壁中,不知大小。
人教部编版七年级数学上册期末测试题 (13)

河南省淅川县大石桥乡2017-2018学年七年级上期末模拟数学试卷一.单选题(共10题;共30分)1.化简的结果是()A. 3B. ﹣3 C. ﹣4 D. 242.“情系玉树,大爱无疆——抗震救灾大型募捐活动”4月20日晚在中央电视台1号演播大厅举行。
据统计,这台募捐晚会共募得善款21.75亿元人民币,约合每秒钟筹集善款16万元。
21.75亿元用科学记数法可以表示为A. 21.75×108B. 2.175×108C. 21.75×109D. 2.175×1093.如图所示的立方体,如果把它展开,可以是下列图形中的()A. B.C. D.4.定义一种运算☆,其规则为a☆b=,根据这个规则,计算2☆3的值是()A. B.C.5 D. 65.规定一种新的运算x⊗y=x﹣y2,则﹣2⊗3等于()A. -11B. -7C. -8D. 256.下列计算正确的是()A. a2•a3=a6B. (x3)2=x6C. 3m+2n=5mnD. y3•y3=y7.计算(-2)×3的结果是()A. -6B.-1 C. 1D. 68.某市一天的最高气温为2℃,最低气温为﹣8℃,那么这天的最高气温比最低气温高()A. ﹣10℃B. ﹣6℃ C. 10℃ D. 6℃9.减去﹣3x得x2﹣3x+6的式子为()A. x2+6B. x2+3x+6C. x2﹣6xD. x2﹣6x+610.一组按规律排列的多项式:,,,,…,其中第10个式子是( )A. B. C.D.二.填空题(共8题;共24分)11.观察下面一列数,按其规律在横线上写上适当的数:﹣,,﹣,,﹣,________.12.如图,把14个棱长为1cm的正方体木块,在地面上堆成如图所示的立体图形,然后向露出的表面部分喷漆,若1cm2需用漆2g,那么共需用漆________ g.13.观察下列算式:71=7,72=49,73=343,74=2401,75=16807,76=117649,…通过观察,用你发现的规律,写出72004的末位数字是________.14.多项式x4﹣x2﹣x﹣1的次数、项数、常数项分别为________.15.猜谜语(打书本中两个几何名称).剩下十分钱________ ;两牛相斗________ .16.小明不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是________17.﹣1 的相反数是________,倒数是________.18.计算:①1+2﹣3﹣4+5+6﹣7﹣8+9+…﹣2012+2013+2014﹣2015﹣2016+2017=________ ;②1﹣22+32﹣42+52﹣…﹣962+972﹣982+992=________三.解答题(共6题;共36分)19.如图,已知A、O、B三点在同一条直线上,OD平分∠AOC,OE平分∠BOC.(1)若∠BOC=62°,求∠DOE的度数(2)若∠BOC=a°,求∠DOE的度数(3)图中是否有互余的角?若有请写出所有互余的角20.若“”是一种新的运算符号,并且规定.例如:,求的值.21.如图,M是线段AC中点,B在线段AC上,且AB=2cm、BC=2AB,求BM长度.22.已知a,b是实数,且有 |a-|+(b+)2,求a,b的值.23.如图,平原上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池.(1)不考虑其他因素,请你画图确定蓄水池H点的位置,使它到四个村庄距离之和最小;(2)计划把河水引入蓄水池H中,怎样开渠最短并说明根据.24.计算(1)25°34′48″﹣15°26′37″(2)105°18′48″+35.285°.四.综合题(共10分)25.如图,点O是直线AB上一点,射线OA1, OA2均从OA的位置开始绕点O顺时针旋转,OA1旋转的速度为每秒30°,OA2旋转的速度为每秒10°.当OA2旋转6秒后,OA1也开始旋转,当其中一条射线与OB重合时,另一条也停止.设OA1旋转的时间为t秒.(1)用含有t的式子表示∠A1OA=________°,∠A2OA=________°;(2)当t =________,OA1是∠A2OA的角平分线;(3)若∠A1OA2=30°时,求t的值.河南省淅川县大石桥乡2017-2018学年七年级上期末模拟数学试卷参考答案与试题解析一.单选题1.【答案】A【考点】有理数的除法【解析】【解答】解:=(﹣36)÷(﹣12), =36÷12,=3.故选A.【分析】根据有理数的除法运算法则进行计算即可得解.2.【答案】D【考点】科学记数法—表示绝对值较大的数【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n是负数.【解答】将21.75亿=2175000000用科学记数法表示为2.175×109.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【考点】几何体的展开图【解析】【解答】解:选项A、C、D中折叠后带图案的三个面不能相交于同一个点,与原立方体不符;选项B中折叠后与原立方体符合,所以正确的是B.故选:B.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.同时注意图示中的阴影的位置关系.4.【答案】A【考点】定义新运算【解析】【分析】由a☆b=,可得2☆3=,则可求得答案.【解答】∵a☆b=∴2☆3=故选A.【点评】此题考查了新定义题型.解题的关键是理解题意,根据题意解题.5.【答案】A【考点】有理数的混合运算【解析】【解答】解:∵x⊗y=x﹣y2,∴﹣2⊗ 3=﹣2﹣32=﹣2﹣9=﹣11.故选A.【分析】根据运算“⊗”的规定列出算式即可求出结果.6.【答案】B【考点】同类项、合并同类项,同底数幂的乘法,幂的乘方与积的乘方【解析】【解答】A、a2•a3=a5,故本选项错误;B、(x3)2=x6,故本选项正确;C、3m+2n≠5mn,故本选项错误;D、y3•y3=y6,故本选项错误.故选B.【分析】利用同底数幂的乘法,幂的乘方与合并同类项的知识求解,即可求得答案.注意排除法在解选择题中的应用.7.【答案】A【考点】有理数的乘法【解析】【分析】根据有理数的乘法法则,异号得负可得。
一年级数学试卷数学

一年级数学试卷数学一、填空题(每题2分,共20分)1. 15里面有()个十和()个一。
2. 与19相邻的两个数是()和()。
3. 1个十和6个一组成的数是()。
4. 在10、13、18、2、7中,最大的数是(),最小的数是()。
5. 比10多6的数是()。
6. 在_里填上合适的数:3 + _ = 10。
7. 一个数个位上是0,十位上是2,这个数是()。
8. 12后面第3个数是()。
9. 按规律填数:5、10、15、()、()。
10. 9比()少1。
二、计算题(每题2分,共30分)1. 3 + 5 =2. 9 - 2 =3. 4 + 7 =4. 10 - 6 =5. 2 + 8 =6. 13 - 3 =7. 5 + 6 =8. 8 - 5 =9. 7 + 3 =10. 11 - 1 =11. 1 + 9 + 3 =12. 15 - 5 - 4 =13. 3 + 4 + 2 =14. 10 - 3 + 2 =15. 6 + 2 - 5 =三、比大小(每题2分,共10分)1. 7 〇 92. 12 〇 103. 4 + 3 〇 84. 16 - 6 〇 95. 5 + 9 〇 14四、选择题(每题2分,共10分)1. 11这个数,十位上的1表示()。
A. 1个一B. 1个十C. 10个一。
2. 比8多3的数是()。
A. 5B. 11C. 10.3. 在13、3、10、16中,个位上是3的数是()。
A. 13B. 3C. 16.4. 下面算式结果最小的是()。
A. 3 + 8B. 5 + 6C. 2 + 95. 18前面的第4个数是()。
A. 14B. 13C. 15.五、解决问题(每题6分,共30分)1. 树上有7只鸟,又飞来了5只,树上一共有多少只鸟?2. 小明有10个气球,飞走了3个,还剩几个气球?3. 花丛中有12只蝴蝶,飞走了4只,又飞来了3只,现在花丛中有多少只蝴蝶?4. 妈妈买了13个苹果,小明吃了2个,还剩多少个苹果?5. 停车场原来有9辆车,又开来了6辆,现在停车场有多少辆车?。
2013年湖南高考理科数学试卷(带详解)

2013年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)本试卷包括选择题、填空题和解答题三部分,共5页,时量120分钟,满分150分. 一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数()i 1i z =+(i 为虚数单位)在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 【测量目标】复数乘法的运算法则,复数集与复平面上的点对应关系. 【考查方式】利用复数乘法的运算法则及复数的几何意义求解. 【难易程度】容易 【参考答案】B 【试题解析】i (1i)1i z =+=-+∴复数z 对应复平面上的点是(1,1),-该点位于第二象限.2.某学校有男、女学生各500名.为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是 ( ) A .抽签法 B .随机数法 C .系统抽样法 D .分层抽样法 【测量目标】分层抽样.【考查方式】给出实际案例,判断其解决问题的方法属于四种抽样方法的哪一种. 【难易程度】容易 【参考答案】D【试题解析】由于是调查男、女学生在学习兴趣与业余爱好方面是否存在差异,因此用分层抽样方法. 3.在锐角中ABC △,角,A B 所对的边长分别为,a b .若2sin 3,a B b =则角A 等于( )A .π12 B .π6 C .π4 D .π3【测量目标】正弦定理.【考查方式】给出三角形中的边角关系,运用正弦定理求解未知角. 【难易程度】容易 【参考答案】D【试题解析】在ABC △中,2sin ,2sin a R A b R B ==(R 为ABC △的外接圆半径).(步骤1)2sin 3,2sin sin 3.a B b A B B =∴=3sin A ∴=(步骤2)又ABC △为锐角三角形,π3A ∴=.(步骤3)4.若变量,x y 满足约束条件211y xx y y ⎧⎪+⎨⎪-⎩,则2x y +的最大值是( )A .52-B .0C .53D .52【测量目标】二元线性规划求目标函数的最值.【考查方式】利用线性规划知识求目标函数的最值问题. 【难易程度】容易 【参考答案】C【试题解析】根据不等式组作出其平面区域,令2,z x y =+结合2z x y =+的特征求解.不等式组表示的平面区域为图中阴影部分,(步骤1)平行移动11,22y x z =-+可知该直线经过2y x =与1x y +=的交点12(,)33A 时,z 有最大值为145=333+.(步骤2)第4题图5.函数()2ln f x x =的图象与函数()245g x x x =-+的图象的交点个数为( )A .3B .2C .1D .0 【测量目标】函数图象的应用.【考查方式】先作出常见函数图象再确定其图象交点个数. 【难易程度】中等 【参考答案】B 【试题解析】22()45(2)1,g x x x x =-+=-+又当2x =时,()2ln 2ln 41,f x ==>(步骤1)在同一直角坐标系内画出函数()2ln f x x =与2()45g x x x =-+的图象,如图所示,可知()f x 与()g x 有2个不同的交点.(步骤2)第5题图6. 已知,a b 是单位向量,0=a b .若向量c 满足1,--=c a b 则c 的取值范围是( )A .22+1⎡⎤⎣⎦B .22+2⎡⎤⎣⎦C .2+1⎡⎤⎣⎦D .2+2⎡⎤⎣⎦【测量目标】向量数量积的运算及定义、向量加法的几何意义.【考查方式】将所给向量式两边平方后利用向量数量积的运算律以及向量数量积定义的求解. 【难易程度】较难 【参考答案】A3 / 13【试题解析】由题意,不妨令(0,1),(1,0),(,)x y ===a b c ,由1--=c a b 得22(1)(1)1x y -+-=,(步骤1)22x y =+c 可看做(,)x y 到原点的距离,而点(,)x y 在以(1,1)为圆心,以1为半径的圆上.(步骤2)如图所示,当点(,)x y 在位置P 时到原点的距离最近,在位置P '时最远,而21PO =-,21P O '=+,故选A .(步骤3)第6题图 7.已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能...等于( ) A .1 B .2 C .212- D .2+12【测量目标】空间几何体三视图.【考查方式】根据正方体的正视图的形状来求解其面积值. 【难易程度】中等 【参考答案】C【试题解析】根据三视图中正视图与俯视图等长,故正视图中的长为2cos θ,如图所示.故正视图的面积为π2cos (0)4S θθ=,∴12S ,而21<12-,故面积不可能等于212-.第7题图8.在等腰三角形ABC 中,=4AB AC =,点P 是边AB 上异于,A B 的一点,光线从点P 出发,经,BC CA 发射后又回到点P (如图).若光线QR 经过ABC △的重心,则AP 等于( )第8题图A .2B .1C .83D .43【测量目标】直线的斜率,直线的方程.【考查方式】已知一个三角形的边长关系,建立平面直角坐标系求解未知边的值. 【难易程度】中等 【参考答案】D 【试题解析】以A 为原点,AB 为x 轴,AC 为y 轴建立直角坐标系如图所示.则A (0,0),B (4,0),C (0,4).(步骤1)设△ABC 的重心为D ,则D 点坐标为44,33⎛⎫⎪⎝⎭.设P 点坐标为(m,0),则P 点关于y 轴的对称点P 1为(-m,0),(步骤2)因为直线BC 方程为x +y -4=0,所以P 点关于BC 的对称点P 2为(4,4-m ),根据光线反射原理,P 1,P 2均在QR 所在直线上,∴12P D P D k k =,即4443344433mm -+=+-,(步骤3)解得,m =43或m =0.当m =0时,P 点与A 点重合,故舍去.∴43m =.(步骤4)第8题图二、填空题:本大题共8小题,考生作答7小题,每小题5分,共35分.(一)选做题(请考生在第9、10、11三题中任选两题作答,如果全做,则按前两题计分)9.在平面直角坐标系xOy 中,若:x t l y t a =⎧⎨=-⎩(t 为参数),过椭圆C 3cos :2sin x y ϕϕ=⎧⎨=⎩(ϕ为参数)的右顶点,则常数a 的值为 .【测量目标】参数方程的转化,椭圆的简单几何性质.【考查方式】先将参数方程化为普通方程后求解,再运用椭圆的简单几何性质求出未知参数. 【难易程度】容易 【参考答案】3【试题解析】由题意知在直角坐标系下,直线l 的方程为y =x -a ,椭圆的方程为22194x y +=,(步骤1)所以其右顶点为(3,0).由题意知0=3-a ,解得a =3. (步骤2) 10.已知,,,236,a b c a b c ∈++=R 则22249a b c ++的最小值为 . 【测量目标】柯西不等式,最值问题.【考查方式】使用柯西不等式化简式子求其最值. 【难易程度】中等 【参考答案】12【试题解析】由柯西不等式得2222222(111)(49)(23)a b c a b c ++++++,即22241912a b c++,(步骤1)当232a b c ===时等号成立,所以222419a b c ++的最小值为12. (步骤2) 11.7的O 中,弦,AB CD 相交于点,2P PA PB ==,1PD =,则圆心O 到弦CD 的距离为 .5 /13第11题图【测量目标】圆的相交弦定理及圆的弦的性质,解三角形.【考查方式】由相交弦定理求出圆内线段的长再根据弦的性质求解三角形中未知数. 【难易程度】中等【参考答案】32【试题解析】如图所示,取CD 中点E ,连结OE ,OC .由圆内相交弦定理知PD PC PA PB =,(步骤1)所以PC =4,CD =5,则CE =52,OC =7.(步骤2)所以O 到CD 距离为2253722OE ⎛⎫=()-= ⎪⎝⎭.(步骤3)第11题图必做题(12-16题)12.若20d 9,Tx x =⎰则常数T 的值为 .【测量目标】微积分基本定理.【考查方式】利用微积分基本定理建立方程求解. 【难易程度】中等 【参考答案】3 【试题解析】∵321=3x 'x ⎛⎫⎪⎝⎭,∴2330011d 0933T T x x x T ==-=⎰,∴3T =. 13.执行如图所示的程序框图,如果输入1,2,a b a ==则输出的的值为 .第13题图【测量目标】循环结构的程序框图.【考查方式】阅读程序框图,运行程序得出结果. 【难易程度】中等 【参考答案】9【试题解析】输入1,2,a b ==不满足8,a >故a =3;a =3不满足a >8,故a =5;a =5不满足a >8,故a =7;a =7不满足a >8,故a =9,满足a >8,终止循环.输出a =9.14.设12,F F 是双曲线2222:1(0,0)x y C a b a b -=>>的两个焦点,P 是C 上一点,若126,PF PF a +=且12PF F △的最小内角为30,则C 的离心率为___.【测量目标】双曲线的定义,余弦定理.【考查方式】根据双曲线的定义及已知条件,利用余弦定理建立关于,a c 的方程求解. 【难易程度】较难 【参考答案】3【试题解析】不妨设|PF 1|>|PF 2|,由1212||||6,||||2PF PF a PF PF a +=⎧⎨-=⎩可得12||4,||2.PF a PF a =⎧⎨=⎩(步骤1)∵2a <2c ,∴∠PF 1F 2=30°,∴222242cos30224c a a c a︒()+()-()=⨯⨯,(步骤2)整理得,223230c a ac +-=,即22330,3e e e -+=∴=.(步骤3)15.设n S 为数列{}n a 的前n 项和,1(1),,2n n n n S a n *=--∈N 则(1)3a =_____; (2)12100S S S ++⋅⋅⋅+=___________.【测量目标】已知递推关系求通项,数列的前n 项和. 【考查方式】根据1(2)n n n a S S n -=-建立关于n a 的关系式,根据n a 的关系式归纳寻找其规律后求解.【难易程度】中等 【参考答案】116- 10011(1)32- 【试题解析】111111(1)(1),22n n n n n n n n n a S S a a ----=-=----+111(1)(1)2n n n n n na a a --∴=---+(步骤1)当n 为偶数时,11,2n n a -=-当n 为奇数时,1122n n n a a -+=,(步骤2)∴当4n =时3411216a =-=-.(步骤3)根据以上{}n a 的关系式及递推式可求:135724681111,,,,2222a a a a =-=-=-=-246824681111,,,.2222a a a a ====(步骤4)21436535111,,,,222a a a a a a ∴-=-=-= (12100214310099231001111)()()()()2222S S S a a a a a a ∴+++=-+-++--++++ (399210010011111111)()()(1)22222232=+++-+++=-……(步骤6) 16.设函数(),0,0.xxxf x a b c c a c b =+->>>>其中(1)记集合M ={(,,),,a b c a b c 不能构成一个三角形的三条边长,且a b =},则(,,)a b c M ∈所对应7 / 13的()f x 的零点的取值集合为____.(2)若,,a b c 是ABC △的三条边长,则下列结论正确的是 .(写出所有正确结论的序号)①()(),1,0;x f x ∀∈-∞>②,x ∃∈R 使,,xxxa b c 不能构成一个三角形的三条边长; ③若ABC △为钝角三角形,则()1,2,x ∃∈,使()0.f x =【测量目标】对数的运算,对数、指数函数的性质,余弦定理,函数零点存在性定理.【考查方式】由三角形的构成条件与函数的零点存在性求解未知参数的范围,以及举反例验证. 【难易程度】较难 【参考答案】{}01x x < ①②③【试题解析】(1)0,0,c a c b a b >>>>=且,,a b c 不能构成三角形三边,02, 2.c ac a∴<∴(步骤1)令()0f x =得2xxa c =,即2xc a ⎛⎫= ⎪⎝⎭.(步骤2)21log 2log 1c ac x x a ∴=∴=01x∴<(步骤3)(2)①,,a b c 是三角形的三条边长,0,0,01,01a ba b c c a c b c c∴+>>>>>∴<<<<∴当(,1)x ∈-∞时, ()()()1(1)0x x x x x x x xa b a b a b c f x a b c c c c c c c c c +-⎡⎤=+-=+->+-=>⎢⎥⎣⎦(步骤4)(,1),()0x f x ∴∀∈-∞>故①正确(步骤5);②令2,3,4,a b c ===,则,,a b c 可以构成三角形.但2224,9,16a b c ===却不能构成三角形,故②正确;(步骤6)③,c a c b >>且ABC △为钝角三角形,2220a b c ∴+-<又222(1)0,(2)0f a b c f a b c =+->=+-<∴(步骤7)函数()f x 在()1,2上存在零点,故③正确. (步骤8)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知函数2ππ()sin()cos(),()2sin632x f x x x g x =-+-=. (I )若α是第一象限角,且33()f α=.求()g α的值; (II )求使()()f x g x 成立的x 的取值集合.【测量目标】两角和与差的正、余弦公式,二倍角的余弦公式以及三角函数不等式的解法. 【考查方式】运用三角恒等变换公式化简函数求解. 【难易程度】容易 【试题解析】(I )533sin 3)(sin 3sin 23cos 21cos 21sin 23)(==⇒=++-=ααf x x x x x x f .(步骤1)23π41sin ,(0,)cos ,()2sin 1cos 52525g αααααα⇒=∈⇒===-=且(步骤2) (II )31π1()()3sin 1cos sin cos sin()2262f xg x x x x x x ⇒-⇒+=+(步骤3) ππ5π2π[2π,2π][2π,2π],6663x k k x k k k ⇒+∈++⇒∈+∈Z (步骤4)18.(本小题满分12分)某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获量Y (单位:kg )与它的“相近”作物株数X 之间的关系如下表所示:X 1 2 3 4 Y51484542这里,两株作物“相近”是指它们之间的直线距离不超过1米.(I )从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率; (II )从所种作物中随机选取一株,求它的年收获量的分布列与数学期望.第18题图【测量目标】古典概型,分布列数学期望.【考查方式】利用古典概型求概率,根据所求概率列出分布列,结合期望公式求解. 【难易程度】中等【试题解析】(Ⅰ) 由图知,三角形边界共有12个格点,内部共有3个格点.从三角形上顶点按逆时针方向开始,分别有(0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(1,2),8对格点恰好“相近”.所以,从三角形地块的内部和边界上分别随机选取一株作物,它们恰好“相近”的概率821239P ==⨯.(步骤1) (Ⅱ)三角形共有15个格点.与周围格点的距离不超过1米的格点数都是1个的格点有2个,坐标分别为(4,0),(0,4).所以2(51)15P Y ==(步骤2),与周围格点的距离不超过1米的格点数都是2个的格点有4个,坐标分别为(0,0), (1,3), (2,2),(3,1).所以4(48)15P Y ==(步骤3),与周围格点的距离不超过1米的格点数都是3个的格点有6个,坐标分别为(1,0), (2,0), (3,0),(0,1) ,(0,2),(0,3).所以6(45)15P Y ==(步骤4)与周围格点的距离不超过1米的格点数都是4个的格点有3个,坐标分别为(1,1), (1,2), (2,1).所以3(42)15P Y ==(步骤5)如下表所示:X 1 2 3 4 Y 51 48 45 42 频数 2463概率P152 154 156 1539 / 132463102192270126690()5148454246151515151515E Y +++=⨯+⨯+⨯+⨯===46)(=∴Y E . (步骤6)19.(本小题满分12分)如图,在直棱柱1111//ABCD A B C D AD BC -中,,90,,1BAD AC BD BC ∠=⊥=,13AD AA ==.(I )证明:1AC B D ⊥; (II )求直线11B C 与平面1ACD 所成角的正弦值.第19题图【测量目标】线面垂直的判定与性质,线面角.【考查方式】利用空间线面垂直的性质证明线线垂直,建立空间直角坐标系用向量法证明,再求直线与平面所成角的正弦值 【难易程度】中等 【试题解析】(Ⅰ)1111ABCD A B C D -是直棱柱1AC ∴⊥面ABCD ,且面BD ⊂面1ABCD BB AC⇒⊥(步骤1)又AC BD ⊥,且1BDBB B =,AC ∴⊥面1BDB ,1B D ⊂面1BDB ,1AC B D ∴⊥.(步骤2) (Ⅱ)11////,B C BC AD ∴直线11B C 与平面1ACD 的夹角即直线AD 与平面1ACD 的夹角θ.(步骤3)建立直角坐标系,用向量解题.设原点在A 点,AB 为y 轴正半轴,AD 为x 轴正半轴,1AA 为z 的正半轴. 设()10,00,(3,0,0),(3,0,3),(0,,0),(1,,0)A D D B y C y ,,11(0,,3),(1,,3)B y C y 则(1,,0),(3,,0),AC y BD y AC BD ==-⊥210300,0 3.(1,3,0),(3,0,3).AC BD y y y AC AD =⇒-+=>⇒=∴==(步骤4)设平面1ACD 的法向量为(,,)x y z n ,则10AC AD ⎧=⎪⇒⎨=⎪⎩n n 平面1ACD 的一个法向量11313,100BC ==(-,,)(,,)n (步骤5) 所以平面1ACD 的一个法向量1111321313,100sin |cos ,|77B C B C θ==⇒=<>==(-,,)(,,)n n所以11B C 与平面1ACD 夹角的正弦值为217.(步骤6)第19题(Ⅱ)图20.(本小题满分13分)在平面直角坐标系xOy 中,将从点M 出发沿纵、横方向到达点N 的任一路径成为M 到N 的一条“L 路径”.如图所示的路径123MM M M N 与路径1MN N 都是M 到N 的“L 路径”.某地有三个新建的居民区,分别位于平面xOy 内三点(3,20),(10,0),(14,0)A B C -处.现计划在x 轴上方区域(包含x 轴)内的某一点P 处修建一个文化中心.(I )写出点P 到居民区A 的“L 路径”长度最小值的表达式(不要求证明);(II )若以原点O 为圆心,半径为1的圆的内部是保护区,“L 路径”不能进入保护区,请确定点P 的位置,使其到三个居民区的“L 路径”长度之和最小.第20题图【测量目标】绝对值函数最值.【考查方式】将实际案例中的关系先列出式子再将其转化为含绝对值的和的形式,进行分类讨论求解. 【难易程度】较难【试题解析】(I )设点(,)P x y ,且0.y点P 到点A (3,20)的“L 路径”的最短距离d 等于水平距离加上垂直距离,即320d x y =-+-,其中0,.yx ∈R (步骤1)(Ⅱ)点P 到A,B,C 三点的“L 路径”长度之和的最小值d = 水平距离之和的最小值h + 垂直距离之和的最小值v (且h 和v 互不影响).显然当y =1时,v = 20+1=21;显然当[10,14]x ∈-时,水平距离之和(10)14324h x x x =--+-+-,且当x =3时,h =24.因此,当P (3,1)时,d =21+24=45. (步骤2)所以,当点(,)P x y 满足P (3,1)时,点P 到A,B,C 三点的“L 路径”长度之和d 的最小值为45. (步骤3) 21.(本小题满分13分)过抛物线2:2(0)E x py p =>的焦点F 作斜率分别为12,k k 的两条不同的直线12,l l ,且122k k +=,1l E 与相交于点A ,B ,2l 与E 相交于点C ,D ,以AB ,CD 为直径的圆M ,圆N (M ,N 为圆心)的公共弦所在的直线记为l .11 / 13(I )若120,0k k >>,证明;22FM FN p <;(II )若点M 到直线l的距离的最小值为,求抛物线E 的方程. 【测量目标】抛物线的定义,向量数量积的定义,圆的方程,直线与抛物线的位置关系.【考查方式】先将直线方程带入抛物线的方程,利用向量数量积的坐标运算求解,再求出圆的相交弦方程利用点到直线的距离公式及函数思想求解. 【难易程度】较难【试题解析】(Ⅰ)已知抛物线的焦点为(0,).2p F 设112233(,),(,),(,),A x y B x y C x y 4412123434(,),(,),(,)D x y M x y N x y ,(步骤1)直线1l 方程:1,2p y k x =+与抛物线E 方程联立,化简整理得22120x pk x p -++=:(步骤2) 2221212112121121112,,(,)22x x px x k p x x p x k p y k p FM k p k p +⇒+==-⇒===+⇒=(步骤3)同理221234234222,(,)22x x px k p y k p FN k p k p +⇒===+⇒=.(步骤4)2222212121212(1)FM FN k k p k k p p k k k k ⇒=+=+(步骤5)222121212*********,0,,221,(1)1(11)2k k k k k k k k k k FM FN p k k k k p p >>≠=+>⇒<∴=+<⨯⨯+=所以,22FM FN p <成立. (步骤6) (Ⅱ)设圆M N 、的半径分别为22121121111,[()()][2()],22222p p pr r r y y p k p k p p ⇒=+++=++=+ 211,r k p p ⇒=+(步骤7)同理2222,r k p p =+则M N 、的方程分别为22212121()()x x y y r -+-=, 22234342()()x x y y r -+-=,(步骤7)直线l 的方程为:2222223412341212341234122()2()0x x x y y y x x y y r r -+-+-+--+=.222121123412341234123421212()2()()()()()()()0p k k x p k k y x x x x y y y y r r r r ⇒-+-++-++-+-+= 222222222222222212112121221122()2()()()()()(2)0p k k x p k k y p k k p k k k k p k k k k ⇒-+-+-+-++-++=0202)(1)(222212221=+⇒=+++++--+⇒yx k k p k k p p y x (步骤8)点1212(,)M x y 到直线l 的距离为:2211112()()144||||55d p p -+-+====8p ⇒=⇒抛物线的方程为216x y =(步骤9)22.(本小题满分13分)已知0a >,函数()2x af x x a-=+.(I )记()f x 在区间[]0,4上的最大值为g a (),求g a ()的表达式;(II )是否存在a ,使函数()y f x =在区间()0,4内的图象上存在两点,在该两点处的切线相互垂直?若存在,求a 的取值范围;若不存在,请说明理由.【测量目标】利用导数求分段函数的最值,导数的几何意义.【考查方式】根据已知条件转化函数为分段函数再求导,判断极值点所在区间进行分类讨论,依题意将问题转化为函数单调性不一致区间上的两个点处的导数之积等于1-建立方程求解. 【难易程度】较难【试题解析】(Ⅰ)当0,a >○13()1,22x a af x x a x a-==-++ 当2x a <-或x a 时,是单调递增的;(步骤1)○23()122x a af x x a x a-+==-+++,当2a x a -<<时,是单调递减的.由上知,(步骤2)当4a >时()f x 在[0,4]x ∈上单调递减,其最大值为31(0)122a f a =-+=,(步骤3)当4a 时,()f x 在[0,]a 上单调递减,在[,4]a 上单调递增. (步骤4)令31(4)1(0)422a f f a =-<=+,解得:(1,4]a ∈,即当(1,4]a ∈时,()g a 的最大值为(0)f ,(步骤5)当(0,1]a ∈时,()g a 的最大值为(4)f ,综上,(]()31,0,142()=1,1,2a a ag a a ⎧-∈⎪⎪+⎨⎪∈+∞⎪⎩.(步骤6)(II )由前知,()y f x =的图象是由两段反比例函数的图象组成的.因此,若在图象上存在两点),(),,(2211y x Q y x P 满足题目要求,则P ,Q 分别在两个图象上,且12()()1f x f x ''=-.(步骤7)223,2,(2)()3,2;(2)ax a x ax a f x a a x a x a ⎧<-⎪+⎪'=⎨-⎪-<<⎪+⎩或(04a <<)(步骤8)不妨设12122212331,(0,),(,4]3(2)(2)(2)(2)a ax a x a a x a x a x a x a -=-∈∈⇒=++++2222212121222324032402()43224a ax a a a ax a x x a x x a a x x a x a a x ⎧--<<--⎪⇒=+++-⇒=⇒+⎨+⎪<<⎩22222203242342434111224223404(0,)222484228x a x a a ax a a x a a a a a a a x a x <--<--<-⎧⎧⎧⎪⎪⎪⇒<+⇒-<⇒<-⇒<<<⇒∈⎨⎨⎨⎪⎪⎪-<<<<<⎩⎩⎩,且(步骤9)13 / 13所以,当)21,0(∈a 时,函数()y f x =在区间()0,4内的图象上存在两点,在该两点处的切线相互垂直. (步骤10)。
数学试卷及答案(8篇)

数学试卷及答案(8篇)数学试卷及答案篇一一、填空题(20分)1、一个数由5个千万,4个十万,8个千,3个百和7个十组成,这个数写作( ),改成用“万”作单位的数是()万,四舍五入到万位约为( )万。
2.480平方分米=( )平方米 2.6升=()升( )毫升3、最小质数占最大的两位偶数的( )。
4.5.4:1 的比值是( ),化成最简整数比是( )。
5、李婷在1:8000000的地图上量得北京到南京的距离约为15厘米,两地实际距离约为( )千米。
6、在,0. ,83%和0.8 中,最大的数是( ),最小的数是( )。
7、用500粒种子做发芽实验,有10粒没有发芽,发芽率是( ))%。
8、甲、乙两个圆柱的体积相等,底面面积之比为3:4,则这两个圆柱体的高的比是( )。
9、( )比200多20%,20比( )少20%。
10、把4个棱长为2分米的正方体拼成长方体,拼成的长方体的表面积可能是( )平方分米,也可能是( )平方分米。
二。
判断题(对的在括号内打“√”,错的打“×”)(5分)1、在比例中,如果两内项互为倒数,那么两外项也互为倒数。
( )2、求8个与8的列式一样,意义也一样。
( )3、有2,4,8,16四个数,它们都是合数。
( )4、互质的两个数一定是互质数。
( )5、不相交的两条直线叫做平行线。
( )三、选择题(将正确答案的序号填入括号内)(5分)1、如果a×b=0,那么 ( )。
A.a一定为0 B.b一定为0C.a、b一定均为0D.a、b中一定有一个为02、下列各数中不能化成有限小数的分数是 ( )。
A. B. C.3、下列各数精确到0.01的是( )A.0.6925≈0.693B.8.029≈8.0C.4.1974≈4.204、把两个棱长都是2分米的正方体拼成一个长方体,这个长方体的表面积比两个正方体的表面积的和减少了( )平方分米。
A.4B.8C.165、两根同样长的铁丝,从第一根上截去它的,从另一根上截去米,余下部分( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
31. (4 分)已知一次函数图象经过(3, (1)求此一次函数的解析式; (2)判断点(1,-2)是否在直线上
5)和(-4,-9)两点, (6 分)
32. (6 分)如图是某汽车行驶的路程 S(km)与时间 t(min) 的函数关系图.观察图 中所提供的信息,解答下列问题: (1)汽车在前9分钟内的平均速度是多少? (2)汽车在中途停了多长时间? (3)当 16≤t≤30 时,求 S 与 t 的函数关系式.
29. (6 分)已知一次函数 y=(1+2m)x+m+4, (1)若图像经过原点,求 m 的值. (2)若图像经过一、二、四象限,求 m 的取值范围. (3) m 为何值时, 这个函数图像与函数 y=x+1 的图像交点在 x 轴上 (不是原点) ?
30. (6 分)已知 y 是 x 的一次函数,且当 x=8 时,y=15:当 x=-10 时,y=-3, 求: (1)这个一次函数的解析式; (2)当 y=-2 时,求 x 的值; (3)若 x 的取值范围是-2<x<3,求 y 的取值范围.
y 2 x2
中 ,自变量 x 的取值范围是 ,与 y 轴交点为
m2 3
17.一次函数 y 2 x 4 图象与 x 轴的交点坐标为 18.已知 y (m 2) x
3 ,当 m =_____时, y 是 x 的一次函数.
19.将直线 y=-2x 沿 y 轴向下平移 3 个单位, 得到的直线的解析式为 y= _________ 20.小华用 50 元去购买单价为 2.5 元的一种商品,剩余的钱 y(元)与购买这种 商品的件数 x(件) 之间的函数关系是____________定义域 21. 若函数 y=2x+1 中若 ab>0,bc<0,则直线 y a x a 经过第
⑤ y 100 25x
2.下列函数中,图象经过原点的为(
A.y = 5x+1 B. y = -5x-1
)
C.y== -
x x 1 D.y = 5 5 3. 下列函数中,y 随 x 的增大而增大的函数是( ) A.y=2-x B. y=-7x+1 C.y=5x-2 D.y= -3x-2 4.下列那个点不在函数 y= -2x+3 的图像上 ( )
.
三、
解答题(共 48 分) y=2x+3
27.(4 分)在同一个平面直角坐标系中画出下面一组函数的图像。 (1)y=2x
28. (4 分)某安装工程队现已安装机器 40 台,计划今后每天安装 12 台, 求: (1)安装机器的总台数 y 与天数 x 的函数关系式; (2)一个月后安装机器的台数(以 30 天计)
b c
_ 象限.
时, y 2 <0;
22.如图先观察图形再填空(1)当 x
时, y1 >0;(2)当 x
23. 如图的围棋盘放在某个平面直角坐标系内,白棋② 的坐标为(–7, –3),白棋 ④的坐标为(–6,–7),那么黑棋①的坐标应该是 .
22 题图 23 题图 24 题图 24. 如图,已知 A 地在 B 地正南方 3 千米处,甲乙两人同时分别从 A、B 两地匀 速直行,他们与 A 地的距离 S(千米)与所行的时间 t(小时)之间的函数关系 图象如图所示的 AC 和 BD, 当他们行走 3 小时后, 他们之间的距离为 千米。 25. 已知一次函数的图像经过点(3.-1),与 x 轴相交成 45°角,则此一次函数解析 式为 26.若函数 y=-x- 4 与 x 轴交于点 A,直线上有一点 M,若△AOM 的面积为 8, 则点 M 的坐标
2 x 2 分别交 x 轴、y 轴于 A、B 两点,O 是原点. 3 (1)求△AOB 的面积; (2)过△AOB 的顶点能不能画出直线把△AOB 分成面积相等的两部分?如能, 可 以画出几条?写出这样的直线所对应的函数关系式.
34.(6 分)直线 y
35. (6 分) 如图, 直线 y=kx+6 与 x 轴 y 轴分别相交于点 E,F, 点 E 的坐标是(-6,0), 点 A 的坐标为(-4,0),点 P(x,y)是第二象限内的直线上的一个动点 (1)求 K 的值 (2)当点 P 运动过程中,试写出△OPA 的面积 S 与 x 的函数关系式,并写出自 变量 x 的取值范围 (3)探究:当 P 运动到什么位置(求 P 点坐标)时,△OPA 的面积为 9 并说明 理由?
40 S/km
12 0 9 16 30 t/min
33. (6 分)甲乙两个通信公司分别制定了一种移动电话收费办法,甲公司规定: 每月收取月租费 50 元,每通话 1 分钟再收 0.4 元;乙公司规定:不收取月租费, 每通话一分钟收费 0.6 元,若一个月通话时间为 X 分,甲、乙两种的费用分别用 y1 和 y2 元 (1)分别写出 y1、y2 与 X 之间的函数关系式。 (2)一个月内通话多少分钟两种通讯方式的费用相同? (3) 若某人预计一个月通话费为 200 元, 应选择那种通讯方式比较合算?
18 (分) t
t
D.从家出发,散了一会 分) 13.点(-2,3)关于 y 轴对称点的坐标是 14.点 P(-3,-2)到 x 轴的距离是 ,到 y 轴的距离是 15.如果点 P (2m+1,-2)在第四象限内,则 m 的取值范围是 16. 在函数
) )
D.y 随 x 增大而减小
a 的值是 ( b
8. 一次函数 y= ax+4 与 y = bx-2 的图象在 x 轴上相交于同一点,则 A.4 B.-2 1 C .2
)
1 D. - 2 9.点 A(5,y1)和 B(2,y2)都在直线 y=-x-5 上,则 y1 与 y2 的关系( A. y1≥ y2 B. y1= y2 C. y1 <y2 D. y1 >y2
2013——2014 学年第二学期 3 月考试卷(3.20)
班级 姓名 学号 分数
一、 选择题(每题 3 分,共 36 分) 1. 下列函数关系中表示一次函数的有( ) 1 ③y= x2 +5 ④ s 60 t ① y 2x 1 ② y x
A.1 个 B.2 个 C.3 个 D.4 个
A .(-5,13) B .(3,0) C .(0.5,2) D. (1,1) 5. 点 P(m+3,m+1)在直角坐标系的 X 轴上,则 m 的值为: ( A. 3 B.-3 C.1 D.-1 6. 每上 5 个台阶升高 1 米,升高米数 h 是台阶数 S 的函数关系式是( s A. h=5S B. h=S+5 C. h= D. h=S-5 5 7. 直线 y=2x, y=2x-1 , y=3x+1 共同具有的特征是 ( ) A.经过原点 B.与 y 轴交于负半轴 C. y 随 x 增大而增大
p F
y
E A O
x
)
( m n) 2 n 2 10. 函数 y= -mx+n 的图象经过二、 三、 四象限化简 的结果是 ( A. m B. m C. 2 m n D m 2n 11.一次函数 y=kx+b 的图象不经过第三象限,则( )
)
A.k<0,b< 0 B. k 0 ,b> 0 C. k 0 ,b≥0 D. k 0 ,b≤0 12.星期天晚饭后,小红从家里出发去散步,图描述了她散步过程中离家 s(米) 与散步所用的时间 t(分)之间的函数关系. 依据图象, 下面描述符合小红散步 情景的是( ) S(米) A.从家出发,到了一个公共阅报栏,看了一会报后,就回家了. B.从家出发,一直散步(没有停留),然后回家了. C.从家出发,到了一个公共阅报栏,看了一会报后, 继续向前走了一会,然后回家了.