全国一卷理科数学试卷

合集下载

2021年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)

2021年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)

2021年普通高等学校招生全国统一考试(全国乙卷)数学(理)一、选择题1.设2()3()46z z z z i ++-=+,则z =()A.12i -B.12i +C.1i +D.1i -答案:C 解析:设z a bi =+,则z a bi =-,2()3()4646z z z z a bi i ++-=+=+,所以1a =,1b =,所以1z i =+.2.已知集合{|21,}S s s n n Z ==+∈,{|41,}T t t n n Z ==+∈,则S T = ()A.∅B.SC.TD.Z 答案:C 解析:21s n =+,n Z ∈;当2n k =,k Z ∈时,{|41,}S s s k k Z ==+∈;当21n k =+,k Z ∈时,{|43,}S s s k k Z ==+∈.所以T S Ü,S T T = .故选C.3.已知命题:p x R ∃∈﹐sin 1x <;命题||:,1x q x R e∈∀≥,则下列命题中为真命题的是()A.p q∧B.p q ⌝∧C.p q∧⌝D.()p q ⌝∨答案:A 解析:根据正弦函数的值域sin [1,1]x ∈-,故x R ∃∈,sin 1x <,p 为真命题,而函数||x y y e ==为偶函数,且0x ≥时,||1x y e =≥,故x R ∀∈,||1x y e =≥恒成立.,则q 也为真命题,所以p q ∧为真,选A.4.设函数1()1xf x x-=+,则下列函数中为奇函数的是()A.1()1f x --B.1()1f x -+C.1()1f x +-D.1()1f x ++答案:B 解析:12()111x f x x x -==-+++,()f x 向右平移一个单位,向上平移一个单位得到2()g x x=为奇函数.5.在正方体1111ABCD ABC D -中,P 为11BD 的中点,则直线PB 与1A D 所成的角为()A.2πB.3πC.4πD.6π答案:D 解析:如图,1P B C ∠为直线PB 与1A D 所成角的平面角.易知11AB C ∆为正三角形,又P 为11AC 中点,所以16PBC π∠=.6.将5名北京冬奥会志愿者分配到花样滑冰,短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有()A.60种B.120种C.240种D.480种答案:C 解析:所求分配方案数为2454240C A =.7.把函数()y f x =图像上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移3π个单位长度,得到函数sin()4y x π=-的图像,则)(f x =()A.7sin()212x π-B.sin()212x π+C.7sin(212x π-D.sin(212x π+答案:B解析:逆向:231sin()sin(sin() 412212 y x y x y xππππ=-−−−→=+−−−−−−−→=+左移横坐标变为原来的倍.故选B.8.在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于74的概率为()A.7 9B.23 32C.9 32D.2 9答案:B解析:由题意记(0,1)x∈,(1,2)y∈,题目即求74x y+>的概率,绘图如下所示.故113311123224411132 ABCDAM ANSPS==⨯-⋅-⨯⨯==⨯阴正.9.魏晋时期刘徽撰写的《海岛算经》是关于测量的数学著作.其中第一题是测量海岛的高.如图,点,,E H G在水平线AC上,DE和FG是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG称为“表距”,GC和EH都称为“表目距”.GC与EH的差称为“表目距的差”,则海岛的高AB =()A.⨯+表高表距表高表目距的差B.⨯-表高表距表高表目距的差C.⨯+表高表距表距表目距的差D.⨯-表高表距表距表目距的差答案:A 解析:连接DF 交AB 于M ,则AB AM BM =+.记BDM α∠=,BFM β∠=,则tan tan MB MBMF MD DF βα-=-=.而tan FG GC β=,tan EDEHα=.所以11(()tan tan tan tan MB MB GC EH GC EH MB MB MB FG ED ED βαβα--=-=⋅-=⋅.故ED DF MB GC EH ⋅⨯==-表高表距表目距的差,所以高AB ⨯=+表高表距表高表目距的差.10.设0a ≠,若x a =为函数2()()()f x a x a x b =--的极大值点,则A.a b <B.a b >C.2ab a <D.2ab a >答案:D 解析:若0a >,其图像如图(1),此时,0a b <<;若0a <,时图像如图(2),此时,0b a <<.综上,2ab a <.11.设B 是椭圆C :22221(0)x y a b a b +=>>的上顶点,若C 上的任意一点P 都满足,2PB b ≤,则C 的离心率的取值范围是()A.[)2B.1[,1)2C.2D.1(0,2答案:C 解析:由题意,点(0,)B b ,设00(,)P x y ,则2222200002221(1)x y y x a a b b +=⇒=-,故22222222222000000022()(122y c PB x y b a y by b y by a b b b =+-=-+-+=--++,0[,]y b b ∈-.由题意,当0y b =-时,2PB 最大,则32b b c -≤-,22b c ≥,222a c c -≥,2c c a =≤,2(0,2c ∈.12.设2ln1.01a =,ln1.02b =,1c -,则()A.a b c <<B.b c a <<C.b a c <<D.c a b <<答案:B 解析:设()ln(1)1f x x =+,则(0.02)b c f -=,易得1()1f x x '==+当0x ≥时,1x +=≥()0f x '≤.所以()f x 在[0,)+∞上单调递减,所以(0.02)(0)0f f <=,故b c <.再设()2ln(1)1g x x =++,则(0.01)a c g -=,易得2()21g x x '==+当02x ≤<时,1x ≥=+,所以()g x '在[0.2)上0≥.故()g x 在[0.2)上单调递增,所以(0.01)(0)0g g >=,故a c >.综上,a c b >>.二、填空题13.已知双曲线C :221(0)x y m m-=>的一条渐近线为0my +=,则C 的焦距为.答案:4解析:易知双曲线渐近线方程为by x a=±,由题意得2a m =,21b =,且一条渐近线方程为y x m=-,则有0m =(舍去),3m =,故焦距为24c =.14.已知向量(1,3)a = ,(3,4)b = ,若()a b b λ-⊥,则λ=.答案:35解析:由题意得()0a b b λ-⋅= ,即15250λ-=,解得35λ=.15.记ABC ∆的内角A ,B,C 的对边分别为a ,b ,c ,面积为,60B =︒,223a c ac +=,则b =.答案:解析:1sin24ABC S ac B ac ∆===4ac =,由余弦定理,222328b a c ac ac ac ac =+-=-==,所以b =.16.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为(写出符合要求的一组答案即可).答案:②⑤或③④解析:由高度可知,侧视图只能为②或③.侧视图为②,如图(1),平面PAC ⊥平面ABC ,PA PC ==,BA BC =,2AC =,俯视图为⑤.俯视图为③,如图(2),PA ⊥平面ABC ,1PA =,AC AB =,2BC =,俯视图为④.三、解答题17.某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到产品该项指标数据如下:旧设备和新设备生产产品的该项指标的样本平均数分别记为x 和y,样本方差分别己为21s 和22S .(1)求x ,y,21s ,22s :(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果2212210s s y x +-≥,否则不认为有显著提高)。

2021年全国统一高考数学试卷(理科)(乙卷)(解析版)

2021年全国统一高考数学试卷(理科)(乙卷)(解析版)

2021年全国统一高考数学试卷(理科)(乙卷)一、选择题(共12小题,每小题5分,共60分).1.设2(z+)+3(z﹣)=4+6i,则z=()A.1﹣2i B.1+2i C.1+i D.1﹣i2.已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=()A.∅B.S C.T D.Z3.已知命题p:∃x∈R,sin x<1;命题q:∀x∈R,e|x|≥1,则下列命题中为真命题的是()A.p∧q B.¬p∧q C.p∧¬q D.¬(p∨q)4.设函数f(x)=,则下列函数中为奇函数的是()A.f(x﹣1)﹣1B.f(x﹣1)+1C.f(x+1)﹣1D.f(x+1)+15.在正方体ABCD﹣A1B1C1D1中,P为B1D1的中点,则直线PB与AD1所成的角为()A.B.C.D.6.将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有()A.60种B.120种C.240种D.480种7.把函数y=f(x)图像上所有点的横坐标缩短到原来的倍,纵坐标不变,再把所得曲线向右平移个单位长度,得到函数y=sin(x﹣)的图像,则f(x)=()A.sin(﹣)B.sin(+)C.sin(2x﹣)D.sin(2x+)8.在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于的概率为()A.B.C.D.9.魏晋时期刘徽撰写的《海岛算经》是关于测量的数学著作,其中第一题是测量海岛的高.如图,点E,H,G在水平线AC上,DE和FG是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG称为“表距”,GC和EH都称为“表目距”,GC与EH的差称为“表目距的差”,则海岛的高AB=()A.+表高B.﹣表高C.+表距D.﹣表距10.设a≠0,若x=a为函数f(x)=a(x﹣a)2(x﹣b)的极大值点,则()A.a<b B.a>b C.ab<a2D.ab>a211.设B是椭圆C:+=1(a>b>0)的上顶点,若C上的任意一点P都满足|PB|≤2b,则C的离心率的取值范围是()A.[,1)B.[,1)C.(0,]D.(0,]12.设a=2ln1.01,b=ln1.02,c=﹣1,则()A.a<b<c B.b<c<a C.b<a<c D.c<a<b二、填空题:本题共4小题,每小题5分,共20分。

2020年高考理科数学全国1卷(word版,含答案)

2020年高考理科数学全国1卷(word版,含答案)

1.【ID:4002604】若,则()A.B.C.D.【答案】D【解析】解:,则.故选D.2.【ID:4002605】设集合,,且,则()A.B.C.D.【答案】B【解析】解:易求得:,,则由,得,解得.故选B.3.【ID:4002606】埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A.B.C.D.【答案】C【解析】解:如图,设正四棱锥的底面边长为,斜高,则,两边同时除以,得:,解得:,故选C.4.【ID:4002607】已知为抛物线:上一点,点到的焦点的距离为,到轴的距离为,则()A.B.C.D.【答案】C【解析】解:由题意知,,则.故选C.5.【ID:4002608】某校一个课外学习小组为研究某作物种子的发芽率和温度(单位:)的关系,在个不同的温度条件下进行种子发芽实验,由实验数据得到下面的散点图:由此散点图,在至之间,下面四个回归方程类型中最适宜作为发芽率和温度的回归方程类型的是()A.B.C.D.【答案】D【解析】解:由图易知曲线特征:非线性,上凸,故选D.6.【ID:4002609】函数的图象在点处的切线方程为()A.B.C.D.【答案】B【解析】解:,则切线斜率,又,则切线方程为.故选B.7.【ID:4002610】设函数在的图象大致如下图,则的最小正周期为()A.B.C.D.【答案】C【解析】解:由图可估算,则.故选C.由图可知:,由单调性知:,解得,又由图知,则,当且仅当时满足题意,此时,故最小正周期.8.【ID:4002611】的展开式中的系数为()A.B.C.D.【答案】C【解析】解:,要得到项,则应取项,则其系数为.故选C.9.【ID:4002612】已知,且,则()A.B.C.D.【答案】A【解析】解:由,得,解得:或(舍),又,则.故选A.10.【ID:4002613】已知,,为球的球面上的三个点,为的外接圆.若的面积为,,则球的表面积为()A.B.C.D.【答案】A【解析】解:由条件易得:,由,则,则,所以球的表面积为.故选A.11.【ID:4002614】已知:,直线:,为上的动点.过点作的切线,,切点为,,当最小时,直线的方程为()A.B.C.D.【答案】D【解析】解::,则,如图,由圆的切线性质,易知:,则,所以最小时,最短,即最短,此时,易求得:,则直线:,整理,得:.故选D.12.【ID:4002615】若,则()A.B.C.D.【答案】B【解析】根据题意,有,若,则,不符合题意,因此.13.【ID:4002616】若,满足约束条件,则的最大值为________.【答案】1【解析】解:作不等式组满足的平面区域如图:易得:,,,因为区域为封闭图形,分别将点的坐标代入,得最大值为.14.【ID:4002617】设,为单位向量,且,则________.【答案】【解析】解:因为,,则,则.15.【ID:4002618】已知为双曲线:的右焦点,为的右顶点,为上的点,且垂直于轴.若的斜率为,则的离心率为________.【答案】2【解析】解:如图,,,则由题意得:,解得:,(舍),所以的离心率为.16.【ID:4002619】如图,在三棱锥的平面展开图中,,,,,,则________.【答案】【解析】在中,;在中,,由展开图的生成方式可得,在中,由余弦定理可得,于是,因此在中,由余弦定理可得.17. 设是公比不为的等比数列,为,的等差中项.(1)【ID:4002620】求的公比.【答案】【解析】解:设数列的公比为,则,,即,解得或(舍去),的公比为.(2)【ID:4002621】若,求数列的前项和.【答案】【解析】解:记为的前项和.由及题设可得,.所以,.可得.所以.18. 如图,为圆锥的顶点,是圆锥底面的圆心,为底面直径,.是底面的内接正三角形,为上一点,.(1)【ID:4002622】证明:平面.【答案】见解析【解析】方法:以为原点,所在直线为轴,建立如图所示的空间直角坐标系,则有,,,,,.,,,则,,,平面.方法:设,由题设可得,,,.因此,从而.又,故.所以平面.(2)【ID:4002623】求二面角的余弦值.【答案】【解析】由知,,,平面的一个法向量为,设平面的一个法向量为,则,即,解得,,二面角的余弦值为.19. 甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰:当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为.(1)【ID:4002624】求甲连胜四场的概率.【答案】【解析】解:.(2)【ID:4002625】求需要进行第五场比赛的概率.【答案】【解析】(甲连胜场)(乙连胜场)(丙连胜场).(3)【ID:4002626】求丙最终获胜的概率.【答案】【解析】丙最终获胜,有两种情况,丙连胜或输一场.(丙连胜),丙输一场,则共进行场,丙可以在①第场输,、场胜;②第、场胜,场输;③第、、场胜,第场输,(丙第场输,,场胜);(丙第,场胜,第场输);(丙第,,场胜,第场输),(丙胜).20. 已知,分别为椭圆:的左、右顶点.为的上顶点,,为直线上的动点,与的另一交点为,与的另一交点为.(1)【ID:4002627】求的方程.【答案】【解析】由题意知,,,故,,,故椭圆的方程为.(2)【ID:4002628】证明:直线过定点.【答案】见解析【解析】方法:设,,故:,,故:,联立,,同理可得,,①当时,:,②当时,,:,③当且时,,:,令,故直线恒过定点.方法:设,,.若,设直线的方程为,由题意可知.因为直线的方程为,所以.直线的方程为,所以.可得.又,故,可得,即.①将代入得.所以,.代入①式得.解得(舍去),.故直线的方程为,即直线过定点.若,则直线的方程为,过点.综上,直线过定点.21. 已知函数.(1)【ID:4002629】当时,讨论的单调性.【答案】当时,函数单调递减;当时,函数单调递增.【解析】当时,,其导函数,又函数为单调递增函数,且,于是当时,函数单调递减;当时,函数单调递增.(2)【ID:4002630】当时,,求的取值范围.【答案】【解析】方法:根据题意,当时,不等式显然成立;当时,有,记右侧函数为,则其导函数,设,则其导函数,当时,函数单调递减,而,于是.因此函数在上单调递增,在上单调递减,在处取得极大值,也为最大值.因此实数的取值范围是,即.方法:等价于.设函数,则.(i)若,即,则当时,.所以在上单调递增,而,故当时,,不合题意.(ii)若,即,则当时,;当时,.所以在,上单调递减,在上单调递增.又,所以当且仅当,即.所以当时,.(iii)若,即,则.由于,故由(ii)可得.故当,.综上,的取值范围是.22. 在直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)【ID:4002631】当时,是什么曲线?【答案】为以坐标原点为圆心,半径为的圆.【解析】解:,的参数方程为,则的普通方程为:,是以坐标原点为圆心,半径为的圆.(2)【ID:4002632】当时,求与的公共点的直角坐标.【答案】【解析】解:当时,:,消去参数,得的直角坐标方程为:,的直角坐标方程为:,联立得,其中,,,解得,与的公共点的直角坐标为.23. 已知函数.(1)【ID:4002633】画出的图象.【答案】见解析【解析】解:如图,.(2)【ID:4002634】求不等式的解集.【答案】【解析】解:方法:由题意知,结合图象有,当时,不等式恒成立,故舍去;当,即时,不等式恒成立;当时,由,得,,解得,综上,.方法:函数的图象向左平移个单位长度后得到函数的图象.的图象与的图象的交点坐标为.由图象可知当且仅当时,的图象在的图象上方.故不等式的解集为.。

2022年高考全国卷1理科数学试题及参考答案

2022年高考全国卷1理科数学试题及参考答案

普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}42M x x =-<<,{}260N x x x =--<,则M N =A .{}43x x -<<B .{}42x x -<<-C .{}22x x -<<D .{}23x x <<2.设复数z 满足1z i -=,z 在复平面内对应的点为(),x y ,则A .()2211x y ++=B .()2211x y -+=C .()2211x y +-=D .()2211x y ++=3.已知2log 0.2a =,0.22b =,0.30.2c =,则 A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是51-(510.618-≈,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-。

若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是 A .165cmB .175cmC .185cmD .190cm5.函数()2sin cos x xf x x x+=+在[],ππ-的图象大致为6.我国古代典籍《周易》用“卦”描述万物的变化。

每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,右图就是一重卦,在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A.516B .1132C .2132D .11167.已知非零向量a ,b 满足2a b =,且()a b b -⊥,则a 与b 的夹角为()A .6π B .3π C .23π D .56π 8.右图是求112122++的程序框图,图中空白框中应填入A .12A A =+B .12A A=+C .112A A=+D .112A A=+9.记n S 为等差数列{}n a 的前n 项和,已知4=0S ,55a =,则A .25n a n =-B .310n a n =-C .228n S n n =-D .2122n S n n =-10.已知椭圆C 的焦点为()11,0F -,()21,0F ,过2F 的直线与C 交于A ,B 两点,若222AF F B =,1AB BF =,则C 的方程为A .2212x y += B .22132x y +=C .22143x y +=D .22154x y +=11.关于函数()sin sin f x x x =+有下述四个结论:①()f x 是偶函数②()f x 在区间,2ππ⎛⎫⎪⎝⎭单调递增 ③()f x 在[],ππ-有4个零点④()f x 的最大值为2 A .①②④B .②④C .①④D .①③12.已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ==,△ABC 是边长为2的正三角形,E ,F 分别是PA ,PB 的中点,90CEF ∠=︒,则球O 的体积为A .86πB .46πC .26πD 6π二、填空题:本题共4小题,每小题5分,共20分。

2021年全国高考理科数学(全国一卷)试题及答案

2021年全国高考理科数学(全国一卷)试题及答案

2021年全国普通高等学校招生全国统一考试〔全国一卷〕理科数学一、选择题:〔此题有12小题,每题5分,共60分。

〕 1、设z=,那么∣z ∣=〔 〕B. C.1 D.2、集合A={x|x 2-x-2>0},那么A =〔 〕A 、{x|-1<x<2}B 、{x|-1≤x ≤2}C 、{x|x<-1}∪{x|x>2}D 、{x|x ≤-1}∪{x|x ≥2}3、某地区经过一年的新农村建立,农村的经济收入增加了一倍,实现翻番,为更好地理解该地区农村的经济收入变化情况,统计了该地区新农村建立前后农村的经济收入构成比例,得到如下饼图:那么下面结论中不正确的选项是〔 〕A. 新农村建立后,种植收入减少B. 新农村建立后,其他收入增加了一倍以上 建立前经济收入构成比例建立后经济收入构成比例D.新农村建立后,养殖收入与第三产业收入的总和超过了经济收入的一半4、记Sn 为等差数列{an}的前n项和,假设3S3= S2+ S4,a1=2,那么a5=〔〕A、-12B、-10C、10D、125、设函数f〔x〕=x³+〔a-1〕x²+ax .假设f〔x〕为奇函数,那么曲线y= f〔x〕在点〔0,0〕处的切线方程为〔〕A.y= -2xB.y= -xC.y=2xD.y=x6、在∆ABC中,AD为BC边上的中线,E为AD的中点,那么=〔〕A. -B. -C. +D. +7、某圆柱的高为2,底面周长为16,其三视图如右图。

圆柱外表上的点M在正视图上的对应点为A,圆柱外表上的点N在左视图上的对应点为B,那么在此圆柱侧面上,从M到N的途径中,最短途径的长度为〔〕A. 2B. 2C. 3D. 28.设抛物线C:y²=4x的焦点为F,过点〔-2,0〕且斜率为的直线与C交于M,N两点,那么·=( )9.函数f〔x〕= g〔x〕=f〔x〕+x+a,假设g〔x〕存在2个零点,那么a的取值范围是( )A. [-1,0〕B. [0,+∞〕C. [-1,+∞〕D. [1,+∞〕10.下列图来自古希腊数学家希波克拉底所研究的几何图形。

新课标Ⅰ高考数学理科真题试卷(含答案)

新课标Ⅰ高考数学理科真题试卷(含答案)

绝密(juémì)★启封(qǐ fēnɡ)并使用完毕前试题(shìtí)类型:A 2021年普通高等学校招生全国(quán ɡuó)统一考试理科(lǐkē)数学考前须知:1.本试卷分第一卷(选择题)和第二卷(非选择题)两局部.第一卷1至3页,第二卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第一卷一.选择题:本大题共12小题,每题5分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的.〔1〕设集合,,那么〔A〕〔B〕〔C〕〔D〕〔2〕设,其中x,y是实数,那么〔A〕1〔B〕〔C〕〔D〕2〔3〕等差数列前9项的和为27,,那么〔A〕100〔B〕99〔C〕98〔D〕97〔4〕某公司的班车在7:00,8:00,8:30发车,学.科网小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,那么他等车时间不超过10分钟的概率是〔A〕〔B〕〔C〕〔D〕〔5〕方程–=1表示双曲线,且该双曲线两焦点间的距离为4,那么n的取值范围是〔A〕(–1,3) 〔B〕(–1,3) 〔C〕(0,3) 〔D〕(0,3)〔6〕如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.假设该几何体的体积是,那么它的外表积是〔A〕17π〔B〕18π〔C〕20π〔D〕28π〔7〕函数y=2x2–e|x|在[–2,2]的图像大致为〔A〕〔B〕〔C〕〔D〕〔8〕假设(jiǎshè),那么(nà me)〔A〕〔B〕〔C〕〔D〕〔9〕执行右面(yòumiàn)的程序图,如果输入的,那么(nà me)输出x,y的值满足(mǎnzú)〔A〕〔B〕〔C〕〔D〕(10)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的标准线于D、E两点.|AB|=,|DE|=,那么C的焦点到准线的距离为(A)2 (B)4 (C)6 (D)8(11)平面a过正方体ABCD-A1B1C1D1的顶点A,a//平面CB1D1,平面ABCD=m,a 平面ABA1B1=n,那么m、n所成角的正弦值为(A)(B) (C) (D)12.函数(hánshù)为的零点(línɡ diǎn),为图像(tú xiànɡ)的对称轴,且()f x在单调(dāndiào),那么的最大值为〔A〕11 〔B〕9 〔C〕7 〔D〕5第II卷本卷包括必考题(kǎo tí)和选考题两局部.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每题5分(13)设向量a=(m,1),b=(1,2),且|a+b|2=|a|2+|b|2,那么m=.(14)的展开式中,x3的系数是.〔用数字填写答案〕〔15〕设等比数列满足a1+a3=10,a2+a4=5,那么a1a2…a n的最大值为。

2021年全国统一高考数学试卷(理科)(乙卷)-含解析

2021年全国统一高考数学试卷(理科)(乙卷)-含解析

2021年全国统一高考数学试卷(理科)(乙卷)一、单选题(本大题共12小题,共60.0分)1.设2(z+z−)+3(z−z−)=4+6i,则z=()A. 1−2iB. 1+2iC. 1+iD. 1−i2.已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=()A. ⌀B. SC. TD. Z3.已知命题p:∃x∈R,sinx<1;命题q:∀x∈R,e|x|≥1,则下列命题中为真命题的是()A. p∧qB. ¬p∧qC. p∧¬qD. ¬(p∨q)4.设函数f(x)=1−x1+x,则下列函数中为奇函数的是()A. f(x−1)−1B. f(x−1)+1C. f(x+1)−1D. f(x+1)+15.在正方体ABCD−A1B1C1D1中,P为B1D1的中点,则直线PB与AD1所成的角为()A. π2B. π3C. π4D. π66.将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有()A. 60种B. 120种C. 240种D. 480种7.把函数y=f(x)图像上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移π3个单位长度,得到函数y=sin(x−π4)的图像,则f(x)=()A. sin(x2−7π12) B. sin(x2+π12) C. sin(2x−7π12) D. sin(2x+π12)8.在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于74的概率为()A. 79B. 2332C. 932D. 299.魏晋时期刘徽撰写的《海岛算经》是关于测量的数学著作,其中第一题是测量海岛的高.如图,点E,H,G在水平线AC上,DE和FG是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG称为“表距”,GC和EH都称为“表目距”,GC与EH的差称为“表目距的差”,则海岛的高AB=()A. B.C. D.10.设a≠0,若x=a为函数f(x)=a(x−a)2(x−b)的极大值点,则()A. a<bB. a>bC. ab<a2D. ab>a211.设B是椭圆C:x2a2+y2b2=1(a>b>0)的上顶点,若C上的任意一点P都满足|PB|≤2b,则C的离心率的取值范围是()A. [√22,1) B. [12,1) C. (0,√22] D. (0,12]12.设a=2ln1.01,b=ln1.02,c=√1.04−1,则()A. a<b<cB. b<c<aC. b<a<cD. c<a<b二、单空题(本大题共4小题,共20.0分)13.已知双曲线C:x2m−y2=1(m>0)的一条渐近线为√3x+my=0,则C的焦距为.14.已知向量a⃗=(1,3),b⃗ =(3,4),若(a⃗−λb⃗ )⊥b⃗ ,则λ=______ .15.记△ABC的内角A,B,C的对边分别为a,b,c,面积为√3,B=60°,a2+c2=3ac,则b=______ .16.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为______ (写出符合要求的一组答案即可).三、解答题(本大题共7小题,共82.0分)17.某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备9.810.310.010.29.99.810.010.110.29.7新设备10.110.410.110.010.110.310.610.510.410.5旧设备和新设备生产产品的该项指标的样本平均数分别记为x−和y−,样本方差分别记为s12和s22.(1)求x−,y−,s12,s22;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y−−x−≥,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不2√s12+s2210认为有显著提高).18.如图,四棱锥P−ABCD的底面是矩形,PD⊥底面ABCD,PD=DC=1,M为BC中点,且PB⊥AM.(1)求BC;(2)求二面角A−PM−B的正弦值.19.记S n为数列{a n}的前n项和,b n为数列{S n}的前n项积,已知2Sn +1b n=2.(1)证明:数列{b n}是等差数列;(2)求{a n}的通项公式.20.己知函数f(x)=ln(a−x),已知x=0是函数y=xf(x)的极值点.(1)求a;(2)设函数g(x)=x+f(x)xf(x).证明:g(x)<1.21.已知抛物线C:x2=2py(p>0)的焦点为F,且F与圆M:x2+(y+4)2=1上点的距离的最小值为4.(1)求p;(2)若点P在M上,PA,PB为C的两条切线,A,B是切点,求△PAB面积的最大值.22.在直角坐标系xOy中,⊙C的圆心为C(2,1),半径为1.(1)写出⊙C的一个参数方程;(2)过点F(4,1)作⊙C的两条切线.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程.23.已知函数f(x)=|x−a|+|x+3|.(1)当a=1时,求不等式f(x)≥6的解集;(2)若f(x)>−a,求a的取值范围.答案和解析1.【答案】C【解析】解:设z =a +bi ,a ,b 是实数, 则z −=a −bi ,则由2(z +z −)+3(z −z −)=4+6i , 得2×2a +3×2bi =4+6i , 得4a +6bi =4+6i , 得{4a =46b =6,得a =1,b =1, 即z =1+i , 故选:C .利用待定系数法设出z =a +bi ,a ,b 是实数,根据条件建立方程进行求解即可. 本题主要考查复数的基本运算,利用待定系数法建立方程是解决本题的关键,是基础题.2.【答案】C【解析】 【分析】本题考查集合的包含关系,以及交集运算,属于基础题.首先判断集合T 中任意元素都是集合S 的元素,从而得出集合T 是集合S 的子集,然后即可求它们的交集.解:因为当n ∈Z 时,集合T 中任意元素t =4n +1=2·(2n )+1∈S 所以T ⊊S ,于是S ∩T =T . 故选:C .3.【答案】A【解析】解:对于命题p :∃x ∈R ,sinx <1,当x =0时,sinx =0<1,故命题p 为真命题,¬p 为假命题; 对于命题q :∀x ∈R ,e |x|≥1,因为|x|≥0,又函数y =e x 为单调递增函数,故e |x|≥e 0=1, 故命题q 为真命题,¬q 为假命题,所以p∧q为真命题,¬p∧q为假命题,p∧¬q为假命题,¬(p∨q)为假命题,故选:A.先分别判断命题p和命题q的真假,然后由简单的复合命题的真假判断法则进行判断,即可得到答案.本题考查了命题真假的判断,解题的关键是掌握全称命题和存在性命题真假的判断方法,考查了逻辑推理能力,属于基础题.4.【答案】B【解析】解:因为f(x)=1−x1+x =−(x+1)+21+x=−1+2x+1,所以函数f(x)的对称中心为(−1,−1),所以将函数f(x)向右平移一个单位,向上平移一个单位,得到函数y=f(x−1)+1,该函数的对称中心为(0,0),故函数y=f(x−1)+1为奇函数.故选:B.先根据函数f(x)的解析式,得到f(x)的对称中心,然后通过图象变换,使得变换后的函数图象的对称中心为(0,0),从而得到答案.本题考查了函数奇偶性和函数的图象变换,解题的关键是确定f(x)的对称中心,考查了逻辑推理能力,属于基础题.5.【答案】D【解析】【分析】由AD1//BC1,得∠PBC1是直线PB与AD1所成的角(或所成角的补角),由此利用余弦定理,求出直线PB与AD1所成的角.本题考查异面直线所成角和余弦定理,考查运算求解能力,是基础题.【解答】解:∵AD1//BC1,∴∠PBC1是直线PB与AD1所成的角(或所成角的补角),设正方体ABCD−A1B1C1D1的棱长为2,则PB1=PC1=12√22+22=√2,BC1=√22+22=2√2,BP=√22+(√2)2=√6,∴cos∠PBC1=PB2+BC12−PC122×PB×BC1=2×√6×2√2=√32,∴∠PBC1=π6,∴直线PB与AD1所成的角为π6.故选:D.6.【答案】C【解析】解:5名志愿者选2个1组,有C52种方法,然后4组进行全排列,有A44种,共有C52A44=240种,故选:C.5分先选2人一组,然后4组全排列即可.本题主要考查排列组合的应用,利用先分组后排列的方法是解决本题的关键,是基础题.7.【答案】B【解析】解:∵把函数y=f(x)图像上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移π3个单位长度,得到函数y=sin(x−π4)的图像,∴把函数y=sin(x−π4)的图像,向左平移π3个单位长度,得到y=sin(x+π3−π4)=sin(x+π12)的图像;再把图像上所有点的横坐标变为原来的2倍,纵坐标不变,可得f(x)=sin(12x+π12)的图像.故选:B.由题意利用函数y=Asin(ωx+φ)的图像变换规律,得出结论.本题主要考查函数y=Asin(ωx+φ)的图像变换规律,属基础题.8.【答案】B【解析】解:由题意可得可行域:{0<x <11<y <2x +y >74,可得三角形的面积=12×34×34=932, 1−932=2332.故选:B .由题意可得可行域:{0<x <11<y <2x +y >74,可得三角形的面积,结合几何概型即可得出结论.本题考查了线性规划知识、三角形的面积、几何概型、对立事件的概率计算公式,考查了推理能力与计算能力,属于基础题.9.【答案】A【解析】解:DEAB =EHAH ,FGBA =CGCA ,故EHAH =CGCA ,即EHAE+EH =CGAE+EG+GC , 解得:AE =EH⋅EGCG−EH ,AH =AE +EH , 故:AB =DE⋅AH EH =DE(AE+EH)EH=DE⋅EGCG−EH +DE .故选:A .根据相似三角形的性质、比例的性质、直角三角形的边角关系即可得出.本题考查了相似三角形的性质、比例的性质、直角三角形的边角关系,考查了推理能力与计算能力,属于基础题.10.【答案】D【解析】 【分析】本题考查利用导数研究函数的极值、极值点,考查一元二次不等式的解法,考查分类讨论思想,属于较难题.根据a ≠0,且x =a 为函数f (x )=a (x −a )2(x −b )的极大值点,利用导数来判断a ,b 该满足的条件,为此需要判断函数在x =a 左右的单调性,本题需要分a =b ,a >0并且a<b,a>0,并且a>b,a<0,并且a<b,a<0,并且a>b共5种情况讨论,由此可以推出:a>0并且a<b或a<0并且a>b,然后可判断选项的正确性.【解答】解:因为a≠0,(Ⅰ)所以当a=b时,函数f(x)=a(x−a)3在(−∞,+∞)单调,无极值,不合条件;(Ⅱ)当a≠b时,因为f′(x)=3a(x−a)(x−a+2b3),所以,①若a>0并且a<b时,a<a+2b3,由f′(x)>0,得:x<a或x>a+2b3,由f′(x)<0,得:a<x<a+2b3,所以这时f(x)在(−∞,a)上单调递增,在(a,a+2b3)上单调递减,x=a是函数f(x)的极大值点,符合条件;②若a>0,并且a>b时,a>a+2b3,由f′(x)>0,得:x<a+2b3或x>a,由f′(x)<0,得:a+2b3<x<a,所以这时f(x)在(a+2b3,a)上单调递减,在(a,+∞)上单调递增,x=a是函数f(x)的极小值点,不符合条件;③若a<0,并且a<b时,a<a+2b3,由f′(x)>0,得:a<x<a+2b3,由f′(x)<0,得:x<a或x>a+2b3,这时f(x)在(−∞,a)上单调递减,在(a,a+2b3)上单调递增,x=a是函数f(x)的极小值点,不符合条件;④若a<0,并且a>b时,a>a+2b3,由f′(x)>0,得:a+2b3<x<a,由f′(x)<0,得:x<a+2b3或x>a,,所以这时f(x)在(a+2b3,a)上单调递增,在(a,+∞)上单调递增,x=a是函数f(x)的极大值点,符合条件;因此,若x=a为函数f(x)=a(x−a)2(x−b)的极大值点,则a,b必须满足条件:a>0并且a<b或a<0并且a>b.由此可见,A,B均错误;又总有ab−a2=a(b−a)>0成立,所以C错误,D正确.故选D.11.【答案】C【解析】【分析】本题重点考查椭圆的性质,属于一般题.设P(acosθ,bsinθ)(θ∈[0,2π),求得a2b2⩽1+21−sinθ,利用正弦函数的性质求得a2b2≤2,进而可求离心率的范围.【解答】解:设P(acosθ,bsinθ)(θ∈[0,2π)由题意,得B(0,b),则|PB|=√a2cos2θ+b2(sinθ−1)2≤2b∴a2cos2θ+b2(sinθ−1)2⩽4b2,当cosθ=0时,不等式成立;当cosθ≠0时,∴a2b2⩽3−sin2θ+2sinθcos2θ=−(sinθ−3)(sinθ+1)(1−sinθ)(1+sinθ)=3−sinθ1−sinθ=1+21−sinθ,而1+21−sinθ≥2,∴a2b2≤2,∴e=ca =√1−b2a2⩽√22,又0<e<1故椭圆离心率的取值范围是(0,√22]故选:C.12.【答案】B【解析】解:∵a=2ln1.01=ln1.0201,b=ln1.02,∴a>b,令f(x)=2ln(1+x)−(√1+4 x−1),0<x<1,令√1+4 x=t,则1<t<√5∴x= t2−14,∴g(t)=2ln(t2+34)−t+1=2ln(t2+3)−t+1−2ln4,∴g′(t)=4tt2+3−1=4t−t2−3t2+3=−(t−1)(t−3)t2+3>0,∴g(t)在(1,√5)上单调递增,∴g(t)>g(1)=2ln4−1+2ln4=0,∴f(x)>0,∴a>c,同理令ℎ(x)=ln(1+2x)−(√1+4 x−1),再令√1+4 x=t,则1<t<√5∴x= t2−14,∴φ(t)=ln(t2+12)−t+1=ln(t2+1)−t+1−ln2,∴φ′(t)=2tt2+1−1=−(t−1)2t2+1<0,∴φ(t)在(1,√5)上单调递减,∴φ(t)<φ(1)=ln2−1+1−ln2=0,∴ℎ(x)<0,∴c>b,∴a>c>b.故选:B.构造函数f(x)=2ln(1+x)−(√1+4 x−1),0<x<1,ℎ(x)=ln(1+2x)−(√1+4 x−1),利用导数和函数的单调性即可判断.本题考查了不等式的大小比较,导数和函数的单调性和最值的关系,考查了转化思想,属于难题.13.【答案】4【解析】【分析】本题考查双曲线的几何性质,涉及双曲线的渐近线方程的分析,属于基础题.根据题意,由双曲线的性质可得√3=√m,解可得m的值,即可得双曲线的标准方程,据此计算c的值,即可得答案.【解答】解:根据题意,双曲线C:x2m−y2=1(m>0)的一条渐近线为√3x+my=0,则有√3=√m,解可得m=3,则双曲线的方程为x23−y2=1,则c=√3+1=2,其焦距2c=4;故答案为:4.14.【答案】35【解析】解:因为向量a⃗=(1,3),b⃗ =(3,4),则a⃗−λb⃗ =(1−3λ,3−4λ),又(a⃗−λb⃗ )⊥b⃗ ,所以(a⃗−λb⃗ )⋅b⃗ =3(1−3λ)+4(3−4λ)=15−25λ=0,解得λ=35.故答案为:35.利用向量的坐标运算求得a⃗−λb⃗ =(1−3λ,3−4λ),再由(a⃗−λb⃗ )⊥b⃗ ,可得(a⃗−λb⃗ )⋅b⃗ =0,即可求解λ的值.本题主要考查数量积的坐标运算,向量垂直的充要条件,考查方程思想与运算求解能力,属于基础题.15.【答案】2√2【解析】解:∵△ABC的内角A,B,C的对边分别为a,b,c,面积为√3,B=60°,a2+c2=3ac,∴12acsinB=√3⇒12ac×√32=√3⇒ac=4⇒a2+c2=12,又cosB=a2+c2−b22ac ⇒12=12−b28⇒b=2√2,(负值舍)故答案为:2√2.由题意和三角形的面积公式以及余弦定理得关于b的方程,解方程可得.本题考查三角形的面积公式以及余弦定理的应用,属基础题.16.【答案】②⑤或③④【解析】解:观察正视图,推出正视图的长为2和高1,②③图形的高也为1,即可能为该三棱锥的侧视图,④⑤图形的长为2,即可能为该三棱锥的俯视图,当②为侧视图时,结合侧视图中的直线,可以确定该三棱锥的俯视图为⑤,当③为侧视图时,结合侧视图虚线,虚线所在的位置有立体图形的轮廓线,可以确定该三棱锥的俯视图为④.故答案为:②⑤或③④.通过观察已知条件正视图,确定该正视图的长和高,结合长、高、以及侧视图视图中的实线、虚线来确定俯视图图形.该题考查了三棱锥的三视图,需要学生掌握三视图中各个图形边长的等量关系,以及对于三视图中特殊线条能够还原到原立体图形中,需要较强空间想象,属于中等题.17.【答案】解:(1)由题中的数据可得,x−=110×(9.8+10.3+10.0+10.2+9.9+9.8+10.0+10.1+10.2+9.7)=10,y−=110×(10.1+10.4+10.1+10.0+10.1+10.3+10.6+10.5+10.4+10.5=10.3,s12=110×[(9.8−10)2+(10.3−10)2+(10−10)2+(10.2−10)2+(9.9−10)2 +(9.8−10)2+(10−10)2+(10.1−10)2+(10.2−10)2+(9.7−10)2]=0.036;s22=110×[(10.1−10.3)2+(10.4−10.3)2+(10.1−10.3)2+(10.0−10.3)2+(10.1−10.3)2+(10.3−10.3)2+(10.6−10.3)2+(10.5−10.3)2+(10.4−10.3)2+(10.5−10.3)2]=0.04;(2)y−−x−=10.3−10=0.3,2√s12+s2210=2√0.036+0.0410=2√0.0076≈0.174,所以y−−x−>2√s12+s2210,故新设备生产产品的该项指标的均值较旧设备有显著提高.【解析】本题考查了样本特征数的计算,解题的关键是掌握平均数与方差的计算公式,考查了运算能力,属于基础题.(1)利用平均数和方差的计算公式进行计算即可;(2)比较y−−x−与2√s12+s2210的大小,即可判断得到答案.18.【答案】解:(1)连结BD,因为PD⊥底面ABCD,且AM⊂平面ABCD,则AM ⊥PD ,又AM ⊥PB ,PB ∩PD =P ,PB ,PD ⊂平面PBD , 所以AM ⊥平面PBD ,又BD ⊂平面PBD ,则AM ⊥BD , 所以∠ABD +∠DAM =90°,又∠DAM +∠MAB =90°, 则有∠ADB =∠MAB ,所以Rt △DAB∽Rt △ABM , 则ADAB =BABM ,所以12BC 2=1,解得BC =√2;(2)因为DA ,DC ,DP 两两垂直,故以点D 为坐标原点建立空间直角坐标系如图所示, 则A(√2,0,0),B(√2,1,0),M(√22,1,0),P(0,0,1),所以AP⃗⃗⃗⃗⃗ =(−√2,0,1),AM ⃗⃗⃗⃗⃗⃗ =(−√22,1,0),BM ⃗⃗⃗⃗⃗⃗ =(−√22,0,0),BP ⃗⃗⃗⃗⃗ =(−√2,−1,1), 设平面AMP 的法向量为n⃗ =(x,y,z), 则有{n ⃗ ⋅AP ⃗⃗⃗⃗⃗ =0n ⃗ ⋅AM ⃗⃗⃗⃗⃗⃗ =0,即{−√2x +z =0−√22x +y =0, 令x =√2,则y =1,z =2,故n ⃗ =(√2,1,2), 设平面BMP 的法向量为m⃗⃗⃗ =(p,q,r), 则有{m ⃗⃗⃗ ⋅BM ⃗⃗⃗⃗⃗⃗ =0m ⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ =0,即{−√22p =0−√2p −q +r =0, 令q =1,则r =1,故m ⃗⃗⃗ =(0,1,1), 所以|cos <n ⃗ ,m ⃗⃗⃗ >|=|n ⃗⃗ ⋅m ⃗⃗⃗ ||n ⃗⃗ ||m ⃗⃗⃗ |=3√7×√2=3√1414, 设二面角A −PM −B 的平面角为α,则sinα=√1−cos 2α=√1−cos 2<n ⃗ ,m ⃗⃗⃗ >=√1−(3√1414)2=√7014,所以二面角A −PM −B 的正弦值为√7014.【解析】(1)连结BD ,利用线面垂直的性质定理证明AM ⊥PD ,从而可以证明AM ⊥平面PBD ,得到AM ⊥BD ,证明Rt △DAB∽Rt △ABM ,即可得到BC 的长度; (2)建立合适的空间直角坐标系,求出所需点的坐标和向量的坐标,然后利用待定系数法求出平面的法向量,由向量的夹角公式以及同角三角函数关系求解即可.本题考查了空间中线段长度求解以及二面角的求解,在求解有关空间角问题的时候,一般会建立合适的空间直角坐标系,将空间角问题转化为空间向量问题进行研究,属于中档题.19.【答案】解:(1)证明:当n =1时,b 1=S 1,由2b 1+1b 1=1,解得b 1=32,当n ≥2时,b nbn−1=S n ,代入2S n+1b n=2,消去S n ,可得2 b n−1b n+1b n=2,所以b b −b n−1=12,所以{b n }是以32为首项,12为公差的等差数列. (2)由题意,得a 1=S 1=b 1=32, 由(1),可得b n =32+(n −1)×12=n+22,由2S n+1b n=2,可得S n =n+2n+1,当n ≥2时,a n =S n −S n−1= n+2n+1−n+1n=−1n(n+1),显然a 1不满足该式,所以a n ={32,n =1−1n(n+1),n ≥2.【解析】(1)由题意当n =1时,b 1=S 1,代入已知等式可得b 1的值,当n ≥2时,将b nb n−1=S n ,代入2S n+1b n=2,可得b b −b n−1=12,进一步得到数列{b n }是等差数列;(2)由a 1=S 1=b 1=32,可得b n =n+22,代入已知等式可得S n =n+2n+1,当n ≥2时,a n =S n −S n−1=−1n(n+1),进一步得到数列{a n }的通项公式.本题考查了等差数列的概念,性质和通项公式,考查了方程思想,是基础题.20.【答案】(1)解:由题意,f(x)的定义域为(−∞,a),令g(x)=xf(x),则g(x)=xln(a −x),x ∈(−∞,a), 则g′(x)=ln(a −x)+x ⋅−1a−x =ln(a −x)+−xa−x ,因为x =0是函数y =xf(x)的极值点,则有g′(x)=0,即lna =0,所以a =1, 当a =1时,g′(x)=ln(1−x)+−x1−x =ln(1−x)+−11−x +1,且g′(0)=0, 因为g′′(x)=−11−x +−1(1−x)2=x−2(1−x)2<0, 则g′(x)在(−∞,1)上单调递减, 所以当x ∈(−∞,a)时,g′(x)>0, 当x ∈(0,1)时,g′(x)<0,所以a=1时,x=0时函数y=xf(x)的一个极大值.综上所述,a=1;(2)证明:由(1)可知,xf(x)=xln(1−x),要证x+f(x)xf(x)<1,即需证明x+ln(1−x)xln(1−x)<1,因为当x∈(−∞,0)时,xln(1−x)<0,当x∈(0,1)时,xln(1−x)<0,所以需证明x+ln(1−x)>xln(1−x),即x+(1−x)ln(1−x)>0,令ℎ(x)=x+(1−x)ln(1−x),则ℎ′(x)=(1−x)⋅−11−x+1−ln(1−x),所以ℎ′(0)=0,当x∈(−∞,0)时,ℎ′(x)<0,当x∈(0,1)时,ℎ′(x)>0,所以x=0为ℎ(x)的极小值点,所以ℎ(x)>ℎ(0)=0,即x+ln(1−x)>xln(1−x),故x+ln(1−x)xln(1−x)<1,所以x+f(x)xf(x)<1.【解析】(1)确定函数f(x)的定义域,令g(x)=xf(x),由极值的定义得到g′(x)=0,求出a的值,然后进行证明,即可得到a的值;(2)将问题转化为证明x+ln(1−x)xln(1−x)<1,进一步转化为证明x+ln(1−x)>xln(1−x),令ℎ(x)=x+(1−x)ln(1−x),利用导数研究ℎ(x)的单调性,证明ℎ(x)>ℎ(0),即可证明.本题考查了导数的综合应用,主要考查了利用导数研究函数的极值问题,利用导数证明不等式问题,此类问题经常构造函数,转化为证明函数的取值范围问题,考查了逻辑推理能力与化简运算能力,属于难题.21.【答案】解:(1)点F(0,p2)到圆M上的点的距离的最小值为|FM|−1=p2+4−1=4,解得p=2;(2)由(1)知,抛物线的方程为x2=4y,即y=14x2,则y′=12x,设切点A(x1,y1),B(x2,y2),则易得l PA :y =x 12x −x 124,l PB :y =x 22x −x 224,从而得到P(x 1+x 22,x 1x 24),设l AB :y =kx +b ,联立抛物线方程,消去y 并整理可得x 2−4kx −4b =0, ∴Δ=16k 2+16b >0,即k 2+b >0,且x 1+x 2=4k ,x 1x 2=−4b , ∴P(2k,−b),∵|AB|=√1+k 2⋅√(x 1+x 2)2−4x 1x 2=√1+k 2⋅√16k 2+16b , 点P 到直线AB 的距离d =2√k 2+1,∴S △PAB =12|AB|d =4(k 2+b)32①,又点P(2k,−b)在圆M :x 2+(y +4)2=1上, 故k 2=1−(b−4)24,代入①得,S △PAB =4(−b 2+12b−154)32,而y p =−b ∈[−5,−3],∴当b =5时,(S △PAB )max =20√5.【解析】本题考查圆锥曲线的综合运用,考查直线与抛物线的位置关系,考查运算求解能力,属于拔高题.(1)由点F 到圆M 上的点最小值为4建立关于p 的方程,解出即可;(2)对y =14x 2求导,由导数的几何意义可得出直线PA 及PB 的方程,进而得到点P 的坐标,再将AB 的方程与抛物线方程联立,可得P(2k,−b),|AB|以及点P 到直线AB 的距离,进而表示出△PAB 的面积,再求出其最小值即可.22.【答案】解:(1)⊙C 的圆心为C(2,1),半径为1,则⊙C 的标准方程为(x −2)2+(y −1)2=1, ⊙C 的一个参数方程为{x =2+cosθy =1+sinθ(θ为参数).(2)由题意可知两条切线方程斜率存在,设切线方程为y −1=k(x −4),即kx −y −4k +1=0, 圆心C(2,1)到切线的距离d =√k 2+1=1,解得k =±√33,所以切线方程为y =±√33(x −4)+1,因为x =ρcosθ,y =ρsinθ,所以这两条切线的极坐标方程为ρsinθ=±√33(ρcosθ−4)+1.【解析】(1)求出⊙C的标准方程,即可求得⊙C的参数方程;(2)求出直角坐标系中的切线方程,再由x=ρcosθ,y=ρsinθ即可求解这两条切线的极坐标方程.本题主要考查圆的参数方程,普通方程与极坐标方程的转化,考查运算求解能力,属于基础题.23.【答案】解:(1)当a=1时,f(x)=|x−1|+|x+3|={−2x−2,x≤−3 4,−3<x<12x+2,x≥1,∵f(x)≥6,∴{x≤−3−2x−2≥6或{−3<x<1 4≥6或{x≥12x+2≥6,∴x≤−4或x≥2,∴不等式的解集为(−∞,−4]∪[2,+∞).(2)f(x)=|x−a|+|x+3|≥|x−a−x−3|=|a+3|,若f(x)>−a,则|a+3|>−a,两边平方可得a2+6a+9>a2,解得a>−32,即a的取值范围是(−32,+∞).【解析】(1)将a=1代入f(x)中,根据f(x)≥6,利用零点分段法解不等式即可;(2)利用绝对值三角不等式可得f(x)≥|a+3|,然后根据f(x)>−a,得到|a+3|>−a,求出a的取值范围.本题主要考查绝对值不等式的解法,考查运算求解能力,属于基础题.。

高考理科数学(1卷):答案详细解析(最新)

高考理科数学(1卷):答案详细解析(最新)

2020年普通高等学校招生全国统一考试理科数学(I 卷)答案详解一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(复数)若1z i =+,则22z z -=A.0B.1 D.2【解析】∵1z i =+,∴222(2)(1)(1)12z z z z i i i -=-=+-=-=-,∴2=22z z -.【答案】D2.(集合)设集合{}240A x x =-≤,{}20B x x a =+≤,且{}21A B x x =-≤≤ ,则a =A.-4B.-2C.2D.4【解析】由已知可得{}22A x x =-≤≤,2a B x x ⎧⎫=≤-⎨⎬⎩⎭,∵{}21A B x x =-≤≤ ,∴12a -=,解得2a =-.【答案】B 3.(立体几何,同文3)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A.14- B.12 C.14+ D.12+【解析】如图A3所示,设正四棱锥底面的边长为a ,则有22221212h am a h m ⎧=⎪⎪⎨⎛⎫⎪+= ⎪⎪⎝⎭⎩整理得22420m am a --=,令m t a =,则有24210t t --=,∴114t +=,214t -=(舍去),即14m a +=.图A3【答案】C4.(解析几何)已知A 为抛物线2:2(0)C y px p =>上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =A .2B .3C .6D .9【解析】设A 点的坐标为(m ,n ),∵点A 到C 的焦点的距离为12,∴m =9,∵点A 到C 的焦点的距离为12,∴122p m +=,解得6p =.【答案】C5.(概率统计,同文5)某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:C )的关系,在20个不同的温度条件下进行种子的发芽实验,由实验数据,)(i i x y i =(1,2,…,20)得到下面的散点图:由此散点图,在10C 至40C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是A.y a bx =+B.2y a bx =+C.x y a be =+D.ln y a b x=+【解析】根据散点图的趋势和已学函数图象可知,本题的回归方程类型为对数函数,故选D 选项.【答案】D6.(函数)函数43()2f x x x =-的图像在点(1,(1))f 处的切线方程为A .21y x =--B .21y x =-+C .23y x =-D .21y x =+【解析】32()46f x x x '=-,∴函数()f x 的图像在点(1,(1))f 处的切线斜率为(1)2k f '==-,又∵(1)1f =-,∴所求的切线方程为12(1)y x +=--,化简为21y x =-+.【答案】B7.(三角函数,同文7)设函数()cos()6f x x πω=+在[]ππ-,的图像大致如下图,则()f x 的最小正周期为A.109πB.76πC.43πD.32π【解析】∵函数过点4π,09⎛⎫- ⎪⎝⎭,∴4ππcos()=096x ω-+,∴4πππ=962x ω-+-,解得23=ω,∴()f x 的最小正周期为3π4π2==ωT .【答案】C 8.(概率统计)25()()y x x y x++的展开式中33x y 的系数为A.5 B.10 C.15 D.20【解析】∵5()x y +展开式的通项公式为55C r r r x y -(r =0,1,2,3,4,5),∴1r =时,2141335C 5y x y x y x=,∴3r =时,323335C 10x x y x y =,∴展开式中的33x y 系数为5+10=15.【答案】C9.(三角函数)已知(0,)α∈π,且3cos28cos 5αα-=,则sin α=A.53 B.23 C.13 D.59【解析】应用二倍角公式2cos22cos 1αα=-,将3cos28cos 5αα-=化简为,23cos 4cos 40αα--=,解得2cos 3α=-或cos 2α=(舍去),又∵(0,)α∈π,∴5sin 3α=.【答案】A 10.(立体几何,同文12)已知A ,B ,C 为球O 的球面上的三个点,1O 为△ABC 的外接圆.若 1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A .64πB .48πC .36πD .32π【解析】由题意可知, 1O 为的半径r =2,由正弦定理可知,24sin ==AB r C,则14sin 4sin 60==== OO AB C ,∴球O 的半径4R ==,∴球O 的表面积为24π64πR =.图A10【答案】A11.(解析几何)已知22:2220M x y x y +---= ,直线:20+=l x y ,p 为l 上的动点.过点p 作M 的切线PA ,PB ,切点为,A B ,当PM AB 最小时,直线AB 的方程为A.210x y --= B.210x y +-=C.210x y -+= D.210x y ++=【解析】222:(1)(1)2-+-= M x y , M 的半径r =2,圆心(1,1)M ,由几何知识可知,⊥PM AB ,故1||||=2=||||2||2∆=⋅⋅==四边形APM APBM S PM AB S AP AM AP ,∴⋅PM AB 最小,即PM 最小,此时直线PM ⊥l ,即直线PM 的斜率为12=m k ,故直线PM 的方程为11(1)2-=-y x ,化简为1122=+y x ,∴直线PM 与l 的交点P 的坐标为(1,0)-P ,直线AB 为过点P 作 M 的切线所得切点弦AB 所在的直线,其方程为(11)(1)(01)(1)4---+--=x y ,化简得210++=x y .图A11【答案】D注:过圆外一点00(,)P x y 作222:()()O x a y b r -+-= 的切线所得切点弦所在直线方程为200()()()()x a x a y b y b r --+--=.特别当0a b ==时,切点弦所在直线方程为200x x y y r +=.(具体推到过程,可到百度搜索)12.(函数)若242log 42log +=+a b a b 则A.a >2bB.a <2bC.a >b 2D.a <b 2【解析】由指数和对数运算性质,原等式可化为2222log 2log a b a b +=+,∵222log 1log log 2b b b <+=,∴22222log 2log 2b b b b +<+,∴2222log 2log 2a b a b +<+,设2()2log x f x x =+,则有()(2)f a f b <,由指数函数和对数函数的单调性可知()f x 在(0,)+∞单调递增,∴2a b <.【答案】B二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启封并使用完毕前试题类型:A2016年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合,,则(A)(B)(C)(D)(2)设,其中x,y是实数,则(A)1(B)(C)(D)2(3)已知等差数列前9项的和为27,,则(A)100(B)99(C)98(D)97(4)某公司的班车在7:00,8:00,8:30发车,学.科网小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是(A)(B)(C)(D)(5)已知方程–=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是(A)(–1,3) (B)(–1,3) (C)(0,3) (D)(0,3)(6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是(A)17π(B)18π(C)20π(D)28π(7)函数y=2x2–e|x|在[–2,2]的图像大致为(A)(B)(C)(D)(8)若,则(A)(B)(C)(D)(9)执行右面的程序图,如果输入的,则输出x,y的值满足(A)(B)(C)(D)(10)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的标准线于D、E两点.已知|AB|=,|DE|=,则C 的焦点到准线的距离为(A)2 (B)4 (C)6 (D)8(11)平面a过正方体ABCD-A1B1C1D1的顶点A,a知函数为的零点,为图像的对称轴,且在单调,则的最大值为(A)11 (B)9 (C)7 (D)5第II卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)设向量a=(m,1),b=(1,2),且|a+b|2=|a|2+|b|2,则m=.(14)的展开式中,x3的系数是.(用数字填写答案)(15)设等比数列满足a1+a3=10,a2+a4=5,则a1a2…a n的最大值为。

(16)某高科技企业生产产品A和产品B需要甲、乙两种新型材料。

生产一件产品A需要甲材料,乙材料1kg,用5个工时;生产一件产品B需要甲材料,乙材料,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元。

该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元。

三.解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本题满分为12分)的内角A,B,C的对边分别别为a,b,c,已知(I)求C;(II)若的面积为,求的周长.(18)(本题满分为12分)如图,在已A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,,且二面角D-AF-E与二面角C-BE-F都是.(I)证明平面ABEFEFDC;(II)求二面角E-BC-A的余弦值.(19)(本小题满分12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记表示2台机器三年内共需更换的易损零件数,表示购买2台机器的同时购买的易损零件数.(I)求的分布列;(II)若要求,确定的最小值;(III)以购买易损零件所需费用的期望值为决策依据,在与之中选其一,应选用哪个?20. (本小题满分12分)设圆的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD 于点E.(I)证明为定值,并写出点E的轨迹方程;(II)设点E的轨迹为曲线C1,直线l交C1于M,N两点,学科&网过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.(21)(本小题满分12分)已知函数有两个零点.(I)求a的取值范围;(II)设x1,x2是的两个零点,学科.网证明:+x2<2.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号(22)(本小题满分10分)选修4-1:几何证明选讲如图,△OAB是等腰三角形,∠AOB=120°.以⊙O为圆心,OA为半径作圆.(I)证明:直线AB与O相切;(II)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.(23)(本小题满分10分)选修4—4:坐标系与参数方程在直线坐标系xoy中,曲线C1的参数方程为(t为参数,a>0)。

在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(I)说明C1是哪种曲线,学.科.网并将C1的方程化为极坐标方程;(II)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a。

(24)(本小题满分10分),选修4—5:不等式选讲已知函数f(x)= ∣x+1∣-∣2x-3∣.(I)在答题卡第(24)题图中画出y= f(x)的图像;(II)求不等式∣f(x)∣﹥1的解集。

2016年普通高等学校招生全国统一考试理科数学参考答案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)D(2)B(3)C(4)B(5)A(6)A(7)D(8)C(9)C(10)B(11)A(12)B二、填空题:本大题共4小题,每小题5分(13) (14)10(15)64 (16)三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分为12分)解:(I)由已知及正弦定理得,,即.故.可得,所以.(II)由已知,.又,所以.由已知及余弦定理得,.故,从而.所以的周长为.(18)(本小题满分为12分)解:(I)由已知可得,,所以平面.又平面,故平面平面.(II)过作,垂足为,由(I)知平面.以为坐标原点,的方向为轴正方向,为单位长度,建立如图所示的空间直角坐标系.由(I)知为二面角的平面角,故,则,,可得,,,.由已知,,所以平面.又平面平面,故,.由,可得平面,所以为二面角的平面角,.从而可得.所以,,,.设是平面的法向量,则,即,所以可取.设是平面的法向量,则,同理可取.则.故二面角的余弦值为.学科&网(19)(本小题满分12分)解:(Ⅰ)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为,,,,从而;;;;;;.所以的分布列为(Ⅱ)由(Ⅰ)知,,故的最小值为19.(Ⅲ)记表示2台机器在购买易损零件上所需的费用(单位:元).当时,.学科&网当时,.可知当时所需费用的期望值小于时所需费用的期望值,故应选.20.(本小题满分12分)解:(Ⅰ)因为,,故,所以,故.又圆的标准方程为,从而,所以.由题设得,,,由椭圆定义可得点的轨迹方程为:().(Ⅱ)当与轴不垂直时,设的方程为,,.由得.则,.所以.过点且与垂直的直线:,到的距离为,所以.故四边形的面积.学科&网可得当与轴不垂直时,四边形面积的取值范围为.当与轴垂直时,其方程为,,,四边形的面积为12.综上,四边形面积的取值范围为.(21)(本小题满分12分)解:(Ⅰ).(i)设,则,只有一个零点.(ii)设,则当时,;当时,.所以在上单调递减,在上单调递增.又,,取满足且,则,故存在两个零点.(iii)设,由得或.若,则,故当时,,因此在上单调递增.又当时,,所以不存在两个零点.学科&网若,则,故当时,;当时,.因此在单调递减,在单调递增.又当时,,所以不存在两个零点.综上,的取值范围为.(Ⅱ)不妨设,由(Ⅰ)知,,在上单调递减,所以等价于,即.由于,而,所以.设,则.所以当时,,而,故当时,.从而,故.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号(22)(本小题满分10分)选修4-1:几何证明选讲解:(Ⅰ)设是的中点,连结,因为,所以,.在中,,即到直线的距离等于圆的半径,所以直线与⊙相切.(Ⅱ)因为,所以不是四点所在圆的圆心,设是四点所在圆的圆心,作直线.由已知得在线段的垂直平分线上,又在线段的垂直平分线上,所以.同理可证,.所以.(23)(本小题满分10分)解:⑴(均为参数)∴①∴为以为圆心,为半径的圆.方程为∵∴即为的极坐标方程⑵学科&网两边同乘得即②:化为普通方程为由题意:和的公共方程所在直线即为①—②得:,即为∴∴(24)(本小题满分10分)解:⑴如图所示:⑵当,,解得或当,,解得或或当,,解得或或综上,或或,解集为。

相关文档
最新文档