2017年春季学期新版新人教版七年级数学下学期9.1.2、不等式的性质素材1

合集下载

人教版七年级下册数学9.1.2不等式的性质.docx

人教版七年级下册数学9.1.2不等式的性质.docx

9.1.2 不等式的性质要点感知不等式的性质有:不等式的性质1 不等式的两边加(或减)同一个数(或式子),不等号的方向__________,即如果a>b,那么a ±c__________b±c.不等式的性质2 不等式的两边乘(或除以)同一个__________数,不等号的方向不变,即如果a>b,c>0,那么ac__________bc(或ac__________bc).不等式的性质3 不等式的两边乘(或除以)同一个__________数,不等号的方向改变,即如果a>b,c<0,那么ac__________bc(或ac__________bc).预习练习1-1若a>b,则a-b>0,其依据是( )A.不等式性质1B.不等式性质2C.不等式性质3D.以上都不对1-2若a<b,则3a__________3b,-7a+5__________-7b+5(填“>”“<”或“=”).知识点1 认识不等式的性质1.如果b>0,那么a+b与a的大小关系是( )A.a+b<aB.a+b>aC.a+b≥aD.不能确定2.下列变形不正确的是( )A.由b>5得4a+b>4a+5B.由a>b得b<aC.由-12x>2y得x<-4y D.-5x>-a得x>5a3.若a>b,am<bm,则一定有( )A.m=0B.m<0C.m>0D.m为任何实数4.在下列不等式的变形后面填上依据:(1)如果a-3>-3,那么a>0;______________________________.(2)如果3a<6,那么a<2;______________________________.(3)如果-a>4,那么a<-4.______________________________.5.利用不等式的性质填“>”或“<”.(1)若a>b,则2a+1__________2b+1;(2)若-1.25y<-10,则y__________8;(3)若a<b,且c<0,则ac+c__________bc+c;(4)若a>0,b<0,c<0,则(a-b)c__________0.知识点2 利用不等式的性质解不等式6.利用不等式的性质,求下列不等式的解集.(1)x+13<12;(2)6x-4≥2;(3)3x-8>1;(4)3x-8<4-x.知识点3 不等式的实际应用7.(2013·绵阳)设“▲”、“●”、“■”分别表示三种不同的物体,现用天平秤两次,情况如图所示,那么▲、●、■这三种物体按质量从大到小排列应为( )A.■、●、▲B.▲、■、●C.■、▲、●D.●、▲、■8.某单位打算和一个体车主或一出租车公司签订月租合同.个体车主答应除去每月1 500元租金外,每千米收1元;出租车公司规定每千米收2元,不收其他费用.设该单位每月用车x 千米时,乘坐出租车合算,请写出x 的范围.9.(2014·梅州)若x >y ,则下列式子中错误的是( )A.x-3>y-3B.3x >3y C.x+3>y+3 D.-3x >-3y 10.(2013·长春)不等式2x <-4的解集在数轴上表示为( )11.(2013·恩施)下列命题正确的是( )A.若a >b ,b <c ,则a >cB.若a >b ,则ac >bcC.若a >b ,则ac 2>bc 2D.若ac 2>bc 2,则a >b12.若式子3x+4的值不大于0,则x 的取值范围是( )A.x <-43B.x ≥43C.x <43D.x ≤-4313.利用不等式的基本性质求下列不等式的解集,并说出变形的依据.(1)若x+2 012>2 013,则x__________;(______________________________)(2)若2x>-13,则x__________;(______________________________) (3)若-2x>-13,则x__________;(______________________________)(4)若-7x >-1,则x__________.(______________________________) 14.指出下列各式成立的条件: (1)由mx<n,得x<n m ; (2)由a<b,得ma>mb ;(3)由a>-5,得a 2≤-5a ;(4)由3x>4y ,得3x-m>4y-m.15.利用不等式的性质解下列不等式,并把解集在数轴上表示出来.(1)x+3<-2;(2)9x>8x+1;(3)12x ≥-4;(4)-10x ≤5.16.已知x<y ,试比较2x-8与2y-8的大小,并说明理由.挑战自我17.有一个两位数,个位上的数是a ,十位上的数是b ,如果把这个两位数的个位与十位上的数对调,得到的两位数大于原来的两位数,那么a 与b 哪个大?参考答案课前预习要点感知不变> 正> > 负< < 预习练习1-1 A1-2<>当堂训练1.B2.D3.B4.(1)不等式的性质1(2)不等式的性质2(3)不等式的性质35.(1)> (2)> (3)> (4)<6.(1)x<16. (2)x≥1. (3)x>3. (4)x<3.7.C8.根据题意,得1 500+x>2x,x<1 500.又由于单位每月用车x(千米时)不能是负数.因此,x的取值范围是x>0且x<1 500.课后作业9.D 10.D 11.D 12.D13.(1)>1 不等式两边同时减去2 012,不等号方向不变(2)>-16不等式两边同时除以2,不等号方向不变(3)<16不等式两边同时除以-2,不等号方向改变(4)<7 不等式两边同时乘以-7,不等号方向改变14.(1)m>0.(2)m<0.(3)-5<a≤0.(4)m为任意实数.15.(1)利用不等式性质1,两边都减3,得x<-5.在数轴上表示为(2)利用不等式性质1,两边都减8x,得x>1.在数轴上表示为(3)利用不等式性质2,两边都乘以2,得x≥-8.在数轴上表示为(4)利用不等式性质3,两边都除以-10,得x≥-1 2 .在数轴上表示为16.2x-8<2y-8.理由:∵x<y,∴利用不等式性质2,两边都乘以2,得2x<2y.再利用不等式性质1,两边都减8,得2x-8<2y-8.17.根据题意,得10a+b>10b+a.10a-a>10b-b.9a>9b.a>b.。

(2)新人教版七年级下9.1.2不等式的性质(1)(人教版)

(2)新人教版七年级下9.1.2不等式的性质(1)(人教版)
②运用不等式基本性质3时,要变两个号,一 个性质符号,另一个是不等号. ③ 补充两点:
(1)如果a>b,那么b<a 。 (2)如果a>b, b >c,那么 a > c。
作业: 教科书第134页 习题9.1第4、5、7题
(1) a - 3_>___b - 3; (2)a÷3__>__b÷3 (3) 0.1a__>__0.1b;
(4) -4a__<__-4b (5) 2a+3__>__2b+3; (6) (m2+1) a __>__ (m2+1)b (m为常数)
练习: 已知a<0,用“<”或“>”号填空: (1)a+2 ____2; (2)a-1 _____-1; (3)3a______ 0; (4)-a/4______0; (5)a2_____0; (6)a3______0 (7)a-1______0; (8)|a|______0. 答: (1)a+2<2,根据不等式基本性质1.
由a+2=b+2, 能得到a=b? 由a-2=b-2, 能得到a=b? 由0.5a=0.5b, 能得到a=b? 由 -2a= -2b, 能得到a=b?
等式基本性质1:
等式的两边都加上(或减去)同一个数 (或式子),等式仍旧成立
如果a=b,那么a±c=b±c
等式基本性质2:
等式的两边都乘以(或除以)同一个不 为0的数,等式仍旧成立 如果a=b,那么ac=bc或 a b(c≠0),
(2)a-1<-1,根据不等式基本性质1.
(3)3a<0,根据不等式基本性质2.
(4) -a/4>0,根据不等式基本性质3. (5)因为a<0,两边同乘以a<0, 由不等式基本性质3,得a2>0. (6)因为a<0,两边同乘以a2>0, 由不等式基本性质2,得a3<0. (7)因为a<0,两边同加上-1,由不等式基本性质1, 得a-1<-1.又已知,-1<0,所以 a-1<0. (8)因为a<0,所以a≠0,所以|a|>0.

人教初中数学七下 9.1.2 不等式的性质课件1 【经典初中数学课件 】

人教初中数学七下 9.1.2 不等式的性质课件1 【经典初中数学课件 】

【例】利用不等式的性质解下列不等式:
(3) 2 x﹥50;
3
不等式的两边都除以
2
,不等号的方向不变,得
3
x﹥75
这个不等式的解集在数轴上的表示如图所示:

75
【例】利用不等式的性质解下列不等式: (4)-4x﹥3.
不等式两边都除以_-_4__,不等号的方向_改__变___,得
x﹤- 3 4
这个不等式的解集在数轴上的表示如图所示:
B
C
D
E
三、巩固提高
一、平面上利用有序数对确定物体位置的方法
• 1、行列定位法: 例如: 座位
• 2、方格纸定位法: 例如: 棋盘
• 3、经纬定位法 例如:地图
• 4、区域定位法 例如:探究四的简图
四、概括整合
生活中还有哪些确定位置的其他方法?
(1)如果全班同学站成一列做早操,现在教师 想找某个同学,是否还需要用2个数据呢?
根据发现的规律填空:当不等式两边加或减 同一个数(正数或负数)时,不等号的方向_不__变___.
(3) 6>2, 6×5__﹥__2×5 , 6×(-5)_﹤___2×(-5) ;
(4)–2<3, (-2)×6_﹤__3×6 , (-2) ×(-6)_﹥__3×(-6 ) 当不等式两边乘同一个正数时,不等号的方向_不__变__; 而乘同一个负数时,不等号的方向_改__变__;
这个不等式的解集在数轴上的表示为:
0
33
【例】利用不等式的性质解下列不等式: (2)3x<2x+1; 解:不等式两边都减去_2_x__,不等号的方向_不__变__,得
3x-2x﹤2x+1-2x x﹤1
这个不等式的解集在数轴上的表示如图所示:

七年级下册数学人教版 第9章 不等式与不等式组9.1 不等式9.1.2 不等式的性质【说课稿】

七年级下册数学人教版 第9章  不等式与不等式组9.1  不等式9.1.2  不等式的性质【说课稿】

不等式的性质的认识各位老师,你们好:我今天说课的内容是人教版七年级下册第九章第1节不等式分析教材(说教材)(一)教材地位和作用:不等式的基本性质是数学的主要内容之一,在初中数学中占着重要地位。

它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用,有着重要的实际意义。

同时,不等式的基本性质也为学生以后顺利学习解一元一次不等式和解一元一次不等式组的有关内容,起到重要的奠基作用。

(二)学习目标1掌握不等式的三条基本性质以及推论,能够运用不等式的基本性质将不等式变形解决简单的问题。

2进一步掌握作差比较法比较实数的大小。

3通过教学,培养学生合作交流的意识和大胆猜想、乐于探究的良好思维品质。

(三)教学重点难点不等式的三条基本性质及其应用是重点,不等式基本性质3的探索与运用是难点二、学情分析(说学法)我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。

我们大家现在所教的学生是职中学生,底子薄,学习积极性不高。

所以我们必须从现实生活入手,首先来提高学生的学习兴趣;其次要一步一个脚印,通过师生互动、通过小组研究来降低学习难度,最后达到学习要求。

三、教法分析(说教法)本节课主要采用讲练结合与分组探究的教学方法。

坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,通过引导回顾玩跷跷板的经验,师生共同探究天平两侧物体质量的大小,引导学生感性地认识不等式的三条基本性质,并运用分析法、综合法、作差比较法来证明,通过题组训练,使学生逐步掌握不等式的基本性质,为后面学习一元一次不等式和解一元一次不等式组打下理论基础。

四、教学程序和设想(说教学程序)(一)展示课件创设情景,引入新课<用时8分钟左右>因为数学来源于生活,所以我以学生的实际生活背景为素材创设情景,易于被学生接受、感知。

有助于调动学生的学习积极性。

所以我创设了天平情境问题(如图1),让学生观察课件,说出物体a和c哪个质量更大一些,由此判断:如果a>b,b>c,那么a和c的大小关系如何?这是感性认识。

2017年春季学期新版新人教版七年级数学下学期9.1.2、不等式的性质课件6

2017年春季学期新版新人教版七年级数学下学期9.1.2、不等式的性质课件6

不等式x+2>5的解集,可以表示成________.
x>3
x>3表示x取哪些数?
右边
在数轴上表示大于3的数的点应该数3所对应点的________,因此我们可以在数轴 上把x>3直观地表示出来. 右 空心 画图时要注意方向(向___)和端点(不包括数3,在对应点画_______圆圈).如图所示:
课堂探究
5 4.若a>b,am<bm,则一定有( B ) A.m=0 B.m<0 C.m>0 D.m为任何实数
本课小结
(1)如何利用不等式的性质解简单不等式? (2)依据不等式性质3解不等式时应注意什么? (3)请说明符号“≥”和“≤”的含义?
再见
例1 利用不等式的性质解下列不等式:
(1)
x7 ; 26

(2)

3x 2 x 1
(3)
(4)
.
2 x 50 3
4 x 3
典例精析
( 1)
x 7 26

(2)
3x 2 x 1 ;
分析:解未知数为x的不等式,就是要使 不等式逐步化为 x>a 或 x<a 的形式. 解:根据不等式的性质1, 不等式两边都加7,不等号的方向不变, 得
同样,如果某个不等式的解集为x≤-2, 那么它表示x取那些数? 此时在作x≤-2的数轴表示时,要包括-2的对应点,因而在该点处应 实心 圆点.如图所示: 画_______
左 画,大于向____ 右 画;无等号画______ 空心 圆圈,有等号画_______ 实心 圆点. 总结:小于向____
课堂探究
如果a<b,且c<0,那么ac>bc,a/c>b/c;
本节目标

2017年春季学期新版新人教版七年级数学下学期9.1.2、不等式的性质课件29

2017年春季学期新版新人教版七年级数学下学期9.1.2、不等式的性质课件29

1.设a>b,用“<”“>”填空并回答是根据不等式的哪 一条基本性质. (1) a - 3____b - 3; 不等式的性质1 >
(2) a÷3____b > ÷3
(3) 0.1a____0.1b; > (4) -4a____-4b < (5) 2a+3____2b+3; >
不等式的性质2 不等式的性质2 不等式的性质3 不等式的性质1,2
式的三个性质;(背诵) 2.能够利用不等式的性质解不等式. (移项、合并同类项、系数化为1)
等式的基本性质 等式的基本性质1: 在等式两边都加上或减去同一个数或整式,结果仍等. 等式的基本性质2: 在等式两边都乘以或除以同一个数(除数不为0),结果仍相 等.
用“﹥”或“﹤”填空,并总结其中的规律: (1)5>3,
﹤ ×6 , (-2) ×(-6)___3 ﹥ ×(-6 ) (4)–2<3, (-2)×6___3
不变 当不等式两边乘同一个正数时,不等号的方向_____; 改变 而乘同一个负数时,不等号的方向_____;
不等式的性质1 不等式两边加(或减)同一个数(或式子), 不等号的方向不变. 字母表示为:
(2) 因为
a a 正 数. ,所以a是____ 2 3
(3) 因为ax<a 且 x>1, 所以a是____ 负 数.
2.(无锡∙中考)若a>b,则 ( (A)a>-b (C)-2a>-2b
)
(B)a<-b (D)-2a<-2b
【解析】选D.不等式的两边都乘以-2,不等号的方向 改变.
3.(上海·中考)如果a>b,c<0,那么下列不等式成 立的是( (A)a+c>b+c (C)ac>bc ) (B)c-a>c-b (D) a b c c

人教版数学七年级下册9.1.2《不等式的性质》教学设计1

人教版数学七年级下册9.1.2《不等式的性质》教学设计1

人教版数学七年级下册9.1.2《不等式的性质》教学设计1一. 教材分析《不等式的性质》是人教版数学七年级下册9.1.2的内容,本节内容是在学生已经掌握了不等式的概念和基本运算的基础上进行教学的。

本节课的主要内容是让学生了解和掌握不等式的性质,包括不等式的两边同时加减同一个数或式子,不等式的两边同时乘除同一个正数,不等式的两边同时乘除同一个负数,以及不等式的传递性质。

这些性质在解决实际问题和进行不等式运算中具有重要作用。

二. 学情分析学生在七年级上册已经学习了不等式的基本概念和基本运算,对于不等式的符号和基本运算规则有一定的了解。

但是,对于不等式的性质还没有接触过,需要通过本节课的学习来掌握。

学生的思维方式主要以直观形象思维为主,因此,在教学过程中需要通过具体的例子和实际问题来帮助学生理解和掌握不等式的性质。

三. 教学目标1.了解和掌握不等式的性质,包括不等式的两边同时加减同一个数或式子,不等式的两边同时乘除同一个正数,不等式的两边同时乘除同一个负数,以及不等式的传递性质。

2.能够运用不等式的性质解决实际问题和进行不等式运算。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.教学重点:不等式的性质及其应用。

2.教学难点:不等式的传递性质的理解和应用。

五. 教学方法1.情境教学法:通过具体的例子和实际问题,引导学生理解和掌握不等式的性质。

2.互动教学法:通过教师提问和学生回答,引导学生主动参与课堂,巩固所学知识。

3.练习法:通过大量的练习题,让学生巩固不等式的性质,提高解题能力。

六. 教学准备1.教学PPT:制作教学PPT,包括不等式的性质的讲解和练习题。

2.练习题:准备一些关于不等式的性质的练习题,用于课堂练习和巩固所学知识。

七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本节课的内容,例如:“小明比小红高,小红比小华高,请问小明比小华高吗?”让学生思考并回答,引导学生了解不等式的性质。

(新人教版)数学七年级下册:《不等式的性质》讲义及习题(含答案)

(新人教版)数学七年级下册:《不等式的性质》讲义及习题(含答案)

9.1.2不等式的性质讲义[教学目标]1.理解不等式的性质,掌握不等式的解法2.培养学生的数感,渗透数形结合的思想.[教学重点与难点]重点:不等式的性质和解法.难点:不等号方向的确定.[教学过程]一.问题探知发现规律 :问题1 用”>””<”填空并总结规律: 请1)5>3 , 5+2 3+2, 5-2 3-22)-1<3, -1+2 3+2, -1-3 3-33)6>2, 6×5 2×5, 6×(-5) 2×(-5)4)-2<3, (-2)×6 3×6, (-2)×(-6) 3×(-6)由上面规律填空:(1)当不等式两边加上或减去同一个数(正数或负数)时,不等号的方向 ;(2)当不等式两边乘同一个正数时,不等号的方向 ;而乘同一个负数时,不等号的方向 .不等式性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向 .(2)不等式两边乘(或除以)同一个 ,不等号的方向不变.(3)不等式来年改变乘(或除以)同一个 ,不等号的方向二.举例:例1 利用不等式的性质,填”>”,:<”(1)若a>b,则2a+1 2b+1;(2)若-1.25y<10,则y -8;(3)若a<b,且c>0,则ac+c bc+c;(4)若a>0,b<0,c<0,则(a-b)c 0.例2 利用不等式性质解下列不等式,并把解集在数轴上表示出来.(1)x-7>26; (2)3x<2x+1;(3)32x>50; (4)-4 x >3.三.课堂巩固:1.下列哪些是不等式x +3 > 6的解?哪些不是?-4,-2. 5,0,1,2.5,3,3.2,4.8,8,122.判断(1)∵a < b ∴ a -b < b -b(2)∵a < b ∴ 33b a < (3)∵a < b ∴ -2a < -2b(4)∵-2a > 0 ∴ a > 0(5)∵-a < 0 ∴ a < 33.填空(1)∵ 2a > 3a ∴ a 是 数(2)∵ 23a a < ∴ a 是 数 (3)∵ax < a 且 x > 1 ∴ a 是 数4.根据下列已知条件,说出a 与b 的不等关系,并说明是根据不等式哪一条性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学习不等式的性质
不等式的三条性质是不等式变形的重要依据.同学们只有深刻理解,熟练掌握,才会灵活运用.希望同学们在学习不等式的性质时,注意以下四个方面的问题.
一、注意不等式的性质与等式的性质联系及区别
联系:不等式两边加(或减)同一个数或式子,都乘(或除以)同一个正数,不等号的方向不变;而等式两边加(或减)同一个数或式子,都乘(或除以)同一个正数,结果仍相等.
区别:对于等式来说,在两边乘(或除以)同一个负数,结果仍相等;而对于不等式来说,在用负数乘以(或除以)不等式的两边时,不等号的方向却要改变.正是因为不等式的性质与等式的性质的这种联系及区别,导致了解一元一次不等式与解一元一次方程的联系及区别.
二、注意在不等式的两边加(或减)同一个式子,却不能在不等式的两边乘(或除以)同一个式子.
三、注意对不等号的方向变与不变的理解
例如,由不等式3>1可以得到1+4<3+4.或许有的同学会认为,在不等式都加上4,不等号的方向发生了改变,这不与不等式的性质1相矛盾吗?这到底是怎么回事呢?不等式1+4<3+4确实成立呀!其实这与不等式的性质1并不矛盾.判断一个不等式的不等号方向变与不变,应将原不等式的左右两边经过变形后仍然放在不等式的左、右两边,然后再根据不等式的性质来确定不等号的方向变与不变,因此由不等式3>1,根据不等式的性质1,可以得到不等式3+4>1+4,而3+4>1+4等价于1+4<3+4,所以并不矛盾.(请同学们思考:怎样根据不等式的性质,将不等式3+4>1+4变形为不等式1+4<3+4).
例1 已知关于x 的不等式2<x a )1(-的解集为x <
a
-12,则a 的取值范围是( ). (A)a >0 (B)a >1 (C) a <0 (D) a <1
分析:对照两个不等式可以发现,已知不等式左、右两边经过变形后位置发生了改变(即2在原不等式的左边,经过变形后在右边,含x 的项在已知不等式的右边,经过变形后在左边),因此应先将2<x a )1(-变形为x a )1(->2,再根据不等式的性质确定a 的取值范围.
解:不等式2<x a )1(-即x a )1(->2.
根据不等式的性质3,得a -1<0,即a >1.故应选(B ).
四、一定要注意不等式的性质3的警惕,即不等式两边同乘以(或除以)同一个负数,不等号的方向不变.这条性质对初学者来说最容易忽视,导致不等式变形错误,应加以重视.
例2设b a >,用“>”或“<”填空:a 4-__b 4-.
错解:易填“>”.
正解:根据不等式的性质3,在不等式的两边同乘以-4,不等号的方向改变,故应填“<”.。

相关文档
最新文档