七年级下学期数学期末压轴题终极版
七年级下期末真题精选(压轴60题19个考点专练)(原卷版)

七年级下期末真题精选(压轴60题19个考点专练)一.幂的乘方与积的乘方(共1小题)1.(2021春•西湖区校级期末)已知a,b,c为自然数,且满足2a×3b×4c=192,则a+b+c的取值不可能是()A.5B.6C.7D.8二.多项式乘多项式(共1小题)2.(2021春•鄞州区校级期末)若(x﹣3)(x+m)=x2+nx﹣15,求的值.三.完全平方公式的几何背景(共2小题)3.(2021春•奉化区校级期末)如图,将几个小正方形与小长方形拼成一个边长为(a+b+c)的正方形.(1)若用不同的方法计算这个边长为(a+b+c)的正方形面积,就可以得到一个等式,这个等式可以为(只要写出一个即可);(2)请利用(1)中的等式解答下列问题:①若三个实数a,b,c满足a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;②若三个实数x,y,z满足2x×4y÷8z=,x2+4y2+9z2=44,求2xy﹣3xz﹣6yz的值.4.(2017春•庆元县期末)如图所示,图甲由长方形①,长方形②组成,图甲通过移动长方形②得到图乙.(1)S甲=,S乙=(用含a、b的代数式分别表示);(2)利用(1)的结果,说明a2、b2、(a+b)(a﹣b)的等量关系;(3)现有一块如图丙尺寸的长方形纸片,请通过对它分割,再对分割的各部分移动,组成新的图形,画出图形,利用图形说明(a+b)2、(a﹣b)2、ab三者的等量关系.四.完全平方式(共1小题)5.(2022春•拱墅区期末)如图,用1块边长为a的大正方形,4块边长为b的小正方形和4块长为a,宽为b的长方形(a>b),密铺成正方形ABCD,已知ab=2,正方形ABCD的面积为S,()A.若a=2b+1,则S=16B.若a=2b+2,则S=25C.若S=25,则a=2b+3D.若S=16,则a=2b+4五.整式的混合运算(共4小题)6.(2022春•宁波期末)如图,将两张长为a,宽为b的长方形纸片按图1,图2两种方式放置,图1和图2中两张长方形纸片重叠部分分别记为①和②,正方形ABCD中未被这两张长方形纸片覆盖部分用阴影表示,图1和图2中阴影部分的面积分别记为S1和S2.若知道下列条件,仍不能求S1﹣S2值的是()A.长方形纸片长和宽的差B.长方形纸片的周长和面积C.①和②的面积差D.长方形纸片和①的面积差7.(2021春•镇海区校级期末)下列计算正确的是()A.a5+a5=2a10B.a3•2a2=2a6C.(a+1)2=a2+1D.(﹣2ab)2=4a2b28.(2020春•义乌市期末)如图,长方形ABCD的边BC=13,E是边BC上的一点,且BE=BA=10.F,G分别是线段AB,CD上的动点,且BF=DG,现以BE,BF为边作长方形BEHF,以DG为边作正方形DGIJ,点H,I均在长方形ABCD内部.记图中的阴影部分面积分别为S1,S2,长方形BEHF和正方形DGIJ的重叠部分是四边形KILH,当四边形KILH的邻边比为3:4时,S1+S2的值为.9.(2019春•江北区期末)一张如图1的长方形铁皮,四个角都剪去边长为30厘米的正方形,再四周折起,做成一个有底无盖的铁盒如图2,铁盒底面长方形的长是4a(cm),宽是3a(cm),这个无盖铁盒各个面的面积之和称为铁盒的全面积.(1)请用a的代数式表示图1中原长方形铁皮的面积;(2)若要在铁盒的各个外表面漆上某种油漆,每元钱可漆的面积为(cm2),则油漆这个铁盒需要多少钱(用a的代数式表示)?(3)铁盒的底面积是全面积的几分之几(用a的代数式表示)?若铁盒的底面积是全面积的,求a的值;(4)是否存在一个正整数a,使得铁盒的全面积是底面积的正整数倍?若存在,请求出这个a,若不存在,请说明理由.六.因式分解的应用(共6小题)10.(2019春•嘉兴期末)在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项x4﹣y4,因式分解的结果是(x﹣y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x+y)=18,(x﹣y)=0,(x2+y2)=162,于是就可以把“180162”作为一个六位数的密码,对于多项式9x3﹣xy2,取x=10,y=10时,用上述方法产生的密码是(写出一个即可).11.(2022春•金东区期末)通常情况下,a+b不一定等于ab,观察下列几个式子:第1个:2+2=2×2;第2个:3+=3×;第3个:4+=4×…我们把符合a+b=ab的两个数叫做“和积数对”.(1)写出第4个式子.(2)写出第n个式子,并检验.(3)若m,n是一对“和积数对”,求代数式的值.12.(2021春•婺城区校级期末)小刚同学动手剪了如图①所示的正方形与长方形纸片若干张.(1)他用1张1号、1张2号和2张3号卡片拼出一个新的图形(如图②).根据这个图形的面积关系写出一个你所熟悉的乘法公式,这个乘法公式是;(2)如果要拼成一个长为(a+2b),宽为(a+b)的大长方形,则需要2号卡片张,3号卡片张;(3)当他拼成如图③所示的长方形,根据6张小纸片的面积和等于大纸片(长方形)的面积可以把多项式a2+3ab+2b2分解因式,其结果是;(4)动手操作,请你依照小刚的方法,利用拼图分解因式a2+5ab+6b2=画出拼图.13.(2021春•婺城区校级期末)材料一:一个正整数x能写成x=a2﹣b2(a,b均为正整数,且a≠b),则称x为“雪松数”,a,b为x的一个平方差分解,在x的所有平方差分解中,若a2+b2最大,则称a,b为x的最佳平方差分解,此时F(x)=a2+b2.例如:24=72﹣52,24为雪松数,7和5为24的一个平方差分解,32=92﹣72,32=62﹣22,因为92+72>62+22,所以9和7为32的最佳平方差分解,F(32)=92+72材料二:若一个四位正整数,它的千位数字与个位数字相同,百位数字与十位数字相同,但四个数字不全相同,则称这个四位数为“南麓数”.例如4334,5665均为“南麓数”.根据材料回答:(1)请直接写出两个雪松数,并分别写出它们的一对平方差分解;(2)试证明10不是雪松数;(3)若一个数t既是“雪松数”又是“南麓数”,并且另一个“南麓数”的前两位数字组成的两位数与后两位数字组成的两位数恰好是t的一个平方差分解,请求出所有满足条件的数t中F(t)的最大值.14.(2018春•鄞州区期末)教科书中这样写道:“我们把多项式a2+2ab+b2及a2﹣2ab+b2叫做完全平方式”,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值,最小值等.例如:分解因式x2+2x﹣3=(x2+2x+1)﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1);例如求代数式2x2+4x﹣6的最小值.2x2+4x﹣6=2(x2+2x﹣3)=2(x+1)2﹣8.可知当x=﹣1时,2x2+4x﹣6有最小值,最小值是﹣8,根据阅读材料用配方法解决下列问题:(1)分解因式:m2﹣4m﹣5=.(2)当a,b为何值时,多项式a2+b2﹣4a+6b+18有最小值,并求出这个最小值.(3)当a,b为何值时,多项式a2﹣2ab+2b2﹣2a﹣4b+27有最小值,并求出这个最小值.15.(2016春•慈溪市期末)利用我们学过的知识,可以导出下面这个形式优美的等式:a2+b2+c2﹣ab﹣bc﹣ac=[(a﹣b)2+(b﹣c)2+(a﹣c)2]该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美.(1)请你说明这个等式的正确性;(2)若a=2014,b=2015,c=2016,你能很快求出a2+b2+c2﹣ab﹣bc﹣ac的值;(3)已知实数x,y,z,a满足x+a2=2014,y+a2=2015,z+a2=2016,且xyz=36.求代数式++﹣﹣﹣的值.七.分式的定义(共1小题)16.(2021春•奉化区校级期末)定义:如果一个分式能化成一个整式与一个分子为常数的分式的和的形式,则称这个分式为“和谐分式”.如==+=1+,==a﹣1+,则和都是“和谐分式”.(1)下列各式中,属于“和谐分式”的是:(填序号);①;②;③;④(2)将“和谐分式化成一个整式与一个分子为常数的分式的和的形为:=.(3)应用:已知方程组有正整数解,求整数m的值.八.分式的化简求值(共2小题)17.(2021春•鄞州区校级期末)已知abc=1,a+b+c=2,a2+b2+c2=3,则的值为()A.﹣1B.C.2D.18.(2019春•鄞州区期末)已知:a﹣b=m,b﹣c=n.(1)m=3,n=4,求代数式(a﹣c)2,a2+b2+c2﹣ab﹣bc﹣ca的值.(2)若m<0,n<0,判断代数式的值与0的大小关系并说明理由.九.二元一次方程组的解(共1小题)19.(2021春•奉化区校级期末)已知关于x,y的方程组给出下列结论:①当a=1时,方程组的解也是x+y=2a+1的解;②无论a取何值,x,y的值不可能是互为相反数;③x,y都为自然数的解有4对;④若2x+y=8,则a=2.正确的有几个()A.1B.2C.3D.4一十.二元一次方程组的应用(共3小题)20.(2019春•北仑区期末)宁波杨梅季,本地慈溪杨梅在宁波人的心中是一种家乡的味道.今年是杨梅大年,某杨梅种植大户为了能让居民品尝到物美价廉的杨梅,对1000斤的杨梅进行打包方式优惠出售,打包方式及售价如下:圆篮每篮8斤,售价160元;方篮每篮18斤,售价270元.假如用这两种打包方式恰好全部装完这1000斤杨梅.(1)若销售a篮圆篮和a篮方篮共收入8600元,求a的值;(2)当销售总收入为16760元时,①若这批杨梅全部售完,请问圆篮共包装了多少篮,方篮共包装了多少篮?②若杨梅大户留下b(b>0)篮圆篮送人,其余的杨梅全部售出,求b的值;(3)为了让更多的人及时吃到杨梅,几家种植大户联合,一起拼车用大、中两种快递送货车运送方形篮杨梅720篮,大车每车比中车每车多送30篮,若一半杨梅用大车送货,一半杨梅用中车装.运送完这批杨梅大中货车运送车次比为3:4,求每辆大、中货车各运送方形杨梅几篮?21.(2018春•宁波期末)用如图所示的甲、乙、丙三块木板做一个长、宽、高分别为x厘米,y厘米和30厘米的长方体木箱,其中甲块木板锯成两块刚好能做箱底和一个长侧面,乙块木板锯成两块刚好能做一个长侧面和一个短侧面,丙块木块锯成两块刚好能做箱盖和剩下的一个短侧面(厚度忽略不计,x>y).(1)用含x,y的代数式表示这三块木板的面积;(2)若甲块木块的面积比丙块木块的面积大300平方厘米,乙块木块的面积为1800平方厘米,求x,y 的值;(3)如果购买一块长120厘米,宽为(x+y)的长方形木板做这个木箱,木板的利用率为,试求+的值.22.(2021春•奉化区校级期末)某公园的门票价格规定如表:购票人数1~50人51~100人100以上票价10元/人8元/人5元/人(1)某校七年级甲、乙两班共100多人去该公园举行联欢活动,其中甲班50多人,乙班不足50人.如果以班为单位分别买票,两个班一共应付920元;如果两个班联合起来作为一团体购票,一共只要付515元.问:甲、乙两班分别有多少人?(2)若有A、B两个团队共160人,以各自团队为单位分别买票,共用950元,问A、B两个团队各有多少人?一十一.解分式方程(共1小题)23.(2022春•宁波期末)我们把形如x+=a+b(a,b不为零),且两个解分别为x1=a,x2=b的方程称为“十字分式方程”.例如x+=4为十字分式方程,可化为x+=1+3,∴x1=1,x2=3.再如x+=﹣6为十字分式方程,可化为x+=(﹣2)+(﹣4),∴x1=﹣2,x2=﹣4.应用上面的结论解答下列问题:(1)若x+=﹣5为十字分式方程,则x1=,x2=.(2)若十字分式方程x﹣=﹣2的两个解分别为x1=m,x2=n,求的值.(3)若关于x的十字分式方程x﹣=﹣k﹣1的两个解分别为x1,x2(k>0,x1>x2),求的值.一十二.分式方程的应用(共6小题)24.(2021春•奉化区校级期末)商家常将单价不同的A、B两种糖混合成“什锦糖”出售,记“什锦糖”的单价为:A、B两种糖的总价与A、B两种糖的总质量的比.现有两种“什锦糖”:一种是由相同千克数的A种糖和B种糖混合而成的“什锦糖”甲,另一种是由相同金额数的A种糖和B种糖混合而成的“什锦糖”乙.若B种糖比A种糖的单价贵40元/千克,“什锦糖”甲比“什锦糖”乙的单价贵5元/千克,则A 种糖的单价为()A.50元/千克B.60元/千克C.70元/千克D.80元/千克25.(2021春•婺城区校级期末)某工厂承接了一批纸箱加工任务,用如图1所示的长方形和正方形纸板(长方形的宽与正方形的边长相等)加工成如图所示的竖式与横式两种无盖的长方形纸箱.(加工时接缝材料不计)(1)该工厂原计划用若干天加工纸箱200个,后来由于对方急需要货,实际加工时每天加工速度是原计划的1.5倍,这样提前2天超额完成了任务,且总共比原计划多加工40个,问原计划每天加工纸箱多少个;(2)若该厂购进正方形纸板1000张,长方形纸板2000张.问竖式纸盒,横式纸盒各加工多少个,恰好能将购进的纸板全部用完;(3)该工厂某一天使用的材料清单上显示,这天一共使用正方形纸板50张,长方形纸板a张,全部加工成上述两种纸盒,且120<a<136,试求在这一天加工两种纸盒时,a的所有可能值.26.(2021春•婺城区校级期末)“十•一”期间,某商场举行促销活动,活动期间规定:商场内所有商品按标价的80%出售;同时,当顾客在该商场消费满一定金额后,按如下方案获得相应金额的奖券:200≤p<400400≤p<500500≤p<700700≤p<900…消费金额p(元)的范围3060100130…获得奖券金额(元)根据上述促销方法,顾客在该商场购物可获得双重优惠.例如,购买标价为450元的商品,则消费金额为450×0.8=360(元),获得优惠额为:450×0.2+30=120(元).设购买商品的优惠率=.试问:(1)购买一件标价为800元的商品,顾客得到的优惠率是多少?(2)若一顾客购买了一套西装,得到的优惠率为,已知该套西装的标价高于700元,低于850元,该套西装的标价是多少元?27.(2021春•奉化区校级期末)某服装店购进一批甲、乙两种款型时尚T恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T恤衫各购进多少件?(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T恤衫商店共获利多少元?28.(2021春•南浔区期末)某商场在一楼至二楼间安装了一部自动扶梯,以匀速向上行驶.甲、乙两同学同时从扶梯上匀速走到二楼,且甲每分钟走动的级数是乙的两倍.已知甲走了24级到扶梯顶部,乙走了16级到扶梯顶部(甲、乙两同学每次只跨一级台阶).(1)扶梯露在外面的部分有多少级?(2)如果与扶梯并排有一从二楼到一楼的楼梯道,台阶数与扶梯级数相同,甲、乙各自到扶梯顶部后按原速再下楼梯到楼梯底部再乘扶梯,若楼梯与扶梯之间的距离忽略不计,问甲第1次追上乙时是在扶梯上还是在楼梯上?他已经走动的级数是多少级?29.(2015春•杭州期末)某工厂承接了一批纸箱加工任务,用如图1所示的长方形和正方形纸板(长方形的宽与正方形的边长相等)加工成如图所示的竖式与横式两种无盖的长方形纸箱.(加工时接缝材料不计)(1)该工厂原计划用若干天加工纸箱200个,后来由于对方急需要货,实际加工时每天加工速度时原计划的1.5倍,这样提前2天超额完成了任务,且总共比原计划多加工40个,问原计划每天加工纸箱多少个;(2)若该厂购进正方形纸板1000张,长方形纸板2000张.问竖式纸盒,横式纸盒各加工多少个,恰好能将购进的纸板全部用完.一十三.平行线的性质(共15小题)30.(2021春•奉化区校级期末)如图,AD∥BC,∠D=∠ABC,点E是边DC上一点,连接AE交BC的延长线于点H.点F是边AB上一点.使得∠FBE=∠FEB,作∠FEH的角平分线EG交BH于点G,若∠DEH=100°,则∠BEG的度数为()A.30°B.40°C.50°D.60°31.(2021春•奉化区校级期末)如图,AB∥CD,CF平分∠DCG,GE平分∠CGB交FC的延长线于点E,若∠E=34°,则∠B的度数为.32.(2021春•乐清市期末)将一副三角板如图1所示摆放,直线GH∥MN,现将三角板ABC绕点A以每秒1°的速度顺时针旋转,同时三角板DEF绕点D以每秒2°的速度顺时针旋转,设时间为t秒,如图2,∠BAH=t°,∠FDM=2t°,且0≤t≤150,若边BC与三角板的一条直角边(边DE,DF)平行时,则所有满足条件的t的值为.33.(2021春•奉化区校级期末)如图,AB∥CD,∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,∠E﹣∠F=33°,则∠E=.34.(2021春•奉化区校级期末)如图,已知直线l1∥l2,且l3和l1、l2分别交于A、B两点,点P在直线AB 上.(1)∠1、∠2、∠3之间的关系为;(2)如果点P在A、B两点之间运动时,∠1、∠2、∠3之间的关系为;(3)如果点P(点P和A、B不重合)在A、B两点外侧运动时,∠1、∠2、∠3之间关系为.35.(2022春•婺城区期末)如图,已知AB∥CD,直线MN交AB于点M,交CD于点N.点E是线段MN 上一点,P,Q分别在射线MA,NC上,连接PE,QE,PF平分∠MPE,QF平分∠CQE.(1)如图1,若PE⊥QE,∠EQN=64°,则∠MPE=°,∠PFQ=°.(2)如图2,求∠PEQ与∠PFQ之间的数量关系,并说明理由.(3)如图3,当PE⊥QE时,若∠APE=150°,∠MND=110°,过点P作PH⊥QF交QF的延长线于点H.将直线MN绕点N顺时针旋转,速度为每秒5°,直线MN旋转后的对应直线为M′N,同时△FPH绕点P逆时针旋转,速度为每秒10°,△FPH旋转后的对应三角形为△F′PH′,当直线MN首次落到CD上时,整个运动停止.在此运动过程中,经过t秒后,直线M′N恰好平行于△F′PH′的一条边,请直接写出所有满足条件的t的值.36.(2021春•奉化区校级期末)如图,已知直线AB∥射线CD,∠CEB=100°.P是射线EB上一动点,过点P作PQ∥EC交射线CD于点Q,连接CP.作∠PCF=∠PCQ,交直线AB于点F,CG平分∠ECF.(1)若点P,F,G都在点E的右侧.①求∠PCG的度数;②若∠EGC﹣∠ECG=40°,求∠CPQ的度数.(2)在点P的运动过程中,是否存在这样的情形,使?若存在,求出∠CPQ的度数;若不存在,请说明理由.37.(2021春•镇海区校级期末)已知:直线a∥b,点A,B在直线a上,点C,D在直线b上,(1)连接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直线交于点E.①如图1,若∠ABC=60°,∠ADC=70°,则∠BED的度数为;②如图2,设∠ABC=α,∠ADC=β,则∠BED的度数为(用含有α,β的式子表示).(2)如图3,EF平分∠MEN,NP平分∠END,EQ∥NP,则∠FEQ和∠BME的数量关系是.(3)如图4,若∠BAP=∠BAC,∠DCP=∠ACD,且AE平分∠BAP,CF平分∠DCP,猜想∠E+∠F的结果并且证明你的结论;38.(2021春•慈溪市期末)如图,直线CD∥EF,点A,B分别在直线CD,EF上(自左至右分别为C,A,D和E,B,F),∠ABF=60°.射线AM自射线AB的位置开始,绕点A以每秒1°的速度沿逆时针方向旋转,同时,射线BN自射线BE开始以每秒5°的速度绕点B沿顺时针方向旋转,当射线BN旋转到BF的位置时,两者停止运动.设旋转时间为x秒.(1)如图1,直接写出下列答案:①∠BAD的度数;②射线BN过点A时的x的值.(2)如图2,求当AM∥BN时的x的值.(3)若两条射线AM和BN所在的直线交于点P.①如图3,若P在CD与EF之间,且∠APB=126°,求x的值.②若x<24,求∠APB的度数(直接写出用含x的代数式表示的结果).39.(2021春•镇海区期末)已知直线AB∥CD.(1)如图1,直接写出∠BME、∠E、∠END的数量关系为;(2)如图2,∠BME与∠CNE的角平分线所在的直线相交于点P,试探究∠P与∠E之间的数量关系,并证明你的结论;(3)如图3,∠ABM=∠MBE,∠CDN=∠NDE,直线MB、ND交于点F,则=.40.(2020春•奉化区期末)已知EM∥BN.(1)如图1,求∠E+∠A+∠B的大小,并说明理由.(2)如图2,∠AEM与∠ABN的角平分线相交于点F.①若∠A=120°,∠AEM=140°,则∠EFD=.②试探究∠EFD与∠A的数量关系,并说明你的理由.(3)如图3,∠AEM与∠ABN的角平分线相交于点F,过点F作FG⊥BD交BN于点G,若4∠A=3∠EFG,求∠EFB的度数.41.(2021春•奉化区校级期末)已知,直线AB∥DC,点P为平面上一点,连接AP与CP.(1)如图1,点P在直线AB、CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC.(2)如图2,点P在直线AB、CD之间,∠BAP与∠DCP的角平分线相交于点K,写出∠AKC与∠APC之间的数量关系,并说明理由.(3)如图3,点P落在CD外,∠BAP与∠DCP的角平分线相交于点K,∠AKC与∠APC有何数量关系?并说明理由.42.(2021春•越城区期末)如图1,已知直线CD∥EF,点A、B分别在直线CD与EF上.P为两平行线间一点.(1)求证∠APB=∠DAP+∠FBP;(2)利用(1)的结论解答:①如图2,AP1、BP1分别平分∠DAP、∠FBP,请你直接写出∠P与∠P1的数量关系是.②如图3,AP2、BP2分别平分∠CAP、∠EBP,若∠APB=80°,则∠AP2B的度数是.43.(2021春•婺城区校级期末)已知直线AB∥CD.(1)如图1,直接写出∠ABE,∠CDE和∠BED之间的数量关系是.(2)如图2,BF,DF分别平分∠ABE,∠CDE,那么∠BFD和∠BED有怎样的数量关系?请说明理由.(3)如图3,点E在直线BD的右侧,BF,DF仍平分∠ABE,∠CDE,请直接写出∠BFD和∠BED的数量关系.44.(2016春•嵊州市期末)已知:直线a∥b,点A,B分别是a,b上的点,APB是a,b之间的一条折弦,且∠APB<90°,Q是a,b之间且在折线APB左侧的一点,如图.(1)若∠1=33°,∠APB=74°,则∠2=度.(2)若∠Q的一边与P A平行,另一边与PB平行,请探究∠Q,∠1,2间满足的数量关系并说明理由.(3)若∠Q的一边与P A垂直,另一边与PB平行,请直接写出∠Q,∠1,2之间满足的数量关系.一十四.平行线的判定与性质(共7小题)45.(2021春•奉化区校级期末)如图,PQ∥MN,A,B分别为直线MN、PQ上两点,且∠BAN=45°,若射线AM绕点A顺时针旋转至AN后立即回转,射线BQ绕点B逆时针旋转至BP后立即回转,两射线分别绕点A、点B不停地旋转,若射线AM转动的速度是a°/秒,射线BQ转动的速度是b°/秒,且a、b 满足|a﹣5|+(b﹣1)2=0.若射线AM绕点A顺时针先转动18秒,射线BQ才开始绕点B逆时针旋转,在射线BQ到达BA之前,问射线AM再转动秒时,射线AM与射线BQ互相平行.46.(2022春•鄞州区期末)如图,已知CD平分∠ACB,∠1=∠2.(1)求证:DE∥AC;(2)若∠3=30°,∠B=25°,求∠BDE的度数.47.(2021春•奉化区校级期末)课题学习:平行线的“等角转化”功能.阅读理解:如图1,已知点A是BC外一点,连接AB,AC.求∠BAC+∠B+∠C的度数.(1)阅读并补充下面推理过程.解:过点A作ED∥BC,所以∠B=,∠C=.又因为∠EAB+∠BAC+∠DAC=180°.所以∠B+∠BAC+∠C=180°.解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC,∠B,∠C“凑”在一起,得出角之间的关系,使问题得以解决.方法运用:(2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数.提示:过点C作CF∥AB.深化拓展:(3)已知AB∥CD,点C在点D的右侧,∠ADC=70°,BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在AB与CD两条平行线之间.如图3,点B在点A的左侧,若∠ABC=60°,则∠BED的度数为°.48.(2021春•奉化区校级期末)[感知]如图①,AB∥CD,∠AEP=40°,∠PFD=130°,求∠EPF的度数.小明想到了以下方法:解;(1)如图①,过点P作PM∥AB,∴∠1=∠AEP=40°(两直线平行,内错角相等)∵AB∥CD(已知),∴PM∥CD(平行于同一条直线的两直线平行),∴∠2+∠PFD=180°(两直线平行,同旁内角互补).∵∠PFD=130°(已知),∴∠2=180°﹣130°=50°(等式的性质),∴∠1+∠2=40°+50°=90°(等式的性质).即∠EPF=90°(等量代换).[探究]如图②,AB∥CD,∠AEP=50°,∠PFC=120°,求∠EPF的度数.[应用]如图③所示,在[探究]的条件下,∠PEA的平分线和∠PFC的平分线交于点G,则∠G的度数是°.49.(2021春•奉化区校级期末)(1)如图1,已知直线l1∥l2,且l3和l1,l2分别交于A,B两点,点P在线段AB上,则∠1,∠2,∠3之间的等量关系是;如图2,点A在B处北偏东40°方向,在C处的北偏西45°方向,则∠BAC=°.(2)如图3,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°,试说明:AB∥CD;并探究∠2与∠3的数量关系.50.(2020春•诸暨市期末)如图,在三角形ABC中,D,E,F三点分别在AB,AC,BC上,过点D的直线与线段EF的交点为点M,已知2∠1﹣∠2=150°,2∠2﹣∠1=30°.(1)求证:DM∥AC;(2)若DE∥BC,∠C=50°,求∠3的度数.51.(2019春•拱墅区期末)如图,AD∥EC.(1)若∠C=40°,AB平分∠DAC,求∠DAB的度数.(2)若AE平分∠DAB,BF平分∠ABC,试说明AE∥BF的理由.一十五.平移的性质(共2小题)52.(2022春•西湖区校级期末)如图,直线AB∥CD,直线EF与AB、CD分别交于点G、H,∠EHD=α(0°<α<90°).小安将一个含30°角的直角三角板PMN按如图①放置,使点N、M分别在直线AB、CD上,且在点G、H的右侧,∠P=90°,∠PMN=60°.(1)填空:∠PNB+∠PMD∠P(填“>”“<”或“=”);(2)若∠MNG的平分线NO交直线CD于点O,如图②.①当NO∥EF,PM∥EF时,求α的度数;②小安将三角板PMN保持PM∥EF并向左平移,在平移的过程中求∠MON的度数(用含α的式子表示).53.(2017春•上虞区期末)如图1所示,已知BC∥OA,∠B=∠A=120°(1)说明OB∥AC成立的理由.(2)如图2所示,若点E,F在BC上,且∠FOC=∠AOC,OE平分∠BOF,求∠EOC的度数.(3)在(2)的条件下,若左右平移AC,如图3所示,那么∠OCB:∠OFB的比值是否随之发生变化?若变化,请说明理由;若不变,请求出这个比值.(4)在(3)的条件下,当∠OEB=∠OCA时,求∠OCA的度数.一十六.频数(率)分布直方图(共1小题)54.(2018春•嘉兴期末)某市抽查部分家庭每月水电费的开支(单位:元),得到下面的频数分布直方图(每一组含前一个边界值,不含后一个边界值).请根据该直方图,回答下列问题:(1)被抽查的家庭共有多少户?(2)自左至右第二组的频数、频率分别是多少?(3)小明同学说:“由图中信息可知,被抽查家庭的每月水电费最低开支至少是100元”你认为小明的说法对吗?为什么?一十七.条形统计图(共4小题)55.(2021春•奉化区校级期末)某中学举行“庆祝中华人民共和国成立70周年”知识预赛,学生会把成绩x(分)分成五组:A组:50≤x<60;B组:60≤x<70;C组:70≤x<80;D组:80≤x<90;E组:90≤x<100.统计后绘制成如下两个统计图(不完整).(1)直接填空:①m的值为;②在图2中,C组的扇形圆心角的度数为.(2)在图1中,画出60≤x<70所对应的条形图;(3)若学生会计划从预赛中选拔前30名进入复赛,则进入复赛的成绩应不低于多少分?56.(2018春•拱墅区期末)以下是某网络书店1~4月关于图书销售情况的两个统计图:某网络书店1﹣4月销售总额统计图绘本类图书销售额占该书店当月销售总额的百分比统计图(1)求1月份该网络书店绘本类图书的销售额.(2)若已知4月份与1月份这两个月的绘本类图书销售额相同,请补全统计图2.(3)有以下两个结论:①该书店第一季度的销售总额为182万元.②该书店1月份到3月份绘本类图书销售额的月增长率相等.请你判断以上两个结论是否正确,并说明理由.57.(2021春•镇海区期末)牡丹江管局教育局为了解九年级学生每学期参加综合实践活动的情况,随机抽样调查某校九年级学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图.请你根据图中提供的信息,回答下列问题:(1)求出该校九年级学生总数;(2)分别求出活动时间为5天的学生人数和7天的学生人数,并补全图②;(3)求该校九年级学生一个学期参加综合实践活动天数在5天以上(含5天)的人数是多少?58.(2022春•南浔区期末)某校研究性学习小组以“学生到学校交通工具类型”为主题对全校学生进行随机抽样调查,调查的项目有:公共汽车、小车、摩托车、自行车、其它(每位同学仅选一项).根据调查。
初一下学期数学期末复习压轴题 解答题试卷带答案

初一下学期数学期末复习压轴题 解答题试卷带答案一、解答题1.解方程或不等式(组)(1)24231x y x y +=⎧⎨-=⎩ (2)2151132x x -+-≥ (3)312(2)15233x x x x +<+⎧⎪⎨-≤+⎪⎩ 2.已知,关于x 、y 二元一次方程组237921x y a x y -=-⎧⎨+=-⎩的解满足方程2x-y=13,求a 的值.3.如图,已知AB ∥CD , 12∠=∠,BE 与CF 平行吗?4.因式分解:(1)16x 2-9y 2(2)(x 2+y 2)2-4x 2y 25.计算:(1)022019()32020-- (2)4655x x x x ⋅+⋅6.如图,△ABC 的顶点都在方格纸的格点上,将△ABC 向下平移3格,再向右平移4格.(1)请在图中画出平移后的△A′B′C′;(2)在图中画出△A′B′C′的高C′D′.7.先化简,再求值:(2a +b )2﹣(2a +3b )(2a ﹣3b ),其中a =12,b =﹣2.8.计算:(1)201()2016|5|2----;(2)(3a 2)2﹣a 2•2a 2+(﹣2a 3)2+a 2.9.解不等数组:3(2)41213x x x x --≤-⎧⎪+⎨>-⎪⎩,并在数轴上表示出它的解集. 10.探究与发现:如图1所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥你的聪明才智,解决以下问题:(1)观察“规形图”,试探究∠BDC 与∠A 、∠B 、∠C 之间的关系,并说明理由; (2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ 放置在△ABC 上,使三角尺的两条直角边XY 、XZ 恰好经过点B 、C ,若∠A =50°,则∠ABX+∠ACX = °;②如图3,DC 平分∠ADB ,EC 平分∠AEB ,若∠DAE =50°,∠DBE =130°,求∠DCE 的度数;③如图4,∠ABD ,∠ACD 的10等分线相交于点G 1、G 2…、G 9,若∠BDC =140°,∠BG 1C =77°,求∠A 的度数.11.已知关于x 、y 的二元一次方程组21322x y x y k +=⎧⎪⎨-=-⎪⎩(k 为常数). (1)求这个二元一次方程组的解(用含k 的代数式表示);(2)若()2421y x +=,求k 的值; (3)若14k ≤,设364m x y =+,且m 为正整数,求m 的值. 12.疫情初期,武汉物资告急,全国一心,各地纷纷运送物资到武汉。
期末必刷题(压轴题,10种题型)—2023-2024学年七年级数学下学期期末(苏科版)(解析版)

期末必刷题(压轴题,35题10种题型)【考试题型1】二元一次方程组的应用1.(23-24八年级上·四川成都·期末)“沉睡数千年,一醒惊天下”,三星堆遗址出土的文物再现了古蜀文明的辉煌景象.某校组织师生共480人开展三星堆博物馆研学活动.该校计划向运输公司租用A,B两种车型接送师生往返,若租用A型车3辆,B型车6辆,则空余15个座位;若租用A型车5辆,B型车4辆,则还有15人没有座位.(1)求A,B两种车型各有多少个座位?(2)若要求租用的每辆客车都坐满,那么共有多少种租车方案?并列出所有的租车方案.2.(23-24七年级上·四川成都·期末)一方有难八方支援,某市政府筹集了抗旱必需物资120吨打算运往灾区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)(1)若全部物资都用甲、乙两种车型来运送,需运费6400元,问分别需甲、乙两种车型各几辆?(2)该市政府决定甲、乙、丙三种车型至少两种车型参与运送,己知它们的总辆数为18辆,请通过列方程组的方法分别求出三种车型的数量.【答案】(1)需甲车型8辆,需车型10辆;(2)方案一:甲车型12辆,乙车型0辆,丙车型6辆;方案二:甲车型10辆,乙车型5辆,丙车型3辆;方案三:甲车型8辆,乙车型10辆,丙车型0辆.【分析】本题考查了二元一次方程组和三元一次方程的应用,将现实生活中的事件与数学思想联系起来,读懂题列出方程即可求解.(1)设需甲车x辆,乙车y辆,根据运费600元,总吨数是120,列出方程组,再进行求解即可;(2)设甲车有x辆,乙车有y辆,则丙车有z辆,列出等式,再根据x、y、z均为非负整数,求出x,y,z 的值,从而得出答案.【详解】(1)解:设需甲车型x辆,乙车型y辆,根据题意,得:{5x+8y=120300x+400y=6400,解得:{x=8y=10,答:需甲车型8辆,需车型10辆;(2)解:甲车型x辆,乙车型y辆,丙车型z辆,根据题意,得:{x+y+z=185x+8y+10z=120,消去z得5x+2y=60,∴x=12−25y,因x,y是非负整数,且不大于18,得y=0,5,10,15,则x=12,10,8,6;又z是非负整数,解得z=6,3,0,∴{x=12y=0z=6或{x=10y=5z=3或{x=8y=10z=0,∴共有三种运送方案:方案一:甲车型12辆,乙车型0辆,丙车型6辆;方案二:甲车型10辆,乙车型5辆,丙车型3辆;方案三:甲车型8辆,乙车型10辆,丙车型0辆.3.(23-24八年级上·山东青岛·期末)“一盔一带”安全守护行动是公安部在全国开展的一项安全守护行动,也是营造文明城市,做文明市民的重要标准,电动自行车驾驶人和乘坐人员应当戴安全头盔.某商场欲购进一批安全头盔,已知购进2个甲种型号头盔和5个乙种型号头盔需要390元;购进4个甲种型号头盔和3个乙种型号头盔需要360元.(1)甲,乙两种型号头盔的进货单价分别是多少?(2)若该商场分别以55元/个、80元/个的价格销售完甲,乙两种型号的头盔共200个,请写出销售收入Q (元)与销售的甲种型号头盔的数量m (个)之间的函数关系式;(3)在(2)的条件下,商场销售该批头盔的利润能否为3150元?若能,请写出相应的采购方案;若不能,请说明理由.【答案】(1)甲,乙两种型号头盔的进货单价分别45元和60元 (2)Q 与m 之间的函数关系式为Q =−25m +16000 (3)能,采购甲,乙两种型号头盔分别为85个和115个【分析】本题考查了二元一次方程组的应用,一次函数的应用,根据题意,找到等量关系,列出方程组和函数关系式是解题的关键.(1)设甲,乙两种型号头盔的进货单价分别是x 元和y 元,根据题意列二元一次方程组并求解即可; (2)根据销售收入=售价×数量,分别计算甲、乙两种型号的头盔销售收入并求和即为Q ;(3)根据销售利润=(售价−进价)×数量,分别计算甲、乙两种型号的头盔销售利润并求和就是总的销售利润,令其值为3150,若解得的值符合题意,说明商场销售该批头盔的利润可以达到元,并求出此时(200−m )的值,否则,则不能.【详解】(1)解:设甲,乙两种型号头盔的进货单价分别是x 元和y 元. 根据题意,得{2x +5y =3904x +3y =360 ,解得{x =45y =60 ,∴甲,乙两种型号头盔的进货单价分别45元和60元; (2)销售的乙种型号头盔的数量为(200−m )个, 根据题意,得Q =55m +80(200−m )=−25m +16000, ∴ Q 与m 之间的函数关系式为Q =−25m +16000; (3)能.采购方案如下:设商场销售该批头盔的利润为w 元,则w =(55−45)m +(80−60)(200−m )=−10m +4000, 当w =3150时,−10m +4000=3150, 解得:m =85,200−m=200−85=115(个),∴当采购甲,乙两种型号头盔分别为85个和115个.4.(23-24八年级上·山东枣庄·期末)第19届杭州亚运会2023年10月8日闭幕了,在亚运会期间某经销商销售带有“琮琮”吉祥物标志的甲、乙两种纪念品很畅销,该经销商用12400元一次性购进了甲、乙两种纪念品共200件.已知甲、乙两种纪念品的进价和售价如表:(1)该经销商一次性购进甲、乙两种纪念品各多少件?(2)在杭州亚运会开幕式当天销售完全部纪念品,则可获得利润为多少元?【答案】(1)甲种纪念品80件,乙种纪念品120件(2)6400元【分析】本题考查二元一次方程组的应用.找准等量关系,正确的列出方程组和代数式,是解题的关键.(1)该经销商一次性购进甲种纪念品各x件,乙种纪念品各y件,利用进货总价=进货单价×进货数量,结合该经销商用12400元一次性购进了甲、乙两种纪念品共200件,列二元一次方程组,解之即可得出结论;(2)利用总利润=每件销售利润×销售数量(进货数量),即可得出结论;【详解】(1)设该经销商一次性购进甲种纪念品各x件,乙种纪念品各y件,根据题意得:{x+y=20050x+70y=12400,解得:{x=80y=120答:该经销商一次性购进甲种纪念品80件,乙种纪念品120件;(2)甲种纪念品每件利润为(100−50)元,乙种纪念品每件利润为(90−70)元,根据题意得:(100−50)×80+(90−70)×120=50×80+20×120=4000+2400=6400(元)答:可获得利润为6400元.5.(23-24七年级上·福建厦门·期末)请你观察下列几种简单多面体模型,解答下列问题:(1)计算长方体棱数,可依据长方体有6个面,每个面均为四边形即有4条棱,得出总棱数为12;请你猜想多面体面数、形状、棱长之间的数量关系,完成以下计算:①如图所示,正八面体的每一个面都是三角形,则正八面体有__________条棱;②正十二面体的每一个面都是正五边形,则它共有__________条棱;(2)如下图,一种足球(可视作简单32面多面体)是由32块黑白相间的牛皮缝制而成,黑皮为正五边形,白皮为正六边形,且边长相等,已知图中足球有90条棱;某体育公司采购630张牛皮用于生产这种足球,已知一张牛皮可用于制作30个正五边形或者制作20个正六边形,要使裁剪后的五边形和六边形恰好配套,应怎样计划用料才能制作尽可能多的足球?【答案】(1)12;30(2)用于制作30个正五边形的牛皮共180张,用于制作20个正六边形的牛皮共450张.【分析】本题考查了几何体中点、棱、面之间的关系以及二元一次方程组的应用与整除问题,解题的关键是审清题意.(1)根据每一个面有三条棱,每二个面共用一条棱即可求解,即:棱数=面数×3÷2.(2)设一个足球有黑皮x块,白皮y块,根据二个面共用一条棱,结合题意可列方程组,求得每个足球黑皮块数与白皮块数;然后再设用于制作正五边形的需要m张,用于制作正六边形的需要n张,依据题意建立方程组,求得m与n的最大整数值,并检验是否符合题意即可得到答案.【详解】(1)解:①正八面体的每一个面都是三角形,则每一个面有三条棱,故八个面共有8×3=24条棱,但每两个面共用一条棱,因此正八面体棱数是:24÷2=12(条).②根据①的思路可知,正十二面体共有棱数:12×52=30(条).故答案为:12;30.(2)设一个足球有黑皮x 块,白皮y 块,根据题意得: {5x +6y =90×2x +y =32,解得:{x =12y =20设630张牛皮中,用于制作正五边形的需要m 张,用于制作正六边形的需要n 张,依据题意得:{m +n ≤63030m 12=20n 20,解得:{m ≤180n ≤450(m 、n 为整数)m 、n 取最大的整数并经过检验知,m =180,n =450正好符合题意, ∴最多制作20n20=450(个)足球,且正好将630张牛皮全部用完.答:用于制作30个正五边形的牛皮共180张,用于制作20个正六边形的牛皮共450张. 【考试题型2】一元一次不等式(组)的应用 6.(23-24八年级上·浙江湖州·期末)【问题背景】小明所在的班级开展知识竞赛,需要去商店购买A 、B 两种款式的盲盒作为奖品.B 款【问题解决】(1)某商店在无促销活动时,求A 款盲盒和B 款盲盒的销售单价各是多少元?(2)小明计划在促销期间购买A 、B 两款盲盒共40个,其中A 款盲盒m 个(0<m <40),若在线下商店购买,共需要______元;若在线上淘宝店购买,共需要______元.(均用含m 的代数式表示)请你帮小明算一算,购买A 款盲盒的数量在什么范围内时,线下购买方式更合算?【答案】(1)某商店在无促销活动时,A 款盲盒销售单价为10元,B 款单价销售单价为8元(2)(1.6m +291),(1.8m +288);当购买A 款盲盒的数量超过15个且少于40个时,线下购买方式更合算 【分析】本题考查了二元一次方程组的应用,整式加减的应用,一元一次不等式的应用;(1)设A 款盲盒销售单价为x 元,B 款盲盒销售的单价为y 元,根据题意列出二元一次方程组,解方程,即可求解;(2)根据题意列出线下购买的费用的代数式和线上淘宝购买费用的代数式,即可求解;结合题意,列出一元一次不等式,解不等式,即可求解.【详解】(1)解:设某商店在无促销活动时,A 款盲盒销售单价为x 元,B 款盲盒销售的单价为y 元, 由题意得,{15x +10y =23025x +25y =450,解得{x =10y =8答:某商店在无促销活动时,A 款盲盒销售单价为10元,B 款单价销售单价为8元;(2)解:依题意,若在线下商店购买,共需要35+0.8×10m +0.8×8×(40−m )=1.6m +291(元) 若在线上淘宝店购买,共需要0.9×10m +0.9×8×(40−m )=1.8m +288(元) 当1.6m +291<1.8m +288 解得m >15, ∴15<m <40;答:当购买A 款盲盒的数量超过15个且少于40个时,线下购买方式更合算.7.(23-24七年级上·浙江杭州·期末)某校课后服务开设足球训练营,需要采购一批足球运动装备,市场调查发现每套队服比每个足球多60元,三套队服与五个足球的费用相等 (1)求足球的单价.(2)该训练营需要购买30套队服和y (y >10)个足球,甲、乙两商家以同样的价格出售所需商品,各自优惠方案不同:①按照以上方案到甲、乙商家购买装备各需费用多少?(用含有y 的代数式分别表示). ②请比较到哪个商家购买比较合算? 【答案】(1)足球的单价为90元;(2)①到甲商家购买装备所需费用:(4230+90y )元, 到乙商家购买装备所需费用:(4500+72y )元;② 当训练营需要购买30套队服和15个足球时,在甲乙两个商家所需费用一样多, 当训练营需要购买30套队服和超过15个足球时,在乙商家购买较合算, 当训练营需要购买30套队服和购买足球超过10个而不足15个时,在甲商家购买较合算.【分析】本题考查了一元一次方程的应用,一元一次不等式的应用,列代数式的应用,以及最优购物问题,找出题目中的等量关系是解题的关键.(1)设足球的单价为x元,则队服的单价为(x+60)元,根据题意“三套队服与五个足球的费用相等”,可得到等量关系,列方程求解即可;(2)①购买装备所需费用=买队服的费用+买足球的费用,用含有y的代数式表示即可;②由①中的结论,先求出当甲商家的消费=乙商家的消费时,再分情况比较哪个商家购买较合算.【详解】(1)解:设足球的单价为x元,则队服的单价为(x+60)元,根据题意得,3(x+60)=5x,解得x=90,答:足球的单价为90元;(2)①由(1)得足球的单价为90元,则队服的单价为90+60=150元,到甲商家购买装备所需费用:150×30+90(y−3)=4230+90y,到乙商家购买装备所需费用:150×30+90×80%y=4500+72y;②当甲商家的消费=乙商家的消费时,即4230+90y=4500+72y,解得y=15,∴当训练营需要购买30套队服和15个足球时,在甲乙两个商家所需费用一样多,当甲商家的消费>乙商家的消费时,即4230+90y>4500+72y,解得y>15,∴当训练营需要购买30套队服和超过15个足球时,在乙商家购买较合算,当甲商家的消费<乙商家的消费时,即4230+90y<4500+72y,解得y<15,又∵y>10,∴当训练营需要购买30套队服和购买足球超过10个而不足15个时,在甲商家购买较合算.8.(23-24八年级上·浙江绍兴·期末)嵊州是香榧的盛产地之一,某榧农与某快递公司合作寄送香榧.素材1:素材2:问题解决:【答案】(1)y=6x−28(x>10);(2)最省寄送费用是94元;(3)小红最多可以购买96kg香榧,寄送方式为9件10kg,1件6kg.【分析】本题考查一元一次方程和一元一次不等式的应用,根据题意列出方程或不等式求解是解题的关键.任务1:利用电子存单2或3的总费用和计量重量列出方程求出m,从而得解;任务2:根据总计量重量是25千克,设计方案求出总费用,比较大小即可;任务3:要尽可能的多寄送,则应该多寄10千克一件的,也就是一件少于10千克的,其余都是10千克,或者也就是一件10−20千克的,其余都是10千克,设小红购买的香榧一共分y件不超过10kg的寄送方式,根据总费用不超过8000元列出不等式,求出y的取值范围,继而求出y的最大值,计算购买9件10千克的香榧剩余的钱或8件10千克的香榧剩余的钱,再根据剩余的钱计算剩余的寄送的重量,从而得解.【详解】任务1:由电子存单2可得:m(12−10)+32=44,解得:m=6,∴香榧重量超过10千克时寄送费用y(元)关于香榧重量x(千克)之间的函数关系式为:y=6(x−10)+32= 6x−28(x>10)任务2:若单件寄送,则需寄费y=6×25−28=122元,若分两件寄送,则可使得每件都不少于10千克,例如一件10千克,一件15千克,需寄费32+15×6−28=94元,若分三件寄送,则可使得三件都少于10千克,,则需寄费32×3=96元,∴94<96<122,最省寄送费用是94元.任务3:∵前10千克的快递费是3.2元/千克,超过10千克的部分是6元/千克,∴设小红购买的香榧一共分y件10kg的寄送方式,由题意得,80×10y+32y≤8000,,解得y≤12513又∵y是正整数,∴y最大值为9,∴还剩下8000−80×10×9−32×9=512元,∵512=80×6+32∴9件10kg,余下的钱刚好能再购买并寄送6kg,故共可寄送96kg.若8件10kg的寄送的寄费为80×10×8+32×8=6656元,15×6−28+15×80=1262,6656+1262=7918<8000,16×6−28+16×80=1348,6656+1348=8004>8000,此时最多可寄送95kg.∴最省钱的寄送方式应该是9件不超过10kg的寄送,一件6kg寄送,∴小红最多可以购买10×9+6=96kg香榧,寄送方式为9件10kg,1件6kg.9.(23-24八年级上·浙江宁波·期末)随着梦天实验舱的顺利发射,我国空间站完成了在轨组装,为了庆祝这令人激动的时刻,某校开展了关于空间站的科学知识问答竞赛.为了奖励在竞赛中表现优异的学生,学校准备一次性购买A,B两种航天器模型作为奖品.已知购买1个A模型和1个B模型共需159元;购买3个A模型和2个B模型共需374元.(1)求A模型和B模型的单价.(2)根据学校的实际情况,需一次性购买A模型和B模型共20个,但要求购买A模型的数量多于12个,且不超过B模型的3倍.请你给出一种费用最少的方案,并求出该方案所需的费用.【答案】(1)56元,103元;(2)购买A模型15个,B模型5个,费用最少,该方案所需的费用为1355元.【分析】(1)设1个A模型的价格为x元,1个B模型的价格为y元,根据“购买1个A模型和1个B模型共需159元;购买3个A模型和2个B模型共需374元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买A模型m个,则购买B模型(20-m)个,根据“购买A模型的数量多于12个,且不超过B模型的3倍”,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为整数,即可得出各购买方案,利用总价=单价×数量可求出各方案所需费用,比较后即可得出结论.本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.【详解】(1)解:设1个A模型的价格为x元,1个B模型的价格为y元,依题意得:{x+y=1593x+2y=374,解得:{x=56y=103.答:1个A模型的价格为56元,1个B模型的价格为103元.(2)设购买A模型m个,则购买B模型(20−m)个,依题意得:{m>12m≤3(20−m),解得:12<m≤15.又∵m为整数,∴m可以为13,14,15,∴共有3种购买方案,方案1:购买A模型13个,B模型7个,所需费用为56×13+103×7=728+721=1449(元);方案2:购买A模型14个,B模型6个,所需费用为56×14+103×6=784+618=1402(元);方案3:购买A模型15个,B模型5个,所需费用为56×15+103×5=840+515=1355(元).∵1449>1402>1355,∴方案3购买A模型15个,B模型5个费用最少,最少费用为1355元.10.(23-24九年级上·湖南邵阳·期末)某商场同时采购了A,B两种品牌的运动装,第一次采购A品牌运动装10件,B品牌运动装30件,采购费用为8600元;第二次只采购了B品牌运动装50件,采购费用为11000元.(1)求A ,B 两种品牌运动装的采购单价分别为多少元每件?(2)商家通过一段时间的营销后发现,B 品牌运动装的销售明显比A 品牌好,商家决定采购一批运动装,要求:①采购B 品牌运动装的数量是A 品牌运动装的2倍多10件,且A 品牌的采购数量不低于18件;②采购两种品牌运动装的总费用不超过15000元,请问该商家有哪几种采购方案?【答案】(1)A 种品牌运动装的采购单价为200元每件,B 种品牌运动装的采购单价为220元每件; (2)该商家共有3种采购方案,方案1:A 种品牌运动装采购18件,B 种品牌运动装采购46件; 方案2:A 种品牌运动装采购19件,B 种品牌运动装采购48件; 方案3:A 种品牌运动装采购20件,B 种品牌运动装采购50件.【分析】此题主要考查了一元一次不等式的应用和二元一次方程组的应用,正确得出等量关系是解题关键.(1)设A 种品牌运动装的采购单价为x 元每件,B 种品牌运动装的采购单价为y 元每件,根据题意列出二元一次方程组求解即可;(2)设A 种品牌运动装采购m 件,则B 种品牌运动装采购(2m +10)件,根据题意列出一元一次不等式组求解即可.【详解】(1)设A 种品牌运动装的采购单价为x 元每件,B 种品牌运动装的采购单价为y 元每件.根据题意,得:{10x +30y =860050y =11000,解得{x =200y =220答:A 种品牌运动装的采购单价为200元每件,B 种品牌运动装的采购单价为220元每件. (2)设A 种品牌运动装采购m 件,则B 种品牌运动装采购(2m +10)件. 根据题意,得:{200m +220(2m +10)≤15000m ≥18解得18≤m ≤20又∵m 为整数,m =18,19,20. ∴该商家共有3种采购方案,方案1:A 种品牌运动装采购18件,B 种品牌运动装采购46件; 方案2:A 种品牌运动装采购19件,B 种品牌运动装采购48件; 方案3:A 种品牌运动装采购20件,B 种品牌运动装采购50件.【考试题型3】由不等式组的解集求参数11.(22-23七年级下·湖南长沙·期末)已知关于x的不等式组{x+1>mx−1≤n(1)若上不等式组的解集与不等式组{1−2x<53x−12≤4的解集相同,求m+n的值;(2)当m=−1时,若上不等式组有4个非负整数解,求n的取值范围.【答案】(1)1(2)2≤n<3【分析】(1)分别求出不等式组{1−2x<53x−12≤4和不等式组{x+1>mx−1≤n的解,再根据两个不等式组的解集相同,即可得出m=−1,n=2,从而得出答案;(2)把不等式组{x+1>mx−1≤n的解集表示出来,根据4个非负整数解即可求出n的取值范围.【详解】(1)解:{x+1>m①x−1≤n②,解不等式①得,x>m−1,解不等式②得,x≤n+1,∴不等式组{x+1>mx−1≤n的解为:m−1<x≤n+1,{1−2x<5③3x−12≤4④,解不等式③得x>−2,解不等式④得x≤3,∴不等式组{1−2x<53x−12≤4的解为:−2<x≤3,∵不等式组{x+1>mx−1≤n的解集与不等式组{1−2x<53x−12≤4的解集相同,∴m−1=−2,n+1=3,∴m=−1,n=2,∴m+n=−1+2=1;(2)当m=−1时,由(1)可知不等式组{x+1>mx−1≤n的解集为:−2<x≤n+1∵不等式组有4个非负整数解,分别为0,1,2,3∴3≤n+1<4,∴2≤n<3.【点睛】本题考查了一元一次不等式组的整数解,解题的关键时熟练掌握解不等式组的方法.12.(22-23七年级下·河北秦皇岛·期末)如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的“相伴方程”,例如,方程2x−6=0的解为x=3,不等式组{x−2>0x<5的解集为2<x<5.因为2<3<5,所以称方程2x−6=0为不等式组{x−2>0x<5的“相伴方程”.(1)下列方程式不等式组{x+1>0x<2的“相伴方程”的是;(填序号)①x−1=0②2x+1=0③−2x−2=0(2)若关于x的方程2x−k=2是不等式组{3x−6>4−xx−1≥4x−10的相伴方程,求k的取值范围.【考试题型4】不等式组和方程组综合13.(22-23七年级下·江西宜春·期末)已知关于x ,y 的方程组{x −4y =2m −22x +y =m +5.(1)若该方程组的解满足x −y =2024,求m 的值; (2)若该方程组的解满足x ,y 均为正数,求m 的取值范围;(3)在(2)的条件下,若不等式(2m +1)x −2m <1的解为x >1,求m 的整数值.∴整数m 的值为−1,−2.【点睛】本题考查了二元一次方程组和一元一次不等式组,正确理解题意、熟练掌握解二元一次方程组和一元一次不等式组的方法是解题的关键.14.(22-23七年级下·安徽合肥·期中)阅读下列材料:已知x −y =2,且x >1,y <0,试确定x +y 的取值范围.有如下解法: 解:∵x −y =2,且x >1,∴y +2>1,又∵y <0, ∴−1<y <0…①同理得1<x <2…②. 由①+②得−1+1<x +y <0+2, ∴x +y 的取值范围是0<x +y <2.按上述方法完成下列问题:关于x ,y 的方程组{3x −y =2a −5x +2y =3a +3 的解都为正数.(1)求a 的取值范围;(2)已知a −b =4,且b <2,求a +b 的取值范围. 【答案】(1)a >1 (2)−2<a +b <8【分析】(1)先把方程组解出,再根据解为正数列关于a 的不等式组解出即可; (2)分别求a 、b 的取值范围,相加可得结论. 【详解】(1)解方程组{3x −y =2a −5x +2y =3a +3 ,得{x =a −1y =a +2, ∵方程组{3x −y =2a −5x +2y =3a +3的解都为正数,∴{a −1>0a +2>0 ,解得{a >1a >−2,∴a 的取值范围为a >1;(2)∵a −b =4,b <2,a >1, ∴b =a −4<2,a =b +4>1, ∴a <6,b >−3, ∴1<a <6,−3<b <2, ∴−2<a +b <8.【点睛】本题考查了二元一次方程组的解法及不等式组的解的应用,解答本题的关键是仔细阅读材料,理解解题过程.15.(22-23七年级下·安徽合肥·期中)新定义:若一元一次方程的解在一元一次不等式组解集范围内,则称该一元一次方程为该不等式组的“关联方程”,例如:方程x−1=3的解为x=4,而不等式组{x−1>1 x−2<3的解集为2<x<5,不难发现x=4在2<x<5的范围内,所以方程x−1=3是不等式组{x−1>1x−2<3的“关联方程”(1)在方程①3(x+1)−x=9;②4x−7=0;③x−12+1=x中,不等式组{2x−2>x−13(x−2)−x≤4的“关联方程”是______;(填序号)(2)若关于x的方程2x−k=6是不等式组{3x+12>xx−12≥2x+13−2的“关联方程”,求k的取值范围;(3)若关于x的方程x+72−3m=0是关于x的不等式组{x+2m2>mx−m≤2m+1的“关联方程”,且此时不等式组有4个整数解,试求m的取值范围【考试题型5】与整数乘法与因式分解有关的阅读理解问题16.(23-24八年级上·山东济宁·期末)阅读下面的材料学习完《第十四章整式的乘法与因式分解》,某校八年级数学兴趣小组探索了代数式3a2+6a−9的最值问题,具体过程如下:∵3a2+6a−9=3(a2+2a)−9=3(a2+2a+1−1)−9=3[(a+1)2−1]−9=3(a+1)2−3−9= 3(a+1)2−12,不论a取何值,(a+1)2≥0,当且仅当a=−1时等号成立.∴(a+1)2−12≥−12.∴代数式3a2+6a−9有最小值是−12.根据上面材料的信息,解决下列问题(1)求证:代数式a2−8a+10的最小值为−6.(2)判断代数式−2x2+12x−7有最大值还是最小值?并求出此时x的值.【答案】(1)见解析(2)有最大值,当x=3时,代数式−2x2+12x−7有最大值11【分析】此题考查配方法的应用和偶次方的非负性,掌握配方法的一般步骤、偶次方的非负性是解题的关键.(1)仿照阅读材料、利用配方法把原式化为完全平方式与一个数的和的形式,根据偶次方的非负性解答;(2)利用配方法把原式进行变形,根据偶次方的非负性解答即可.【详解】(1)证明:a2−8a+10=a2−8a+16−16+10=(a−4)2−6,不论a取何值,(a−4)2≥0,当且仅当a=4时等号成立.∴(a−4)2−6≥−6.∴a2−8a+10的最小值为−6.(2)解:代数式−2x2+12x−7有最大值.−2x2+12x−7=−2(x2−6x)−7=−2(x2−6x+9−9)−7=−2(x−3)2+11,不论x取何值,(x−3)2≥0,当且仅当x=3时等号成立.∴−2(x−3)2+11≤11,∴当x=3时,代数式−2x2+12x−7有最大值11.17.(23-24八年级上·陕西西安·期末)阅读下列材料:数学研究发现常用的因式分解的方法有提取公因式法、公式法,但还有很多的多项式只用上述方法无法分解,如:“m2−mn+2m−2n”,细心观察这个式子就会发现,前两项可以提取公因式,后两项也可提取公因式,前后两部分分别因式分解后产生了新的公因式,然后再提取公因式就可以完成整个式子的因式分解了,过程为m2−mn+2m−2n=(m2−mn)+ (2m−2n)=m(m−n)+2(m−n)=(m−n)(m+2).此种因式分解的方法叫做“分组分解法”.请在这种方法的启发下,解决以下问题:(1)因式分解:a3−3a2+6a−18;(2)因式分解:ax+a2−2ab−bx+b2.18.(23-24八年级上·湖北孝感·期末)阅读材料:若m−2mn+2n2−8n+16=0,求m,n的值.解:∵m2−2mn+2n2−8n+16=0,∴(m2−2mn+n2)+(n2−8n+16)=0,∴(m−n)2+(n−4)2=0,∵(m−n)2≥0,(n−4)2≥0∴{m−n=0n−4=0,∴n=4,m=4.请解答下面的问题:(1)已知x2+2xy+2y2−10y+25=0,求xy2的值;(2)已知△ABC的三边a,b,c的长都是互不相等的正整数,且满足a2+b2−4a−14b+53=0,求△ABC的最大边c的长;【答案】(1)−125(2)c=8【分析】本题主要考查完全平方公式及三角形的三边关系,熟练掌握完全平方公式及三角形的三边关系是解题的关键;(1)根据利用完全平方公式进行因式分解进行求解;(2)先利用完全平方公式及三角形的三边关系可进行求解.【详解】(1)解:∵x2+2xy+2y2−10y+25=0,∴x2+2xy+y2+y2−10y+25=0,∴(x+y)2+(y−5)2=0,∵(x+y)2≥0,(y−5)2≥0,∴x+y=0,y−5=0,∴x=−5,y=5,∴xy2=−5×52=−125;(2)解:∵a2+b2−4a−14b+53=0,∴(a−2)2+(b−7)2=0,∵(a−2)2≥0,(b−7)2≥0,∴a−2=0,b−7=0,∴a=2,b=7,∵△ABC的三边a,b,c的长都是互不相等的正整数,∴5<c<9,∴c=8.【考试题型6】平行线的性质与判定19.(23-24七年级上·河南南阳·期末)【课题学习】平行线的“等角转化”.如图1,已知点A是BC外一点,连接AB,AC.求∠BAC+∠B+∠C的度数.解:过点A作ED∥BC,∴∠B=,∠C=,又∵∠EAB+∠BAC+∠DAC=180°.。
七年级下学期数学期末压轴题终极版

七年级下学期数学期末压轴题终极版七(下)期末B 卷模拟题(1)1.(4分)若关于x 的不等式0mx n ->的解集是15x <,则关于x 的不等式()m n x m n ++> 的解集是( )A .23x <-B .23x >-C .23x <D .23x > 2.(4分)在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n 步的走法是:当n 能被3整除时,则向上走1个单位;当n 被3除,余数为1时,则向右走1个单位;当n 被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是( )A .(66,34)B .(67,33)C .(100,33)D .(99,34)3.(4分)已知关于x 的不等式组2515036x a x ->⎧⎨-≥⎩只有16个整数解,则实数a 的取值范围是 .4.(4分)若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是14x y =-⎧⎨=⎩,则方程组111222325325a x b y c a x b y c -=⎧⎨-=⎩的解为 . 5.(10分)为了防止游客在旺季涌入景区,给景区接待能力、安全保卫等增加压力,同时也为了在淡季撬动旅游市场,重庆某著名风景区实行“淡旺季”票价.规定:每年旺季的门票价格为a 元/张,淡季的门票价格为b 元/张.下表为为该风景区2009年、2010年的游客人数和旅游收入的情况统计表:年份游客人数(万人) 旅游收入(亿元) 2009年 120 1.042010年160 1.44(1)若2009年淡季的游客人数占全年游客人数的1,2010年淡季的游客人数占全年游3,求a、b的值;客人数的14(2)在(1)的条件下,若2011年该景区预计全年游客人数为200万人,旅游收入在1.6亿至1.72亿元之间(不含1.6亿元和1.72亿元),那么该景区2011年淡季的游客人数占全年游客人数的比例应在什么范围?6.(12分)如图1,在平面直角坐标系中,A(a,0),B(b,3),C(4,0),且满足a b+=,线段AB交y轴于F点.||0(1)求点A、B的坐标.(2)点D为y轴正半轴上一点,若ED∥AB,且AM、DM分别平分∠CAB、∠ODE,如图2,求∠AMD的度数.(3)如图3,(也可以利用图1)①求点F的坐标;②点P为坐标轴上一点,若△ABP的三角形和△ABC的面积相等?若存在,求出P点坐标.7.(12分)如图1,在平面直角坐标系中,第一象限内长方形ABCD,AB∥y轴,点A(1,1),点C(a,b),满足a ab b b a----=-.|2|13162(1)求长方形ABCD的面积.(2)如图2,长方形ABCD以每秒1个单位长度的速度向右平移,同时点E从原点O出发沿x轴以每秒2个单位长度的速度向右运动,设运动时间为t秒.①当t=4时,直接写出△OAC的面积为;②若AC∥ED,求t的值;(3)在平面直角坐标系中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P的伴随点,已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n.①若点A1的坐标为(3,1),则点A3的坐标为,点A2014的坐标为;②若点A 1的坐标为(a ,b ),对于任意的正整数n ,点A n 均在x 轴上方,则a ,b 应满足的条件为 .七(下)期末B 卷模拟题(2)1. (4分)如图,周长为34cm 的长方形ABCD 被分成7个形状大小完全相同的小长方形,则长方形ABCD 的面积为( )A .49cm 2B .68cm 2C .70cm 2D .74cm 22. (4分)如图,直线AB ∥CD ,EG 平分∠AEF ,EH ⊥EG ,且平移EH 恰好到GF ,则下列结论: ①EH 平分BEF ∠;②EG =HF ;③FH 平分EFD ∠;④ο90=∠GFH ,其中正确的结论个数是( )A.1个B.2个C.3个D.4个3. (4分)已知方程组3754106x y z x y z ++=⎧⎨++=⎩,则5-x y z +的值为___________.4.(4分)在平面直角坐标系中,(1)(5)(03)A m B n C --,、,、,,且AB 经过点O ,过点C 作CP ⊥AB 于点P ,则AB CP ⋅的值为______.5.(10分)在“五•一”期间,某公司组织318名员工到雷山西江千户苗寨旅游,旅行社承诺每辆车安排一名随团导游,并为此次旅行安排8名导游,现打算同时租甲、乙两种客车,其中甲种客车每辆载客45人,乙种客车每辆载客30人.(1)请帮助旅行社设计租车方案.(2)若甲种客车租金为800元/辆,乙种客车租金为600元/辆,旅行社按哪种方案租车最省钱?此时租金是多少?(3)旅行前,旅行社的一名导游由于有特殊情况,旅行社只能安排7名导游随团导游,为保证所租的每辆车安排有一名导游,租车方案调整为:同时租65座、45座和30座的大小三种客车,出发时,所租的三种客车的座位恰好坐满,请问旅行社的租车方案如何安排?6.(12分)如图,B、D、E、F是直线l上四点,在直线l的同侧作△ABE和△CDF,且AB∥CD,∠A=40°.作BG⊥AE于G,FH⊥CD于H,BG与FH交于P点.(1)如图1,B、E、D、F从左至右顺次排列,∠ABD=90°,求∠GPH;(2)如图2,B、E、D、F从左至右顺次排列,△ABE与△CDF均为锐角三角形,求∠GPH;(3)如图3,F、B、E、D从左至右顺次排列,△ABE为锐角三角形,△CDF为钝角三角形,则∠GPH的度数为多少?请画出图形并直接写出结果,不需证明.7.(12分)如图,平面直角坐标系中,直线BD分别交x轴、y轴于B、D两点,A、C是过D点的直线上两点,连接OA、OC、BD,∠CBO=∠COB,且OD平分∠AOC.(1)请判断AO与CB的位置关系,并予以证明;(2)沿OA、AC、BC放置三面镜子,从O点发出的一条光线沿x轴负方向射出,经AC、CB、OA反射后,恰好由O点沿y轴负方向射出,若AC⊥BD,求∠ODB;(3)在(2)的条件下,沿垂直于DB的方向放置一面镜子l,从射线OA上任意一点P放出的光线经B点反射,反射光线与射线OC交于Q点,OQ交BP于M点,给出两个结论:①∠OMB的度数不变;②∠OPB+∠OQB的度数不变.可以证明,其中有且只有一个是正确的,请你作出正确的判断并求值.七(下)期末B 卷模拟题(3)1.(4分)已知⎩⎨⎧x =3,y =﹣2 是方程组⎩⎨⎧ax +cy =1,cx -by =2 的解,则a 与b 的关系是A .4b -9a =1.B .9a +4b =7.C .3a +2b =3.D .4b -9a =﹣1.2.(4分)如图,四边形ABCD ,连接BD ,AC ,点E ,F ,K 分别为边所在的直线的点,G ,H 为BD 直线上的点,且∠KBH +∠GDC =180°,∠DAB =∠DCB , 下列结论:①AB ∥CD ;②BC ∥AD ;③若DA 平分∠FDB ,则BH 平分∠KBE ;④2ABC ABCD S S =△四边形,其中正确结论的个数为A .1个.B .2个.C . 3个.D .4个.3.(4分)如图,动点P 从(0,3)出发,沿所示方向运动,每当碰到长方形的边时反弹,反弹时反射角等于入射角(即:反弹前后的路径与长方形边的夹角相等),当点P 出发后第2015次碰到长方形的边时,点P 的坐标为 .4.(4分)若不等式组⎩⎨⎧2x +8>0,1-3x ≥﹣8 的解集与m -2<x <m +2的解集中,相同的整数解有且只有2个,则m 的范围为 .5.(10分)为了庆祝“六一”,某学校组织300名七年级学生和7名教师到欢乐谷旅游,每辆汽车上至少要有1名教师.现有甲、乙两种大客车,它们的载客量和租金如下表:甲种客车 乙种客车 载客量(单位:人/辆)4540BDCAFH(1)学校共需租多少辆客车?(2)学校计划总费用3000元的限额内,有哪几种可行的租车方案,并给出最节省费用的方案.6.(12分)已知:直线EF分别与直线AB,CD相交于点F,E,EM平分∠FED,AB//CD.H,P分别为直线AB和线段EF上的点.(1)如图1,HM平分∠BHP,若HP⊥EF,求∠M的度数;7.(12分)如图,长方形AOCB 的顶点A (m ,n )和C (p ,q )在坐标轴上,已知⎩⎨⎧x =m ,y =n和⎩⎨⎧x =p ,y =q 都是方程x +2y =4的解,点B 在第一象限内.(1)求点B 的坐标;图1 图2(2)若P点从A点出发沿y轴负半轴以1个单位每秒的速度运动,同时Q点从C点出发沿x轴负半轴方向以2个单位每秒的速度运动,问运动到多少秒时,四边形BPOQ面积为长方形ABCO面积的一半;(3)如图2,将线段AC沿x轴正方向平移,得到线段BD,点E(a,b)为线段BD上任一点,试问式子a+2b的值是否变化,若变化,求其范围;若不变化,求其值.七(下)期末B卷模拟题(4)1.(4分)如图,在4×4的正方形网格中,每个小正方形的边长均为1,小正方形的顶点称为格点,请格点上确定点C,连结AB,AC,BC,使△ABC的面积为1.5平方单位,则点C的个数为()A. 3个B. 4个C. 5个D. 6个2.(4分)如图,AB∥CD,AC平分∠BAD,CA平分∠BCD,点E在AD的延长线上,连接EC,∠ECD=∠CED,下列结论:①BC∥AD;②∠B=∠CDA;③AC⊥EC;④∠B=2∠CED,其中正确的个数为()A. 1个B. 2个C. 3个D. 4个3.(4分)关于x的不等式组305x mx+<⎧⎨>-⎩的所有整数解的和为-9,求m的取值范围是.4.(4分)已知关于x,y的方程组343x y ax y a+=-⎧⎨-=⎩,其中-3≤a≤1,给出下列结论:①51xy=⎧⎨=-⎩是方程组的解;②当a=-2时,x,y的值互为相反数;③当a=1时,方程组的解也是方程x+y=4-a的解;④若x≤1,则y≥1.其中正确的是.(填序号)5.(10分)武汉市某小区由于车位紧张,准备新建50个停车车位,解决小区停车难问题.已知新建2个地上停车位和3个地下停车位共需1.7万元,新建3个地上停车位和2个地下停车位共需1.3万元.(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)若该小区预计投资金额超过9万元而不超过11万元,则有几种建造方案?(3)若每个地上停车位月租金100元,每个地下停车位月租金200元,在(2)的条件下,已知新建车位全部租出且依靠租金要在16个月内(包括16个月)收回投资,试确定车位建造方案?6.(12分)已知,AB//CD,1)如图,若E为DC延长线上一点,AF、CG分别为∠BAC、∠ACE的平分线,求证:AF//CG.2)若E为线段DC上一点(E不与C重合),AF、CG分别为∠BAC、∠ACE的平分线,画出图形,试判断AF,CG的位置关系,并证明你的结论.7.(12分)如图,点B(a,b)在第一象限,过B作BA⊥y轴于A,过B作BC⊥x轴于C,且实数a,b满足2-+++-≤,含45°角的Rt△DEF的一条直角边DFa b a b(2)|210|0与x轴重合,DE⊥x轴于D,点F与坐标原点重合,DE=DF=3.三角形DEF从某时刻开始沿着坐标轴轴以1个单位长度/秒的速度匀速运动,运动时间为t秒.1)求点B的坐标;2)若三角形DEF沿着y轴负方向运动,连接AE,EG平分∠AEF,EH平分∠AED,当EG∥DF时,求∠HEF的度数;3)若三角形DEF沿着x轴正方向运动,在运动过程中,记三角形AEF与长方形OABC重叠部分的面积为S,当0<t≤4,S=1t时,请你求出运动时间t.2。
(完整版)七年级下学期数学期末压轴题精选

图1AB CDE N图2BDN七年级下学期数学期末压轴题精选1. 如图1,已知AB ∥CD ,点M 、N 分别是AB 、CD 上两点,点G 在AB 、CD 之间 (1)如图1,点E 是AB 上方一点,MF 平分∠AME ,若点G 恰好在MF 的反向延长线上,且NE 平分∠CNG , 2∠E 与∠G 互余,求∠AME 的大小.(2)如图2,在(1)的条件下,若点P 是EM 上一动点,PQ 平分∠MPN ,NH 平分∠PNC ,交AB 于点H , PI ∥NH ,当点P 在线段EM 上运动时, 求∠IPQ 的度数.图1图2xy yxO FDEO HBACBAC2. 在平面直角坐标系中,点B (0,4),C (-5,4),点A 是x 轴负半轴上一点,S 四边形AOBC =24. (1)线段BC 的长为 ,点A 的坐标为 ; (2)如图1,EA 平分∠CAO ,DA 平分∠CAH ,CF ⊥AE 点F ,试给出∠ECF 与∠DAH 之间 满足的数量关系式,并说明理由;(3)若点P 是在直线CB 与直线AO 之间的一点,连接BP 、OP ,BN 平分CBP ∠,ON 平分AOP ∠, BN 交ON 于N ,请依题意画出图形,给出BPO ∠与BNO ∠之间满足的数量关系式,并说明理由.FABC DEN3. 如图,AC ∥BD ,点D 在点B 的右侧,BE ⊥AB ,∠EBD 、∠ACD 的平分线交于点F (点F 不与点B 、C 重合). ∠ABD = m ,∠ACD = n .(1)若点A 在点C 的右侧,求∠BFC ,并直接写出12BFC ABEABD ACD∠-∠∠+∠的值;(2)将(1)中的线段CD 沿BD 方向平移,当点C 移动到点A 的右侧时,求∠BFC ,并直接写出∠BFC 、∠ABD 、∠ACD 之间的关系.4. 如图,MN ∥AB ,点C 、D 在直线MN 上运动,∠CBD 的平分线交射线AC 于点E .(1)当点D 在点C 的右侧运动时,①若∠ACB =∠A ,求AEBCDB∠∠②若∠ACB 比∠A 大30°,AEBCDB∠∠的值是否发生变化,若不变,求出其值;若变化,请探究∠AEB 与∠CDB(2)当点D 在点C 的左侧运动时,若∠ACB =∠A ,请直接写出∠AEB 与∠CDB 之间的关系.图2图1xy DE F BCO AGH图1图25. 线段AB 是直角三角形ABC 的斜边,将ABC ∆放置在平面直角坐标系中,线段AB 交y 轴于点D . (1)如图1,若点C 与点O 重合,已知(,)(,)A t a B t b -、,且a b +=D 的坐标;(2)如图2,将ABC ∆沿着AC 方向平移,边AB 、BC 交平行于y 轴的直线于E 、F ,直线EF 交x 轴于点G , 点H 是边AC 上一点,连接FH ,①若∠CFH +∠CFE =200°,请写出∠AOD 与∠HFE 之间的关系,并证明你的结论;②若12+2002CFH CFE ∠∠=,请直接写出∠AOD 与∠HFE 之间的关系.6. 如图1,CD ∥AB ,12ABF EBF ∠=∠, CF 平分∠DCE , ∠F 的2倍与∠E 的余角的和为108°.(1)求∠ABE 的度数;(2)如图2,点G 、H 分别是CD 、BE 上一点,3BHI GHI ∠=∠, GJ ∥HI , GK 平分∠DGH ,下列结论:①KGJHGJ∠∠的值为定值,②KGJ HGJ ∠-∠的值为定值,有且只有一个结论正确,请判断,并求出其定值.。
期末复习(压轴题49题)—2023-2024学年七年级数学下学期期末考点(北师大版)(解析版)

z 期末复习(压轴题49题20个考点)一.规律型:数字的变化类(共1小题)1.为了求1+2+22+23+…+22011+22012的值,可令S =1+2+22+23+…+22011+22012,则2S =2+22+23+24+…+22012+22013,因此2S ﹣S =22013﹣1,所以1+22+23+…+22012=22013﹣1.仿照以上方法计算1+5+52+53+…+52012的值是( )A .52013﹣1B .52013+1C .D . 【答案】D【解答】解:令S =1+5+52+53+ (52012)则5S =5+52+53+…+52012+52013,5S ﹣S =﹣1+52013,4S =52013﹣1,则S =.故选:D .二.同底数幂的乘法(共1小题) 2.阅读材料:求1+2+22+23+24+…+22013的值.解:设S =1+2+22+23+24+…+22012+22013,将等式两边同时乘2得:2S =2+22+23+24+25+…+22013+22014 将下式减去上式得2S ﹣S =22014﹣1即S =22014﹣1即1+2+22+23+24+…+22013=22014﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n (其中n 为正整数).【答案】见试题解答内容【解答】解:(1)设S =1+2+22+23+24+ (210)将等式两边同时乘2得:2S =2+22+23+24+…+210+211,将下式减去上式得:2S ﹣S =211﹣1,即S =211﹣1,则1+2+22+23+24+…+210=211﹣1;z (2)设S =1+3+32+33+34+…+3n ①,两边同时乘3得:3S =3+32+33+34+…+3n +3n +1②,②﹣①得:3S ﹣S =3n +1﹣1,即S =(3n +1﹣1),则1+3+32+33+34+…+3n =(3n +1﹣1).三.多项式乘多项式(共1小题)3.如图,正方形卡片A 类,B 类和长方形卡片C 类若干张,如果要拼一个长为(a +2b ),宽为(a +b )的大长方形,则需要C 类卡片 张.【答案】见试题解答内容【解答】解:(a +2b )(a +b )=a 2+3ab +2b 2.则需要C 类卡片3张.故答案为:3.四.完全平方公式(共3小题)4.已知a ﹣b =b ﹣c =,a 2+b 2+c 2=1,则ab +bc +ca 的值等于 .【答案】见试题解答内容【解答】解:∵a ﹣b =b ﹣c =,∴(a ﹣b )2=,(b ﹣c )2=,a ﹣c =, ∴a 2+b 2﹣2ab =,b 2+c 2﹣2bc =,a 2+c 2﹣2ac =, ∴2(a 2+b 2+c 2)﹣2(ab +bc +ca )=++=, ∴2﹣2(ab +bc +ca )=, ∴1﹣(ab +bc +ca )=, ∴ab +bc +ca =﹣=﹣. 故答案为:﹣.z 5.请看杨辉三角(1),并观察下列等式(2):根据前面各式的规律,则(a +b )6= .【答案】见试题解答内容【解答】解:(a +b )6=a 6+6a 5b +15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 6故本题答案为:a 6+6a 5b +15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 66.回答下列问题(1)填空:x 2+=(x +)2﹣ =(x ﹣)2+(2)若a +=5,则a 2+= ;(3)若a 2﹣3a +1=0,求a 2+的值. 【答案】见试题解答内容【解答】解:(1)2、2.(2)23. (3)∵a =0时方程不成立,∴a ≠0,∵a 2﹣3a +1=0两边同除a 得:a ﹣3+=0,移项得:a +=3,∴a 2+=(a +)2﹣2=7. 五.平方差公式的几何背景(共1小题)7.如图,边长为m +4的正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为.z【答案】见试题解答内容【解答】解:设拼成的矩形的另一边长为x ,则4x =(m +4)2﹣m 2=(m +4+m )(m +4﹣m ),解得x =2m +4.故答案为:2m +4.六.整式的混合运算(共1小题)8.7张如图1的长为a ,宽为b (a >b )的小长方形纸片,按图2的方式不重叠地放在矩形ABCD 内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足( )A .a =bB .a =3bC .a =bD .a =4b 【答案】B 【解答】解:左上角阴影部分的长为AE ,宽为AF =3b ,右下角阴影部分的长为PC ,宽为a ,∵AD =BC ,即AE +ED =AE +a ,BC =BP +PC =4b +PC ,∴AE +a =4b +PC ,即AE ﹣PC =4b ﹣a ,∴阴影部分面积之差S =AE •AF ﹣PC •CG =3bAE ﹣aPC =3b (PC +4b ﹣a )﹣aPC =(3b ﹣a )PC +12b 2﹣3ab ,则3b ﹣a =0,即a =3b .解法二:既然BC 是变化的,当点P 与点C 重合开始,然后BC 向右伸展,设向右伸展长度为X ,左上阴影增加的是3bX ,右下阴影增加的是aX ,因为S 不变,∴增加的面积相等,z ∴3bX =aX ,∴a =3b .故选:B .七.函数的图象(共4小题)9.如图,某电信公司提供了A ,B 两种方案的移动通讯费用y (元)与通话时间x (分)之间的关系,则下列结论中正确的有( )(1)若通话时间少于120分,则A 方案比B 方案便宜20元;(2)若通话时间超过200分,则B 方案比A 方案便宜12元;(3)若通讯费用为60元,则B 方案比A 方案的通话时间多;(4)若两种方案通讯费用相差10元,则通话时间是145分或185分.A .1个B .2个C .3个D .4个【答案】C【解答】解:依题意得A :(1)当0≤x ≤120,y A =30, (2)当x >120,y A =30+(x ﹣120)×[(50﹣30)÷(170﹣120)]=0.4x ﹣18;B :(1)当0≤x <200,y B =50,当x >200,y B =50+[(70﹣50)÷(250﹣200)](x ﹣200)=0.4x ﹣30,所以当x ≤120时,A 方案比B 方案便宜20元,故(1)正确;当x ≥200时,B 方案比A 方案便宜12元,故(2)正确;z 当y =60时,A :60=0.4x ﹣18,∴x =195,B :60=0.4x ﹣30,∴x =225,故(3)正确;当B 方案为50元,A 方案是40元或者60元时,两种方案通讯费用相差10元,将y A =40或60代入,得x =145分或195分,故(4)错误;故选:C .10.在物理实验课上,小明用弹簧秤将铁块A 悬于盛有水的水槽中,然后匀速向上提起(不考虑水的阻力),直至铁块完全露出水面一定高度,则下图能反映弹簧秤的读数y (单位N )与铁块被提起的高度x (单位cm )之间的函数关系的大致图象是( )A .B .C .D . 【答案】C 【解答】解:因为小明用弹簧秤将铁块A 悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度.则露出水面前读数y 不变,出水面后y 逐渐增大,离开水面后y 不变.故选:C .11.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x 表示乌龟从起点出发所行的时间,y 1表示乌龟所行的路程,y 2表示兔子所行的路程).有下列说法:①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟;z ④兔子在途中750米处追上乌龟.其中正确的说法是 .(把你认为正确说法的序号都填上)【答案】见试题解答内容【解答】解:根据图象可知:龟兔再次赛跑的路程为1000米,故①正确;兔子在乌龟跑了40分钟之后开始跑,故②错误;乌龟在30﹣﹣40分钟时的路程为0,故这10分钟乌龟没有跑在休息,故③正确;y 1=20x ﹣200(40≤x ≤60),y 2=100x ﹣4000(40≤x ≤50),当y 1=y 2时,兔子追上乌龟,此时20x ﹣200=100x ﹣4000,解得:x =47.5,y 1=y 2=750米,即兔子在途中750米处追上乌龟,故④正确.综上可得①③④正确.故答案为:①③④.12.小高从家门口骑车去单位上班,先走平路到达点A ,再走上坡路到达点B ,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是 分钟.【答案】见试题解答内容【解答】解:先算出平路、上坡路和下坡路的速度分别为、和(千米/分),z 所以他从单位到家门口需要的时间是(分钟).故答案为:15.八.二次函数的图象(共1小题) 13.如图,正方形ABCD 的边长为4,点P 、Q 分别是CD 、AD 的中点,动点E 从点A 向点B 运动,到点B 时停止运动;同时,动点F 从点P 出发,沿P →D →Q 运动,点E 、F 的运动速度相同.设点E 的运动路程为x ,△AEF 的面积为y ,能大致刻画y 与x 的函数关系的图象是( )A .B .C .D .【答案】A 【解答】解:当F 在PD 上运动时,△AEF 的面积为y =AE •AD =2x (0≤x ≤2),当F 在AD 上运动时,△AEF 的面积为y =AE •AF =x (6﹣x )=﹣x 2+3x (2<x ≤4),图象为:故选:A .z 九.平行线的性质(共2小题)14.如图,将长方形ABCD 沿线段EF 折叠到EB 'C 'F 的位置,若∠EFC '=100°,则∠DFC '的度数为( )A .20°B .30°C .40°D .50°【答案】A【解答】解:由翻折知,∠EFC =∠EFC '=100°,∴∠EFC +∠EFC '=200°,∴∠DFC '=∠EFC +∠EFC '﹣180°=200°﹣180°=20°,故选:A .15.珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,如图,若∠ABC =120°,∠BCD =80°,则∠CDE = 度. 【答案】见试题解答内容【解答】解:过点C 作CF ∥AB ,已知珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,∴AB ∥DE ,∴CF ∥DE ,∴∠BCF +∠ABC =180°,∴∠BCF =60°,∴∠DCF =20°,∴∠CDE =∠DCF =20°.故答案为:20.z十.三角形的面积(共4小题)16.在如图的方格纸中,每个小方格都是边长为1的正方形,点A 、B 是方格纸中的两个格点(即正方形的顶点),在这个5×5的方格纸中,找出格点C 使△ABC 的面积为2个平方单位,则满足条件的格点C 的个数是( )A .5B .4C .3D .2【答案】A【解答】解:满足条件的C 点有5个,如图平行于AB 的直线上,与网格的所有交点就是.故选:A . 17.如图,△ABC 三边的中线AD 、BE 、CF 的公共点为G ,若S △ABC =12,则图中阴影部分的面积是 .【答案】见试题解答内容【解答】方法1解:∵△ABC 的三条中线AD 、BE ,CF 交于点G ,∴S △CGE =S △AGE =S △ACF ,S △BGF =S △BGD =S △BCF ,∵S △ACF =S △BCF =S△ABC=×12=6,z ∴S △CGE =S △ACF =×6=2,S △BGF =S △BCF =×6=2,∴S 阴影=S △CGE +S △BGF =4.故答案为4.方法2设△AFG ,△BFG ,△BDG ,△CDG ,△CEG ,△AEG 的面积分别为S 1,S 2,S 3,S 4,S 5,S 6,根据中线平分三角形面积可得:S 1=S 2,S 3=S 4,S 5=S 6,S 1+S 2+S 3=S 4+S 5+S 6①,S 2+S 3+S 4=S 1+S 5+S 6② 由①﹣②可得S 1=S 4,所以S 1=S 2=S 3=S 4=S 5=S 6=2,故阴影部分的面积为4.故答案为:4.18.如图,A 、B 、C 分别是线段A 1B ,B 1C ,C 1A 的中点,若△ABC 的面积是1,那么△A 1B 1C 1的面积 .【答案】见试题解答内容【解答】解:如图,连接AB 1,BC 1,CA 1,∵A 、B 分别是线段A 1B ,B 1C 的中点,∴S △ABB 1=S △ABC =1,S △A 1AB 1=S △ABB 1=1,∴S △A 1BB 1=S △A 1AB 1+S △ABB 1=1+1=2,同理:S △B 1CC 1=2,S △A 1AC 1=2,∴△A 1B 1C 1的面积=S △A 1BB 1+S △B 1CC 1+S △A 1AC 1+S △ABC =2+2+2+1=7.故答案为:7.z 19.如图,对面积为s 的△ABC 逐次进行以下操作:第一次操作,分别延长AB 、BC 、CA 至点A 1、B 1、C 1,使得A 1B =2AB ,B 1C =2BC ,C 1A =2CA ,顺次连接A 1、B 1、C 1,得到△A 1B 1C 1,记其面积为S 1;第二次操作,分别延长A 1B 1、B 1C 1、C 1A 1至点A 2、B 2、C 2,使得A 2B 1=2A 1B 1,B 2C 1=2B 1C 1,C 2A 1=2C 1A 1顺次连接A 2、B 2、C 2,得到△A 2B 2C 2,记其面积为S 2;…;按此规律继续下去,可得到△A n B n ∁n ,则其面积S n = .【答案】见试题解答内容【解答】解:连接A 1C ;S △AA 1C =3S △ABC =3S ,S △AA 1C 1=2S △AA 1C =6S ,所以S △A 1B 1C 1=6S ×3+1S =19S ;同理得S △A 2B 2C 2=19S ×19=361S ; S △A 3B 3C 3=361S ×19=6859S ,S △A 4B 4C 4=6859S ×19=130321S , S △A 5B 5C 5=130321S ×19=2476099S ,从中可以得出一个规律,延长各边后得到的三角形是原三角形的19倍,所以延长第n 次后,得到△A n B n ∁n , 则其面积Sn =19n •S .十一.三角形内角和定理(共3小题)20.已知△ABC,(1)如图1,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=90°+∠A;(2)如图2,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°﹣∠A;(3)如图3,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°﹣∠A.上述说法正确的个数是( )A.0个B.1个C.2个D.3个【答案】C【解答】解:(1)若P点是∠ABC和∠ACB的角平分线的交点,则∠PBC=∠ABC,∠PCB=∠ACB则∠PBC+∠PCB=(∠ABC+∠ACB)=(180°﹣∠A)z在△BCP中利用内角和定理得到:∠P=180﹣(∠PBC+∠PCB)=180﹣(180°﹣∠A)=90°+∠A,故成立;(2)当△ABC是等腰直角三角形,∠A=90°时,结论不成立;(3)若P点是外角∠CBF和∠BCE的角平分线的交点,则∠PBC=∠FBC=(180°﹣∠ABC)=90°﹣∠ABC,∠BCP=∠BCE=90°﹣∠ACB∴∠PBC+∠BCP=180°﹣(∠ABC+∠ACB)又∵∠ABC+∠ACB=180°﹣∠Az 在△BCP 中利用内角和定理得到:∠P =180﹣(∠PBC +∠PCB )=180﹣(180°+∠A )=90°﹣∠A ,故成立.∴说法正确的个数是2个.故选:C .21.已知△ABC 中,∠A =α.在图(1)中∠B 、∠C 的角平分线交于点O 1,则可计算得∠BO 1C =90°+;在图(2)中,设∠B 、∠C 的两条三等分角线分别对应交于O 1、O 2,则∠BO 2C = ;请你猜想,当∠B 、∠C 同时n 等分时,(n ﹣1)条等分角线分别对应交于O 1、O 2,…,O n ﹣1,如图(3),则∠BO n ﹣1C = (用含n 和α的代数式表示).【答案】见试题解答内容【解答】解:在△ABC 中,∵∠A =α,∴∠ABC +∠ACB =180°﹣α,∵O 2B 和O 2C 分别是∠B 、∠C 的三等分线,∴∠O 2BC +∠O 2CB =(∠ABC +∠ACB )=(180°﹣α)=120°﹣α;∴∠BO 2C =180°﹣(∠O 2BC +∠O 2CB )=180°﹣(120°﹣α)=60°+α;在△ABC 中,∵∠A =α,∴∠ABC +∠ACB =180°﹣α,∵O n ﹣1B 和O n ﹣1C 分别是∠B 、∠C 的n 等分线,∴∠O n ﹣1BC +∠O n ﹣1CB =(∠ABC +∠ACB )=(180°﹣α)=﹣. ∴∠BO n ﹣1C =180°﹣(∠O n ﹣1BC +∠O n ﹣1CB )=180°﹣(﹣)=+.z 故答案为:60°+α;+.22.如图,在△ABC 中,∠A =m °,∠ABC 和∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 和∠A 1CD 的平分线交于点A 2,得∠A 2;…∠A 2012BC 和∠A 2012CD 的平分线交于点A 2013,则∠A 2013= 度.【答案】见试题解答内容【解答】解:∵A 1B 平分∠ABC ,A 1C 平分∠ACD ,∴∠A 1BC =∠ABC ,∠A 1CA =∠ACD ,∵∠A 1CD =∠A 1+∠A 1BC ,即∠ACD =∠A 1+∠ABC ,∴∠A 1=(∠ACD ﹣∠ABC ),∵∠A +∠ABC =∠ACD ,∴∠A =∠ACD ﹣∠ABC ,∴∠A 1=∠A ,∴∠A 1=m °,∵∠A 1=∠A ,∠A 2=∠A 1=∠A , …以此类推∠A 2013=∠A =°. 故答案为:.十二.全等图形(共1小题)23.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( )A.150°B.180°C.210°D.225°【答案】B【解答】解:在△ABC与△EDC中,,∴△ABC≌△EDC(SAS),∴∠BAC=∠1,∠1+∠2=180°.故选:B.z十三.全等三角形的判定(共3小题)24.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是( )A.1对B.2对C.3对D.4对【答案】D【解答】解:∵AB=AC,D为BC中点,在△ABD和△ACD中,,∴△ABD≌△ACD;(SSS)∵EF垂直平分AC,∴OA=OC,AE=CE,在△AOE和△COE中,,∴△AOE≌△COE(SSS;在△BOD和△COD中,,∴△BOD≌△COD(SAS);在△AOC和△AOB中,,∴△AOC≌△AOB(SSS);故选:D.25.如图EB交AC于M,交FC于D,AB交FC于N,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论有 ①②③(填序z号).【答案】见试题解答内容【解答】解:∵∠B+∠BAE=90°,∠C+∠CAF=90°,∠B=∠C∴∠1=∠2(①正确)∵∠E=∠F=90°,∠B=∠C,AE=AF∴△ABE≌△ACF(ASA)∴AB=AC,BE=CF(②正确)z ∴△ACN ≌△ABM (ASA )(③正确)∴CN =BM (④不正确).所以正确结论有①②③.故填①②③.26.如图所示,在△ABC 中,D 、E 分别是AB 、AC 上的点,DE ∥BC ,如图①,然后将△ADE 绕A 点顺时针旋转一定角度,得到图②,然后将BD 、CE 分别延长至M 、N ,使DM =BD ,EN =CE ,得到图③,请解答下列问题:(1)若AB =AC ,请探究下列数量关系:①在图②中,BD 与CE 的数量关系是 ;②在图③中,猜想AM 与AN 的数量关系、∠MAN 与∠BAC 的数量关系,并证明你的猜想; 【答案】见试题解答内容【解答】解:(1)①BD =CE ;②AM =AN ,∠MAN =∠BAC ,∵∠DAE =∠BAC ,∴∠CAE =∠BAD ,在△BAD 和△CAE 中∵∴△CAE ≌△BAD (SAS ),∴∠ACE =∠ABD ,z ∵DM =BD ,EN =CE ,∴BM =CN ,在△ABM 和△ACN 中,∵∴△ABM ≌△ACN (SAS ),∴AM =AN ,∴∠BAM =∠CAN ,即∠MAN =∠BAC ;十四.全等三角形的判定与性质(共12小题) 27.如图,AE ⊥AB 且AE =AB ,BC ⊥CD 且BC =CD ,请按照图中所标注的数据,计算图中实线所围成的图形的面积S 是( )A .50B .62C .65D .68 【答案】A【解答】解:∵AE ⊥AB 且AE =AB ,EF ⊥FH ,BG ⊥FH ,∴∠EAB =∠EF A =∠BGA =90°,∵∠EAF +∠BAG =90°,∠ABG+∠BAG=90°,z ∴∠EAF =∠ABG ,在△EF A 和△AGB 中,,∴△EF A ≌△AGB (AAS ),∴AF =BG ,AG =EF .同理证得△BGC ≌△CHD 得GC =DH ,CH =BG .故FH =F A +AG +GC +CH =3+6+4+3=16故S =(6+4)×16﹣3×4﹣6×3=50.故选:A .28.如图,点E 在正方形ABCD 的对角线AC 上,且EC =2AE ,直角三角形FEG 的两直角边EF 、EG 分别交BC 、DC 于点M 、N .若正方形ABCD 的边长为a ,则重叠部分四边形EMCN 的面积为( )A .a 2B .a 2C .a 2D .a 2【答案】D【解答】解:过E 作EP ⊥BC 于点P ,EQ⊥CD 于点Q ,∵四边形ABCD是正方形,∴∠BCD=90°,又∵∠EPM=∠EQN=90°,∴∠PEQ=90°,∴∠PEM+∠MEQ=90°,∵三角形FEG是直角三角形,∴∠NEF=∠NEQ+∠MEQ=90°,∴∠PEM=∠NEQ,∵AC是∠BCD的角平分线,∠EPC=∠EQC=90°,∴EP=EQ,四边形PCQE是正方形,在△EPM和△EQN中,,∴△EPM≌△EQN(ASA)∴S△EQN=S△EPM,∴四边形EMCN的面积等于正方形PCQE的面积,∵正方形ABCD的边长为a,∴AC=a,z∵EC=2AE,∴EC=a,∴EP=PC=a,∴正方形PCQE的面积=a×a=a2,∴四边形EMCN的面积=a2,故选:D.29.如图,点A,B,C在一条直线上,△ABD,△BCE均为等边三角形,连接AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q,连接PQ,BM,下面结论:①△ABE≌△DBC;②∠DMA=60°;③△BPQ为等边三角形;④MB 平分∠AMC ,其中结论正确的有( )zA .1个B .2个C .3个D .4个 【答案】D【解答】解:∵△ABD 、△BCE 为等边三角形,∴AB =DB ,∠ABD =∠CBE =60°,BE =BC ,∴∠ABE =∠DBC ,∠PBQ =60°,在△ABE 和△DBC 中,, ∴△ABE ≌△DBC (SAS ),∴①正确;∵△ABE ≌△DBC ,∴∠BAE =∠BDC ,∵∠BDC +∠BCD =180°﹣60°﹣60°=60°,∴∠DMA =∠BAE +∠BCD =∠BDC +∠BCD =60°,∴②正确;在△ABP 和△DBQ 中,, ∴△ABP ≌△DBQ (ASA ),∴BP =BQ ,∴△BPQ 为等边三角形,∴③正确;∵∠DMA =60°,∴∠AMC =120°,∴∠AMC +∠PBQ =180°,∴P 、B 、Q 、M 四点共圆,z ∵BP =BQ ,∴,∴∠BMP =∠BMQ ,即MB 平分∠AMC ;∴④正确;综上所述:正确的结论有4个;故选:D .30.如图,在正方形ABCD 中,如果AF =BE ,那么∠AOD 的度数是 .【答案】见试题解答内容【解答】解:由ABCD 是正方形,得AD =AB ,∠DAB =∠B =90°.在△ABE 和△DAF 中,, ∴△ABE ≌△DAF (SAS ),∴∠BAE =∠ADF .∵∠BAE +∠EAD =90°,∴∠OAD +∠ADO =90°,∴∠AOD =90°,故答案为:90°.31.如图,△ABC 和△EBD 中,∠ABC =∠DBE =90°,AB =CB ,BE =BD ,连接AE ,CD ,AE 与CD 交于点M ,AE 与BC 交于点N .(1)求证:AE =CD ;(2)求证:AE ⊥CD ;(3)连接BM ,有以下两个结论:①BM 平分∠CBE ;②MB 平分∠AMD .其中正确的有 ② (请写序号,少选、错选均不得分).z【答案】见试题解答内容【解答】(1)证明:∵∠ABC =∠DBE ,∴∠ABC +∠CBE =∠DBE +∠CBE ,即∠ABE =∠CBD ,在△ABE 和△CBD 中,,∴△ABE ≌△CBD ,∴AE =CD .(2)∵△ABE ≌△CBD ,∴∠BAE =∠BCD , ∵∠NMC =180°﹣∠BCD ﹣∠CNM ,∠ABC =180°﹣∠BAE ﹣∠ANB ,又∠CNM =∠ANB ,∵∠ABC =90°,∴∠NMC =90°,∴AE ⊥CD .(3)结论:②理由:作BK ⊥AE 于K ,BJ ⊥CD 于J .z∵△ABE ≌△CBD ,∴AE =CD ,S △ABE =S △CDB ,∴•AE •BK =•CD •BJ ,∴BK =BJ ,∵作BK ⊥AE 于K ,BJ ⊥CD 于J ,∴BM 平分∠AMD .不妨设①成立,则△CBM ≌△EBM ,则AB =BD ,显然不可能,故①错误.故答案为②.32.(1)如图1,在四边形ABCD 中,AB =AD ,∠B =∠D =90°,E 、F 分别是边BC 、CD 上的点,且∠EAF =∠BAD .求证:EF =BE +FD ;(2)如图2,在四边形ABCD 中,AB =AD ,∠B +∠D =180°,E 、F 分别是边BC 、CD 上的点,且∠EAF =∠BAD ,(1)中的结论是否仍然成立? (3)如图3,在四边形ABCD 中,AB =AD ,∠B +∠ADC =180°,E 、F 分别是边BC 、CD 延长线上的点,且∠EAF =∠BAD ,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.【答案】见试题解答内容【解答】证明:(1)延长EB 到G ,使BG =DF ,连接AG .z∵∠ABG =∠ABC =∠D =90°,AB =AD ,∴△ABG ≌△ADF .∴AG =AF ,∠1=∠2.∴∠1+∠3=∠2+∠3=∠EAF =∠BAD .∴∠GAE =∠EAF .又∵AE =AE ,∴△AEG ≌△AEF .∴EG =EF .∵EG =BE +BG .∴EF =BE +FD(2)(1)中的结论EF =BE +FD 仍然成立.(3)结论EF =BE +FD 不成立,应当是EF =BE ﹣FD . 证明:在BE 上截取BG ,使BG =DF ,连接AG .∵∠B +∠ADC =180°,∠ADF +∠ADC =180°,∴∠B =∠ADF .∵AB =AD ,∴△ABG≌△ADF.∴∠BAG=∠DAF,AG=AF.∴∠BAG+∠EAD=∠DAF+∠EAD=∠EAF=∠BAD.∴∠GAE=∠EAF.∵AE=AE,∴△AEG≌△AEF.∴EG=EF∵EG=BE﹣BG∴EF=BE﹣FD.33.如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为 ,线段CF、BD的数量关系为 ;②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.【答案】见试题解答内容【解答】证明:(1)①正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,又∵AB=AC ,∴△DAB≌△F AC,∴CF=BD,∠B=∠ACF,∴∠ACB+∠ACF=90°,即CF⊥BD.②当点D在BC的延长线上时①的结论仍成立.由正方形ADEF得AD=AF,∠DAF=90度.∵∠BAC=90°,∴∠DAF=∠BAC,∴∠DAB=∠F AC,又∵AB=AC,∴△DAB≌△F AC,∴CF=BD,∠ACF=∠ABD.∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ACF=45°,∴∠BCF=∠ACB+∠ACF=90度.即CF⊥BD.(2)当∠ACB=45°时,CF⊥BD(如图).理由:过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°,∵∠ACB=45°,∠AGC=90°﹣∠ACB,∴∠AGC=90°﹣45°=45°,∴∠ACB=∠AGC=45°,∴AC=AG,∵∠DAG=∠F AC(同角的余角相等),AD=AF,∴△GAD≌△CAF,∴∠ACF=∠AGC=45°,∠BCF=∠ACB+∠ACF=45°+45°=90°,即CF⊥BC.z34.(本题有3小题,第(1)小题为必答题,满分5分;第(2)、(3)小题为选答题,其中,第(2)小题满分3分,第(3)小题满分6分,请从中任选1小题作答,如两题都答,以第(2)小题评分.) 在△ABC 中,∠ACB =90°,AC =BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE =AD +BE ;(2)当直线MN 绕点C 旋转到图2的位置时,求证:DE =AD ﹣BE ;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.【答案】见试题解答内容【解答】证明:(1)①∵∠ADC =∠ACB =∠BEC =90°,∴∠CAD +∠ACD =90°,∠BCE +∠CBE =90°,∠ACD +∠BCE =90°. ∴∠CAD =∠BCE .∵AC =BC ,∴△ADC ≌△CEB (AAS ).②∵△ADC ≌△CEB ,∴CE =AD ,CD =BE .∴DE =CE +CD =AD +BE .解:(2)∵∠ADC =∠CEB =∠ACB =90°,∴∠ACD =∠CBE.又∵AC =BC ,∴△ACD ≌△CBE (AAS ).∴CE =AD ,CD =BE .∴DE =CE ﹣CD =AD ﹣BE .(3)当MN 旋转到图3的位置时,AD 、DE 、BE 所满足的等量关系是DE =BE ﹣AD (或AD =BE ﹣DE ,BE =AD +DE 等).∵∠ADC =∠CEB =∠ACB =90°,∴∠ACD =∠CBE ,又∵AC =BC ,∴△ACD ≌△CBE (AAS ),∴AD =CE ,CD =BE ,∴DE =CD ﹣CE =BE ﹣AD .35.(1)如图1,已知:在△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .证明:DE =BD +CE .(2)如图2,将(1)中的条件改为:在△ABC 中,AB =AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA =∠AEC =∠BAC =α,其中α为任意锐角或钝角.请问结论DE =BD +CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图3,D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为∠BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD 、CE ,若∠BDA =∠AEC =∠BAC ,试判断△DEF 的形状.【答案】见试题解答内容【解答】证明:(1)∵BD ⊥直线m ,CE ⊥直线m ,∴∠BDA =∠CEA =90°,∵∠BAC =90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,∵在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)成立.∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,∴∠CAE=∠ABD,∵在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,z∴DE=AE+AD=BD+CE;(3)△DEF是等边三角形.由(2)知,△ADB≌△CEA,BD=AE,∠DBA=∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°,∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠F AE,∵BF=AF在△DBF和△EAF中,,∴△DBF≌△EAF(SAS),∴DF=EF,∠BFD=∠AFE,∴∠DFE=∠DF A+∠AFE=∠DF A+∠BFD=60°,∴△DEF为等边三角形.36.在课外小组活动时,小慧拿来一道题(原问题)和小东、小明交流.原问题:如图1,已知△ABC,∠ACB=90°,∠ABC=45°,分别以AB、BC为边向外作△ABD与△BCE,且DA=DB,EB=EC,∠ADB=∠BEC=90°,连接DE交AB于点F.探究线段DF与EF的数量关系.小慧同学的思路是:过点D作DG⊥AB于G,构造全等三角形,通过推理使问题得解.小东同学说:我做过一道类似的题目,不同的是∠ABC=30°,∠ADB=∠BEC=60°.小明同学经过合情推理,提出一个猜想,我们可以把问题推广到一般情况.请你参考小慧同学的思路,探究并解决这三位同学提出的问题:(1)写出原问题中DF与EF的数量关系;(2)如图2,若∠ABC=30°,∠ADB=∠BEC=60°,原问题中的其他条件不变,你在(1)中得到的结论是否发生变化?请写出你的猜想并加以证明;(3)如图3,若∠ADB=∠BEC=2∠ABC,原问题中的其他条件不变,你在(1)中得到的结论是否发生变化?请写出你的猜想并加以证明.【答案】见试题解答内容【解答】解:(1)DF=EF.(2)猜想:DF=FE.证明:过点D作DG⊥AB于G,则∠DGB=90°.∵DA=DB,∠ADB=60°.∴AG=BG,△DBA是等边三角形.z ∴DB =BA .∵∠ACB =90°,∠ABC =30°,∴AC =AB =BG .在Rt △DBG 和Rt △BAC 中,∴Rt △DBG ≌Rt △BAC (HL ).∴DG =BC .∵BE =EC ,∠BEC =60°,∴△EBC 是等边三角形.∴BC =BE ,∠CBE =60°.∴DG =BE ,∠ABE =∠ABC +∠CBE =90°.∵∠DFG =∠EFB ,∠DGF =∠EBF ,在△DFG 和△EFB 中,∴△DFG ≌△EFB (AAS ).∴DF =EF .(3)猜想:DF =FE .过点D 作DH ⊥AB 于H ,连接HC ,HE ,HE 交CB 于K ,则∠DHB =90°.∵DA =DB , ∴AH =BH ,∠1=∠HDB .∵∠ACB =90°,∴HC =HB .在△HBE 和△HCE 中,∴△HBE ≌△HCE (SSS ).∴∠2=∠3,∠4=∠BEH .∴HK ⊥BC .∴∠BKE =90°.∵∠ADB =∠BEC =2∠ABC ,z ∴∠HDB =∠BEH =∠ABC .∴∠DBC =∠DBH +∠ABC =∠DBH +∠HDB =90°,∠EBH =∠EBK +∠ABC =∠EBK +∠BEK =90°.∴DB ∥HE ,DH ∥BE .∴四边形DHEB 是平行四边形.∴DF =EF .37.(1)操作发现:如图①,D 是等边△ABC 边BA 上一动点(点D 与点B 不重合),连接DC ,以DC 为边在BC 上方作等边△DCF ,连接AF .你能发现线段AF 与BD 之间的数量关系吗?并证明你发现的结论.(2)类比猜想:如图②,当动点D 运动至等边△ABC 边BA 的延长线上时,其他作法与(1)相同,猜想AF 与BD 在(1)中的结论是否仍然成立?(3)深入探究:Ⅰ.如图③,当动点D 在等边△ABC 边BA 上运动时(点D 与点B 不重合)连接DC ,以DC 为边在BC上方、下方分别作等边△DCF 和等边△DCF ′,连接AF 、BF ′,探究AF 、BF ′与AB 有何数量关系?并证明你探究的结论.Ⅱ.如图④,当动点D 在等边△ABC 边BA 的延长线上运动时,其他作法与图③相同,Ⅰ中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论.【答案】见试题解答内容z 【解答】解:(1)AF =BD ;证明如下:∵△ABC 是等边三角形(已知),∴BC =AC ,∠BCA =60°(等边三角形的性质);同理知,DC =CF ,∠DCF =60°;∴∠BCA ﹣∠DCA =∠DCF ﹣∠DCA ,即∠BCD =∠ACF ;在△BCD 和△ACF 中,, ∴△BCD ≌△ACF (SAS ),∴BD =AF (全等三角形的对应边相等);(2)证明过程同(1),证得△BCD ≌△ACF (SAS ),则AF =BD (全等三角形的对应边相等),所以,当动点D 运动至等边△ABC 边BA 的延长线上时,其他作法与(1)相同,AF =BD 仍然成立;(3)Ⅰ.AF +BF ′=AB ;证明如下:由(1)知,△BCD ≌△ACF (SAS ),则BD =AF ;同理△BCF ′≌△ACD (SAS ),则BF ′=AD ,∴AF +BF ′=BD +AD =AB ;Ⅱ.Ⅰ中的结论不成立.新的结论是AF =AB +BF ′;证明如下:在△BCF ′和△ACD 中,,∴△BCF ′≌△ACD (SAS ), ∴BF ′=AD (全等三角形的对应边相等);又由(2)知,AF =BD ;∴AF =BD =AB +AD =AB +BF ′,即AF =AB+BF ′.z 38.操作:如图①,△ABC 是正三角形,△BDC 是顶角∠BDC =120°的等腰三角形,以D 为顶点作一个60°角,角的两边分别交AB 、AC 边于M 、N 两点,连接MN .探究:线段BM 、MN 、NC 之间的关系,并加以证明.说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);(2)在你经历说明(1)的过程之后,可以从下列①、②中选取一个补充或更换已知条件,完成你的证明.注意:选取①完成证明得10分;选取②完成证明得5分.AN =NC (如图②);②DM ∥AC (如图③).附加题:若点M 、N 分别是射线AB 、CA 上的点,其它条件不变,再探线段BM 、MN 、NC 之间的关系,在图④中画出图形,并说明理由.【答案】见试题解答内容【解答】解:(1)BM +CN =MN证明:如图,延长AC 至M 1,使CM 1=BM ,连接DM 1由已知条件知:∠ABC =∠ACB =60°,∠DBC =∠DCB =30°,∴∠ABD =∠ACD =90°.∵BD =CD ,∴Rt △BDM ≌Rt △CDM 1,∴∠MDB =∠M 1DC ,DM =DM 1∴∠MDM 1=(120°﹣∠MDB )+∠M 1DC =120°.又∵∠MDN =60°,∴∠M 1DN =∠MDN =60°.∴△MDN ≌△M 1DN .∴MN =NM 1=NC+CM 1=NC +MB .z (2)附加题:CN ﹣BM =MN证明:如图,在CN 上截取CM 1,使CM 1=BM ,连接MN ,DM 1∵∠ABC =∠ACB =60°,∠DBC =∠DCB =30°,∴∠DBM =∠DCM 1=90°.∵BD =CD ,∴Rt △BDM ≌Rt △CDM 1,∴∠MDB =∠M 1DC ,DM =DM 1∵∠BDM +∠BDN =60°,∴∠CDM 1+∠BDN =60°.∴∠NDM 1=∠BDC ﹣(∠M 1DC +∠BDN )=120°﹣60°=60°.∴∠M 1DN =∠MDN . ∵ND =ND ,∴△MDN ≌△M 1DN . ∴MN =NM 1=NC ﹣CM 1=NC ﹣BM,即MN =NC ﹣BM .z 十五.角平分线的性质(共1小题)39.如图,△ABC 的三边AB 、BC 、CA 长分别为40、50、60.其三条角平分线交于点O ,则S △ABO :S △BCO :S △CAO = .【答案】见试题解答内容【解答】解:过点O 作OD ⊥AB 于点D ,作OE ⊥AC 于点E ,作OF ⊥BC 于点F ,∵OA ,OB ,OC 是△ABC 的三条角平分线,∴OD =OE =OF ,∵△ABC 的三边AB 、BC 、CA 长分别为40、50、60,∴S △ABO :S △BCO :S △CAO =(AB •OD ):(BC •OF ):(AC •OE )=AB :BC :AC =40:50:60=4:5:6.故答案为:4:5:6.十六.线段垂直平分线的性质(共1小题) 40.如图,△ABC 中,AB =AC ,∠BAC =54°,点D 为AB 中点,且OD ⊥AB ,∠BAC 的平分线与AB 的垂直平分线交于点O ,将∠C 沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,则∠OEC 为度.【答案】见试题解答内容z 【解答】解:法一:如图,连接OB 、OC ,∵∠BAC =54°,AO 为∠BAC 的平分线,∴∠BAO =∠BAC =×54°=27°,又∵AB =AC ,∴∠ABC =(180°﹣∠BAC )=(180°﹣54°)=63°,∵DO 是AB 的垂直平分线,∴OA =OB ,∴∠ABO =∠BAO =27°,∴∠OBC =∠ABC ﹣∠ABO =63°﹣27°=36°,∵AO 为∠BAC 的平分线,AB =AC ,∴△AOB ≌△AOC (SAS ),∴OB =OC ,∴点O 在BC 的垂直平分线上,又∵DO 是AB 的垂直平分线,∴点O 是△ABC 的外心,∴∠OCB =∠OBC =36°,∵将∠C 沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,∴OE =CE , ∴∠COE =∠OCB =36°, 在△OCE 中,∠OEC =180°﹣∠COE ﹣∠OCB =180°﹣36°﹣36°=108°.法二:证明点O 是△ABC 的外心,推出∠BOC =108°,根据OB =OC ,推出∠OCE =36°可得结论.故答案为:108.z 十七.等腰三角形的性质(共4小题)41.如图,在△ABC 中,AB =20cm ,AC =12cm ,点P 从点B 出发以每秒3cm 的速度向点A 运动,点Q 从点A 同时出发以每秒2cm 的速度向点C 运动,其中一个动点到达端点时,另一个动点也随之停止运动,当△APQ 是以PQ 为底的等腰三角形时,运动的时间是( )A .2.5秒B .3秒C .3.5秒D .4秒 【答案】D【解答】解:设运动的时间为x cm ,在△ABC 中,AB =20cm ,AC =12cm ,点P 从点B 出发以每秒3cm 的速度向点A 运动,点Q 从点A 同时出发以每秒2cm 的速度向点C 运动, 当△APQ 是等腰三角形时,AP =AQ ,AP =20﹣3x ,AQ =2x即20﹣3x =2x ,解得x =4(cm ).故选:D .42.如图,∠BOC =9°,点A 在OB 上,且OA =1,按下列要求画图: 以A 为圆心,1为半径向右画弧交OC 于点A 1,得第1条线段AA 1; 再以A 1为圆心,1为半径向右画弧交OB 于点A 2,得第2条线段A 1A 2;再以A 2为圆心,1为半径向右画弧交OC 于点A 3,得第3条线段A 2A 3;…这样画下去,直到得第n 条线段,之后就不能再画出符合要求的线段了,则n = 9 .【答案】见试题解答内容【解答】解:由题意可知:AO =A 1A ,A 1A =A 2A 1,…,则∠AOA 1=∠OA 1A ,∠A 1AA 2=∠A 1A 2A,…,∵∠BOC =9°,z ∴∠A 1AB =18°,∠A 2A 1C =27°,∠A 3A 2B =36°,∠A 4A 3C =45°,…,∴9°n <90°,解得n <10.由于n 为整数,故n =9.故答案为:9.43.如图所示,AOB 是一钢架,且∠AOB =10°,为了使钢架更加坚固,需在其内部添加一些钢管EF ,FG ,GH …,添加的钢管长度都与OE 相等,则最多能添加这样的钢管 根.【答案】见试题解答内容【解答】解:∵添加的钢管长度都与OE 相等,∠AOB =10°,∴∠GEF =∠FGE =20°,…从图中我们会发现有好几个等腰三角形,即第一个等腰三角形的底角是10°,第二个是20°,第三个是30°,四个是40°,五个是50°,六个是60°,七个是70°,八个是80°,九个是90°就不存在了.所以一共有8个.故答案为:8.44.如图,△ABC 中AB =AC ,BC =6,点P 从点B 出发沿射线BA 移动,同时,点Q 从点C 出发沿线段AC 的延长线移动,已知点P 、Q 移动的速度相同,PQ 与直线BC 相交于点D .(1)如图①,当点P 为AB 的中点时,求CD 的长;(2)如图②,过点P 作直线BC 的垂线垂足为E ,当点P 、Q 在移动的过程中,线段BE 、DE 、CD 中是否存在长度保持不变的线段?请说明理由.【答案】见试题解答内容【解答】解:(1)如图,过P 点作PF ∥AC 交BC 于F ,∵点P 和点Q 同时出发,且速度相同,∴BP =CQ ,∵PF∥AQ,∴∠PFB=∠ACB,∠DPF=∠CQD,又∵AB=AC,∴∠B=∠ACB,∴∠B=∠PFB,∴BP=PF,∴PF=CQ,又∠PDF=∠QDC,∴证得△PFD≌△QCD,∴DF=CD=CF,又因P是AB的中点,PF∥AQ,∴F是BC的中点,即FC=BC=3,∴CD=CF=;(2)分两种情况讨论,得ED为定值,是不变的线段,如图,如果点P在线段AB上,过点P作PF∥AC交BC于F,z∵△PBF为等腰三角形,∴PB=PF,BE=EF,∴PF=CQ,∴FD=DC,∴ED=EF+FD=BE+DC=BC=3,∴ED为定值,同理,如图,若P 在BA的延长线上,z作PM ∥AC 的延长线于M ,∴∠PMC =∠ACB ,又∵AB =AC ,∴∠B =∠ACB ,∴∠B =∠PMC ,∴PM =PB ,根据三线合一得BE =EM ,同理可得△PMD ≌△QCD ,所以CD =DM ,∵BE =EM ,CD =DM ,∴ED =EM ﹣DM =﹣DM =+﹣DM =3+DM ﹣DM =3, 综上所述,线段ED 的长度保持不变.十八.等边三角形的性质(共1小题)45.图①是一块边长为1,周长记为P 1的正三角形纸板,沿图①的底边剪去一块边长为的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉如图正三角形纸板边长的)后,得图③,④,…,记第n (n ≥3)块纸板的周长为P n ,则P n﹣P n ﹣1的值为( )zA .B .C .D . 【答案】C【解答】解:P 1=1+1+1=3,P 2=1+1+=,P 3=1+++×3=,P 4=1+++×2+×3=, …∴P 3﹣P 2=﹣==, P 4﹣P 3=﹣==,则Pn ﹣Pn ﹣1==.故选:C .十九.轴对称-最短路线问题(共3小题)46.如图,点P 是∠AOB 内任意一点,OP =5cm ,点M 和点N 分别是射线OA 和射线OB 上的动点,△PMN 周长的最小值是5cm ,则∠AOB 的度数是( )。
七年级下学期数学期末压轴难题试卷及答案-百度文库doc

七年级下学期数学期末压轴难题试卷及答案-百度文库doc一、选择题1.16的平方根是().A .8B .4C .4±D .4-2.把“笑脸”进行平移,能得到的图形是( )A .B .C .D . 3.在平面直角坐标系中,下列点中位于第四象限的是( )A .()0,3B .()2,1-C .()1,2-D .()1,1-- 4.有下列四个命题:①对顶角相等;②同位角相等;③两点之间,直线最短;④连接直线外一点与直线上各点的所有线段中,垂线段最短.其中是真命题的个数有( ) A .0个B .1个C .2个.D .3个 5.如图,////AF BE CD ,若140∠=︒,250∠=︒,3120∠=︒,则下列说法正确的是( )A .100F ∠=︒B .140C ∠=︒ C .130A ∠=︒D .60D ∠=︒6.下列运算中:2551114412;22222-=-=-;33(3)3-;3648=,错误的个数有( )A .1个B .2个C .3个D .4个 7.在同一平面内,若∠A 与∠B 的两边分别平行,且∠A 比∠B 的3倍少40°,则∠A 的度数为( )A .20°B .55°C .20°或125°D .20°或55° 8.在直角坐标系xOy 中,一个质点从()12,A a a 出发沿图中路线依次经过()34,B a a ,()56,C a a ,()78,D a a ,…按此规律一直运动下去,则201920202021a a a ++=( )A .1009B .1010C .1011D .1012二、填空题9.计算:4﹣1=___.10.小明从镜子里看到对面电子钟的像如图所示,那么实际时间是_______.11.如图,在ABC ∆中A α∠=,作ABC ∠的角平分线与ACB ∠的外角的角平分线交于点1A ;1A BC ∠的角平分线与1A CB ∠角平分线交于2A ,如此下去,则2021A ∠=__________.12.如图,把一张长方形纸片ABCD 沿EF 折叠后,D 、C 分别落在D ,C '的位置上,ED '与BC 交于G 点,若56EFG ∠=︒,则AEG ∠=______.13.在“妙折生平——折纸与平行”的拓展课上,小潘老师布置了一个任务:如图,有一张三角形纸片ABC ,30B ∠=︒,50C ∠=︒,点D 是AB 边上的固定点(12BD AB <),请在BC 上找一点E ,将纸片沿DE 折叠(DE 为折痕),点B 落在点F 处,使EF 与三角形ABC 的一边平行,则BDE ∠为________度.14.对于有理数x 、y ,当x ≥y 时,规定x ※y =y x ;而当x <y 时,规定x ※y =y -x ,那么4※(-2)=_______;如果[(-1)※1]※m=36,则m 的值为______.15.若点P (2x ,x-3)到两坐标轴的距离之和为5,则x 的值为____________. 16.如图,正方形ABCD 的各边分别平行于x 轴或y 轴,且CD 边的中点坐标为(2,0),AD 边的中点坐标为(0,2).点M ,N 分别从点(2,0)同时出发,沿正方形ABCD 的边作环绕运动.点M 按逆时针方向以1个单位/秒的速度匀速运动,点N 按顺时针方向以3个单位/秒的速度匀速运动,则M ,N 两点出发后的第2021次相遇地点的坐标是_________.三、解答题17.计算:(1)()3201931232(1)---+-(2)3339368(1)116-----++18.求下列各式中的x 值:(1)()3101250x ++=(2)()22360x --= 19.已知一个角的两边与另一个角的两边分别平行,结合图1,探索这两个角之间的关系.(1)如图1,已知ABC ∠与DEF ∠中,//AB FE ,//BC DE ,AB 与DE 相交于点G .问:ABC ∠与DEF ∠有何关系?①请完成下面的推理过程.理由://AB FE ,AGE DEF ∴∠+∠= ( ).//BC DE ,AGE ABC ∴∠=∠( ).ABC DEF ∴∠+∠= .②结论:ABC ∠与DEF ∠关系是 . (2)如图2,已知//AB FE ,//BC ED ,则ABC ∠与DEF ∠有何关系?请直接写出你的结论.(3)由(1)、(2)你得出的结论是:如果一个角的两边与另一个角的两边分别平行,那么 .20.在图所示的平面直角坐标系中表示下面各点:()0,3A ;()3,5B -;()3,5C --;()3,5D ;()5,7E ;(1)A 点到原点O 的距离是________;(2)将点B 向x 轴的负方向平移6个单位,则它与点________重合;(3)连接BD ,则直线BD 与y 轴是什么关系?(4)点E 分别到x 、y 轴的距离是多少?21.阅读下面的对话,解答问题:21,将这个数减去其整数部分,差就是小数部分.又例如:∵ 479<< ,即 273<< ,∴ 7 的整数部分为2,小数部分为 72- .请解答:(1)15 的整数部分_____,小数部分可表示为________.(2)已知:10-3=x+y ,其中x 是整数,且0<y<1,求x -y 的相反数.二十二、解答题22.如图,8块相同的小长方形地砖拼成一个大长方形,(1)每块小长方形地砖的长和宽分别是多少?(要求列方程组进行解答)(2)小明想用一块面积为7平方米的正方形桌布,沿着边的方向裁剪出一块新的长方形桌布,用来盖住这块长方形木桌,你帮小明算一算,他能剪出符合要求的桌布吗?二十三、解答题23.综合与实践课上,同学们以“一个直角三角形和两条平行线”为背景开展数学活动,如图,已知两直线,a b ,且,a b ABC //是直角三角形,90BCA ∠=︒,操作发现:(1)如图1.若148∠=︒,求2∠的度数;(2)如图2,若30,1A ∠=︒∠的度数不确定,同学们把直线a 向上平移,并把2∠的位置改变,发现21120∠-∠=︒,请说明理由.(3)如图3,若∠A =30°,AC 平分BAM ∠,此时发现1∠与2∠又存在新的数量关系,请写出1∠与2∠的数量关系并说明理由.24.已知点A ,B ,O 在一条直线上,以点O 为端点在直线AB 的同一侧作射线OC ,OD ,OE 使60BOC EOD ∠=∠=.(1)如图①,若OD 平分BOC ∠,求AOE ∠的度数;(2)如图②,将EOD ∠绕点O 按逆时针方向转动到某个位置时,使得OD 所在射线把BOC ∠分成两个角.①若:1:2COD BOD ∠∠=,求AOE ∠的度数;②若:1:COD BOD n ∠∠=(n 为正整数),直接用含n 的代数式表示AOE ∠. 25.如图1,已知AB ∥CD ,BE 平分∠ABD ,DE 平分∠BDC .(1)求证:∠BED =90°;(2)如图2,延长BE 交CD 于点H ,点F 为线段EH 上一动点,∠EDF =α,∠ABF 的角平分线与∠CDF 的角平分线DG 交于点G ,试用含α的式子表示∠BGD 的大小;(3)如图3,延长BE 交CD 于点H ,点F 为线段EH 上一动点,∠EBM 的角平分线与∠FDN 的角平分线交于点G ,探究∠BGD 与∠BFD 之间的数量关系,请直接写出结论: .26.如图,△ABC 和△ADE 有公共顶点A ,∠ACB =∠AED =90°,∠BAC =45°,∠DAE =30°. (1)若DE //AB ,则∠EAC = ;(2)如图1,过AC 上一点O 作OG ⊥AC ,分别交A B 、A D 、AE 于点G 、H 、F . ①若AO =2,S △AGH =4,S △AHF =1,求线段OF 的长;②如图2,∠AFO 的平分线和∠AOF 的平分线交于点M ,∠FHD 的平分线和∠OGB 的平分线交于点N ,∠N +∠M 的度数是否发生变化?若不变,求出其度数;若改变,请说明理由.【参考答案】一、选择题1.C解析:C【分析】如果一个数x的平方等于a,那么这个数x就叫做a的平方根(或二次方根).根据平方根的定义求解即可.【详解】解:(±4)2=16∴16的平方根是±4.故选C.【点睛】主要考查平方根的定义,牢记正数的两个平方根互为相反数是解答本题的关键.2.D【分析】根据平移不改变图形的形状和大小,对应点的连线相等且互相平行即可判断.【详解】解:观察图形可知图形进行平移,能得到图形D.故选:D.【点睛】本题考查了图形的平移,图形的平移只改解析:D【分析】根据平移不改变图形的形状和大小,对应点的连线相等且互相平行即可判断.【详解】解:观察图形可知图形进行平移,能得到图形D.故选:D.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小.3.C【分析】根据各象限内点的坐标特征对各选项分析判断后利用排除法求解.【详解】解:A、(0,3)在y轴上,故本选项不符合题意;-在第二象限,故本选项不符合题意;B、(2,1)-在第四象限,故本选项符合题意;C、(1,2)--在第三象限,故本选项不符合题意.D、(1,1)故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(,)++;第二象限(,)-+;第三象限(,)--;第四象限(,)+-.4.C【分析】根据对顶角的性质、线段的性质、平行线的性质、垂线段的性质进行解答即可.【详解】解:①对顶角相等,原命题是真命题;②两直线平行,同位角相等,不是真命题;③两点之间,线段最短,原命题不是真命题;④直线外一点与直线上各点连接的所有线段中,垂线段最短,原命题是真命题. 故选:C .【点睛】此题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5.D【分析】根据平行线的性质进行求解即可得到答案.【详解】解:∵BE ∥CD∴∠ 2+∠C =180°,∠ 3+∠D =180°∵∠ 2=50°,∠ 3=120°∴∠C =130°,∠D =60°又∵BE ∥AF ,∠ 1=40°∴∠A =180°-∠ 1=140°,∠F =∠ 3=120°故选D.【点睛】本题主要考查了平行线的性质,熟练掌握平行线的性质是解题的关键.6.D【分析】对每个选项依次计算判断即可.【详解】①2511442131=,故该项错误; ②22-无意义,故该项错误;③33(3)3-=-,故该项错误;④3644=,故该项错误.共4个错误的,故选:D.【点睛】此题考查平方根、立方根的化简,熟记平方根、立方根的性质即可正确化简.7.C【分析】根据∠A 与∠B 的两边分别平行,可得两个角大小相等或互补,因此分两种情况,分别求∠A 得度数.【详解】解:∵两个角的两边分别平行,∴这两个角大小相等或互补,①这两个角大小相等,如下图所示:由题意得,∠A =∠B ,∠A =3∠B -40°,∴∠A =∠B =20°,②这两个角互补,如下图所示:由题意得,180A B ∠+∠=︒,340A B ∠=∠-︒,∴55B ∠=︒,125A ∠=︒,综上所述,∠A 的度数为20°或125°,故选:C .【点睛】本题考查了平行线的性质,解题的关键是根据平行线的性质找出图中角度之间的关系. 8.B【分析】根据题意可得A (1,1),B (-1,2),C (2,3),D (-2,4),E (3,5),F (-3,6),则,,,,,,,,由此可知当n 为偶数时;,,,,可得 ,,可以得到,由此求解即可.解析:B【分析】根据题意可得A (1,1),B (-1,2),C (2,3),D (-2,4),E (3,5),F (-3,6),则11a =,21a =,31a =-,42a =,52a =,63a =,72a =-,84a =,由此可知当n 为偶数时2n n a =;11a =,31a =-,52a =,72a =-,可得 130a a +=,570a a +=,可以得到21210n n a a -++=,由此求解即可.【详解】解:由题意可知A (1,1),B (-1,2),C (2,3),D (-2,4),E (3,5),F (-3,6),∴11a =,21a =,31a =-,42a =,52a =,63a =,72a =-,84a =,由此可知当n 为偶数时2n n a =, ∴2020202010102a == ∵11a =,31a =-,52a =,72a =-,可得 130a a +=,570a a +=,∴可以得到21210n n a a -++=,∴201920210a a +=,∴2019202020211010a a a ++=,故选B .【点睛】本题主要考查了点坐标规律的探索,解题的关键在于能够准确找到相应的规律进行求解.二、填空题9.1【分析】先计算算术平方根,然后计算减法.【详解】解:原式=2-1=1.故答案是:1.【点睛】本题考查了算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x解析:1【分析】先计算算术平方根,然后计算减法.【详解】解:原式=2-1=1.故答案是:1.【点睛】本题考查了算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.10.21:05.【分析】利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.【详解】解:根据镜面对称的性质,题中所显示的时刻与21:05成轴对称,所解析:21:05.【分析】利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.【详解】解:根据镜面对称的性质,题中所显示的时刻与21:05成轴对称,所以此时实际时刻为21:05.故答案为21:05【点睛】本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧.11.【分析】根据角平分线的定义以及三角形外角的性质,三角形内角和定理得出与,与的关系,找出规律即可.【详解】解:设BC延长与点D,∵,的角平分线与的外角的角平分线交于点,∴,同 解析:202112α【分析】根据角平分线的定义以及三角形外角的性质,三角形内角和定理得出A ∠与1A ∠,A ∠与2A ∠的关系,找出规律即可.【详解】解:设BC 延长与点D ,∵180ACD ACB ∠=︒-∠, ABC ∠的角平分线与ACD ∠的外角的角平分线交于点1A ,∴111180()A A BC ACB ACA ∠=︒-∠+∠+∠11180(180)22ABC ACB ACB =︒-∠-∠-︒-∠ 190()2ABC ACB =︒-∠+∠ 190(180)2A =︒-︒-∠ 12A =∠, 同理可得1221122A A A ∠=∠=∠, 2331122A A A ∠=∠=∠, ∴2021202112A A ∠=∠,∵A α∠=,∴2021202112A α∠=,故答案为:202112α.【点睛】 本题主要考查三角形外角的性质,角平分线的定义,三角形内角和等知识点,熟知以上知识点,找出角度之间的规律是解题的关键.12.68°【分析】先根据平行线的性质求得∠DEF 的度数,再根据折叠求得∠DEG 的度数,最后计算∠AEG 的大小.【详解】解:∵AD//BC ,,∴∠DEF=∠EFG=56°,由折叠可得,∠GEF解析:68°【分析】先根据平行线的性质求得∠DEF 的度数,再根据折叠求得∠DEG 的度数,最后计算∠AEG 的大小.【详解】解:∵AD //BC ,56EFG ∠=︒,∴∠DEF =∠EFG =56°,由折叠可得,∠GEF =∠DEF =56°,∴∠DEG =112°,∴∠AEG =180°-112°=68°.故答案为:68°.【点睛】本题考查了折叠问题,平行线的性质,解题时注意:长方形的对边平行,且折叠时对应角相等.13.35°或75°或125°【分析】由于EF 不与BC 平行,则分EF ∥AB 和EF ∥AC ,画出图形,结合折叠和平行线的性质求出∠BDE 的度数.【详解】解:当EF ∥AB 时,∠BDE=∠DEF ,由折解析:35°或75°或125°【分析】由于EF 不与BC 平行,则分EF ∥AB 和EF ∥AC ,画出图形,结合折叠和平行线的性质求出∠BDE 的度数.【详解】解:当EF ∥AB 时,∠BDE =∠DEF ,由折叠可知:∠DEF =∠DEB ,∴∠BDE=∠DEB,又∠B=30°,∴∠BDE=1(180°-30°)=75°;2当EF∥AC时,如图,∠C=∠BEF=50°,由折叠可知:∠BED=∠FED=25°,∴∠BDE=180°-∠B=∠BED=125°;如图,EF∥AC,则∠C=∠CEF=50°,由折叠可知:∠BED=∠FED,又∠BED+∠CED=180°,则∠CED+50°=180°-∠CED,解得:∠CED=65°,∴∠BDE=∠CED-∠B=65°-30°=35°;综上:∠BDE的度数为35°或75°或125°.【点睛】本题考查了平行线的性质,三角形内角和,折叠问题,解题的关键是注意分类讨论,画图图形推理求解.14.或.【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可.【详解】解:4※(-2)=;(-1)※1=[(-1)※1]※m=解析:6m =-或38m =.【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可.【详解】解:42>-∴4※(-2)=()42=16-; 11-<∴(-1)※1=()11=2--∴[(-1)※1]※m=2※m=36当2m ≥时,原式可化为236m =解得:6m =±6m ∴=-;当2m <时,原式可化为:236m -=解得:38m =;综上所述,m 的值为:6m =-或38m =;故答案为:16;6m =-或38m =.【点睛】本题考查了新定义的运算,读懂新定义的式子,将值正确代入是解题的关键. 15.或【详解】【分析】分x<0,0≤x<3,x≥3三种情况分别讨论即可得.【详解】当x<0时,2x<0,x-3<0,由题意则有-2x-(x-3)=5,解得:x=, 当0≤x<3时,2x≥0,x-3解析:2或2-3【详解】【分析】分x<0,0≤x<3,x≥3三种情况分别讨论即可得.【详解】当x<0时,2x<0,x-3<0,由题意则有-2x-(x-3)=5,解得:x=23-, 当0≤x<3时,2x≥0,x-3<0,由题意则有2x-(x-3)=5,解得:x=2,当x≥3时,2x>0,x-3≥0,由题意则有2x+x-3=5,解得:x=83<3(不合题意,舍去),综上,x的值为2或23 -,故答案为2或2 3 -.【点睛】本题考查了坐标与图形的性质,根据x的取值范围分情况进行讨论是解题的关键. 16.(0,2).【分析】利用行程问题中的相遇问题,由于正方形的边边长为4,根据两个点的速度,求得每一次相遇的地点,找出规律即可解答.【详解】解:由已知,正方形周长为16,∵M、N速度分别为1单解析:(0,2).【分析】利用行程问题中的相遇问题,由于正方形的边边长为4,根据两个点的速度,求得每一次相遇的地点,找出规律即可解答.【详解】解:由已知,正方形周长为16,∵M、N速度分别为1单位/秒,3单位/秒,则两个物体每次相遇时间间隔为1613+=4秒,则两个物体相遇点依次为(0,2)、(﹣2,0)、(0,﹣2)、(2,0)∵2021=4×505…1,∴第2021次两个物体相遇位置为(0,2),故答案为:(0,2).【点睛】本题考查了平面直角坐标系中点的规律,找到规律是解题的关键.三、解答题17.(1)-5;(2)【解析】【分析】(1)根据绝对值、乘方的意义和立方根的定义进行计算即可;(2)先根据平方根和立方根的定义化简各数,进而即可得出答案. 【详解】(1)原式=;(2)原式=解析:(1)-5;(2)74- 【解析】【分析】(1)根据绝对值、乘方的意义和立方根的定义进行计算即可;(2)先根据平方根和立方根的定义化简各数,进而即可得出答案.【详解】(1)原式1315-=-;(2)原式= -6+2+1+5 4=7 4-. 故答案为:(1)-5;(2)74- . 【点睛】本题考查实数的运算,解题的关键是熟练掌握平方根和立方根的定义.18.(1)x=-15;(2)x=8或x=-4【分析】(1)利用直接开立方法求得x 的值;(3)利用直接开平方法求得x 的值.【详解】解:(1),∴,∴,解得:x=-15;(2),∴,∴解析:(1)x =-15;(2)x =8或x =-4【分析】(1)利用直接开立方法求得x 的值;(3)利用直接开平方法求得x 的值.【详解】解:(1)()3101250x ++=,∴()310125x +=-, ∴105x +=-,解得:x =-15;(2)()22360x --=,∴()2236x -=,∴26x -=±,解得:x =8或x =-4.【点睛】本题考查了立方根和平方根.正数的立方根是正数,0的立方根是0,负数的立方根是负数.即任意数都有立方根.19.(1)①180°;两直线平行,同旁内角互补;两直线平行,同位角相等;180°;②互补;(2)(相等);(3)这两个角相等或互补.【分析】(1)如图1,根据,,即可得与的关系;(2)如图2,根据解析:(1)①180°;两直线平行,同旁内角互补;两直线平行,同位角相等;180°;②互补;(2)ABC DEF ∠=∠(相等);(3)这两个角相等或互补.【分析】(1)如图1,根据//AB FE ,//BC ED ,即可得ABC ∠与DEF ∠的关系;(2)如图2,根据//AB FE ,//BC ED ,即可得ABC ∠与DEF ∠的关系;(3)由(1)(2)即可得出结论.【详解】解:(1)①理由://AB FE ,180AGE DEF ∴∠+∠=︒(两直线平行,同旁内角互补),//BC DE ,AGE ABC ∴∠=∠ (两直线平行,同位角相等),180ABC DEF ∴∠+∠=︒.②结论:ABC ∠与DEF ∠关系是互补.故答案为:①180︒;两直线平行,同旁内角互补;两直线平行,同位角相等;180︒;②相等.(2)ABC DEF ∠=∠,理由如下://AB FE ,DGA DEF ∴∠=∠,//BC DE ,DGA ABC ∴∠=∠,ABC DEF ∴∠=∠.(3)由(1)、(2)你得出的结论是:如果一个角的两边与另一个角的两边分别平行,那么这两个角互补或相等,故答案为:这两个角互补或相等.【点睛】本题考查了平行线的性质,解题的关键是熟练掌握平行线的性质定理.20.(1)3;(2)C ;(3)平行;(4)7,5【分析】先在平面直角坐标中描点.(1)根据两点的距离公式可得A点到原点O的距离;(2)找到点B向x轴的负方向平移6个单位的点即为所求;(3)横坐解析:(1)3;(2)C;(3)平行;(4)7,5【分析】先在平面直角坐标中描点.(1)根据两点的距离公式可得A点到原点O的距离;(2)找到点B向x轴的负方向平移6个单位的点即为所求;(3)横坐标相同的两点所在的直线与y轴平行;(4)点E分别到x、y轴的距离分别等于纵坐标和横坐标的绝对值.【详解】解:(1)∵A(0,3),∴A点到原点O的距离是3;(2)将点B向x轴的负方向平移6个单位,则坐标为(-3,-5),与点C重合;(3)如图,BD与y轴平行;(4)∵E(5,7),∴点E到x轴的距离是7,到y轴的距离是5.【点睛】本题考查了平面内点的坐标的概念、平移时点的坐标变化规律,及坐标轴上两点的距离公式.本题是综合题型,但难度不大.21.(1)3,;(2)【分析】(1)先根据二次根式的性质求出的整数部分,则小数部分可求;(2)先根据二次根式的性质确定的整数部分,得出10- 的整数部分,即x值,则其小数部分可求,即y值,则x-解析:(1)33;(2)6-【分析】(1(2x值,则其小数部分可求,即y值,则x-y值可求.【详解】解:(1)∵∴34<,∴整数部分是3,.故答案为:3.(2)解:∵12<∴8 <9∵x是整数,且0<y<1,∴x=8,8=2,∴x-y=(826-=∵6的相反数为:(66-=-∴x-y的相反数是6-.【点睛】本题主要考查了估算无理数的大小,代数式求值.解题的关键是确定无理数的整数部分即可解决问题.二十二、解答题22.(1) 长是1.5m,宽是0.5m.;(2)不能.【解析】【分析】(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可;(2)把正方形的边长与大长方形的长比较即可.【详解】解:解析:(1) 长是1.5m,宽是0.5m.;(2)不能.【解析】【分析】(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可;(2)把正方形的边长与大长方形的长比较即可.【详解】解:(1)设每块小长方形地砖的长为xm,宽为ym,由题意得:32x y x y =⎧⎨+=⎩, 解得: 1.50.5x y =⎧⎨=⎩, ∴长是1.5m,宽是0.5m.(2)∵正方形的面积为7平方米,∴正方形的边长是7米,∵7<3,∴他不能剪出符合要求的桌布.【点睛】本题考查了二元一次方程组的应用,算术平方根的应用,找出等量关系列出方程组是解(1)的关键,求出正方形的边长是解(2)的关键.二十三、解答题23.(1)42°;(2)见解析;(3)∠1=∠2,理由见解析【分析】(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;(2)过点B 作BD ∥a .由平行线的性质得∠2+∠ABD=180°解析:(1)42°;(2)见解析;(3)∠1=∠2,理由见解析【分析】(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;(2)过点B 作BD ∥a .由平行线的性质得∠2+∠ABD =180°,∠1=∠DBC ,则∠ABD =∠ABC -∠DBC =60°-∠1,进而得出结论;(3)过点C 作CP ∥a ,由角平分线定义得∠CAM =∠BAC =30°,∠BAM =2∠BAC =60°,由平行线的性质得∠1=∠BAM =60°,∠PCA =∠CAM =30°,∠2=∠BCP =60°,即可得出结论.【详解】解:(1)∵∠1=48°,∠BCA =90°,∴∠3=180°-∠BCA -∠1=180°-90°-48°=42°,∵a ∥b ,∴∠2=∠3=42°;(2)理由如下:过点B 作BD ∥a .如图2所示:则∠2+∠ABD =180°,∵a ∥b ,∴b ∥BD ,∴∠1=∠DBC ,∴∠ABD =∠ABC -∠DBC =60°-∠1,∴∠2+60°-∠1=180°,∴∠2-∠1=120°;(3)∠1=∠2,理由如下:过点C 作CP ∥a ,如图3所示:∵AC 平分∠BAM∴∠CAM =∠BAC =30°,∠BAM =2∠BAC =60°,又∵a ∥b ,∴CP ∥b ,∠1=∠BAM =60°,∴∠PCA =∠CAM =30°,∴∠BCP =∠BCA -∠PCA =90°-30°=60°,又∵CP ∥a ,∴∠2=∠BCP =60°,∴∠1=∠2.【点睛】本题是三角形综合题目,考查了平移的性质、直角三角形的性质、平行线的判定与性质、角平分线定义、平角的定义等知识;本题综合性强,熟练掌握平移的性质和平行线的性质是解题的关键.24.(1);(2)①;②.【分析】(1)依据角平分线的定义可求得,再依据角的和差依次可求得和,根据邻补角的性质可求得结论;(2)①根据角相等和角的和差可得∠EOC=∠BOD ,再根据比例关系可得,最 解析:(1)90AOE ∠=︒;(2)①80AOE ∠=︒;②60(120)1n AOE n -+∠=︒. 【分析】(1)依据角平分线的定义可求得30COD ∠=︒,再依据角的和差依次可求得EOC ∠和∠BOE ,根据邻补角的性质可求得结论;(2)①根据角相等和角的和差可得∠EOC=∠BOD ,再根据比例关系可得BOD ∠,最后依据角的和差和邻补角的性质可求得结论;②根据角相等和角的和差可得∠EOC=∠BOD ,再根据比例关系可得BOD ∠,最后依据角的和差和邻补角的性质可求得结论.【详解】解:(1)∵OD 平分BOC ∠,60BOC EOD ∠=∠=︒, ∴1302COD BOC ∠=∠=︒, ∴30EOC EOD COD ∠=∠-∠=︒,∴90BOE EOC BOC ∠=∠+∠=︒,∴18090AOE BOE ∠=︒-∠=︒;(2)①∵BOC EOD ∠=∠,∴∠EOC+∠COD=∠BOD+∠COD ,∴∠EOC=∠BOD ,∵60BOC ∠=︒,:1:2COD BOD ∠∠=, ∴260403BOD ∠=︒⨯=︒, ∴40EOC BOD ∠=∠=︒,∴100BOE EOC BOC ∠=∠+∠=︒,∴18080AOE BOE ∠=︒-∠=︒;②∵BOC EOD ∠=∠,∴∠EOC+∠COD=∠BOD+∠COD ,∴∠EOC=∠BOD ,∵60BOC ∠=︒,:1:COD BOD n ∠∠=, ∴6060()11n n BOD n n ∠=︒⨯=︒++, ∴60()1n EOC BOD n ∠=∠=︒+, ∴60(60)1BOE EOC BOC n n ∠=∠+∠+=︒+, ∴18060(120)1AOE BO n E n ∠=︒-∠=-︒+. 【点睛】本题考查邻补角的计算,角的和差,角平分线的有关计算.能正确识图,利用角的和差求得相应角的度数是解题关键.25.(1)见解析;(2)∠BGD =;(3)2∠BGD+∠BFD =360°.【分析】(1)根据角平分线的性质求出∠EBD+∠EDB =(∠ABD+∠BDC ),根据平行线的性质∠ABD+∠BDC=180°解析:(1)见解析;(2)∠BGD=902a︒-;(3)2∠BGD+∠BFD=360°.【分析】(1)根据角平分线的性质求出∠EBD+∠EDB=12(∠ABD+∠BDC),根据平行线的性质∠ABD+∠BDC=180°,从而根据∠BED=180°﹣(∠EBD+∠EDB)即可得到答案;(2)过点G作GP∥AB,根据AB∥CD,得到GP∥AB∥CD,从而得到∠BGD=∠BGP+∠PGD=∠ABG+∠CDG,然后根据∠EBD+∠EDB=90°,∠ABD+∠BDC=180°,得到∠ABE+∠EDC=90°,即∠ABE+α+∠FDC=90°,再利用角平分线的定义求出2∠ABG+2∠CDG=90°﹣α即可得到答案;(3)过点F、G分别作FM∥AB、GM∥AB,从而得到AB∥GM∥FN∥CD,得到∠BGD=∠BGM+∠DGM=∠4+∠6,根据BG平分∠FBP,DG平分∠FDQ,∠4=12∠FBP=12(180°﹣∠3),∠6=12∠FDQ=12(180°﹣∠5),即可求解.【详解】解:(1)证明:∵BE平分∠ABD,∴∠EBD=12∠ABD,∵DE平分∠BDC,∴∠EDB=12∠BDC,∴∠EBD+∠EDB=12(∠ABD+∠BDC),∵AB∥CD,∴∠ABD+∠BDC=180°,∴∠EBD+∠EDB=90°,∴∠BED=180°﹣(∠EBD+∠EDB)=90°.(2)解:如图2,由(1)知:∠EBD+∠EDB=90°,又∵∠ABD+∠BDC=180°,∴∠ABE+∠EDC=90°,即∠ABE+α+∠FDC=90°,∵BG平分∠ABE,DG平分∠CDF,∴∠ABE=2∠ABG,∠CDF=2∠CDG,∴2∠ABG+2∠CDG=90°﹣α,过点G作GP∥AB,∵AB∥CD,∴GP∥AB∥CD∴∠ABG=∠BGP,∠PGD=∠CDG,∴∠BGD=∠BGP+∠PGD=∠ABG+∠CDG=902α-;(3)如图,过点F、G分别作FN∥AB、GM∥AB,∵AB∥CD,∴AB∥GM∥FN∥CD,∴∠3=∠BFN,∠5=∠DFN,∠4=∠BGM,∠6=∠DGM,∴∠BFD=∠BFN+∠DFN=∠3+∠5,∠BGD=∠BGM+∠DGM=∠4+∠6,∵BG平分∠FBP,DG平分∠FDQ,∴∠4=12∠FBP=12(180°﹣∠3),∠6=12∠FDQ=12(180°﹣∠5),∴∠BFD+∠BGD=∠3+∠5+∠4+∠6,=∠3+∠5+12(180°﹣∠3)+12(180°﹣∠5),=180°+12(∠3+∠5),=180°+12∠BFD,整理得:2∠BGD+∠BFD=360°.【点睛】本题主要考查了平行线的性质与判定,角平分线的性质和三角形内角和定理,解题的关键在于能够熟练掌握相关知识进行求解.26.(1)45°;(2)①1;②是定值,∠M+∠N=142.5°【分析】(1)利用平行线的性质求解即可.(2)①利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论.②利用角平分线的定解析:(1)45°;(2)①1;②是定值,∠M+∠N=142.5°【分析】(1)利用平行线的性质求解即可.(2)①利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论.②利用角平分线的定义求出∠M,∠N(用∠FAO表示),可得结论.【详解】解:(1)如图,∵AB∥ED∴∠E=∠EAB=90°(两直线平行,内错角相等),∵∠BAC=45°,∴∠CAE=90°-45°=45°.故答案为:45°.(2)①如图1中,∵OG⊥AC,∴∠AOG=90°,∵∠OAG=45°,∴∠OAG=∠OGA=45°,∴AO=OG=2,∵S△AHG=12•GH•AO=4,S△AHF=12•FH•AO=1,∴GH=4,FH=1,∴OF=GH-HF-OG=4-1-2=1.②结论:∠N+∠M=142.5°,度数不变.理由:如图2中,∵MF,MO分别平分∠AFO,∠AOF,∴∠M=180°-12(∠AFO+∠AOF)=180°-12(180°-∠FAO)=90°+12∠FAO,∵NH,NG分别平分∠DHG,∠BGH,∴∠N=180°-12(∠DHG+∠BGH)=180°-12(∠HAG+∠AGH+∠HAG+∠AHG)=180°-12(180°+∠HAG)=90°-12∠HAG=90°-12(30°+∠FAO+45°)=52.5°-12∠FAO,∴∠M+∠N=142.5°.【点睛】本题考查平行线的性质,角平分线的定义,三角形内角和定理,三角形外角的性质等知识,最后一个问题的解题关键是用∠FAO表示出∠M,∠N.。
七年级数学下册期末考试压轴训练题(附答案解析)

七年级数学下册期末考试压轴训练题(附答案解析)1.如图,点A、B的坐标分别为(a,0),(b,0),且满足(2a+2)2+√b−3=0,现同时将A、B分别向上平移2个单位,再向右平移1个单位,分别得到A、B对应点C、D,连接AC、BD.(1)求点A、B的坐标;(2)如图1,点P(0,m)是y轴负半轴上一动点,连接AP、PD,其中直线PD交x轴于E点,若S△P AE=S△BDE,求m的值;(3)如图2,连接BC,在直线BC上取一点F,使BF=3CF,求点F的坐标.2.如图1,在平面直角坐标系中,点A、B的坐标分别为A(a,0),B(0,b)2a-+√b+3=0,现同时将点A、B分别向上平移3个单位长度,再向右平移6个单位,分别得到点A、B的对应点D,C,连接AD,BC,CD.(1)求点C,D的坐标;(2)在y轴上是否存在一点P,使三角形P AC的面积等于四边形ABCD的面积?若存在,请求出点P的坐标,请说明理由;(3)如图2,设点E是直线CD上一动点(点不与点C、D重合),连接AE、BE,请直接写出∠DAE,∠CBE和∠AEB之间的数量关系.3.如图①,在平面直角坐标系中,点A(0,a),C(b,0),其中,a是16的算术平方根,b3=8,线段GO由线段AC平移所得,并且点G与点A对应,点O与点C对应.(1)点A的坐标为;点C的坐标为;点G的坐标为;(2)如图②,F是线段AC上不同于AC的任意一点,求证:∠OFC=∠OAF+∠AOF;(3)如图③,若点F满足FOC FCO∠=∠,点E是线段OA上一动点(与点O、A不重合),连CE交OF于点H,在点E运动的过程中,∠OHC+∠ACE=2∠OEC是否总成立?请说明理由.4.已知,在平面直角坐标系中,AB⊥x轴于点B,点A(a,b)满足√a−4+|b−2|=0,平移线段AB使点A 与原点重合,点B的对应点为点C.(1)则a=,b=,点C坐标为;(2)如图1,点D(m,n)在线段BC上,求m,n满足的关系式;(3)如图2,E是线段OB上一动点,以OB为边作∠BOG=∠AOB,交BC于点G,连CE交OG于点F,当点E在线段OB上运动过程中,∠OFC+∠FCG的值是否会发生变化?若变化请说明理由,若不变,请求出其∠OEC值.5.如图,在平面直角坐标系,点A、B的坐标分别为(a,0),(0,b).且|a﹣8b0,将点B向右平移24个单位长度得到C.(1)求A、B两点的坐标;(2)点P、Q分别为线段BC、OA两个动点,P自B点向C点以2个单位长度/秒向右运动,同时点Q自A 点向O点以4个单位长度/秒向左运动,设运动的时间为t,连接PQ,当PQ恰好平分四边形BOAC的面积时,求t的值;(3)点D是直线AC上一点,连接QD,作∠QDE=120°,边DE与BC的延长线相交于点E,DM平分∠CDE,DN平分∠ADQ,当点Q运动时,∠MDN的度数是否变化?请说明理由.6.如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限一点,CB∠y轴,交y轴负半轴于B(0,b),且(a﹣3)2+|b+4|=0,S四边形AOBC=16.(1)求C点坐标;(2)如图2,设D为线段OB上一动点,当AD∠AC时,∠ODA的角平分线与∠CAE的角平分线的反向延长线交于点P,求∠APD的度数.(3)如图3,当D点在线段OB上运动时,作DM∠AD交BC于M点,∠BMD、∠DAO的平分线交于N点,则D点在运动过程中,∠N的大小是否变化?若不变,求出其值,若变化,说明理由.7.如图,已知AM∠BN,∠A=64°.点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP 和∠PBN,分别交射线AM于点C,D.(1)∠∠ABN的度数是;∠∠AM∠BN,∠∠ACB=∠;(2)求∠CBD的度数;(3)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由:若变化,请写出变化规律;(4)当点P运动到使∠ACB=∠ABD时,∠ABC的度数是.8.在平面直角坐标系中,D(0,﹣3),M(4,﹣3),直角三角形ABC的边与x轴分别相交于O、G两点,与直线DM分别交于E、F点,∠ACB=90°.(1)将直角三角形如图1位置摆放,如果∠AOG=46°,则∠CEF=;(2)将直角三角形ABC如图2位置摆放,N为AC上一点,∠NED+∠CEF=180°,请写出∠NEF与∠AOG 之间的等量关系,并说明理由.(3)将直角三角形ABC如图3位置摆放,若∠GOC=140°,延长AC交DM于点Q,点P是射线GF上一动点,探究∠POQ,∠OPQ与∠PQF的数量关系,请直接写出结论(题中的所有角都大于0°小于180°).9.在平面直角坐标系中,A(a,0),B(b,0),C(﹣1,c)(见图1),且|2a+b+1|+√a+2b−4+(c−2)2=0.(1)求a、b、c的值;(2)①在x轴的正半轴上存在一点M,使三角形COM的面积是三角形ABC的面积的一半,求出点M的坐标;②在坐标轴的其它位置是否存在点M,使三角形COM的面积三角形ABC的面积的一半仍然成立? 若存在,请直接写出符合条件的点M的坐标;(3)如图2,过点C作CD⊥y轴交y轴于点D,点P为线段CD延长线上的一动点,连接OP,OE平分∠AOP,OF⊥OE.当点P运动时,∠OPD的值是否会改变?若不变,求其值;若改变,说明理由.∠DOE10.已知:b是立方根等于本身的负整数,且a、b满足(a+2b)2+|c+1|=0,请回答下列问题:2(1)请直接写出a、b、c的值:a=_______,b=_______,c=_______.(2)a、b、c在数轴上所对应的点分别为A、B、C,点D是B、C之间的一个动点(不包括B、C两点),|=________.其对应的数为m,则化简|m+12(3)在(1)、(2)的条件下,点A、B、C开始在数轴上运动,若点B、点C都以每秒1个单位的速度向左运动,同时点A以每秒2个单位长度的速度向右运动,假设t秒钟过后,若点A与点C之间的距离表示为AC,点A与点B之间的距离表示为AB,请问:AB−AC的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求出AB−AC的值.x y,都是二元一次方程x−4y= 11.如图①,在平面直角坐标系中,点A在x轴上,直线OC上所有的点坐标(,)x y,都是二元一次方程x+2y=6的解,过C作x轴的平行线,交y轴0的解,直线AC上所有的点坐标(,)与点B.(1)求点A、B、C的坐标;(2)如图∠,点M、N分别为线段BC,OA上的两个动点,点M从点C以每秒1个单位长度的速度向左运动,同时点N从点O以每秒1.5个单位长度的速度向右运动,设运动时间为t秒,且0<t<4,试比较四边形MNAC的面积与四边形MNOB的面积的大小.12.已知点A(1,a),将线段OA平移至线段BC,B(b,0),a是m+6n的算术平方根,2m=3,n=√4,且m<n,正数b满足(b+1)2=16.(1)直接写出A、B两点坐标为:A,B;(2)如图1,连接AB、OC,求四边形AOCB的面积;(3)如图2,若∠AOB=a,点P为y轴正半轴上一动点,试探究∠CPO与∠BCP之间的数量关系.13.如图,MN ∥OP ,点A 为直线MN 上一定点,B 为直线OP 上的动点,在直线MN 与OP 之间且在线段AB 的右方作点D ,使得AD ⊥BD .设(DAB αα∠=为锐角). (1)求NAD ∠与∠PBD 的和;(提示过点D 作EF ∥MN) (2)当点B 在直线OP 上运动时,试说明90OBD NAD ∠-∠=︒;(3)当点B 在直线OP 上运动的过程中,若AD 平分∠NAB ,AB 也恰好平分∠OBD ,请求出此时α的值14.如图1,在平面直角坐标系中,点A (a ,0),B (b ,3),C (c ,0),满足√a +b +|a −b +6|+(c −4)2=0. (1)分别求出点A ,B ,C 的坐标及三角形ABC 的面积.(2)如图2.过点C 作CD ⊥AB 于点D ,F 是线段AC 上一点,满足∠FDC =∠FCD ,若点G 是第二象限内的一点,连接DG ,使∠ADG =∠ADF ,点E 是线段AD 上一动点(不与A 、D 重合),连接CE 交DF 于点H ,点E 在线段AD 上运动的过程中,∠DHC+∠ACE∠CED的值是否会变化?若不变,请求出它的值;若变化,请说明理由.(3)如图3,若线段AB 与y 轴相交于点F ,且点F 的坐标为(0,32),在坐标轴上是否存在一点P ,使三角形ABP 和三角形ABC 的面积相等?若存在,求出P 点坐标.若不存在,请说明理由.(点C 除外)15.如图,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B分别向上平移2个单位长度,再向右平移1个单位长度,分别得到点A,B的对应点C,D.连接AC,BD.(1)写出点C,D的坐标及四边形ABDC的面积.(2)在y轴上是否存在一点P,连接P A,PB,使S三角形P AB=S四边形ABDC?若存在,求出点P的坐标,若不存在,试说明理由;(3)点Q是线段BD上的动点,连接QC,QO,当点Q在BD上移动时(不与B,D重合),给出下列结论:①∠DCQ+∠BOQ∠CQO的值不变;②∠DCQ+∠COQ∠BQO的值不变,其中有且只有一个正确,请你找出这个结论并求值.16.如图1,已知直角梯形ABCO中,∠AOC=90°,AB∠x轴,AB=6,若以O为原点,OA,OC所在直线为y轴和x轴建立如图所示直角坐标系,A(0,a),C(c,0)中a,c满足|a+c﹣7c-=0(1)求出点A、B、C的坐标;(2)如图2,若点M从点C出发,以2单位/秒的速度沿CO方向移动,点N从原点出发,以1单位/秒的速度沿OA方向移动,设M、N两点同时出发,且运动时间为t秒,当点N从点O运动到点A时,点M同时也停止运动,在它们的移动过程中,当2S△ABN≤S△BCM时,求t的取值范围:(3)如图3,若点N是线段OA延长上的一动点,∠NCH=k∠OCH,∠CNQ=k∠BNQ,其中k>1,NQ∠CJ,求HCJABN∠∠的值(结果用含k的式子表示).17.问题情境(1)如图1,已知AB∠CD,∠PBA=125°,∠PCD=155°,求∠BPC的度数.佩佩同学的思路:过点P作PG∠AB,进而PG∠CD,由平行线的性质来求∠BPC,求得∠BPC=问题迁移(2)图2.图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合,∠ACB =90°,DF∠CG,AB与FD相交于点E,有一动点P在边BC上运动,连接PE,P A,记∠PED=∠α,∠P AC =∠β.∠如图2,当点P在C,D两点之间运动时,请直接写出∠APE与∠α,∠β之间的数量关系;∠如图3,当点P在B,D两点之间运动时,∠APE与∠α,∠β之间有何数量关系?请判断并说明理由;拓展延伸(3)当点P在C,D两点之间运动时,若∠PED,∠P AC的角平分线EN,AN相交于点N,请直接写出∠ANE 与∠α,∠β之间的数量关系.18.如图1,在平面直角坐标系中,A(6,a),B(b,0),且(a−6)2+√b−2=0.(1)求点A、B的坐标;=15,请求出P点的坐标;(2)如图1,P点为y轴正半轴上一点,连接BP,若SΔPAB(3)如图2,已知AB=√52,若C点是x轴上一个动点,是否存在点C,使BC=AB,若存在,请直接写出所有符合条件的点C的坐标;若不存在,请说明理由.A ,点B与点A关于y轴对称.19.已知平面直角坐标系内两点A、B,点(3,4)(1)则点B的坐标为________;(2)动点P、Q分别从A点、B点同时出发,沿直线AB向右运动,同向而行,点P的速度是每秒4个单位长度,点Q的速度是每秒2个单位长度,设P、Q的运动时间为t秒,用含t的代数式表示ΔOPQ的面积S,并写出t的取值范围;SΔABO.求m的取值范围.(3)在平面直角坐标系中存在一点M(m,−m),满足SΔMOB≤2320.如图1,O为平面直角坐标系的原点,点A坐标为(4,0),同时将点A,O分别向上平移2个单位,再向左平移1个单位,得到对应点B,C.(1)求四边形OABC的面积;(2)在y轴上是否存在一点M,使△MOA的面积与四边形OABC的面积相等?若存在这样一点,求出点M的坐标,若不存在,请说明理由;(3)如图2,点P在OA边上,且∠CBP=∠CPB,Q是AO延长线上一动点,∠PCQ的平分线CD交BP的延长线于点D,在点Q运动的过程中,求∠D和∠CQP的数量关系.参考答案:1.(1)解:∵(2a+2)2+√b−3=0,(2a+2)2≥0,√b−3≥0,∴2a+2=0,b−3=0,1a∴=-,b=3,(1,0),(3,0)A B∴-;(2)∠将A、B分别向上平移2个单位,再向右平移1个单位,分别得到A、B对应点C、D,∴C(0,2),D(4,2),∴AO=1,OB=3,CD=4,OC=2,∵点P(0,m)是y轴负半轴上一动点,∴PO=−m,PC=2−m,∵S△P AE=S△BDE,S梯形OCDB=S梯形OCDE+S△DBE=S 梯形OCDE+APES= S梯形OCDE+S△POE+S△APO=S△PCD+S△APO,∴12(OB+CD)OC=12PCCD+12AOPO,即:12(3+4)×2=12×4×(2−m)+12×1×(−m),整理得:52m=−3,∴m=−65;(3)分如下两种情况进行讨论:①当F在BC中间,如图所示:过F作FM⊥AB于M,NF⊥OC于N,过点O作OG BC⊥于G,∵BF=3CF,AO=1,OB=3,CD=4,OC=2,∴S△COFS△BOF =12OGCF12OGBF=13,∵S△BOC=12OBOC=12×3×2=3,∴S△COF=14S△BOC=34,∴12CONF=34,∴NF=34,∵S△BOF=34S△BOC=94,∴12OBFM=94,∴FM=32,∴F(34,32 ),②当F在BC延长线上,则只能在第二象限,如图所示:过F作FP⊥AB于P,FQ⊥OC于Q,过点O作OH⊥BC于H,∵BF=3CF,AO=1,OB=3,CD=4,OC=2,∴S△COFS△BOF =12OHCF12OHBF=13,∴S△COF=12S△OBC,∵S△BOC=12OBOC=12×3×2=3,∴S△COF=12S△BOC=32,∴12COFQ=32,∴FQ=32,S△BOF=S△OCF+S△BOC=92,∴12OBPF=92,∴PF=3,∵F在第二象限,∴F(−32,3) , 综上所述:F(34,32)或者F(−32,3).2.(1)∵2a -+√b +3=0,|a −2|≥0,√b +3≥0,∴a −2=0,b +3=0解得a =2,b =−3∴A(2,0),B(0,−3)将点A 、B 分别向上平移3个单位长度,再向右平移6个单位,分别得到点A 、B 的对应点D ,C , 由平移的性质可知,即将A 、B 的横坐标+6,纵坐标+3,∴D(2+6,0+3),C(0+6,−3+3),即D(8,3),C(6,0);(2)存在,理由如下:设P(0,m),(2,0)A ,(6,0)C ,∴AC =6−2=4, 三角形P AC 的面积为12AC ×|y P |=12×4×|m |=2|m |,四边形ABCD 的面积为12AC ×(|y D |+|y B |)=12×4×(3+3)=12,∴2|m |=12,解得m =±6,∴(0,6)P 或者P(0,−6);(3)如图,过点E 作EM //AD ,∴∠DAE =∠AEM ,∵A,B 平移后对应的点分别为D,C ,∴AD //BC ,∵EM //AD ,∴EM //BC ,∠CBE =∠BEM ,∴∠DAE +∠CBE =∠AEM +∠BEM =∠AEB .∴∠DAE+∠CBE=∠AEB.3.(1)连接GA∵a是16的算术平方根∴a=4∴A(0,4)∴AO=4∵b3=8∴b=2∴C(2,0)∴OC=2∵线段GO由线段AC平移所得,并且点G与点A对应,点O与点C对应∴GA=OC=2,GA//OCG∴(2,4)故答案为:(0,4),(2,0),(−2,4);(2)∵线段GO由线段AC平移所得∴OG//CA,∴∠OFC=∠GOF∵∠GOF=∠GOA+∠AOF∴∠OFC=∠GOA+∠AOF∵OG//CA∴∠GOA=∠OAF∴∠OFC=∠OAF+∠AOF(3)∵OG//CA∴∠GOC+∠ACO=180°∵∠GOC=∠GOA+∠AOC∴∠GOA+∠AOC+∠ACO=180°∵∠AOC=90°∴∠GOA+90°+∠ACO=180°,即∠GOA+∠ACO=90°∵OG//CA∴∠GOA=∠OAC∴∠OAC+∠ACO=90°∵∠AOC=∠AOF+∠FOC=90°∴∠AOF+∠FOC=∠OAC+∠ACO∵FOC FCO∠=∠,∠ACO=∠FCO∴∠AOF=∠OAC由(2)的结论得:∠OHC=∠OEH+∠EOH,∠OEC=∠EAC+∠ACE∵∠OEH=∠OEC,∠EOH=∠AOF=∠OAC∴∠OHC=∠OEC+∠OAC∴∠OHC+∠ACE=∠OEC+∠OAC+∠ACE∵∠EAC=∠OAC∴∠OEC=∠OAC+∠ACE∴∠OHC+∠ACE=2∠OEC∴在点E运动的过程中,∠OHC+∠ACE=2∠OEC总成立.4.(1)解:∵√a−4+|b−2|=0,∴a−4=0,b−2=0,∴a=4,b=2,∵AB=OC=2,且C在y轴负半轴上,∴C(0,−2),故填:4,2,(0,−2);(2)如图1,过点D分别作DM∠x轴于点M,DN∠y轴于点N,连接OD.∵AB ⊥ x 轴于点B ,且点A ,D ,C 三点的坐标分别为:(4,2),(m,n),(0,−2) ∴OB =4,OC =2,MD =−n,ND =m ,∴S △BOC =12OBOC =4,又∠S △BOC = S △BOD +S △COD=12OB ×MD +12OC ×ND=12×4×(−n)+12×m ×2=m −2n ,∴m −2n =4;(3)解:∠OFC+∠FCG ∠OEC 的值不变,值为2.理由如下:如图所示,分别过点E ,F 作EP ∠OA , FQ ∠OA 分别交y 轴于点P ,点Q ,∠线段OC 是由线段AB 平移得到,∠BC ∠OA ,又∠EP ∠OA ,∠EP ∠BC ,∠∠GCF =∠PEC ,∠EP ∠OA ,∠∠AOE =∠OEP ,∠∠OEC =∠OEP +∠PEC =∠AOE +∠GCF ,同理:∠OFC =∠AOF +∠GCF ,又∠∠AOB =∠BOG ,∠∠OFC =2∠AOE +∠GCF ,∴∠OFC+∠FCG ∠OEC=∠OFC +∠FCG ∠AOE +∠FCG =2∠AOE +2∠FCG ∠AOE +∠FCG=2.5. 解:(1)∵|a ﹣8b -0,|a −26|≥080b -≥, ∴|a −26|=0,√8−b =0∴{a −26=08−b =0, 解得:{a =26b =8∴点A 、B 的坐标分别为(26,0),(0,8);(2)∠点B 向右平移24个单位长度得到C ,∠C (24,8),设BP =2t ,PC =24−2t ,OQ =26−4t ,AQ =4t ,∵PQ 平分四边形BOAC 的面积,∴S 梯形OBPQ =S 梯形QACP∴BP+OQ 2BO =CP+QA 2BO∴BP +OQ =CP +QA∴2t +26−4t =4t +24−2t解得t =12;(3)当点Q 运动时,∠MDN 的度数不变,理由如下:如图,当D 在线段CA 的延长线上时,∠DM 平分∠CDE ,DN 平分∠ADQ ,∴∠NDC =12∠QDA ,∠MDC =12∠CDE ,∴∠MDN =∠NDC +∠MDC =12(∠QDA +∠CDE)=12∠QDE , ∵∠QDE =120°,∠∠MDN =60°;同理求得当D在线段AC的延长线上时,∠MDN=60°;当点D在线段AC上时,∠DM平分∠CDE,DN平分∠ADQ,∴∠NDQ=12∠QDA,∠MDC=12∠CDE,设∠CDE=x∵∠QDE=120°∠∠QDC=120°-x,∠∠ADQ=180°-∠QDC=60°+x,∴∠MDN=∠MDC+∠QDC+∠NDQ=12x+120o−x+12(60o+x)=150o,综上所述:∠MDN=60°或150°.6.解:(1)∠(a﹣3)2+|b+4|=0,∠a﹣3=0,b+4=0,∠a=3,b=﹣4,∠A(3,0),B(0,﹣4),∠OA=3,OB=4,∠S四边形AOBC=16.∴1(OA+BC)×OB=16,2(3+BC)×4=16,∴12∴BC=5,∠C是第四象限一点,CB∠y轴,∠C(5,﹣4);(2)如图,延长CA,∠AF是∠CAE的角平分线,∠CAE,∴∠CAF=12∵∠CAE=∠OAG,∠OAG,∴∠CAF=12∵AD∠AC,∠∠DAO+∠OAG=∠PAD+∠PAG=90°,∠∠AOD=90°,∠∠DAO+∠ADO=90°,∠∠ADO=∠OAG,∠ADO,∴∠CAF=12∵DP是∠ODA的角平分线∠∠ADO=2∠ADP,∠∠CAF=∠ADP,∠∠CAF=∠PAG,∠∠PAG=∠ADP,∠∠APD=180°﹣(∠ADP+∠PAD)=180°﹣(∠PAG+∠PAD)=180°﹣90°=90°即:∠APD=90°;(3)不变,∠ANM=45°理由:如图,∠∠AOD =90°,∠∠ADO+∠DAO =90°,∠DM∠AD ,∠∠ADO+∠BDM =90°,∠∠DAO =∠BDM ,∠NA 是∠OAD 的平分线,∴∠DAN =12∠DAO =12∠BDM ,∵CB∠y 轴,∠∠BDM+∠BMD =90°,∴∠DAN =12(90°﹣∠BMD ),∵MN 是∠BMD 的角平分线,∴∠DMN =12∠BMD ,∴∠DAN+∠DMN =12(90°﹣∠BMD )+12∠BMD =45° 在∠DAM 中,∠ADM =90°,∠∠DAM+∠DMA =90°,在∠AMN 中,∠ANM =180°﹣(∠NAM+∠NMA )=180°﹣(∠DAN+∠DAM+∠DMN+∠DMA ) =180°﹣[(∠DAN+DMN )+(∠DAM+∠DMA )] =180°﹣(45°+90°)=45°,∠D 点在运动过程中,∠N 的大小不变,求出其值为45°. 7.解:(1)∠∠AM //BN ,∠A =64°,∠∠ABN =180°﹣∠A =116°,故答案为:116°;∠∠AM //BN ,∠∠ACB =∠CBN ,故答案为:CBN;(2)∠AM//BN,∠∠ABN+∠A=180°,∠∠ABN=180°﹣64°=116°,∠∠ABP+∠PBN=116°,∠BC平分∠ABP,BD平分∠PBN,∠∠ABP=2∠CBP,∠PBN=2∠DBP,∠2∠CBP+2∠DBP=116°,∠∠CBD=∠CBP+∠DBP=58°;(3)不变,∠APB:∠ADB=2:1,∠AM//BN,∠∠APB=∠PBN,∠ADB=∠DBN,∠BD平分∠PBN,∠∠PBN=2∠DBN,∠∠APB:∠ADB=2:1;(4)∠AM//BN,∠∠ACB=∠CBN,当∠ACB=∠ABD时,则有∠CBN=∠ABD,∠∠ABC+∠CBD=∠CBD+∠DBN∠∠ABC=∠DBN,由(1)∠ABN=116°,∠∠CBD=58°,∠∠ABC+∠DBN=58°,∠∠ABC=29°,故答案为:29°.8.(1)如图1,作CP∠x轴,∠D(0,﹣3),M(4,﹣3),∠DM∠x轴,∠CP∠DM∠x轴,∠∠AOG=∠1,∠2+∠CEF=180°,∠∠2=180°﹣∠CEF,∠∠1+∠2=90°,∠∠AOG+180°﹣∠CEF=90°,∠∠AOG=46°,∠∠CEF=136°,故答案为136°;(2)∠AOG+∠NEF=90°.理由如下:如图2,作CP∠x轴,∠CP∠DM∠x轴,∠∠AOG=∠1,∠2+∠CEF=180°,而∠NED+∠CEF=180°,∠∠2=∠NED,∠∠1+∠2=90°,∠∠AOG +∠NEF =90°;(3)如图3,当点P 在GF 上时,过点P 作PN ∠OG ,∠NP ∠OG ∠DM ,∠∠GOP =∠OPN ,∠PQF =∠NPQ ,∠∠OPQ =∠GOP +∠PQF ,∠∠OPQ =140°﹣∠POQ +∠PQF ;如图4,当点P 在线段GF 的延长线上时,过点P 作PN ∠OG ,∠NP ∠OG ∠DM ,∠∠GOP =∠OPN ,∠PQF =∠NPQ ,∠∠OPN =∠OPQ +∠QPN ,∠∠GOP =∠OPQ +∠PQF ,∠140°﹣∠POQ =∠OPQ +∠PQF .9.(1)因为|2a +b +1|+√a +2b −4+(c −2)2=0,根据绝对值、二次根式和平方的非负性,可以得到{2a +b +1=0a +2b −4=0,(c -2)2=0,解{2a +b +1=0a +2b −4=0得到a =-2,b =3;因为(c -2)2=0,所以c=2,故a =-2,b =3,c=2;(2)解:由(1)可知A (-2,0),B (3,0),则分情况讨论点M :①当M 在x 轴上时,设M (m ,0),由题意:12•|m |•2=12 12×5×2,∴m =±52,∴M (52,0)或(-52,0).②当M 在y 轴上时,设M (0,m ),由题意:12•|m |•1=12 12×5×2,∴m =±5,∠M (5,0)或(0,-5),综上所述,满足条件的点M 坐标为M (52,0)或(-52,0)或(0,5)或(0,-5).(3)解:如图中,结论:∠OPD ∠DOE 的值是定值,∠OPD ∠DOE=2.理由:∠OE ∠OF ,∠∠EOF =90°,∠∠AOE +∠FOG =90°,∠∠AOE =∠EOP ,∠EOP +∠POF =90°,∠∠FOG =∠POF ,∠∠DOE +∠AOE =90°,∠AOE +∠FOG =90°,∠∠DOE =∠FOG ,∠CP ∠AG ,∠∠OPD =∠POG =2∠FOG ,∠∠OPD =2∠FOG ,∴∠OPD ∠DOE=2. 10. 解:(1)∠b 是立方根等于本身的负整数,∠b=-1∵(a+2b)2+|c+12|=0,(a+2b)2≥0,|c+12|≥0∴a+2b=0,c+12=0解得:a=2,c=−12故答案为:2;-1;−12;(2)∵b=-1,c=−12,b 、c 在数轴上所对应的点分别为B 、C ,点D 是B 、C 之间的一个动点(不包括B 、C 两点),其对应的数为m ,∴-1<m <−12∴m+12<0∴|m+12|= -m -12故答案为:-m -12;(3)运动前AB=2-(-1)=3,AC=2-(−12)=52由题意可知:运动后AB=3+2t +t=3+3t ,AC=52+2t +t=52+3t∴AB -AC=(3+3t )-(52+3t )=12∴AB−AC 的值不会随着时间t 的变化而改变,AB -AC=12.11.(1)令y =0,则x +2×0=6,解得x =6, (6,0)A ∴.{x −4y =0x +2y =6解得{x =4y =1 ∴C(4,1).∵BC //x 轴,∴点B 的纵坐标与点C 的纵坐标相同,(0,1)B ∴ ;(2)∵A(6,0),B(0,1),C(4,1),∴OA =6,BC =4.∵点M 从点C 以每秒1个单位长度的速度向左运动,同时点N 从点O 以每秒1.5个单位长度的速度向右运动,∴MC =t,ON =1.5t ,∴BM =4−t,NA =6−1.5t ,∴S 四边形MNOB =12(BM +ON)⋅OB =12×(4−t +1.5t)×1=t 4+2,S 四边形MNAC =12(MC +NA)⋅OB =12×(t +6−1.5t)×1=−t 4+3. 当t 4+2>−t 4+3时,即t >2时,S 四边形MNOB >S 四边形MNAC ;当t 4+2=−t 4+3时,即t =2时,S 四边形MNOB =S 四边形MNAC ;当t 4+2<−t 4+3时,即t <2时,S 四边形MNOB <S 四边形MNAC . 12.(1)∵a 是m +6n 2m =3,n =√4,且m <n ,正数b 满足(b +1)2=16.∴m =﹣3,n =2,a =3,b =3,∠A (1,3),B (3,0);故答案为:A(1,3);B(3,0);(2)如图1所示:由题意知:C(2,﹣3),∠B(3,0),∠OB=3,∴S四边形AOCB=S△AOB+S△BOC=12×3×3+12×3×3=9,故答案为:9;(3)过点P作PD∠OA,如图2所示:∠OA∠BC,∠PD∠OA∠BC∠∠BCP=∠DPC,∠DPO=∠AOP.∠∠AOB=a,∠∠AOP=90°﹣∠AOB=90°﹣a.∠∠DPO=90°﹣a.∠∠DPC=∠DPO+∠CPO,∠∠BCP=∠CPO+90°﹣a,即∠BCP﹣∠CPO=90°﹣a,故答案为:∠BCP﹣∠CPO=90°﹣a.13.解:(1)过点D作EF∠MN,如下图所示∵MN//OP∴EF∠OP∠∠NAD=∠ADE,∠PBD=∠BDE∵AD⊥BD∴∠ADB=90°∠∠ADE+∠BDE=∠ADB=90°∠∠NAD+∠PBD=90°(2)∠∠NAD+∠PBD=90°∠∠PBD=90°-∠NAD∠∠OBD+∠PBD=180°,∠∠OBD+90°-∠NAD=180°∠90OBD NAD∠-∠=︒;(3)∵AD平分∠NAB,AB也恰好平分∠OBD,∠DAB=α∴∠NAD=∠DAB=α,∠NAB=2∠DAB=2α,∠OBD=2∠OBA ∵MN//OP∴∠OBA=∠NAB=2α∴∠OBD=4α由(2)知90OBD NAD∠-∠=︒即4α−α=90°解得:α=30°14.解:(1)∵√a+b+|a−b+6|+(c−4)2=0,∴{a+b=0a−b+6=0c−4=0,解得:a=−3,b=3,c=4,∴A(−3,0),B(3,3),(4,0)C如图,过点B作BM⊥AC,则AC=7,BM=3,∴S△ABC=12ACBM=12×7×3=212,(2)不变,∵CD ⊥AB ,∴∠ADC =90°,∠∠DAC +∠FCD =90°,∠FDC +∠ADF =90°,∵∠FDC =∠FCD∴∠DAC =∠ADF ,∠∠CED =∠ACE +∠DAC∠DHC =∠CED +∠ADF =∠ACE +∠DAC +∠DAC =∠ACE +2∠DAC∴∠DHC+∠ACE ∠CED =∠ACE+2∠DAC+∠ACE ∠ACE+∠DAC =2, ∴∠DHC+∠ACE ∠CED 的值不变,∠DHC+∠ACE ∠CED =2; (3)存在,①当点P 在x 轴上时,则AF =AC =7,因为点P 不与点C 重合,所以点P(−10,0); ②当点P 在y 轴上时,设P (0,t )则PF =|t −32|,∴S △ABP =S △AFP +S △BFP =12×3×|t −32|+12×3×|t −32| =4∴|t −32|=43,解得t =16或t =176, 所以P(0,16)或P(0,176)综上,存在一点P ,使三角形ABP 和三角形ABC 的面积相等,点P(−10,0)或(0,16)或(0,176). 15. (1)∠将点A ,B 分别向上平移2个单位长度,再向右平移1个单位长度, ∠C (0,2),D (4,2),AB ∠CD 且AB =CD =4,∠四边形ABDC 是平行四边形,∠S 四边形ABCD =4×2=8.(2)存在,设点P的坐标为(0,y),根据题意,得12×4×|y|=8.解得y=4或y=-4.∠点P的坐标为(0,4)或(0,-4).(3)结论∠正确.过点Q作QE∠AB,交CO于点E.∠AB∠CD,∠QE∠CD.∠∠DCQ=∠EQC,∠BOQ=∠EQO.∠∠EQC+∠EQO=∠CQO,∠∠DCQ+∠BOQ=∠CQO.∴∠DCQ+∠BOQ∠CQO=1.16.(1)∵|a+c﹣10|7c =0∴a+c﹣10=0,且c﹣7=0,∴c=7,a+c=10,∴c=3,∴A(0,3),C(7,0),∵AB∥x轴,AB=6,∴B(6,3);(2)∵A(0,3),C(7,0),∴OA=3,OC=7,由题意得:ON=t,CM=2t,∴AN=3﹣t,∵2S△ABN≤S△BCM,∴2×12×(3﹣t)×6≤12×2t×3,解得:t≥2,∵当点N从点O运动到点A时,点M同时也停止运动,∴0≤t≤3,∴t的取值范围为:2≤t≤3;(3)设AB与CN交于点D,如图所示:∠AB∠OC,∠∠BDC=∠OCD,∠∠BDC=∠BND+∠ABN,∠CNQ=k∠BNQ,∠NCH=k∠OCH,∠∠BDC=(k+1)∠BNQ+∠ABN,∠OCD=(k+1)∠OCH,∠(k+1)∠BNQ+∠ABN=(k+1)∠OCH,∠∠ABN═(k+1)∠OCH﹣(k+1)∠BNQ=(k+1)(∠OCH﹣∠BNQ),∠NQ∠CJ,∠∠NCJ=∠CNQ=k∠BNQ,∠∠HCJ+∠NCJ=∠NCH=k∠OCH,∠∠HCJ=k∠OCH﹣∠NCJ=k∠OCH﹣k∠BNQ=k(∠OCH﹣∠BNQ),∴∠HCJ∠ABN =k(∠OCH﹣∠BNQ)(k+1)(∠OCH﹣∠BNQ)=kk+1.17.解:(1)∵PG∥AB,∠PBA=125°,∴∠BPG=180°−∠PBA=55°,∵AB∥CD,∴PG∥CD,∴∠CPG=180°−∠PCD=25°,∴∠BPC=∠BPG+∠CPG=80°,故答案为:80°;(2)①∠APE=∠α+∠β,理由如下:如图,过点P作PQ∥DF,∴∠QPE=∠α,∵DF∥CG,∴PQ∥CG,∴∠QPA=∠β,∴∠APE=∠QPE+∠QPA=∠α+∠β;②∠APE=∠β−∠α,理由如下:如图,过点P作PQ∥DF,∴∠QPE=∠α,∵DF∥CG,∴PQ∥CG,∴∠QPA=∠β,∴∠APE=∠QPA−∠QPE=∠β−∠α;(3)∠ANE=12(∠α+∠β),理由如下:∵EN,AN分别平分∠PED,∠PAC,∴∠NED=12∠PED=12∠α,∠NAC=12∠PAC=12∠β,如图,过点N作NQ∥DF,∴∠QNE=∠NED=12∠α,∵DF∥CG,∴NQ∥CG,∴∠QNA=∠NAC=12∠β,∴∠ANE=∠QNE+∠QNA=12∠α+12∠β=12(∠α+∠β).18.解:(1)60a-=,b−2=0∴a=6,b=2∴A(6,6),B(2,0)(2)作AM⊥x轴于点M,如图所示设P(0,y),且y>0∴SΔPAB=S梯形OMAP−SΔPOB−SΔABM=12×(y+6)×6−12×2×y−12×4×6=2y+6若SΔPAB=15即2y+6=15∴y=92∴P(0,92)(3)存在,C1(2+√52,0),C2(2−√52,0)∵AB=√52,B(2,0),BC=AB∴当C点在x正半轴上时,坐标为C1(2+√52,0),当C点在x负半轴上时,坐标为C2(2−√52,0)故答案为C1(2+√52,0),C2(2−√52,0).19.解:(1)∠A(-3,4),A、B两点关于y轴对称,∠点B的坐标为(3,4).故答案为(3,4).(2)∠AP=4t,BQ=2t,AB=6,当P与Q相遇时4t=6+2t解得t=3∴当0⩽t⩽3时,PQ=6+2t-4t=6-2t;当t>3时,PQ=4t-6-2t=2t-6(6−2t)=12−4t∴当0⩽t⩽3时, S=42(2t−6)=4t−12当t>3时, S=42(3)如图,设AB交y轴于D.∠点M的坐标为(m,-m),∠点M在二四象限的角平分线上,∠当m<-4时,显然不存在.∠当-4<m<0时,M在第二象限;S△OMB=S△ODB+S△ODM−S△BDM=12×4×3+12×4×(−m)−12×3×(4+m)=−72m∵S△AOB=12×6×4=12∴−72m≤23×12∴m≥−16 7∴−167≤m<0③当m>0时,M在第四象限;S△OBM=S△DBM+S△DOM−S△BDO=12×4×m+12×3×(4+m)−12×4×3=72m由题意可得72m≤23×12∴m≤167∴0<m≤16 7综上所述,满足条件的m的值为:−167≤m<0或0<m≤16720.(1)如图1中,由题意B(3,2),C(-1,2),∠BC∠OA,BC=OA,∠四边形ABCO是平行四边形.∠S平行四边形ABCD=4×2=8.(2)存在.理由:如图1中,设M(0,m)由题意S△AOM=8,∴12×4×|m|=8∴m=±4,∠M(0,4)或(0,-4).(3)结论:∠CQP=2∠D.理由:如图3中,延长CP到K.∠BC∠OA,∠∠CBP=∠DPQ,∠∠CBP=∠CPB,∠CPB=∠DPK,∠∠DPQ=∠DPK,设∠DPQ=∠DPK=x,∠DCQ=∠DCP=y,则有{2x=2y+∠CQP①x=y+∠D②,①-2×∠得到∠CQP=2∠D.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级下学期数学期末压轴题终极版七(下)期末B 卷模拟题(1)1.(4分)若关于x 的不等式0mx n ->的解集是15x <,则关于x 的不等式()m n x m n ++> 的解集是( ) A .23x <-B .23x >-C .23x <D .23x > 2.(4分)在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n 步的走法是:当n 能被3整除时,则向上走1个单位;当n 被3除,余数为1时,则向右走1个单位;当n 被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是( ) A .(66,34) B .(67,33) C .(100,33) D .(99,34) 3.(4分)已知关于x 的不等式组2515036x a x ->⎧⎨-≥⎩只有16个整数解,则实数a 的取值范围是 .4.(4分)若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是14x y =-⎧⎨=⎩,则方程组111222325325a x b y c a x b y c -=⎧⎨-=⎩的解为 .5.(10分)为了防止游客在旺季涌入景区,给景区接待能力、安全保卫等增加压力,同时也为了在淡季撬动旅游市场,重庆某著名风景区实行“淡旺季”票价.规定:每年旺季的门票价格为a 元/张,淡季的门票价格为b 元/张.下表为为该风景区2009年、2010年的游客人数和旅游收入的情况统计表:年份 游客人数(万人) 旅游收入(亿元)2009年 120 1.04 2010年1601.44(1)若2009年淡季的游客人数占全年游客人数的13,2010年淡季的游客人数占全年游客人数的14,求a 、b 的值; (2)在(1)的条件下,若2011年该景区预计全年游客人数为200万人,旅游收入在1.6亿至1.72亿元之间(不含1.6亿元和1.72亿元),那么该景区2011年淡季的游客人数占全年游客人数的比例应在什么范围?6.(12分)如图1,在平面直角坐标系中,A(a,0),B(b,3),C(4,0),且满足+=,线段AB交y轴于F点.||0a b(1)求点A、B的坐标.(2)点D为y轴正半轴上一点,若ED∥AB,且AM、DM分别平分∠CAB、∠ODE,如图2,求∠AMD的度数.(3)如图3,(也可以利用图1)①求点F的坐标;②点P为坐标轴上一点,若△ABP的三角形和△ABC的面积相等?若存在,求出P点坐标.7.(12分)如图1,在平面直角坐标系中,第一象限内长方形ABCD ,AB ∥y 轴,点A (1,1),点C (a ,b ),满足|2|13162a a b b b a ----=-.(1)求长方形ABCD 的面积.(2)如图2,长方形ABCD 以每秒1个单位长度的速度向右平移,同时点E 从原点O 出发沿x 轴以每秒2个单位长度的速度向右运动,设运动时间为t 秒. ①当t =4时,直接写出△OAC 的面积为 ; ②若AC ∥ED ,求t 的值;(3)在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(﹣y +1,x +1)叫做点P 的伴随点,已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4,…,这样依次得到点A 1,A 2,A 3,…,A n .①若点A 1的坐标为(3,1),则点A 3的坐标为 ,点A 2014的坐标为 ;②若点A 1的坐标为(a ,b ),对于任意的正整数n ,点A n 均在x 轴上方,则a ,b 应满足的条件为 .七(下)期末B 卷模拟题(2)1. (4分)如图,周长为34cm 的长方形ABCD 被分成7个形状大小完全相同的小长方形, 则长方形ABCD 的面积为( )A .49cm 2B .68cm 2C .70cm 2D .74cm 22. (4分)如图,直线AB ∥CD ,EG 平分∠AEF ,EH ⊥EG ,且平移EH 恰好到GF ,则下列结论: ①EH 平分BEF ∠;②EG =HF ;③FH 平分EFD ∠;④ο90=∠GFH ,其中正确的结论个数是( ) A.1个 B.2个 C.3个D.4个3. (4分)已知方程组3754106x y z x y z ++=⎧⎨++=⎩,则5-x y z +的值为___________.4.(4分)在平面直角坐标系中,(1)(5)(03)A m B n C --,、,、,,且AB 经过点O ,过点C 作CP ⊥AB 于点P ,则AB CP ⋅的值为______.5.(10分)在“五•一”期间,某公司组织318名员工到雷山西江千户苗寨旅游,旅行社承诺每辆车安排一名随团导游,并为此次旅行安排8名导游,现打算同时租甲、乙两种客车,其中甲种客车每辆载客45人,乙种客车每辆载客30人. (1)请帮助旅行社设计租车方案.(2)若甲种客车租金为800元/辆,乙种客车租金为600元/辆,旅行社按哪种方案租车最省钱?此时租金是多少?(3)旅行前,旅行社的一名导游由于有特殊情况,旅行社只能安排7名导游随团导游,为保证所租的每辆车安排有一名导游,租车方案调整为:同时租65座、45座和30座的大小三种客车,出发时,所租的三种客车的座位恰好坐满,请问旅行社的租车方案如何安排?6.(12分)如图,B、D、E、F是直线l上四点,在直线l的同侧作△ABE和△CDF,且AB∥CD,∠A=40°.作BG⊥AE于G,FH⊥CD于H,BG与FH交于P点.(1)如图1,B、E、D、F从左至右顺次排列,∠ABD=90°,求∠GPH;(2)如图2,B、E、D、F从左至右顺次排列,△ABE与△CDF均为锐角三角形,求∠GPH;(3)如图3,F、B、E、D从左至右顺次排列,△ABE为锐角三角形,△CDF为钝角三角形,则∠GPH的度数为多少?请画出图形并直接写出结果,不需证明.7.(12分)如图,平面直角坐标系中,直线BD分别交x轴、y轴于B、D两点,A、C是过D点的直线上两点,连接OA、OC、BD,∠CBO=∠COB,且OD平分∠AOC.(1)请判断AO与CB的位置关系,并予以证明;(2)沿OA、AC、BC放置三面镜子,从O点发出的一条光线沿x轴负方向射出,经AC、CB、OA反射后,恰好由O点沿y轴负方向射出,若AC⊥BD,求∠ODB;(3)在(2)的条件下,沿垂直于DB的方向放置一面镜子l,从射线OA上任意一点P放出的光线经B点反射,反射光线与射线OC交于Q点,OQ交BP于M点,给出两个结论:①∠OMB的度数不变;②∠OPB+∠OQB的度数不变.可以证明,其中有且只有一个是正确的,请你作出正确的判断并求值.七(下)期末B 卷模拟题(3)1.(4分)已知⎩⎪⎨⎪⎧x =3,y =﹣2 是方程组⎩⎪⎨⎪⎧ax +cy =1,cx -by =2 的解,则a 与b 的关系是A .4b -9a =1.B .9a +4b =7.C .3a +2b =3.D .4b -9a =﹣1.2.(4分)如图,四边形ABCD ,连接BD ,AC ,点E ,F ,K 分别为边所在的直线的点,G ,H 为BD 直线上的点,且∠KBH +∠GDC =180°,∠DAB =∠DCB , 下列结论:①AB ∥CD ;②BC ∥AD ;③若DA 平分∠FDB ,则BH 平分∠KBE ;④2ABC ABCD S S =△四边形,其中正确结论的个数为A .1个.B .2个.C . 3个.D .4个.3.(4分)如图,动点P 从(0,3)出发,沿所示方向运动,每当碰到长方形的边时反弹,反弹时反射角等于入射角(即:反弹前后的路径与长方形边的夹角相等),当点P 出发后第2015次碰到长方形的边时,点P 的坐标为 .4.(4分)若不等式组⎩⎪⎨⎪⎧2x +8>0,1-3x ≥﹣8 的解集与m -2<x <m +2的解集中,相同的整数解有且只有2个,则m 的范围为 .5.(10分)为了庆祝“六一”,某学校组织300名七年级学生和7名教师到欢乐谷旅游,每甲种客车乙种客车载客量(单位:人/辆) 45 40 租金(单位:元/辆)400380(1)(2)学校计划总费用3000元的限额内,有哪几种可行的租车方案,并给出最节省费用的方案.BDCAFH6.(12分)已知:直线EF分别与直线AB,CD相交于点F,E,EM平分∠FED,AB//CD.H,P分别为直线AB和线段EF上的点.(1)如图1,HM平分∠BHP,若HP⊥EF,求∠M的度数;于点Q,当H在直线AB上运动(不7.(12分)如图,长方形AOCB 的顶点A (m ,n )和C (p ,q )在坐标轴上,已知⎩⎪⎨⎪⎧x =m ,y =n和⎩⎪⎨⎪⎧x =p ,y =q 都是方程x +2y =4的解,点B 在第一象限内. (1)求点B 的坐标;图1 图2(2)若P 点从A 点出发沿y 轴负半轴以1个单位每秒的速度运动,同时Q 点从C 点出发沿x 轴负半轴方向以2个单位每秒的速度运动,问运动到多少秒时,四边形BPOQ 面积为长方形ABCO 面积的一半;(3)如图2,将线段AC 沿x 轴正方向平移,得到线段BD ,点E (a ,b )为线段BD 上任一点,试问式子a +2b 的值是否变化,若变化,求其范围;若不变化,求其值.七(下)期末B卷模拟题(4)1.(4分)如图,在4×4的正方形网格中,每个小正方形的边长均为1,小正方形的顶点称为格点,请格点上确定点C,连结AB,AC,BC,使△ABC的面积为1.5平方单位,则点C的个数为()A. 3个B. 4个C. 5个D. 6个2.(4分)如图,AB∥CD,AC平分∠BAD,CA平分∠BCD,点E在AD的延长线上,连接EC,∠ECD=∠CED,下列结论:①BC∥AD;②∠B=∠CDA;③AC⊥EC;④∠B=2∠CED,其中正确的个数为()A. 1个B. 2个C. 3个D. 4个3.(4分)关于x的不等式组305x mx+<⎧⎨>-⎩的所有整数解的和为-9,求m的取值范围是.4.(4分)已知关于x,y的方程组343x y ax y a+=-⎧⎨-=⎩,其中-3≤a≤1,给出下列结论:①51xy=⎧⎨=-⎩是方程组的解;②当a=-2时,x,y的值互为相反数;③当a=1时,方程组的解也是方程x+y=4-a的解;④若x≤1,则y≥1.其中正确的是.(填序号)5.(10分)武汉市某小区由于车位紧张,准备新建50个停车车位,解决小区停车难问题.已知新建2个地上停车位和3个地下停车位共需1.7万元,新建3个地上停车位和2个地下停车位共需1.3万元.(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)若该小区预计投资金额超过9万元而不超过11万元,则有几种建造方案?(3)若每个地上停车位月租金100元,每个地下停车位月租金200元,在(2)的条件下,已知新建车位全部租出且依靠租金要在16个月内(包括16个月)收回投资,试确定车位建造方案?6.(12分)已知,AB//CD,1)如图,若E为DC延长线上一点,AF、CG分别为∠BAC、∠ACE的平分线,求证:AF//CG.2)若E为线段DC上一点(E不与C重合),AF、CG分别为∠BAC、∠ACE的平分线,画出图形,试判断AF,CG的位置关系,并证明你的结论.7.(12分)如图,点B(a,b)在第一象限,过B作BA⊥y轴于A,过B作BC⊥x轴于C,且实数a,b满足2(2)|210|0a b a b-+++-≤,含45°角的Rt△DEF的一条直角边DF 与x轴重合,DE⊥x轴于D,点F与坐标原点重合,DE=DF=3.三角形DEF从某时刻开始沿着坐标轴轴以1个单位长度/秒的速度匀速运动,运动时间为t秒.1)求点B的坐标;2)若三角形DEF沿着y轴负方向运动,连接AE,EG平分∠AEF,EH平分∠AED,当EG∥DF时,求∠HEF的度数;3)若三角形DEF沿着x轴正方向运动,在运动过程中,记三角形AEF与长方形OABC重叠部分的面积为S,当0<t≤4,S=12t时,请你求出运动时间t.。