2018-2019学年最新人教版七年级数学上学期期末模拟测试及答案解析-精编试题

合集下载

2018_2019学年七年级数学上学期期末复习检测试卷 (6)

2018_2019学年七年级数学上学期期末复习检测试卷 (6)

2018-2019学年七年级数学上学期期末复习检测试卷一、选择题(每小题3分,共30分)1.(3分)绝对值最小的数是()A.0.000001 B.0 C.﹣0.000001 D.﹣1000002.(3分)下列各组中的单项式是同类项的是()A.2xy2和﹣y2x B.﹣m2np和﹣mn2C.﹣m2和﹣2m D.0.5a和﹣ b3.(3分)已知x=2是关于x的一元一次方程ax﹣2=0的解,则a的值为()A.0 B.﹣2 C.1 D.24.(3分)三棱锥有()个面.A.3 B.4 C.5 D.65.(3分)下列变形中错误的是()A.如果x=y,那么x+2=y+2 B.如果x=y,那么x﹣1=y﹣1C.如果x=3,那么xy=3y D.如果x2=3x,那么x=36.(3分)已知∠1=α<90°,则∠1的补角比∠1的余角大()度.A.αB.90°﹣αC.90 D.180°﹣2α7.(3分)小华在小凡的南偏东30°方位,则小凡在小华的()方位.A.南偏东60°B.北偏西30°C.南偏东30°D.北偏西60°8.(3分)将如图补充一个黑色小正方形,使它折叠后能围成一个正方体,下列补充正确的是()A. B.C.D.9.(3分)一些相同的房间需要粉刷墙面.一天3名一级技工去粉刷8个房间,结果其中有50m2墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间之外,还多粉刷了另外的40m2墙面,每名一级技工比二级技工一天多粉刷10m2墙面,设每个房间需要粉刷的墙面面积为xm2,则下列的方程正确的是()A.B.C. +10 D. +1010.(3分)如图,已知∠AOB=120°,∠COD在∠AOB内部且∠COD=60°.下列说法:①如果∠AOC=∠BOD,则图中有两对互补的角;②如果作OE平分∠BOC,则∠AOC=2∠DOE;③如果作OM平分∠AOC,且∠MON=90°,则ON平分∠BOD;④如果在∠AOB外部分别作∠AOC、∠BOD的余角∠AOP、∠BOQ,则=2,其中正确的有()个.A.1 B.2 C.3 D.4二、填空题(每小题3分,共18分)11.(3分)一个角为48°29′,则它的余角的大小为:.12.(3分)线段AB=2cm,延长AB至点C,使BC=2AB,则AC= cm.13.(3分)关于x的方程(a2﹣4)x2+ax+2x﹣1=0是一元一次方程,则a= .14.(3分)轮船在顺水中的速度为28千米/小时,在逆水中的速度为24千米/小时,水面上一漂浮物顺水漂流20千米,则它漂浮了小时.15.(3分)已知x2﹣xy=﹣3,2xy﹣y2=﹣8,则整式2x2+4xy﹣3y2的值为.16.(3分)如图,已知直线l上两点A、B(点A在点B左边),且AB=10cm,在直线l上增加两点C、D(点C在点D左边),作线段AD点中点M、作线段BC点中点N;若线段MN=3cm,则线段CD=cm.三、解答题(本大题共72分)17.(10分)计算题(1)(﹣)÷(﹣4)×(﹣6)(2)﹣22÷(﹣4)﹣3×(﹣1)2﹣(﹣4)18.(6分)解方程:﹣1=.19.(8分)化简求值:2(3a2b﹣ab2)﹣3(2a2b﹣ab2+ab),其中a=,b=﹣220.(8分)盛盛同学到某高校游玩时,看到运动场的宣传栏中的部分信息(如表):盛盛同学结合学习的知识设计了如下问题,请你帮忙完成下列问题:(1)从表中可以看出,负一场积分,胜一场积分(2)某队在比完22场的前提下,胜场总积分能等于其负场总积分的2倍吗?请说明理由.21.(8分)已知直线l依次三点A、B、C,AB=6,BC=m,点M是AC点中点(1)如图,当m=4,求线段BM的长度(写清线段关系)(2)在直线l上一点D,CD=n<m,用m、n表示线段DM的长度.22.(10分)为了准备“迎新”汇演,七(1)班学生分成甲乙两队进行几天排练.其中甲队队长对乙队队长说:你们调5人来我们队,则我们的人数和你们的人数相同;乙队队长跟甲队队长说:你们调5人来我们队,则我们的人数是你们的人数的3倍.(1)请根据上述两位队长的交谈,求出七(1)班的学生人数;(2)为了增强演出的舞台效果,全部学生需要租赁演出服装,班主任到某服装租赁店了解到:多于20套、少于50套服装的,可供选择的收费方式如下:方式一:一套服装一天收取20元,另收总计80元的服装清洗费方式二:在一套服装一天收取20元的基础上九折,一套服装每天收取服装清洗费1元,另收每套服装磨损费5元(不按天计算)设租赁服装x天(x为整数),请你帮班主任参谋一下:选择哪种付费方式节省一些,并说明理由.23.(10分)如图1,平面内一定点A在直线MN的上方,点O为直线MN上一动点,作射线OA、OP、OA′,当点O在直线MN上运动时,始终保持∠MOP=90°、∠AOP=∠A′OP,将射线OA绕点O顺时针旋转60°得到射线OB(1)如图1,当点O运动到使点A在射线OP的左侧,若OB平分∠A′OP,求∠AOP的度数.(2)当点O运动到使点A在射线OP的左侧,∠AOM=3∠A′OB时,求的值.(3)当点O运动到某一时刻时,∠A′OB=150°,直接写出∠BOP= 度.24.(12分)如图,直线l上依次有三点A、B、C,且AB=8、BC=16,点P为射线AB上一动点,将线段AP进行翻折得到线段PA′(点A落在直线l上点A′处、线段AP上的所有点与线段PA′上的点对应)如图(1)若翻折后A′C=2,则翻折前线段AP=(2)若点P在线段BC上运动,点M为线段A′C的中点,求线段PM的长度;(3)若点P在射线BC上运动,点N为B′P的中点,点M为线段A′C的中点,设AP=x,用x表示A′M+PN.参考答案一、选择题(每小题3分,共30分)1.(3分)绝对值最小的数是()A.0.000001 B.0 C.﹣0.000001 D.﹣100000【分析】根据绝对值的意义,计算出各选项的绝对值,然后再比较大小即可.【解答】解:|0.000001|=0.000001,|0|=0,|﹣0.000001|=0.000001,|﹣100000|=100000,所以绝对值最小的数是0.故选:B.【点评】考查了有理数的大小比较,以及绝对值的意义,注意先运算出各项的绝对值.2.(3分)下列各组中的单项式是同类项的是()A.2xy2和﹣y2x B.﹣m2np和﹣mn2C.﹣m2和﹣2m D.0.5a和﹣ b【分析】根据同类项的定义对四个选项进行逐一分析即可.【解答】解:A、2xy2和﹣y2x符合同类项的定义,故本选项正确;B、﹣m2np和﹣mn2所含字母不同,相同字母的次数不同,不是同类项,故本选项错误;C、﹣m2和﹣2m所含相同字母的次数不同,不是同类项,故本选项错误;D、0.5a和﹣b所含字母不同,相同字母的次数不同,不是同类项,故本选项错误;故选:A.【点评】本题考查的是同类项的定义,解答此题时要注意同类项必需满足以下条件:①一是所含字母相同,二是相同字母的指数也相同,两者缺一不可;②同类项与系数的大小无关;③同类项与它们所含的字母顺序无关;④所有常数项都是同类项.3.(3分)已知x=2是关于x的一元一次方程ax﹣2=0的解,则a的值为()A.0 B.﹣2 C.1 D.2【分析】把x=2代入方程计算求出a的值,即可解答.【解答】解:把x=2代入ax﹣2=0得:解得:a=1,故选:C.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4.(3分)三棱锥有()个面.A.3 B.4 C.5 D.6【分析】三棱锥的侧面由三个三角形围成,底面也是一个三角形,结合三棱锥的组成特征,可确定它棱的条数和面数.【解答】解:三棱锥有6条棱,有4个面.故选:B.【点评】本题考查了认识立体图形,几何体中,面与面相交成线,线与线相交成点.熟记常见立体图形的特征是解决此类问题的关键.5.(3分)下列变形中错误的是()A.如果x=y,那么x+2=y+2 B.如果x=y,那么x﹣1=y﹣1C.如果x=3,那么xy=3y D.如果x2=3x,那么x=3【分析】根据等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.【解答】解:A、两边都加2,正确;B、两边都减1,正确;C、两边都乘以3,正确;D、如果x2=3x,那么x=3或0,错误;故选:D.【点评】本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.6.(3分)已知∠1=α<90°,则∠1的补角比∠1的余角大()度.A.αB.90°﹣αC.90 D.180°﹣2α【分析】分别表示出α的补角和α的余角,然后可得出答案.【解答】解:α的补角=180°﹣α,α的余角=90°﹣α,故α的补角比α的余角大:180°﹣α﹣(90°﹣α)=90°.故∠1的补角比∠1的余角大90°,【点评】本题考查了余角和补角的知识,关键是掌握互余两角之和为90°,互补两角之和为180°.7.(3分)小华在小凡的南偏东30°方位,则小凡在小华的()方位.A.南偏东60°B.北偏西30°C.南偏东30°D.北偏西60°【分析】根据位置的相对性可知,小凡和小华的观测方向相反,角度相等,据此解答.【解答】解:小华在小凡的南偏东30°方位,那么小凡在小华的北偏西30°.故选:B.【点评】本题主要考查了方向角的定义,在叙述方向角时一定要注意以某个图形为参照物是本题的关键.8.(3分)将如图补充一个黑色小正方形,使它折叠后能围成一个正方体,下列补充正确的是()A.B.C.D.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:A、出现“U”字的,不能组成正方体,A错;B、以横行上的方格从上往下看:B选项组成正方体;C、由两个面重合,不能组成正方体,错误;D、四个方格形成的“田”字的,不能组成正方体,D错.故选:B.【点评】考查了展开图折叠成几何体,如没有空间观念,动手操作可很快得到答案.需记住正方体的展开图形式:一四一呈6种,一三二有3种,二二二与三三各1种,展开图共有11种.9.(3分)一些相同的房间需要粉刷墙面.一天3名一级技工去粉刷8个房间,结果其中有50m2墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间之外,还多粉刷了另外的40m2墙面,每名一级技工比二级技工一天多粉刷10m2墙面,设每个房间需要粉刷的墙面面积为xm2,则下列的方程正确的是()A.B.C. +10 D. +10【分析】设每个房间需要粉刷的墙面面积为xm2,根据“每名一级技工比二级技工一天多粉刷10m2墙面”,列方程即可.【解答】解:设每个房间需要粉刷的墙面面积为xm2,根据题意,得=+10.故选:D.【点评】本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.10.(3分)如图,已知∠AOB=120°,∠COD在∠AOB内部且∠COD=60°.下列说法:①如果∠AOC=∠BOD,则图中有两对互补的角;②如果作OE平分∠BOC,则∠AOC=2∠DOE;③如果作OM平分∠AOC,且∠MON=90°,则ON平分∠BOD;④如果在∠AOB外部分别作∠AOC、∠BOD的余角∠AOP、∠BOQ,则=2,其中正确的有()个.A.1 B.2 C.3 D.4【分析】先求出∠AOC=∠BOD=30°,再根据互补的角的定义即可判断①正确;设∠AOC=x,根据角平分线定义以及角的和差定义求出∠DOE=x,即可判断②正确;设∠AOC=x,当ON在OM的右边时,可得∠DON=∠BON,ON平分∠BOD;当ON在OM的左边时,ON不是∠BOD的平分线,即可判断③错误;设∠AOC=x,根据角的和差定义可得∠AOP=90°﹣x,∠BOQ=30°+x,即可判断④正确.【解答】解:∵∠AOB=120°,∠COD=60°,∴∠AOC+∠BOD=∠AOB﹣∠COD=60°.①∵∠AOC=∠BOD,∠AOC+∠BOD=60°,∴∠AOC=∠BOD=30°,∴∠AOD=∠COB=90°,∴∠AOD+∠COB=180°,又∵∠AOB+∠COD=180°,∴图中有两对互补的角,故①正确;②设∠AOC=x,则∠BOD=60°﹣x,∴∠BOC=∠BOD+∠COD=60°﹣x+60°=120°﹣x.∵OE平分∠BOC,∴∠BOE=∠BOC=60°﹣x,∴∠DOE=∠BOE﹣∠BOD=(60°﹣x)﹣(60°﹣x)=x,∴∠AOC=2∠DOE,故②正确;③设∠AOC=x,则∠BOD=60°﹣x,∵OM平分∠AOC,∴∠COM=∠AOC=x.如果ON在OM的右边,那么∠DON=∠MON﹣∠COD﹣∠COM=90°﹣60°﹣x=30°﹣x,∴∠BON=∠BOD﹣∠DON=60°﹣x﹣(30°﹣x)=30°﹣x,∴∠DON=∠BON,∴ON平分∠BOD;如果ON在OM的左边,显然ON的反向延长线平分∠BOD,即ON不是∠BOD的平分线,故③错误;④设∠AOC=x,则∠BOD=60°﹣x,∠AOP=90°﹣x,∠BOQ=90°﹣(60°﹣x)=30°+x,∴∠AOP+∠BOQ=90°﹣x+30°+x=120°,∵∠COD=60°,∴=2,故④正确.故选:C.【点评】本题考查了余角和补角,角平分线定义以及角的计算,设∠AOC=x,用含x的代数式表示相关角度是解题的关键.二、填空题(每小题3分,共18分)11.(3分)一个角为48°29′,则它的余角的大小为:41°31′.【分析】根据余角的定义得出算式,求出即可.【解答】解:余角为90°﹣48°29′=41°31′,故答案为:41°31′.【点评】本题考查了余角和度、分秒之间的换算,能知道∠A的余角是90°﹣∠A是解此题的关键.12.(3分)线段AB=2cm,延长AB至点C,使BC=2AB,则AC= 6 cm.【分析】根据线段AB=2cm,BC=2AB,可求BC,再根据线段的和差关系可求AC的长.【解答】解:∵AB=2cm,BC=2AB,∴BC=4cm,∴AC=AB+BC=6cm.故答案为:6.【点评】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.13.(3分)关于x的方程(a2﹣4)x2+ax+2x﹣1=0是一元一次方程,则a= 2 .【分析】利用一元一次方程的定义判断即可确定出a的值.【解答】解:∵关于x的方程(a2﹣4)x2+ax+2x﹣1=0是一元一次方程,∴a2﹣4=0,且a+2≠0,解得:a=2,故答案为:2【点评】此题考查了一元一次方程的定义,熟练掌握一元一次方程的定义是解本题的关键.14.(3分)轮船在顺水中的速度为28千米/小时,在逆水中的速度为24千米/小时,水面上一漂浮物顺水漂流20千米,则它漂浮了10 小时.【分析】设轮船在静水中的速度为x千米/时,根据静水速度+水流速度=顺水速度,静水速度﹣水流速度=逆水速度,可得静水速度×2=顺水速度+逆水速度,依此列方程即可求解.然后根据漂流路程求得漂流时间.【解答】解:设轮船在静水中的速度为x千米/时,根据题意得2x=28+24,解得x=26.即:轮船在静水中的速度为26千米/时.所以漂浮时间为: =10(小时)故答案是:10.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.15.(3分)已知x2﹣xy=﹣3,2xy﹣y2=﹣8,则整式2x2+4xy﹣3y2的值为﹣30 .【分析】依据等式的性质得到2x2﹣2xy=﹣6,6xy﹣3y2=﹣24,然后将两式相加即可.【解答】解:∵x2﹣xy=﹣3,2xy﹣y2=﹣8,∴2x2﹣2xy=﹣6,6xy﹣3y2=﹣24,∴2x2+4xy﹣3y2=﹣6+(﹣24)=﹣30.故答案为:﹣30.【点评】本题主要考查的是求代数式的值,依据等式的性质求得2x2﹣2xy=﹣6,6xy﹣3y2=﹣24是解题的关键.16.(3分)如图,已知直线l上两点A、B(点A在点B左边),且AB=10cm,在直线l上增加两点C、D(点C在点D左边),作线段AD点中点M、作线段BC点中点N;若线段MN=3cm,则线段CD= 16或4 cm.【分析】分两种情况讨论,当点M在点N左侧,当点M在点N右侧,即可解答.【解答】解:如图,把直线l放到数轴上,让点A和原点重合,则点A对应的数为0,点B对应的数为10,点C对应的数为x,点D对应的数为y,∵线段AD的中点为M、线段BC的中点为N,∴点M对应的数为,点N对应的数为,(1)如图1,当点M在点N左侧时,MN==3,化简得:x﹣y=﹣4,由点C在点D左边可得:CD=y﹣x=4.(2)如图1,当点M在点N右侧时,MN==3=3,化简得:y﹣x=16,由点C在点D左边可得:CD=y﹣x=16.故答案为:16或4【点评】本题考查了两点间的距离,解决本题的关键是分类讨论.三、解答题(本大题共72分)17.(10分)计算题(1)(﹣)÷(﹣4)×(﹣6)(2)﹣22÷(﹣4)﹣3×(﹣1)2﹣(﹣4)【分析】(1)原式从左到右依次计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:(1)原式=﹣××6=﹣1;(2)原式=1﹣3+4=2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.(6分)解方程:﹣1=.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母:3(x﹣2)﹣6=2(x+1),去括号:3x﹣6﹣6=2x+2,移项:3x﹣2x=2+6+6,合并同类项:x=14.【点评】此题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.19.(8分)化简求值:2(3a2b﹣ab2)﹣3(2a2b﹣ab2+ab),其中a=,b=﹣2【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=6a2b﹣2ab2﹣6a2b+3ab2﹣3ab=(6a2b﹣6a2b)+(﹣2ab2+3ab2)﹣3ab=ab2﹣3ab,当,b=﹣2时原式=ab2﹣3ab==2+3=5.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.(8分)盛盛同学到某高校游玩时,看到运动场的宣传栏中的部分信息(如表):盛盛同学结合学习的知识设计了如下问题,请你帮忙完成下列问题:(1)从表中可以看出,负一场积 1 分,胜一场积 2 分(2)某队在比完22场的前提下,胜场总积分能等于其负场总积分的2倍吗?请说明理由.【分析】(1)仔细观察表格中的数据发现规律并设出未知数列出一元一次方程求解即可;(2)根据题意列出一元一次方程求解即可得到答案.【解答】解(1)由题意可得,负一场积分为:22÷22=1(分),胜一场的积分为:(34﹣10×1)÷12=2(分),故答案为:1,2;(2)设胜x场,负22﹣x场,由题知 2x=2(22﹣x),解得x=11.答:胜场数为11场时,胜场的积分等于负场的2倍.【点评】本题考查了一元一次方程的应用,解题的关键是根据题目中的重点语句找到等量关系并列出方程求解.21.(8分)已知直线l依次三点A、B、C,AB=6,BC=m,点M是AC点中点(1)如图,当m=4,求线段BM的长度(写清线段关系)(2)在直线l上一点D,CD=n<m,用m、n表示线段DM的长度.【分析】(1)求出AC长,根据线段中点求出AM长,即可求出答案;(2)先求出AM和CM长,分为两种情况:当D在线段BC上时和当D在l上且在点C的右侧时,求出MD即可.【解答】解:(1)当m=4时,又∵AB=6,∴AC=4+6=10,又M为AC中点,∴AM=MC=5,∴BM=AB﹣AM,=6﹣5=1;(2)∵AB=6,BC=m,∵M为AC中点,∴,①当D在线段BC上时,CD=n,MD=MC﹣CD==;②当D在l上且在点C的右侧时,CD=n,∴=.【点评】本题考查了线段的中点和求两点之间的距离,能用x表示出各个线段的长度是解此题的关键,注意(2)要进行分类讨论.22.(10分)为了准备“迎新”汇演,七(1)班学生分成甲乙两队进行几天排练.其中甲队队长对乙队队长说:你们调5人来我们队,则我们的人数和你们的人数相同;乙队队长跟甲队队长说:你们调5人来我们队,则我们的人数是你们的人数的3倍.(1)请根据上述两位队长的交谈,求出七(1)班的学生人数;(2)为了增强演出的舞台效果,全部学生需要租赁演出服装,班主任到某服装租赁店了解到:多于20套、少于50套服装的,可供选择的收费方式如下:方式一:一套服装一天收取20元,另收总计80元的服装清洗费方式二:在一套服装一天收取20元的基础上九折,一套服装每天收取服装清洗费1元,另收每套服装磨损费5元(不按天计算)设租赁服装x天(x为整数),请你帮班主任参谋一下:选择哪种付费方式节省一些,并说明理由.【分析】(1)设甲队有x人,则乙队有x+10人,由题意列方程得x+10+5=3(x﹣5),解答即可;(2)方式一:根据题意可列方程:40×20x+80=800x+80,方式二:根据题意可列方程:(20×0.9+1)×40•x+40×5=760x+200,当x=3时,选方式一,方式二均可,当0<x<3选方式一,当x>3时,选方式二;【解答】解:(1)设甲队有x人,则乙队有x+10人由题知x+10+5=3(x﹣5)∴甲队有15人,乙队有25人15+25=40(人)故七(1)班共有40人(2)方式一:40×20x+80=800x+80方式二:(20×0.9+1)×40•x+40×5=760x+200800x+80=760x=200,可得x=3∴若x=3时,选方式一,方式二均可若0<x<3选方式一若x>3时,选方式二【点评】本题主要考查了一元一次方程的运用,读懂题意是解题的关键.23.(10分)如图1,平面内一定点A在直线MN的上方,点O为直线MN上一动点,作射线OA、OP、OA′,当点O在直线MN上运动时,始终保持∠MOP=90°、∠AOP=∠A′OP,将射线OA绕点O顺时针旋转60°得到射线OB(1)如图1,当点O运动到使点A在射线OP的左侧,若OB平分∠A′OP,求∠AOP的度数.(2)当点O运动到使点A在射线OP的左侧,∠AOM=3∠A′OB时,求的值.(3)当点O运动到某一时刻时,∠A′OB=150°,直接写出∠BOP= 105或135 度.【分析】(1)设∠A′OB=∠POB=x,表示∠AOP=2x,∠BOP=x,由∠AOB=60°列方程为:x+2x=60,可得x的值,从而求出结论;(2)分两种情况讨论,①当点O运动到使点A在射线OP的左侧,②当点O运动到使A在射线OP的左侧,但是射线OB在∠POA′外部时,分别求的值即可;(3))①如图3,当∠A′OB=150°时,可得:∠A'OA=∠A'OB﹣∠AOB=150°﹣60°=90°,因为∠AOP=∠A'OP,所以∠AOP=45°,∠BOP=60°+45°=105°;②如图4,当∠A′OB=150°时,可得:∠A'OA=360°﹣150°﹣60°=150°,因为∠AOP=∠A'OP,所以∠AOP=75,∠BOP=60°+75°=135°;【解答】(本题10分)解:(1)∵OB平分∠A′OP,∴设∠A′OB=∠POB=x,∵∠AOP=∠A′OP,∴∠AOP=2x,∵∠AOB=60°,∴x+2x=60,∴x=20°,∴∠AOP=2x=40°;(2)①当点O运动到使点A在射线OP的左侧∵∠AOM=3∠A′OB∴设∠A′OB=x,∠AOM=3x∵OP⊥M∴∠AON=180°﹣3x∠AOP=90°﹣3x∴∵∠AOP=∠A′OP∴∠AOP=∠A′OP=∴OP⊥MN∴∴∴②当点O运动到使A在射线OP的左侧,但是射线OB在∠POA′外部时∵∠AOM=3∠A′OB设∠A′OB=x,∠AOM=3x∴∠AOP=∠A′OP=∴OP⊥MN∴3x+=90∴x=24°∴(3)①如图3,当∠A′OB=150°时,由图可得:∠A'OA=∠A'OB﹣∠AOB=150°﹣60°=90°∵∠AOP=∠A'OP∴∠AOP=45°∴∠BOP=60°+45°=105°②如图4,当∠A′OB=150°时,由图可得:∠A'OA=360°﹣150°﹣60°=150°∵∠AOP=∠A'OP∴∠AOP=75°∴∠BOP=60°+75°=135°故答案为:105°或135°【点评】本题主要考查了角的运算,学会灵活处理问题,注意分类讨论不同的情况.24.(12分)如图,直线l上依次有三点A、B、C,且AB=8、BC=16,点P为射线AB上一动点,将线段AP进行翻折得到线段PA′(点A落在直线l上点A′处、线段AP上的所有点与线段PA′上的点对应)如图(1)若翻折后A′C=2,则翻折前线段AP= 11(2)若点P在线段BC上运动,点M为线段A′C的中点,求线段PM的长度;(3)若点P在射线BC上运动,点N为B′P的中点,点M为线段A′C的中点,设AP=x,用x表示A′M+PN.【分析】(1)先根据线段的和差关系求出AC,进一步得到AA′,再根据翻折的定义即可求解;(2)分①当A′在线段BC上,②当A′在l上且在C的右侧,进行讨论即可求解;(3)分①当8<x<12,此时,A′在C的左侧,②当x>12 此时,A′在C的右侧,③当x>24时,点C落在C’,进行讨论即可求解.【解答】解:(1)AC=AB+BC=8+16=24,AA′=AC﹣A′C=24﹣2=22,AP=22÷2=11.故答案为:11;(2)①当A′在线段BC上,由题知PA=PA′,∵M为AC中点,∴MA′=MC,∴PM=PA′+A′M====12;②当A′在l上且在C的右侧,∵M为A′C中点,∴MA′=MC,∴PM=PA′﹣A′M====12,综上:PM=12;(3)①当8<x<12,此时,A′在C的左侧,PB’=PB=x﹣8,∵N为BP中点,∴,∵A′C=24﹣2x,∵M为A′C中点,∴,∴=;②当x>12,此时,A′在C的右侧,PB′=PB=x﹣8,,A′C=2x﹣24∵M为A′C中点,∴,∴=;③当x>24时,点C落在C’,不予考虑(考虑了则M为A′C’中点,得),∴.【点评】本题考查了两点之间的距离的应用,分类讨论的思想是解此题的关键.。

人教版2018-2019学年第一学期七年级数学期末测试题(含答案)

人教版2018-2019学年第一学期七年级数学期末测试题(含答案)

2018-2019学年七年级(上)期末数学试卷一、选择题(本题共6个小题,每小题3分,共18分.)1.设a是一个负数,则数轴上表示数﹣a的点在()A.原点的左边B.原点的右边C.原点的左边和原点的右边D.无法确定2.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚3.如图所示的几何体,从上面看得到的平面图形是()A.B.C.D.4.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()A.69°B.111°C.141°D.159°5.将下面的直角梯形绕直线l旋转一周,可以得到如图立体图形的是()A.B.C.D.6.某商店把一种洗涤用品按标价的九折出售,仍可获利20%,若该洗涤用品的进价为21元,则标价为()元.A.26 B.27 C.28 D.29二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)7.﹣5的相反数是,﹣的倒数是.8.若a3﹣2n b2与5a3n﹣2b2是同类项,则n=.9.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将它的面积用科学记数法表示应为平方千米.10.计算:15°37′+42°51′=.11.根据图提供的信息,可知一个杯子的价格是元.12.用6根火柴最多组成个一样大的三角形,所得几何体的名称是.13.点A、B、C是同一直线上的三个点,若AB=8cm,BC=3cm,则AC=cm.14.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值是.三、解答题(本大题共10个小题;共78分)15.计算(1)(﹣76)+(+26)+(﹣31)+(+17)(2)2(2b﹣3a)﹣3(2a﹣3b).16.解下列方程:(1)x﹣7=10﹣4(x+0.5);(2)﹣=1.17.如图所示,直线l是一条平直的公路,A,B是两个车站,若要在公路l上修建一个加油站,如何使它到车站A,B的距离之和最小,请在公路上表示出点P的位置,并说明理由.(保留作图痕迹,并用你所学的数学知识说明理由).18.(6分)(2015秋太和县期末)一个角的余角比这个角的少30°,请你计算出这个角的大小.19.先化简再求值:﹣2y3+(2x3﹣xyz)﹣2(x3﹣y3+xyz),其中x=1,y=2,z=﹣3.20.如图,∠AOB=110°,∠COD=70°,OA平分∠EOC,OB平分∠DOF,求∠EOF的大小.21.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=8cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a,其它条件不变,你能猜想MN的长度吗?写出你的结论并说明理由;(3)若C为直线AB上线段AB之外的任一点,且AC=m,CB=n,则线段MN的长为.22.一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)通过计算说明小虫是否回到起点P.(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.23.如图(1)所示,∠AOB、∠COD都是直角.(1)试猜想∠AOD与∠COB在数量上是相等,互余,还是互补的关系.请你用推理的方法说明你的猜想是合理的.(2)当∠COD绕着点O旋转到图(2)所示位置时,你在(1)中的猜想还成立吗?请你证明你的结论.24.某天,一蔬菜经营户用60元钱从蔬菜批发市场批了西红柿和豆角共40㎏到菜市场去卖,西红柿和豆角这天的批发价与零售价如下表所示:问:他当天卖完这些西红柿和豆角能赚多少钱?品名西红柿豆角批发价(单位:元/kg) 1.2 1.6零售价(单位:元/kg) 1.8 2.52018-2019学年七年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共6个小题,每小题3分,共18分.)1.设a是一个负数,则数轴上表示数﹣a的点在()A.原点的左边B.原点的右边C.原点的左边和原点的右边D.无法确定【考点】数轴.【分析】根据数轴的相关概念解题.【解答】解:因为a是一个负数,则﹣a是一个正数,二者互为相反数,﹣a在原点的右边.故选B.【点评】解答此题要用到以下概念:数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴;(1)从原点出发朝正方向的射线上的点对应正数,相反方向的射线上的点对应负数,原点对应零.(2)在数轴上表示的两个数,正方向的数大于负方向的数.(3)正数都大于0,负数都小于0,正数大于一切负数.(4)若从点A向右移动|a|个单位,得到B,则B点坐标为A的坐标加|a|,反之B点坐标为A的坐标减|a|.2.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚【考点】直线的性质:两点确定一条直线.【分析】根据直线的性质,两点确定一条直线解答.【解答】解:∵两点确定一条直线,∴至少需要2枚钉子.故选B.【点评】本题考查了直线的性质,熟记两点确定一条直线是解题的关键.3.如图所示的几何体,从上面看得到的平面图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据所看位置,找出此几何体的三视图即可.【解答】解:从上面看得到的平面图形是两个同心圆,故选:B.【点评】此题主要考查了简单几何体的三视图,关键是要把所看到的棱都表示到图中.4.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()A.69°B.111°C.141°D.159°【考点】方向角.【分析】首先计算出∠3的度数,再计算∠AOB的度数即可.【解答】解:由题意得:∠1=54°,∠2=15°,∠3=90°﹣54°=36°,∠AOB=36°+90°+15°=141°,故选:C.【点评】此题主要考查了方向角,关键是根据题意找出图中角的度数.5.将下面的直角梯形绕直线l旋转一周,可以得到如图立体图形的是()A.B.C.D.【考点】点、线、面、体.【专题】常规题型.【分析】面动成体.由题目中的图示可知:此圆台是直角梯形转成圆台的条件是:绕垂直于底的腰旋转.【解答】解:A、是直角梯形绕底边旋转形成的圆台,故A错误;B、是直角梯形绕垂直于底的腰旋转形成的圆台,故B正确;C、是梯形底边在上形成的圆台,故C错误;D、是梯形绕斜边形成的圆台,故D错误.故选:B.【点评】本题考查直角梯形转成圆台的条件:应绕垂直于底的腰旋转.6.某商店把一种洗涤用品按标价的九折出售,仍可获利20%,若该洗涤用品的进价为21元,则标价为()元.A.26 B.27 C.28 D.29【考点】一元一次方程的应用.【分析】设该商品的标价为x,则商品的售价为0.9x元,根据售价﹣进价=利润为等量关系建立方程求出其解即可.【解答】解:设该商品的标价为x,则商品的售价为0.9x元,由题意,得0.9x﹣21=21×20%,解得:x=28故选C.【点评】本题考查了销售问题的数量关系在生活实际问题的中的运用,一元一次方程的解法的运用,解答时运用售价﹣进价=进价×利润率建立方程是关键.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)7.﹣5的相反数是5,﹣的倒数是﹣2.【考点】倒数;相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据乘积是1的两个数互为倒数,可得一个数的倒数.【解答】解:﹣5的相反数是5,﹣的倒数是﹣2,故答案为:5,﹣2.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.8.若a3﹣2n b2与5a3n﹣2b2是同类项,则n=1.【考点】同类项.【分析】根据同类项是字母相同,且相同的字母的指数也相同,可得答案.【解答】解:a3﹣2n b2与5a3n﹣2b2是同类项,3﹣2n=3n﹣2,n=1,故答案为:1.【点评】本题考查了同类项,相同的字母的指数也相同是解题关键.9.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将它的面积用科学记数法表示应为 2.5×106平方千米.【考点】科学记数法—表示较大的数.【专题】应用题.【分析】把一个大于10的数写成科学记数法a×10n的形式时,将小数点放到左边第一个不为0的数位后作为a,把整数位数减1作为n,从而确定它的科学记数法形式.【解答】解:2 500 000=2.5×106平方千米.【点评】将一个绝对值较大的数写成科学记数法a×10n的形式时,其中1≤|a|<10,n为比整数位数少1的数.10.计算:15°37′+42°51′=58°28′.【考点】度分秒的换算.【分析】把分相加,超过60的部分进为1度即可得解.【解答】解:∵37+51=88,∴15°37′+42°51′=58°28′.故答案为:58°28′.【点评】本题考查了度分秒的换算,比较简单,要注意度分秒是60进制.11.根据图提供的信息,可知一个杯子的价格是8元.【考点】二元一次方程组的应用.【分析】仔细观察图形,可知本题存在两个等量关系,即一个水壶的价格+一个杯子的价格=43,两个水壶的价格+三个杯子的价格=94.根据这两个等量关系可列出方程组.【解答】解:设水壶单价为x元,杯子单价为y元,则有,解得.答:一个杯子的价格是8元.故答案为:8.【点评】解题关键是弄清题意,找到合适的等量关系,列出方程组.12.用6根火柴最多组成4个一样大的三角形,所得几何体的名称是三棱锥或四面体.【考点】认识立体图形.【分析】用6根火柴,要使搭的个数最多,就要搭成立体图形,即三棱锥.【解答】解:要使搭的个数最多,就要搭成三棱锥,这时最多可以搭4个一样的三角形.图形如下:故答案为:4,三棱锥或四面体.【点评】此题主要考查了认识立体图形,本题要打破思维定势,不要只从平面去考虑,要考虑到立体图形的拼组.13.点A、B、C是同一直线上的三个点,若AB=8cm,BC=3cm,则AC=11或5cm.【考点】比较线段的长短.【专题】分类讨论.【分析】分点B在点A、C之间和点C在点A、B之间两种情况讨论.【解答】解:(1)点B在点A、C之间时,AC=AB+BC=8+3=11cm;(2)点C在点A、B之间时,AC=AB﹣BC=8﹣3﹣5cm.∴AC的长度为11cm或5cm.【点评】分两种情况讨论是解本题的难点,也是解本题的关键.14.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值是158.【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是12,右上是14.【解答】解:分析可得图中阴影部分的两个数分别是左下是12,右上是14,则m=12×14﹣10=158.故答案为:158.【点评】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找出阴影部分的数.三、解答题(本大题共10个小题;共78分)15.计算(1)(﹣76)+(+26)+(﹣31)+(+17)(2)2(2b﹣3a)﹣3(2a﹣3b).【考点】有理数的加法;整式的加减.【分析】(1)根据有理数的加法法则,即可解答.(2)先去括号,再合并同类项,即可解答.【解答】解:(1)(﹣76)+(+26)+(﹣31)+(+17)=﹣76﹣31+26+17=﹣107+43=﹣64.(2)2(2b﹣3a)﹣3(2a﹣3b)=4b﹣6a﹣6a+9b=13b﹣12a.【点评】本题考查了有理数的加法法则,解决本题的关键是熟记有理数的加法法则.16.解下列方程:(1)x﹣7=10﹣4(x+0.5);(2)﹣=1.【考点】解一元一次方程.【专题】计算题.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:x﹣7=10﹣4x﹣2,移项合并得:5x=15,解得:x=3;(2)去分母得:3x﹣3﹣6﹣4x=6,移项合并得:x=﹣15.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把x系数化为1,求出解.17.如图所示,直线l是一条平直的公路,A,B是两个车站,若要在公路l上修建一个加油站,如何使它到车站A,B的距离之和最小,请在公路上表示出点P的位置,并说明理由.(保留作图痕迹,并用你所学的数学知识说明理由).【考点】作图—应用与设计作图.【分析】连接AB,与l的交点就是P点.【解答】解:如图所示:点P即为所求.【点评】此题主要考查了作图与应用作图,关键是掌握两点之间线段最短.18.(6分)(2015秋太和县期末)一个角的余角比这个角的少30°,请你计算出这个角的大小.【考点】余角和补角.【分析】设这个角的度数为x,根据互余的两角的和等于90°表示出它的余角,然后列出方程求解即可.【解答】解:设这个角的度数为x,则它的余角为(90°﹣x),由题意得:x﹣(90°﹣x)=30°,解得:x=80°.答:这个角的度数是80°.【点评】本题考查了余角的定义,熟记概念并列出方程是解题的关键.19.先化简再求值:﹣2y3+(2x3﹣xyz)﹣2(x3﹣y3+xyz),其中x=1,y=2,z=﹣3.【考点】整式的加减—化简求值;合并同类项;去括号与添括号.【专题】计算题.【分析】本题先将括号去掉,进行同类项合并,然后化简后,将值代入,即可求得结果.【解答】解:﹣2y3+(2x3﹣xyz)﹣2(x3﹣y3+xyz),其中x=1,y=2,z=﹣3.当x=1,y=2,z=﹣3时,原式=﹣3×1×2×(﹣3)=18.…(10分)【点评】本题考查整式的加减及化简求值,将式子进行同类项合并后,然后化简后即可求得结果.20.如图,∠AOB=110°,∠COD=70°,OA平分∠EOC,OB平分∠DOF,求∠EOF的大小.【考点】角平分线的定义.【专题】计算题.【分析】由∠AOB=110°,∠COD=70°,易得∠AOC+∠BOD=40°,由角平分线定义可得∠AOE+∠BOF=40°,那么∠EOF=∠AOB+∠AOE+BOF.【解答】解:∵∠AOB=110°,∠COD=70°∴∠AOC+∠BOD=∠AOB﹣∠COD=40°∵OA平分∠EOC,OB平分∠DOF∴∠AOE=∠AOC,∠BOF=∠BOD∴∠AOE+∠BOF=40°∴∠EOF=∠AOB+∠AOE+∠BOF=150°.故答案为:150°.【点评】解决本题的关键利用角平分线定义得到所求角的两边的角的度数.21.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=8cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a,其它条件不变,你能猜想MN的长度吗?写出你的结论并说明理由;(3)若C为直线AB上线段AB之外的任一点,且AC=m,CB=n,则线段MN的长为|m﹣n|.【考点】比较线段的长短.【专题】计算题.【分析】(1)点M是线段AC中点,则MC=AC,点N的线段BC中点,所以CN=CB,AC+BC=AB,AB已知,从而可求出MN长度.(2)根据以上分析可得MN=AB,线段MN的长度是线段AB的一半.(3)当点C在线段AB的延长线上时,MN等于MC减去BC=n,而MC=AC=m,从而可求出MN长度;当点C在线段BA的延长线上时,MN等于NC减去MC,NC=BC=n,MC=AC=m,从而可求出MN的长度.【解答】解:(1)MN=MC+CN=AC CB=7cm;(2)MN=MC+CN=AC=;(3)当点C在线段AB的延长线上时,MN=(m﹣n);当点C在线段BA的延长线上时,MN=(n﹣m);综合以上情况得:MN=.【点评】本题前两问主要根据题中图形得到各线段之间的关系,求出MN的长度,而第三问要分情况讨论,M在AB不同侧时有不同的情况,分析各情况得到MN的表达式.22.一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)通过计算说明小虫是否回到起点P.(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.【考点】有理数的加减混合运算;正数和负数.【专题】应用题.【分析】(1)把记录到得所有的数字相加,看结果是否为0即可;(2)记录到得所有的数字的绝对值的和,除以0.5即可.【解答】解:(1)∵(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10),=5﹣3+10﹣8﹣6+12﹣10,=0,∴小虫能回到起点P;(2)(5+3+10+8+6+12+10)÷0.5,=54÷0.5,=108(秒).答:小虫共爬行了108秒.【点评】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.23.如图(1)所示,∠AOB、∠COD都是直角.(1)试猜想∠AOD与∠COB在数量上是相等,互余,还是互补的关系.请你用推理的方法说明你的猜想是合理的.(2)当∠COD绕着点O旋转到图(2)所示位置时,你在(1)中的猜想还成立吗?请你证明你的结论.【考点】余角和补角.【分析】(1)根据直角的定义可得∠AOB=∠COD=90°,然后用∠AOD和∠COB表示出∠BOD,列出方程整理即可得解;(2)根据周角等于360°列式整理即可得解.【解答】解:(1)∠AOD与∠COB互补.理由如下:∵∠AOB、∠COD都是直角,∴∠AOB=∠COD=90°,∴∠BOD=∠AOD﹣∠AOB=∠AOD﹣90°,∠BOD=∠COD﹣∠COB=90°﹣∠COB,∴∠AOD﹣90°=90°﹣∠COB,∴∠AOD+∠COB=180°,∴∠AOD与∠COB互补;(2)成立.理由如下:∵∠AOB、∠COD都是直角,∴∠AOB=∠COD=90°,∵∠AOB+∠BOC+∠COD+∠AOD=360°,∴∠AOD+∠COB=180°,∴∠AOD与∠COB互补.【点评】本题考查了余角和补角的定义,比较简单,用两种方法表示出∠BOD是解题的关键.24.某天,一蔬菜经营户用60元钱从蔬菜批发市场批了西红柿和豆角共40㎏到菜市场去卖,西红柿和豆角这天的批发价与零售价如下表所示:问:他当天卖完这些西红柿和豆角能赚多少钱?品名西红柿豆角批发价(单位:元/kg) 1.2 1.6零售价(单位:元/kg) 1.8 2.5【考点】二元一次方程组的应用.【专题】图表型.【分析】通过理解题意可知本题的两个等量关系,西红柿的重量+豆角的重量=40,1.2×西红柿的重量+1.6×豆角的重量=60,根据这两个等量关系可列出方程组.【解答】解:设西红柿的重量是xkg,豆角的重量是ykg,依题意有解得10×(1.8﹣1.2)+30×(2.5﹣1.6)=33(元)答:他当天卖完这些西红柿和豆角能赚33元.【点评】注意要先求出西红柿和豆角的重量,再计算利润.。

人教版辽宁省沈阳市皇姑区2018-2019学年七年级(上)期末数学试卷(含解析)

人教版辽宁省沈阳市皇姑区2018-2019学年七年级(上)期末数学试卷(含解析)

2018-2019学年辽宁省沈阳市皇姑区七年级(上)期末数学试卷一、选择题1.(3分)﹣2019的相反数是()A.﹣2019B.2019C.﹣D.2.(3分)下列算式中,运算结果为负数的是()A.﹣(﹣2)B.|﹣2|C.﹣22D.(﹣2)23.(3分)过度包装既浪费资源又污染环境.据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨,把数3120000用科学记数法表示为()A.3.12×106B.3.12×105C.31.2×105D.0.312×107 4.(3分)下面合并同类项正确的是()A.3x+2x2=5x3B.2a2b﹣a2b=1C.﹣ab﹣ab=0D.﹣y2x+xy2=0 5.(3分)一个多项式与x2﹣2x+1的和是3x﹣2,则这个多项式为()A.x2﹣5x+3B.﹣x2+x﹣1C.﹣x2+5x﹣3D.x2﹣5x﹣13 6.(3分)下列调查中,调查方式选择合理的是()A.调查你所在班级同学的身高,采用抽样调查方式B.调查市场上某品牌电脑的使用寿命,采用普查的方式C.调查嘉陵江的水质情况,采用抽样调查的方式D.要了解全国初中学生的业余爱好,采用普查的方式7.(3分)某商品打七折后价格为a元,则原价为()A.a元B.a元C.30%a元D.a元8.(3分)在与国际友好学校交流活动中,小敏打算制做一个正方体礼盒送给外国朋友,每个面上分别书写一种中华传统美德,一共有“仁义礼智信孝”六个字.如图是她设计的礼盒平面展开图,那么“礼”字对面的字是()A.义B.仁C.智D.信9.(3分)如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥.如图是一个四棱柱和一个六棱锥,它们各有12条棱.下列棱柱中和九棱锥的棱数相等的是()A.五棱柱B.六棱柱C.七棱柱D.八棱柱10.(3分)如图,钟面上的时间是8:30,再经过t分钟,时针、分针第一次重合,则t为()A.B.C.D.二、填空题11.(3分)计算:15°37′+42°51′=.12.(3分)如果关于x的一元一次方程2x+a=x﹣1的解是x=﹣4,那么a的值为.13.(3分)把一张长方形纸条按图的方式折叠后,量得∠AOB′=110°,则∠B′OC =.14.(3分)如果一个零件的实际长度为a,测量结果是b,则称|b﹣a|为绝对误差,为相对误差.现有一零件实际长度为 5.0cm,测量结果是 4.8cm,则本次测量的相对误差是.15.(3分)如图,找出其变化的规律,则第1345个图形中黑色正方形的数量是.16.(3分)当整数m=时,代数式的值是整数.三、解答题17.计算:﹣14﹣8÷(﹣2)×(﹣)18.解方程:x﹣=﹣119.先化简,再求值:(4a2﹣3a)﹣(1﹣4a+4a2),其中a=﹣2.20.补全下列解题过程如图,OD是∠AOC的平分线,且∠BOC﹣∠AOB=40°,若∠AOC=120°,求∠BOD 的度数.解:∵OD是∠AOC的平分线,∠AOC=120°,∴∠DOC=∠=°.∵∠BOC+∠=120°,∠BOC﹣∠AOB=40°,∴∠BOC=80°.∴∠BOD=∠BOC﹣∠=°.21.(1)如图是由10个同样大小的小正方体搭成的几何体,请分别画出它的主视图和俯视图.(2)在主视图和俯视图不变的情况下,你认为最多还可以添加个小正方体.22.某校共有900名学生,学校准备调查他们对“沈阳创建卫生城”知识的了解程度,团委对部分学生采用了随机抽样调查的方式,并用收集到的数据绘制出两幅不完整的统计图(如图①、图②所示):(1)根据图中信息,学校决定对“不了解”和“了解一点”的同学进行培训,估计该校约有多少名学生参加培训?(2)请你直接将两个统计图补充完整.23.公园门票价格规定如下表:购票张数1~50张51~100张100张以上每张票的价格13元11元9元某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元,问:①两班各有多少学生?②如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?24.图1是由若干个小圆圈堆成的一个形如等边三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+…+n=.如果图中的圆圈共有13层,请解决下列问题:(1)若自上往下,在图1每个圆圈中填上一串连续的正整数1,2,3,4,…,得到图3,则第11层最左边这个圆圈中的数是;(2)若自上往下,在图1每个圆圈中填上一串连续的整数﹣23,﹣22,﹣21,20,…,得到图4,则第10层最右边圆圈内的数是;(3)根据以上规律,求图4中第1层到第10层所有圆圈中各数之和(写出计算过程).25.如图,长方形OABC的边OA在数轴上,O为原点,长方形OABC的面积为12,OC边长为3.(1)数轴上点A表示的数为;(2)将长方形OABC沿数轴向右水平移动,移动后的长方形记为O1A1B1C1:①若移动后的长方形O1A1B1C1与原长方形OABC重叠部分的面积恰好等于原长方形OABC面积的时,则数轴上点A1表示的数为;②长方形OOBC在移动的过程中,点D为线段AA1的中点,点E为线段AO1的中点,当DO+EO=3时,AA1=.参考答案与试题解析一、选择题1.【解答】解:﹣2019的相反数是:2019.故选:B.2.【解答】解:A、﹣(﹣2)=2,错误;B、|﹣2|=2,错误;C、﹣22=﹣4,正确;D、(﹣2)2=4,错误;故选:C.3.【解答】解:3120000用科学记数法表示为3.12×106,故选:A.4.【解答】解:3x+2x2不是同类项不能合并,2a2b﹣a2b=a2b,﹣ab﹣ab=﹣2ab,﹣y2x+x y2=0.故选:D.5.【解答】解:由题意得:这个多项式=3x﹣2﹣(x2﹣2x+1),=3x﹣2﹣x2+2x﹣1,=﹣x2+5x﹣3.故选:C.6.【解答】解:A、调查你所在班级同学的身高,应采用全面调查方式,故方法不合理,故此选项错误;B、调查市场上某品牌电脑的使用寿命,采用普查的方式,方法不合理,故此选项错误;C、查嘉陵江的水质情况,采用抽样调查的方式,方法合理,故此选项正确;D、要了解全国初中学生的业余爱好,采用普查的方式,方法不合理,故此选项错误;故选:C.7.【解答】解:设该商品原价为:x元,∵某商品打七折后价格为a元,∴原价为:0.7x=a,则x=a(元).故选:B.8.【解答】解:这是一个正方体的平面展开图,共有六个面,其中“礼”字对面的字是义.故选:A.9.【解答】解:九棱锥侧面有9条棱,底面是九边形,也有9条棱,共9+9=18条棱,A、五棱柱共15条棱,故A误;B、六棱柱共18条棱,故B正确;C、七棱柱共21条棱,故C错误;D、八棱柱共24条棱,故D错误;故选:B.10.【解答】解:设从8:30点开始,经过x分钟,时针和分针第一次重合,由题意得:6x﹣0.5x=755.5x=75x=,答:至少再经过分钟时针和分针第一次重合.故选:B.二、填空题11.【解答】解:∵37+51=88,∴15°37′+42°51′=58°28′.故答案为:58°28′.12.【解答】解:把x=﹣4代入方程2x+a=x﹣1得:﹣8+a=﹣5,解得:a=3,故答案为:3.13.【解答】解:∵沿OC折叠,B和B′重合,∴△BOC≌△B′OC,∴∠BOC=∠B′OC,∵∠AOB′=110°,∴∠BOB′=180°﹣110°=70°,∴∠B′OC=×70°=35°,故答案为:35°.14.【解答】解:若实际长度为5.0cm,测量结果是4.8cm,则本次测量的相对误差为=0.04,故答案为:0.04.15.【解答】解:第(1)个图形中黑色正方形的数量为:2,第(2)个图形中黑色正方形的数量为:2+1=3,第(3)个图形中黑色正方形的数量为:2+1+2=2×2+1=5,第(4)个图形中黑色正方形的数量为:2+1+2+1=2×2+1×2=6,第(5)个图形中黑色正方形的数量为:2+1+2+1+2=2×3+1×2=8,∵1345是奇数,∴第1345个图形中黑色正方形的数量是:2×[(1345+1)÷2]+1×[(1345﹣1)÷2]=2018,故答案为:2018.16.【解答】解:∵要使代数式的值是整数,∴3m﹣1只能在±1、±2、±3、±6这四个数中取值,∵当3m﹣1=1时,∴m=,当3m﹣1=﹣1时,m=0,当3m﹣1=2时,m=1,当3m﹣1=﹣2时,m=﹣,当3m﹣1=3时,m=,当3m﹣1=﹣3时,m=﹣,当3m﹣1=6时,m=,当3m﹣1=﹣6时,m=﹣,又∵m也是整数,∴可得m=0或1,故答案为0或1.三、解答题17.【解答】解:原式=﹣1﹣8÷2×=﹣1﹣2=﹣3.18.【解答】解:15x﹣3(x﹣2)=5(2x+5)﹣1515x﹣3x+6=10x+25﹣1515x﹣3x﹣10x=25﹣15﹣6靖边县第五中学2x=4x=219.【解答】解:(4a2﹣3a)﹣(1﹣4a+4a2)=4a2﹣3a﹣1+4a﹣4a2=a﹣1,当a=﹣2时,a﹣1=﹣2﹣1=﹣3.20.【解答】解:∵OD是∠AOC的平分线,∠AOC=120°,∴∠DOC=∠AOC=60°.∵∠BOC+∠AOB=120°,∠BOC﹣∠AOB=40°,∴∠BOC=80°.∴∠BOD=∠BOC﹣∠DOC=20°故答案是:AOC,60,AOB,DOC,20.21.【解答】解:(1)如图所示:(2)最多还可以添加3个小正方体.故答案为:3.22.【解答】解:(1)∵被调查的学生人数为6÷10%=60(人),∴了解一点的人数为60﹣(6+18)=36(人),则估计该校约参加培训的学生约有900×=630(名);(2)了解一点的人数所占百分比为×100%=60%,比较了解的人数所占百分比为×100%=30%,补全图形如下:靖边县第五中学23.【解答】①解:设初一(1)班有x人,则有13x+11(104﹣x)=1240,解得:x=48.即初一(1)班48人,初一(2)班56人;②解:要想享受优惠,由(1)可知初一(1)班48人,只需多买3张,51×11=561,48×13=624>561,∴48人买51人的票可以更省钱.24.【解答】解:(1)∵1+2+3+…+10=55,∴第11层最左边这个圆圈中的数是56,故答案为56.(2)∵1+2+3+…+10=55,﹣23+(55﹣1)=31,∴第10层最右边圆圈内的数是31,故答案为31.(3)﹣23﹣22﹣21﹣20﹣…﹣1+1+2+3+…+31=220.25.【解答】解:(1)∵长方形OABC的面积为12,OC边长为3,∴OA=4,∴点A表示的数为4,故答案为:4;靖边县第五中学(2)长方形向右移动时,长方形O1A1B1C1与原长方形OABC重叠部分的面积是3,∴O1A=1,∴AA1=3,∴点A1表示的数为7,故答案为7;②设移动x个单位,DO=4+,EO=,∵DO+EO=3∴4+,解得x=﹣3,即左移3个单位时DO+EO=3时,AA1=3,故答案为:3.靖边县第五中学。

2018-2019学年浙江省绍兴市诸暨市七年级(上)期末数学试卷解析版

2018-2019学年浙江省绍兴市诸暨市七年级(上)期末数学试卷解析版

2018-2019学年浙江省绍兴市诸暨市七年级(上)期末数学试卷解析版2018-2019学年浙江省绍兴市诸暨市七年级(上)期末数学试卷⼀、选择题(本⼤题共10⼩题,共30.0分)1.下列说法正确的是()A. 负数没有倒数B. 正数的倒数⽐⾃⾝⼩C. 任何有理数都有倒数D. 的倒数是2.下列各数|-2|,-(-2)2,-(-2),(-2)3中,负数的个数有()A. 1个B. 2个C. 3个D. 4个3.在国家“⼀带⼀路”战略下,我国与欧洲开通了互利互惠的中欧班列.⾏程最长,途经城市和国家最多的⼀趟专列全程长13000km,将13000⽤科学记数法表⽰应为()A. B. C. D.4.若|b+2|与(a-3)2互为相反数,则b a的值为()A. B. C. D. 85.a、b、c、m都是有理数,且a+2b+3c=m,a+b+2c=m,那么b与c的关系是()A. 互为相反数B. 互为倒数C. 相等D. ⽆法确定6.下列计算正确的是()A. B. C. D.7.若⽅程(a+3)x|a|-2+6=0是关于x的⼀元⼀次⽅程,则a的值是()A. 3B.C.D.8.甲计划⽤若⼲个⼯作⽇完成某项⼯作,从第⼆个⼯作⽇起,⼄加⼊此项⼯作,且甲、⼄两⼈⼯作效率相同,结果提前3天完成任务,则甲计划完成此项⼯作的天数是()A. 5B. 6C. 7D. 89.某⼈沿电车路线⾏⾛,每隔12分钟有⼀辆电车从后⾯开来,每隔4分钟有⼀辆电车迎⾯开来,假设此⼈和电车都是匀速前进,车站的发车时间间隔相同,则发车时间间隔为()A. 6分钟B. 12分钟C. 8分钟D. 4分钟10.某企业接到为地震灾区⽣产活动房的任务,此企业拥有九个⽣产车间,现在每个车间原有的成品活动房⼀样多,每个车间的⽣产能⼒也⼀样.有A、B两组检验员,其中A组有8名检验员前两天时间将第⼀、⼆车间的所有成品(原来的和这两天⽣产的)检验完毕后,再去检验第三、四车间所有成品,⼜⽤去三天时间;同时这五天时间B组检验员也检验完余下的五个车间的所有成品.如果每个检验员的检验速度⼀样快,那么B组检验员⼈数为()A. 8⼈B. 10⼈C. 12⼈D. 14⼈⼆、填空题(本⼤题共10⼩题,共30.0分)11.的倒数是______.12.的平⽅根为______.13.3x m y4与x3y n是同类项,则2m-n=______.14.对于任意不相等的两个数a,b,定义⼀种运算*如下:a*b=,如3*2==,那么12*(3*1)=______.15.当x=1时,代数式px3+ax+1的值为2018,则当x=-1时,代数式px3+ax+1的值为______.16.化简(-)2+|1-|+的结果为______.17.若|2x-1|=7,则|5x+7|=______.18.观察算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256…,根据上述算式的规律,那么22018的个位数字是______.19.如图,已知OA⊥OB,点O为垂⾜,OC是∠AOB内任意⼀条射线,OB,OD分别平分∠COD,∠BOE,下列结论:①∠COD=∠BOE;②∠COE=3∠BOD;③∠BOE=∠AOC;④∠AOC与∠BOD互余,其中正确的有______(只填写正确结论的序号).20.如图,甲、⼄两动点分别从正⽅形ABCD的顶点,A,C同时沿正⽅形的边开始移动,甲点依顺时针⽅向环⾏,⼄点依逆时针⽅向环⾏,若⼄的速度是甲的速度的4倍,则它们第2019次相遇在______边上(填AB,BC,CD或AD).三、计算题(本⼤题共2⼩题,共14.0分)21.解下列⽅程:(1)-1=(2)=322.先化简,再求值(1)求代数式(4a2-2a-8)-(a-1),其中a=1;(2)求代数式x-2(x-y2)+(-x+y2)的值,其中x=,y=-2.四、解答题(本⼤题共3⼩题,共26.0分)23.已知多项式A=2x2-xy+my-8,B=-nx2+xy+y+7,A-2B中不含有x2项和y项,求n m+mn的值.24.某⽂艺团体为“希望⼯程”募捐义演,全价票为每张18元,学⽣享受半价,某场演出共售出966张票,收⼊15480元,问这场演出共售出学⽣票多少张.25.如图,P是线段AB上任⼀点,AB=12cm,C、D两点分别从P、B同时向A点运动,且C点的运动速度为2cm/s,D点的运动速度为3cm/s,运动的时间为ts.(1)若AP=8cm,①运动1s后,求CD的长;②当D在线段PB上运动时,试说明AC=2CD;(2)如果t=2s时,CD=1cm,试探索AP的值.答案和解析1.【答案】D【解析】解:A、负数有倒数,例如-1的倒数是-1,选项错误;B、正数的倒数不⼀定⽐⾃⾝⼩,例如0.5的倒数是2,选项错误;C、0没有倒数,选项错误;D、-1的倒数是-1,正确.故选:D.根据倒数的定义可知.本题主要考查了倒数的定义及性质.乘积是1的两个数互为倒数,除0以外的任何数都有倒数,倒数等于它本⾝的数是±1.2.【答案】B【解析】解:|-2|=2,-(-2)2=-4,-(-2)=2,(-2)3=-8,-4,-8是负数,∴负数有2个.故选:B.先对每个数进⾏化简,然后再确定负数的个数.本题考查了去绝对值,有理数的乘⽅、正数和负数的意义,关键准确掌握.3.【答案】B【解析】解:将13000⽤科学记数法表⽰为:1.3×104.故选:B.科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,⼩数点移动了多少位,n的绝对值与⼩数点移动的位数相同.当原数绝对值≥1时,n 是⾮负数;当原数的绝对值<1时,n是负数.此题考查了科学记数法的表⽰⽅法.科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n 为整数,表⽰时关键要正确确定a的值以及n的值.4.【答案】C【解析】解:∵|b+2|与(a-3)2互为相反数,∴|b+2|+(a-3)2=0,∴b+2=0,a-3=0,解得:b=-2,a=3.∴b a=(-2)3=-8.故选:C.先依据⾮负数的性质求得a、b的值,然后再利⽤乘⽅法则求解即可.本题主要考查的是偶次⽅的性质,依据⾮负数的性质求得a、b的值是解题的关键.5.【答案】A【解析】解:由题意得,a+2b+3c=m,a+b+2c=m,则a+2b+3c=a+b+2c,即b+c=0,b与c互为相反数.故选:A.由于a+2b+3c=m,a+b+2c=m,则a+2b+3c=a+b+2c,则b与c的关系即可求出.本题考查了代数式的换算,⽐较简单,容易掌握.6.【答案】C【解析】解:A、7a+a=8a,故本选项错误;B、5y-3y=2y,故本选项错误;C、3x2y-2yx2=x2y,故本选项正确;D、3a+2b=5ab,不是同类项,不能合并,故本选项错误;故选:C.根据合并同类项得法则依次判断即可.本题主要考查了合并同类项的法则,熟练掌握运算法则是解题的关键.7.【答案】A【解析】解:∵⽅程(x+3)x|a|-2+6=0是关于x的⼀元⼀次⽅程,∴|a|-2=1,且a+3≠0,解得:a=3,故选:A.利⽤⼀元⼀次⽅程的定义判断即可.本题考查的是⼀元⼀次⽅程的定义,根据题意列出关于a的不等式组是解答此题的关键.8.【答案】C【解析】解:(⽅法⼀)设甲计划完成此项⼯作的天数为x,根据题意得:x-(1+)=3,解得:x=7.(⽅法⼆)设甲计划完成此项⼯作的天数为x,依题意,得:+=1,解得:x=7,经检验,x=7是所列分式⽅程的解,且符合题意.故选:C.(⽅法⼀)设甲计划完成此项⼯作的天数为x,根据甲先⼲⼀天后甲⼄合作完成⽐甲单独完成提前3天,即可得出关于x的⼀元⼀次⽅程,解之即可得出结论;(⽅法⼆)设甲计划完成此项⼯作的天数为x,根据甲完成的⼯作量+⼄完成的⼯作量=总⼯程量(单位1),即可得出关于x的分式⽅程,解之经检验后即可得出结论.本题考查了⼀元⼀次(分式)⽅程的应⽤,找准等量关系,正确列出⼀元⼀次(分式)⽅程是解题的关键.9.【答案】A【解析】解:设⼈步⾏的速度为x⽶/分钟,电车的速度为y⽶/分钟,根据题意得:12(y-x)=4(x+y),∴y=2x,∴=6.故选:A.设⼈步⾏的速度为x⽶/分钟,电车的速度为y⽶/分钟,根据路程=速度×时间结合相邻两辆电车之间的距离相等,即可得出关于x,y的⼆元⼀次⽅程,解之可得出y=2x,再利⽤发车间隔时间=相邻两车间的距离÷电车的速度即可求出发车间隔时间.本题考查了⼆元⼀次⽅程的应⽤,找准等量关系,正确列出⼆元⼀次⽅程是解题的关键.10.【答案】C解:设每个车间原有成品a件,每个车间每天⽣产b件产品,根据检验速度相同得:,解得a=4b;则A组每名检验员每天检验的成品数为:2(a+2b)÷(2×8)=12b÷16=b.那么B组检验员的⼈数为:5(a+5b)÷(b)÷5=45b÷b÷5=12(⼈).故选:C.设A组所检验的每个车间原有成品a件,每个车间1天⽣产b件,可得A组前两天检验的总件数和后三天检验的总件数为.根据检验员的检验速度相同,可列式等式得到a和b的关系,即可得A组⼀名检验员每天检验的成品数.再根据B组检验员的⼈数=五个车间的所有成品÷A组⼀名检验员每天检验的成品数,列式即可得解.本题考查了⼀元⼀次⽅程的应⽤,本题是⼀道叙述⽐较长的题⽬,解题时应认真读题,理解各种量之间的关系列出等式.11.【答案】【解析】解:1÷(-)=-.故答案为:-.根据两个数的积为1,则两个数互为倒数,因此求⼀个数的倒数就是⽤1除以这个数求上即是.此题考查的知识点是倒数,关键是要明确倒数的意义.12.【答案】±3【解析】解:8l的平⽅根为±3.故答案为:±3.根据平⽅根的定义即可得出答案.此题考查了平⽅根的知识,属于基础题,掌握定义是关键.13.【答案】2【解析】解:∵3x m y4与x3y n是同类项,∴n=4,m=3,∴2m-n=2×3-4=6-4=2,故答案为2.根据3x m y4与x3y n是同类项,可以求得m、n的值,从⽽可以得到2m-n的值.本题考查同类项,解题的关键是明确同类项的定义,运⽤同类项的知识可以解答问题.【解析】解:∵3*1====1,∴12*(3*1)=12*1==,故答案为:.先依据定义列出算式,然后再进⾏计算即可.此题主要考查了实数运算,正确理解计算公式是解题关键.15.【答案】-2017【解析】解:解:将x=1代⼊px3+ax+1=2018,∴p+a+1=2018,∴p+a=2018,将x=-1代⼊px3+ax+1∴-p-a+1=-(p+a)+1=-2018+1=-2017,故答案为:-2017.将x=1代⼊px3+ax+1,求出p与a的关系式,然后将x=-1代⼊px3+ax+1即可求出答案.本题考查代数式求值,解题的关键是求利⽤的条件求出p+a的值,本题涉及整体的思想.16.【答案】-1【解析】解:原式=2+-1-2=-1,故答案为:-1.根据实数的混合运算顺序和运算法则计算可得.本题主要考查实数的运算,解题的关键是掌握实数的混合运算顺序和运算法则.17.【答案】47或8【解析】解:∵|2x-1|=7,∴2x-1=±7,解得:x=8或x=-3,把x=8代⼊|5x+7|=47,把x=-3代⼊|5x+7|=8,故答案为:47或8.根据绝对值得出x的值,进⽽解答即可.此题考查绝对值问题,关键是根据绝对值得出x的值.18.【答案】4【解析】解:∵2n的个位数字是2,4,8,6四个⼀循环,∵2018÷4=504…2,∴22018的末位数字应该是4.故答案为:4.先找出规律,求出2018÷4=504…2,即可得出答案.本题考查了尾数特征的应⽤,能根据已知找出规律是解此题的关键.19.【答案】①②④【解析】解:①∵OB,OD分别平分∠COD,∠BOE,∴∠COB=∠BOD=∠DOE,设∠COB=x,∴∠COD=2x,∠BOE=2x,∴∠COD=∠BOE,故①正确;②∵∠COE=3x,∠BOD=x,∴∠COE=3∠BOD,故②正确;③∵∠BOE=2x,∠AOC=90°-x,∴∠BOE与∠AOC不⼀定相等,故③不正确;④∵OA⊥OB,∴∠AOB=∠AOC+∠COB=90°,∵∠BOC=∠BOD,∴∠AOC与∠BOD互余,故④正确,∴本题正确的有:①②④;故答案为:①②④.由⾓平分线将⾓分成相等的两部分.结合选项得出正确结论.本题考查了⾓平分线的性质,互余的定义,垂直的定义,掌握图形间⾓的和、差、倍、分关系是解题的关键.20.【答案】BC【解析】解:根据题意分析可得:⼄的速度是甲的速度的4倍,故第1次相遇,甲⾛了正⽅形周长的×=;从第2次相遇起,每次甲⾛了正⽅形周长的,从第2次相遇起,5次⼀个循环.因此可得:从第2次相遇起,每次相遇的位置依次是:DC,点C,CB,BA,AD;依次循环.(2019-1)÷5=403…3,故它们第2019次相遇位置与第三次相同,在边BC上.故答案为BC.因为⼄的速度是甲的速度的4倍,所以第1次相遇,甲⾛了正⽅形周长的×=;从第2次相遇起,每次甲⾛了正⽅形周长的,从第2次相遇起,5次⼀个循环,从⽽不难求得它们第2019次相遇位置.此题主要考查了⾏程问题中的相遇问题及按⽐例分配的运⽤,通过计算发现规律是解题关键.21.【答案】解:(1)2(x-3)-6=3(2x+4),2x-6-6=6x+12,2x-6x=12+6+6,-4x=24,x=-6;(2)-=3,5x-10-(2x+2)=3,5x-10-2x-2=3,5x-2x=3+10+2,3x=15,x=5.【解析】(1)依次去分母、去括号、移项、合并同类项、系数化为1求解可得;(2)先将分母化为整数,再依次去分母、去括号、移项、合并同类项、系数化为1可得.本题主要考查解⼀元⼀次⽅程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解⼀元⼀次⽅程的⼀般步骤,针对⽅程的特点,灵活应⽤,各种步骤都是为使⽅程逐渐向x=a形式转化.22.【答案】解:(1)原式=a2-a-2-a+1=a2-a-1,当a=1时,原式=1-1-1=-1;(2)原式=x-2x+y2-x+y2=y2-3x,当x=,y=-2时,原式=(-2)2-3×=4-2=2.【解析】(1)原式去括号合并得到最简结果,将a的值代⼊计算即可求出值.(2)原式去括号合并得到最简结果,将x和y的值代⼊计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.23.【答案】解:∵A=2x2-xy+my-8,B=-nx2+xy+y+7,∴A-2B=2x2-xy+my-8+2nx2-2xy-2y-14=(2+2n)x2-3xy+(m-2)y-22,由结果不含有x2项和y项,得到2+2n=0,m-2=0,解得:m=2,n=-1,则原式=1-2=-1.【解析】把A与B代⼊A-2B中,去括号合并得到最简结果,由结果不含有x2项和y项求出m与n的值,代⼊原式计算即可得到结果.此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键.24.【答案】解:设这场演出共售出学⽣票x张,则全票为(966-x)张,根据题意可得:9x+18(966-x)=15480,解得:x=212,答:这场演出共售出学⽣票212张.【解析】直接设这场演出共售出学⽣票x张,则全票为(966-x)张,利⽤收⼊15480元,得出等式求出答案.此题主要考查了⼀元⼀次⽅程的应⽤,正确得出等式是解题关键.25.【答案】解:(1)①由题意可知:CP=2×1=2cm,DB=3×1=3cm∵AP=8cm,AB=12cm∴PB=AB-AP=4cm∴CD=CP+PB-DB=2+4-3=3cm②∵AP=8,AB=12,∴BP=4,AC=8-2t,∴DP=4-3t,∴CD=DP+CP=2t+4-3t=4-t,∴AC=2CD;(2)当t=2时,CP=2×2=4cm,DB=3×2=6cm,当点D在C的右边时,如图所⽰:由于CD=1cm,∴CB=CD+DB=7cm,∴AC=AB-CB=5cm,∴AP=AC+CP=9cm,当点D在C的左边时,如图所⽰:∴AD=AB-DB=6cm,∴AP=AD+CD+CP=11cm综上所述,AP=9或11【解析】(1)①先求出PB、CP与DB的长度,然后利⽤CD=CP+PB-DB即可求出答案.②⽤t表⽰出AC、DP、CD的长度即可求证AC=2CD;(2)当t=2时,求出CP、DB的长度,由于没有说明D点在C点的左边还是右边,故需要分情况讨论.本题考查两点间的距离,涉及列代数式,分类讨论的思想,属于中等题型.。

人教版数学七年级上学期期末测试题 (4)含答案

人教版数学七年级上学期期末测试题 (4)含答案

人教版数学七年级上学期期末测试题一、选择题(共10小题,每小题3分,共30分)1.﹣(﹣3)的绝对值是()A.﹣3B.C.3D.﹣2.2017年5月12日,利用微软Windows漏洞爆发的wannaCry勒索病毒,目前已席卷全球150多个国家,至少30万台电脑中招,预计造成的经济损失将达到80亿美元,世人再次领教了黑客的厉害,将数据80亿用科学记数法表示为()A.8×108B.8×109C.0.8×109D.0.8×10103.下列式子计算正确的个数有()①a2+a2=a4;②3xy2﹣2xy2=1;③3ab﹣2ab=ab;④(﹣2)3﹣(﹣3)2=﹣17.A.1个B.2个C.3个D.0个4.如图,有一个正方体纸巾盒,它的平面展开图是()A.B.C.D.5.某商店换季促销,将一件标价为240元的T恤打8折售出,获利20%,则这件T恤的成本为()A.144元B.160元C.192元D.200元6.若2x2m y3与﹣5xy2n是同类项,则|m﹣n|的值是()A.0B.1C.7D.﹣17.两根木条,一根长20cm,另一根长24cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.2cm B.4cm C.2cm或22cm D.4cm或44cm8.若关于x的方程x m﹣1+2m+1=0是一元一次方程,则这个方程的解是()A.﹣5B.﹣3C.﹣1D.59.有理数a、b在数轴上的位置如图所示,下列各式成立的是()A.b>0B.|a|>一b C.a+b>0D.ab<010.下列等式变形正确的是()A.若a=b,则a﹣3=3﹣b B.若x=y,则=C.若a=b,则ac=bc D.若=,则b=d二、填空题(共6小题,每小题3分,共18分)11.如图,已知∠AOB=90°.若∠1=35°,则∠2的度数是.12.若∠α的补角为76°28′,则∠α=.13.若方程x+5=7﹣2(x﹣2)的解也是方程6x+3k=14的解,则常数k=.14.某学校实行小班化教学,若每间教室安排20名学生,则缺少3间教室;若每间教室安排24名学生,则空出一间教室,那么这所学校共有间教室.15.现定义某种运算“☆”,对给定的两个有理数a,b,有a☆b=2a﹣b.若||☆2=4,则x的值为.16.如图,已知线段AB=16cm,点M在AB上,AM:BM=1:3,P,Q分别为AM,AB的中点,则PQ的长为.三、解答题17.(10分)计算(1)(﹣1)2018×5+(﹣2)3÷4(2)()×24﹣÷(﹣)3﹣|﹣25|.18.(10分)解方程(1)=1.(2)x﹣(3x﹣5)=2(5+x)19.(6分)先化简,再求值:2m2﹣4m+1﹣2(m2+2m﹣),其中m=﹣1.20.(8分)已知:C为线段AB的中点,D在线段BC上,且AD=7,BD=5,求:线段CD的长度.21.(6分)一个角的补角比它的余角的3倍小20°,求这个角的度数.22.(10分)如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠AOC 和∠COB的度数.23.(10分)某船从A地顺流而下到达B地,然后逆流返回,到达A、B两地之间的C地,一共航行了9小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时.A、C两地之间的路程为10千米,求A、B两地之间的路程.24.(12分)某地区居民生活用电基本价格为每千瓦时0.40元,为了提倡节约用电,若每月用电量超过a千瓦时,则超过部分按基本电价提高20%收费.(1)某户八月份用电100千瓦时,共交电费43.20元,求a.(2)若该用户九月份的平均电费为0.42元,则九月份共用电多少千瓦时?应交电费是多少元?2018-2019学年内蒙古巴彦淖尔市临河区七年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.【分析】先根据相反数的定义化简,再根据正数的绝对值等于它本身解答.【解答】解:∵﹣(﹣3)=3,3的绝对值等于3,∴﹣(﹣3)的绝对值是3,即|﹣(﹣3)|=3.故选:C.【点评】本题考查了绝对值的性质,相反数的定义,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:80亿=8×109,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】根据合并同类项的法则和有理数的混合运算进行计算即可.【解答】解:①a2+a2=2a2,故①错误;②3xy2﹣2xy2=xy2,故②错误;③3ab﹣2ab=ab,故③正确;④(﹣2)3﹣(﹣3)2=﹣17,故④正确,故选:B.【点评】本题考查了合并同类项的法则和有理数的混合运算,掌握运算法则是解题的关键.4.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:观察图形可知,一个正方体纸巾盒,它的平面展开图是.故选:B.【点评】考查了几何体的展开图,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.5.【分析】先设成本为x元,则获利为20%x元,售价为0.8×240元,从而根据等量关系:售价=进价+利润列出方程,解出即可.【解答】解:设成本为x元,则获利为20%x元,售价为0.8×240元,由题意得:x+20%x=0.8×240,解得:x=160.即成本为160元.故选:B.【点评】本题考查一元一次方程的应用,是中考的热点,对于本题来说关键是设出未知数,表示出售价、进价、利润,然后根据等量关系售价=进价+利润列方程求解.6.【分析】直接利用同类项的概念得出n,m的值,再利用绝对值的性质求出答案.【解答】解:∵2x2m y3与﹣5xy2n是同类项,∴2m=1,2n=3,解得:m=,n=,∴|m﹣n|=|﹣|=1.故选:B.【点评】此题主要考查了同类项,正确把握同类项的定义是解题关键.7.【分析】设较长的木条为AB,较短的木条为BC,根据中点定义求出BM、BN的长度,然后分①BC不在AB上时,MN=BM+BN,②BC在AB上时,MN=BM﹣BN,分别代入数据进行计算即可得解.【解答】解:如图,设较长的木条为AB=24cm,较短的木条为BC=20cm,∵M、N分别为AB、BC的中点,∴BM=12cm,BN=10cm,∴①如图1,BC不在AB上时,MN=BM+BN=12+10=22cm,②如图2,BC在AB上时,MN=BM﹣BN=12﹣10=2cm,综上所述,两根木条的中点间的距离是2cm或22cm;故选:C.【点评】本题考查了两点间的距离,主要利用了线段的中点定义,难点在于要分情况讨论,作出图形更形象直观.8.【分析】根据一元一次方程的定义求出m的值,代入后求出方程的解即可.【解答】解:∵x m﹣1+2m+1=0是一元一次方程,∴m﹣1=1,∴m=2,即方程为x+5=0,解得:x=﹣5,故选:A.【点评】本题考查了对一元一次方程的定义和解一元一次方程的应用,关键是求出m的值.9.【分析】根据数轴上点的位置判断出a与b的正负,比较即可.【解答】解:由数轴上点的位置得:b<0<a,且|a|<|b|,∴|a|<﹣b,a+b<0,ab<0,故选:D.【点评】此题考查了数轴,绝对值,以及有理数的加法与乘法,熟练掌握运算法则是解本题的关键.10.【分析】根据等式的性质,依次分析各个选项,选出变形正确的选项即可.【解答】解:A.若a=b,则a﹣3=b﹣3,A项错误,B.若x=y,当a=0时,和无意义,B项错误,C.若a=b,则ac=bc,C项正确,D.若=,如果a≠c,则b≠d,D项错误,故选:C.【点评】本题考查了等式的性质,正确掌握等式的性质是解题的关键.二、填空题(共6小题,每小题3分,共18分)11.【分析】根据角的和差计算即可.【解答】解:∠2=∠AOB﹣∠1=90°﹣35°=55°.故答案为:55°【点评】本题主要考查了角的和差,属于基础题,比较简单.12.【分析】根据互为补角的概念可得出∠α=180°﹣76°28′.【解答】解:∵∠α的补角为76°28′,∴∠α=180°﹣76°28′=103°32′,故答案为:103°32′.【点评】本题考查了余角和补角以及度分秒的换算,是基础题,要熟练掌握.13.【分析】解方程x+5=7﹣2(x﹣2)得到x的值,代入6x+3k=14,得到关于k的一元一次方程,解之即可.【解答】解:解方程x+5=7﹣2(x﹣2)得:x=2,把x=2代入6x+3k=14得:12+3k=14,解得:k=,故答案为:【点评】本题考查了一元一次方程的解,正确掌握解一元一次方程的方法是解题的关键.14.【分析】设有x间教室,根据若每间教室安排20名学生,则缺少3间教室,若每间教室安排24名学生,则空出一间教室,可列方程求解.【解答】解:设有x间教室.由题意,得:20(x+3)=24(x﹣1),解得x=21.故答案为:21.【点评】本题考查了列一元一次方程解实际问题的运用,解答时根据学生人数不变建立方程是关键.15.【分析】根据“a☆b=2a﹣b”,设||=m,得到关于m的一元一次方程,解之,根据不绝对值的定义,得到关于x的一元一次方程,解之即可.【解答】解:设||=m,则m☆2=4,根据题意得:2m﹣2=4,解得:m=3,则||=3,即=3或=﹣3,解得:x=﹣5或7,故答案为:﹣5或7.【点评】本题考查了解一元一次方程和有理数的混合运算,正确掌握一元一次方程的解法和有理数的混合运算是解题的关键.16.【分析】根据已知条件得到AM=4cm.BM=12cm,根据线段中点的定义得到AP=AM=2cm,AQ=AB=8cm,于是得到结论.【解答】解:∵AB=16cm,AM:BM=1:3,∴AM=4cm.BM=12cm,∵P,Q分别为AM,AB的中点,∴AP=AM=2cm,AQ=AB=8cm,∴PQ=AQ﹣AP=6cm;故答案为:6cm.【点评】本题考查了两点间的距离.解题时,注意“数形结合”数学思想的应用.三、解答题17.【分析】(1)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号和绝对值,要先做括号和绝对值内的运算.注意乘法分配律的灵活运用.【解答】解:(1)(﹣1)2018×5+(﹣2)3÷4=1×5+(﹣8)÷4=5﹣2=3;(2)()×24﹣÷(﹣)3﹣|﹣25|=15﹣16﹣÷(﹣)﹣25=15﹣16+2﹣25=﹣24.【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.18.【分析】(1)依次去分母,去括号,移项,合并同类项,系数化为1即可得到答案,(2)依次去分母,去括号,移项,合并同类项,系数化为1即可得到答案.【解答】解:(1)去分母得:2(2x+1)﹣(2x﹣1)=6,去括号得:4x+2﹣2x+1=6,移项得:4x﹣2x=6﹣2﹣1,合并同类项得:2x=3,系数化为1得:x=,(2)去分母得:2x﹣(3x﹣5)=4(5+x),去括号得:2x﹣3x+5=20+4x,移项得:2x﹣3x﹣4x=20﹣5,合并同类项得:﹣5x=15,系数化为1得:x=﹣3.【点评】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.19.【分析】原式去括号合并得到最简结果,将m的值代入计算即可求出值.【解答】解:2m2﹣4m+1﹣2(m2+2m﹣)=2m2﹣4m+1﹣2m2﹣4m+1=﹣8m+2,当m=﹣1时,原式=8+2=10.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.【分析】根据已知可求得AB的长,从而可求得AC的长,已知AD的长则不难求得CD的长.【解答】解:∵AD=7,BD=5∴AB=AD+BD=12∵C是AB的中点∴AC=AB=6∴CD=AD﹣AC=7﹣6=1.【点评】此题主要考查学生对比较线段的长短的掌握情况,比较简单.21.【分析】首先设这个角的度数为x°,则这个角的补角为(180﹣x)°,余角为(90﹣x)°,根据题意列出方程即可.【解答】解:设这个角的度数为x°,由题意得:180﹣x=3(90﹣x)﹣20,解得:x=35.答:这个角的度数为35°.【点评】此题主要考查了余角和补角,关键是掌握余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.补角:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角22.【分析】根据角平分线的定义得到∠BOE=∠AOB=45°,∠COF=∠BOF=∠BOC,再计算出∠BOF=∠EOF﹣∠BOE=15°,然后根据∠BOC=2∠BOF,∠AOC=∠BOC+∠AOB进行计算.【解答】解:∵OE平分∠AOB,OF平分∠BOC,∴∠BOE=∠AOB=×90°=45°,∠COF=∠BOF=∠BOC,∵∠BOF=∠EOF﹣∠BOE=60°﹣45°=15°,∴∠BOC=2∠BOF=30°;∠AOC=∠BOC+∠AOB=30°+90°=120°.【点评】本题考查了角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.23.【分析】设C、B两码头相距xkm,则A、B两码头之间的距离为(x+10)km,根据顺流航行的时间+逆流航行的时间=9h建立方程求出其解即可.【解答】解:设C、B两码头相距xkm,则A、B两码头之间的距离为(x+10)km,由题意,得解得:x=30,则A、B两码头间的距离为:30+10=40(km)答:A,B两地之间的路程是40km.【点评】本题考查了一元一次方程的应用,航行问题的数量关系的运用,顺水速度=静水速度+水速,逆水速度=静水速度﹣水速,列一元一次方程解实际问题的运用,解答时根据行程问题的数量关系建立方程是关键.24.【分析】(1)根据题中所给的关系,找到等量关系,共交电费是不变的,然后列出方程求出a;(2)先设九月份共用电x千瓦时,从中找到等量关系,共交电费是不变的,然后列出方程求出.【解答】解:(1)根据题意可得:0.4a+0.4(1+20%)(100﹣a)=43.20解得:a=60答:a为60(2)设九月份共用电x千瓦0.42x=0.4×60+0.48×(x﹣60)解得:x=80∴0.42×80=33.6元答:九月份共用电80千瓦时,应交电费是33.6元.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.。

人教版数学七年级上学期期末测试题 (13)含答案

人教版数学七年级上学期期末测试题 (13)含答案

人教版数学七年级上学期期末测试题一、单项选择题(每小题3分,共18分)1.如果零上2℃记作+2℃,那么零下3℃记作()A.﹣3℃B.﹣2℃C.+3℃D.+2℃2.港珠澳大桥全长约为55000米,将数据55000科学记数法表示为()A.0.55×105B.5.5×104C.55×103D.550×1023.如图所示的几何体从上面看得到的图形是()A.B.C.D.4.若x﹣3=2y,则x﹣2y的值是()A.2B.﹣2C.3D.﹣35.下列计算中,正确的是()A.x+x2=x3B.2x2﹣x2=1C.x2y﹣xy2=0D.x2﹣2x2=﹣x26.商店对某种手机的售价作了调整,按原售价的8折出售,此时的利润率为14%,若此种手机的进价为1200元,设该手机的原售价为x元,则下列方程正确的是()A.0.8x﹣1200=1200×14%B.0.8x﹣1200=14%xC.x﹣0.8x=1200×14%D.0.8x﹣1200=14%×0.8x二、填空题(每小题3分,共30分)7.0的相反数是.8.已知|a+1|+(b﹣3)2=0,则a b=.9.种树时,只要定出两个树坑的位置,就能使同一行树坑在同一条直线上,其中的数学道理是:.10.若﹣4x a y+x2y b=﹣3x2y,则a+b=.11.如图,图中阴影部分的面积是.12.将一副三角尺的直角顶点重合并按如图所示摆放,当AD平分∠BAC时,∠CAE=.13.若当x=﹣2018时,式子ax3﹣bx﹣3的值为5,则当x=2018时,式子ax3﹣bx﹣3的值为.14.如图,点A在点O的北偏东60°的方向上,点B在点O的南偏东40°的方向上,则∠AOB的度数为°.15.如图,点C在线段AB上,点E、F分别是AB、AC的中点,若BC=4,则EF=.16.某糕点厂中秋节前要制作一批盒装月饼,每盒中2块大月饼和4块小月饼,制作1块大月饼要用0.05kg面粉,制作1块小月饼要用0.02kg面粉,若现共有面粉540kg,设可以生产x盒盒装月饼,则可列方程为.三、解答题(每小题5分,共15分)17.12﹣(﹣18)+(﹣7)﹣15.18.计算:.19.计算(﹣10)3+[(﹣4)2﹣(1﹣32)×2].四、解谷答题〔每小题7分,共21分)20.解下列方程:8x﹣3(3x+2)=6.21.22.先化简,再求值:5(3a2b﹣ab2)﹣(ab2+3a2b),其中a=,b=﹣.五、解答题(每小题8分,共16分)23.在某年全军足球甲级A组的前11场比赛中,某队保持连续不败,共积23分.按比赛规则,胜一场得3分,平一场得1分,那么该队共胜了多少场?24.新定义:若∠α的度数是∠β的度数的n倍,则∠α叫做∠β的n倍角.(1)若∠M=10°21′,请直接写出∠M的3倍角的度数;(2)如图1,若∠AOB=∠BOC=∠COD,请直接写出图中∠AOB的所有2倍角;(3)如图2,若∠AOC是∠AOB的3倍角,∠COD是∠AOB的4倍角,且∠BOD=90°,求∠BOC的度数.六、解答题(每小题10分共20分)25.某玩具厂要生产500个芭比娃娃,此生产任务由甲、乙、丙三台机器承担,甲机器每小时生产12个,乙、丙两台机器的每小时生产个数之比为4:5.若甲、乙、丙三台机器同时生产,刚好在10小时25分钟完成任务.(1)求乙、丙两台机器每小时各生产多少个?(2)由于某种原因,三台机器只能按一定次序循环交替生产,且每台机器在每个循环中只能生产1小时,即每个循环需要3小时.①若生产次序为甲、乙、丙,则最后一个芭比娃娃由机器生产完成,整个生产过程共需小时;②若想使完成生产任务的时间最少,直接写出三台机器的生产次序及完成生产任务的最少时间.26.点A、B在数轴上表示的数如图所示,动点P从点A出发,沿数轴向右以每秒1个单位长度的速度向点B运动到点B停止运动;同时,动点Q从点B出发,沿数轴向左以每秒2个单位长度的速度向点A运动,到点A停止运动设点P运动的时间为t秒,P、Q两点的距离为d(d≥0)个单位长度.(1)当t=1时,d=;(2)当P、Q两点中有一个点恰好运动到线段AB的中点时,求d的值;(3)当点P运动到线段AB的3等分点时,直接写出d的值;(4)当d=5时,直接写出t的值.2018-2019学年吉林省吉林市七年级(上)期末数学试卷参考答案与试题解析一、单项选择题(每小题3分,共18分)1.【分析】一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,∴如果零上2℃记作+2℃,那么零下3℃记作﹣3℃,故选:A.【点评】此题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:55000=5.5×104,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个矩形,中间为圆,如图所示:故选:B.【点评】本题考查了简单组合体的三视图,注意从上边看得到的图形是俯视图.4.【分析】将x﹣3=2y移项即可得.【解答】解:∵x﹣3=2y,∴x﹣2y=3,故选:C.【点评】本题主要考查代数式求值,题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.5.【分析】根据同类项的定义和合并同类项的法则进行解答.【解答】解:A、x与x2不是同类项,不能合并,故本选项错误;B、原式=x2,故本选项错误;C、x2y与xy2不是同类项,不能合并,故本选项错误;D、x2﹣2x2=﹣x2,故本选项正确.故选:D.【点评】考查了合并同类项.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.6.【分析】题目已经设出该手机的原售价为x元,则按原价的8折出售为0.8x,根据“此时的利润率为14%,若此种手机的进价为1200元”,结合进价×利润率=出售价﹣进价,列出方程即可.【解答】解:设该手机的原售价为x元,根据题意得:0.8x﹣1200=1200×14%,故选:A.【点评】本题考查了由实际问题抽象出一元一次方程,正确找出等量关系,列出一元一次方程是解题的关键.二、填空题(每小题3分,共30分)7.【分析】互为相反数的和为0,那么0的相反数是0.【解答】解:0的相反数是0.故答案为:0.【点评】考查的知识点为:0的相反数是它本身.8.【分析】根据非负数的性质求出a、b的值,再将它们代入a b中求值即可.【解答】解:∵|a+1|+(b﹣3)2=0,∴a+1=0,b﹣3=0,∴b=3,a=﹣1,则a b=(﹣1)3=﹣1.故答案为:﹣1【点评】本题主要考查了非负数的性质,解题的关键是掌握:几个非负数的和等于0,则每一个算式都等于0.9.【分析】根据公理“两点确定一条直线”,来解答即可【解答】解:∵只要定出两个树坑的位置,这条就确定了,∴能使同一行树坑在同一条直线上.故答案为:两点确定一条直线.【点评】本题考查的是“两点确定一条直线”在实际生活中的运用,此类题目有利于培养学生生活联系实际的能力.10.【分析】两个单项式合并成一个单项式,说明这两个单项式为同类项.【解答】解:由同类项的定义可知a=2,b=1,∴a+b=3.【点评】本题考查的知识点为:同类项中相同字母的指数是相同的.11.【分析】根据题意和图形,可以用代数式表示出图中阴影部分的面积,本题得以解决.【解答】解:由题意可得,图中阴影部分的面积是:(x+3)(x+2)﹣2x=x2+5x+6﹣2x=x2+3x+6,故答案为:x2+3x+6.【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.12.【分析】依据同角的余角相等,即可得到∠CAE=∠BAD,再根据AD平分∠BAC,即可得出∠CAE=∠BAD=45°.【解答】解:∵∠EAD=∠CAB=90°,∴∠CAE=∠BAD,∵AD平分∠BAC,∴∠BAD=45°,∴∠CAE=45°,故答案为:45°.【点评】此题主要考查了角平分线的定义以及互余两角的定义,正确掌握互余两角的定义是解题关键.13.【分析】把x=﹣2018代入代数式得到﹣20183a+2018b=8,根据添括号法则代入计算即可.【解答】解:当x=﹣2018时,式子ax3﹣bx﹣3的值为5,∴﹣20183a+2018b﹣3=5,∴﹣20183a+2018b=8,当x=2018时,ax3﹣bx﹣3=20183a﹣2018b﹣3=﹣(﹣20183a+2018b)﹣3=﹣8﹣3=﹣11,故答案为:﹣11.【点评】本题考查的是代数式求值,掌握乘方法则,添括号法则是解题的关键.14.【分析】根据方向角的定义以及角的和差,可得∠AOB的度数.【解答】解:∵点A在点O的北偏东60°的方向上,点B在点O的南偏东40°的方向上,∴∠AOB=180°﹣60°﹣40°=80°,故答案为:80.【点评】本题考查了方向角的定义,用方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边.15.【分析】设CE=x,则BE=x+4,根据线段中点的定义得到AE=BE=x+4,求得AC=AE+CE =2x+4,根据线段中点的定义得到CF=AC=x+2,根据线段的和差即可得到结论.【解答】解:设CE=x,则BE=x+4,∵点E是AB的中点,∴AE=BE=x+4,∴AC=AE+CE=2x+4,∵点F是AC的中点,∴CF=AC=x+2,∴EF=CF﹣CE=x+2﹣x=2,故答案为:2.【点评】本题考查了两点间的距离,利用了线段中点的性质得出CM、CN的长,线段的和差得出答案.16.【分析】题目已经设出可以生产x盒盒装月饼,则每盒中2块大月饼的质量为0.05×2x,每盒中4块小月饼的质量为0.02×4x,根据“现共有面粉540kg”,找出等量关系,就可以列出方程.【解答】解:设可以生产x盒盒装月饼,根据题意得:0.05×2x+0.02×4x=540,故答案为:0.05×2x+0.02×4x=540.【点评】本题考查了由实际问题抽象出一元一次方程,正确找出等量关系,列出一元一次方程是解题的关键.三、解答题(每小题5分,共15分)17.【分析】将减法转化为加法,计算加法即可得.【解答】解:原式=12+18﹣7﹣15=30﹣22=8.【点评】本题主要考查有理数的加减混合运算,解题的关键是熟练掌握加减运算法则.18.【分析】本题需先根据有理数的混合运算顺序和法则,分别进行计算,再把所得结果合并即可.【解答】解:原式=,=﹣8.【点评】本题主要考查了有理数的混合运算,在解题时要注意运算顺序和符号是本题的关键.19.【分析】按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.【解答】解:原式=﹣1000+[16﹣(﹣8)×2]=﹣1000+32=﹣968.【点评】本题考查的是有理数的运算能力.注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.四、解谷答题〔每小题7分,共21分)20.【分析】方程去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去括号得:8x﹣9x﹣6=6,移项合并得:﹣x=12,解得:x=﹣12.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.21.【分析】这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.【解答】解:去分母得:4(5x+4)+3(x﹣1)=24﹣(5x﹣5)去括号得:20x+16+3x﹣3=24﹣5x+5移项合并得:28x=16系数化为1得:.【点评】去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.22.【分析】先根据整式的运算法则化简,然后将a与b的值代入原式即可求出答案.【解答】解:原式=15a2b﹣5ab2﹣ab2﹣3a2b=12a2b﹣6ab2当a=,b=时,原式=12××()﹣6××=﹣1=【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.五、解答题(每小题8分,共16分)23.【分析】可设该队共胜了x场,根据“11场比赛保持连续不败”,那么该队平场的场数为11﹣x,由题意可得出:3x+(11﹣x)=23,解方程求解.【解答】解:设设该队共胜了x场,根据题意得:3x+(11﹣x)=23,解得x=6.故该队共胜了6场.【点评】此题考查了一元一次方程的应用,列一元一次方程解足球赛问题的关键是抓住胜的场数与平的场数的关系,根据积分总数列出方程.24.【分析】(1)根据题意列式计算即可;(2)根据题意列式计算即可;(3)设∠AOB=α,则∠AOC=3α,∠COD=4α,得到∠BOD=6α,根据∠BOD=90°,求得α=15°,于是得到∠BOC=90°﹣4×15°=30°.【解答】解:(1)∵∠M=10°21′,∴3∠M=3×10°21′=31°3′;(2)∵∠AOB=∠BOC=∠COD,∴∠AOC=2∠AOB,∠BOD=2∠AOB;(3)∵∠AOC是∠AOB的3倍角,∠COD是∠AOB的4倍角,∴设∠AOB=α,则∠AOC=3α,∠COD=4α,∴∠AOD=7α,∴∠BOD=6α,∵∠BOD=90°,∴α=15°,∴∠BOC=90°﹣4×15°=30°.【点评】此题主要考查了角的计算以及余角定义,关键是理清图中角之间的关系,掌握两角和为90°为互余.六、解答题(每小题10分共20分)25.【分析】(1)设乙机器每小时生产4x个,则丙机器每小时生产5x个,依据甲、乙、丙三台机器同时生产,刚好在10小时25分钟完成任务.列一元一次方程即可解答;(2)每次循环交替生产48个零件,那么最后一次循环是500除以48的余数,然后按顺序计算即可;(3)速度快的先做即可.【解答】解:(1)设乙机器每小时生产4x个,则丙机器每小时生产5x个,10小时25分钟=小时.依题意得:(12+4x+5x)=500解得:x=4,乙机器每小时生产4x=16个,丙机器每小时生产5x=20个,答:乙机器每小时生产16个,丙机器每小时生产20个,(2)500÷(12+16+20)=10……20,按甲、乙、丙次序交替生产循环10次,共10×3=30小时,最后20个先由甲生产1小时12个,余下8个由乙生产8÷16=0.5小时,∴整个生产过程共需30+1+0.5=31.5小时,故答案为:乙;31.5(3)使完成生产任务的时间最少,按丙、乙、甲次序交替生产循环,生产循环10次,共10×3=30小时,最后20个由丙生产1小时即可,共需30+1=31小时.答:使完成生产任务的时间最少,按丙、乙、甲次序交替生产循环共需31小时.【点评】本题考查了一元一次方程应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,设未知数,得到方程即可解答.26.【分析】(1)当t=1时,求出AP=1,BQ=2,根据PQ=AB﹣AP﹣BQ即可求解;(2)分①P点恰好运动到线段AB的中点;②Q点恰好运动到线段AB的中点两种情况进行讨论;(3)当点P运动到线段AB的3等分点时,分①AP=AB;②AP=AB两种情况进行讨论;(4)当d=5时,分①P与Q相遇之前;②P与Q相遇之后两种情况进行讨论.【解答】解:(1)当t=1时,AP=1,BQ=2,∵AB=4﹣(﹣2)=6,∴PQ=AB﹣AP﹣BQ=3,即d=3.故答案为3;(2)线段AB的中点表示的数是:=1.①如果P点恰好运动到线段AB的中点,那么AP=AB=3,t==3,BQ=2×3=6,即Q运动到A点,此时d=PQ=PA=3;②如果Q点恰好运动到线段AB的中点,那么BQ=AB=3,t=,AP=1×=,则d=PQ=AB﹣AP﹣BQ=6﹣﹣3=.故d的值为3或;(3)当点P运动到线段AB的3等分点时,分两种情况:①如果AP=AB=2,那么t==2,此时BQ=2×2=4,P、Q重合于原点,则d=PQ=0;②如果AP=AB=4,那么t==4,∵动点Q从点B出发,沿数轴向左以每秒2个单位长度的速度向点A运动,到点A停止运动,∴此时BQ=6,即Q运动到A点,∴d=PQ=AP=4.故所求d的值为0或4;(4)当d=5时,分两种情况:①P与Q相遇之前,∵PQ=AB﹣AP﹣BQ,∴6﹣t﹣2t=5,解得t=;②P与Q相遇之后,∵P点运动到线段AB的中点时,t=3,此时Q运动到A点,停止运动,∴d=AP=t=5.故所求t的值为或5.【点评】本题考查了一元一次方程的应用,数轴,两点间的距离,理解题意,分清动点P与动点Q的运动方向、运动速度与运动时间,从而正确进行分类讨论是解题的关键.。

安徽省合肥市包河区2018-2019学年七年级(上)期末数学试卷 含解析

安徽省合肥市包河区2018-2019学年七年级(上)期末数学试卷  含解析

2018-2019学年七年级(上)期末数学试卷一、选择题(每题3分,共30分)1.﹣2019的相反数是()A.2019 B.﹣2019 C.D.﹣2.截止2018年11月26日,合肥新桥国际机场年旅客吞吐量达1000万,正式跨入千万级机场行列.“1000万”用科学记数法表示正确的是()A.1×103B.1×107C.l×108D.1×10113.下列代数式b,﹣2ab,,x+y,x2+y2,﹣3,中,单项式共有()A.6个B.5 个C.4 个D.3个4.下列说法正确的是()A.两点之间直线最短B.线段MN就是M、N两点间的距离C.射线AB和射线BA是同一条射线D.将一根木条固定在墙上需要两枚钉子,其原理是两点确定一条直线5.若方程mx+ny=6的两个解是,,则m,n的值为()A.4,2 B.2,4 C.﹣4,﹣2 D.﹣2,﹣46.如图,一艘轮船行驶在点O处同时测得海岛A、B的方向北分别是北偏东75°和西北方向,则∠AOB的度数是()A.l50°B.135°C.120°D.100°7.二次三项式3x2﹣4x+6的值为9,则的值为()A.18 B.12 C.9 D.78.某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是()A.350元B.400元C.450元D.500元9.解方程﹣=0.2时,下列变形正确的是()A.﹣=200 B.﹣=20C.﹣=2 D.﹣=0.210.如图,已知正方形的边长为4,甲,乙两动点分别从正方形ABCD的顶点A,C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则它们第2019次相遇在边()A.AB上B.BC上C.CD上D.DA上二、填空题(每题4分,计20分)11.方程2x﹣1=3的解是.12.多项式﹣3x2y﹣x3+xy3的次数是次.13.如果两个角互补,并且较大角比较小角大40°20’,则较大角度数是.14.我国古典数学文献《增删算法统宗•六均输》中有这样一道题:甲、乙两人一同放牧,两人暗地里在数羊的数量如果乙给甲9只羊,则甲的羊数量为乙的两倍;如果甲给乙9只羊,则两人的羊数量相同.则甲的羊数量为只.15.已知∠AOB=90°,射线OC在∠AOB内部,且∠AOC=20°,∠COD=50°,射线OE、OF 分别平分∠BOC、∠COD,则∠EOF的度数是.16.王师傅将一根长133毫米的铜管锯成长为8毫米和长为13毫米两种规格的小铜钢管若干根,恰好用完.如果每个锯口都要损耗1毫米铜管.那么他共将铜管锯成了段.三、解答题(计50分)17.计算:(﹣1)5+2×(﹣4)﹣(﹣2)2÷4.18.解方程组.19.求多项式3y2﹣x2+2(2x2﹣3xy)﹣3(x2+y2)的值,其中|x﹣1|+(y+2)2=0.20.为了解某校七年级学生每周课外阅读情况,随机抽查了部分七年级学生第一学期每周课外阅读的时间,并用得到的数据绘制了两幅统计图(不完整)请根据图中提供的信息,回答下列问题:(1)本次共抽查了人,请补全条形统计图.(2)a=,并写出每周阅读时间8小时的扇形所对圆心角的度数为.(3)如果该校共有七年级学生800人,请你估计“每周课外阅读时间不少于7小时”的学生人数大约有多少人?21.小明早上从家去学校,如果每分钟走50米,将要迟到2分钟,如果每分钟走70米,将早到2分钟,求小明从家到学校的距离.三、附加题(5分,计入总分,满分不超过100分):22.已知线段MN=2,点Q是线段MN的中点,先按要求画图形,再解决问题.(1)反向延长线段MN至点A,使AM=3MN;延长线段MN至点B,使BN=BM.(2)求线段BQ的长度.(3)若点P是线段AM的中点,求线段PQ的长度.参考答案与试题解析一.选择题(共10小题)1.﹣2019的相反数是()A.2019 B.﹣2019 C.D.﹣【分析】根据相反数的意义,直接可得结论.【解答】解:因为a的相反数是﹣a,所以﹣2019的相反数是2019.故选:A.2.截止2018年11月26日,合肥新桥国际机场年旅客吞吐量达1000万,正式跨入千万级机场行列.“1000万”用科学记数法表示正确的是()A.1×103B.1×107C.l×108D.1×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1000万=1×107,故选:B.3.下列代数式b,﹣2ab,,x+y,x2+y2,﹣3,中,单项式共有()A.6个B.5 个C.4 个D.3个【分析】直接利用单项式的定义判断得出答案.【解答】解:代数式b,﹣2ab,,x+y,x2+y2,﹣3,中,单项式有:b,﹣2ab,﹣3,共4个.故选:C.4.下列说法正确的是()A.两点之间直线最短B.线段MN就是M、N两点间的距离C.射线AB和射线BA是同一条射线D.将一根木条固定在墙上需要两枚钉子,其原理是两点确定一条直线【分析】根据两点之间线段最短,数轴上两点间的距离的求解,射线的定义,两点确定一条直线对各小题分析判断即可得解.【解答】解:A、两点之间线段最短,故选项A错误;B、线段MN的长度就是M、N两点间的距离,故选项B错误;C、射线AB和射线BA是两条不同的射线,故选项C错误;D、将一根木条固定在墙上需要两枚钉子,其原理是两点确定一条直线.正确.故选:D.5.若方程mx+ny=6的两个解是,,则m,n的值为()A.4,2 B.2,4 C.﹣4,﹣2 D.﹣2,﹣4【分析】将x与y的两对值代入方程计算即可求出m与n的值.【解答】解:将,分别代入mx+ny=6中,得:,①+②得:3m=12,即m=4,将m=4代入①得:n=2,故选:A.6.如图,一艘轮船行驶在点O处同时测得海岛A、B的方向北分别是北偏东75°和西北方向,则∠AOB的度数是()A.l50°B.135°C.120°D.100°【分析】根据A在O北偏东75°,可得A在O东偏北的度数,根据角的和差,可得答案.【解答】解;A在O北偏东75°,A在O东偏北15°,∠AOB=75°+45°=120°.故选:C.7.二次三项式3x2﹣4x+6的值为9,则的值为()A.18 B.12 C.9 D.7【分析】由已知得出等式3x2﹣4x+6=9,再将等式变形,整体代入即可.【解答】解:依题意,得3x2﹣4x+6=9,整理,得x2﹣x=1,则=1+6=7,故选:D.8.某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是()A.350元B.400元C.450元D.500元【分析】设该服装标价为x元,根据售价﹣进价=利润列出方程,解出即可.【解答】解:设该服装标价为x元,由题意,得0.6x﹣200=200×20%,解得:x=400.故选:B.9.解方程﹣=0.2时,下列变形正确的是()A.﹣=200 B.﹣=20C.﹣=2 D.﹣=0.2【分析】根据分式的性质,将分式的分母、分子化为整数即可.【解答】解:分式的分子、分母化为整数,得﹣=0.2,故选:D.10.如图,已知正方形的边长为4,甲,乙两动点分别从正方形ABCD的顶点A,C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则它们第2019次相遇在边()A.AB上B.BC上C.CD上D.DA上【分析】因为乙的速度是甲的速度的4倍,所以第1次相遇,甲走了正方形周长××;从第2次相遇起,每次甲走了正方形周长×,从第2次相遇起,5次一个循环,从而不难求得它们第2019次相遇位置.【解答】解:根据题意分析可得:乙的速度是甲的速度的4倍,且AD+DC=正方形周长的一半,故第1次相遇,甲走了正方形周长的××;从第2次相遇起,每次甲走了正方形周长×,从第2次相遇起,5次一个循环.因此可得:从第2次相遇起,每次相遇的位置依次是:DC,点C,CB,BA,AD;依次循环.故它们第2019次相遇位置与第4次相同,在边CB上.故选:B.二.填空题(共6小题)11.方程2x﹣1=3的解是x=2 .【分析】根据解方程的步骤:移项,移项要变号,合并同类项,把x的系数化为1,进行计算即可.【解答】解:2x﹣1=3,移项得:2x=3+1,合并同类项得:2x=4,把x的系数化为1得:x=2.故答案为:x=2.12.多项式﹣3x2y﹣x3+xy3的次数是 4 次.【分析】根据多项式的次数解答即可.【解答】解:多项式﹣3x2y﹣x3+xy3的次数是4,故答案为:413.如果两个角互补,并且较大角比较小角大40°20’,则较大角度数是110°10′.【分析】设较大角为x,则其补角为180°﹣x,根据较大角比较小角大40°20’可列出方程,解出即可.【解答】解:设较大角为x,则其补角为180°﹣x,由题意得:x﹣(180°﹣x)=40°20’,解得:x=110°10′;故答案为:110°10′.14.我国古典数学文献《增删算法统宗•六均输》中有这样一道题:甲、乙两人一同放牧,两人暗地里在数羊的数量如果乙给甲9只羊,则甲的羊数量为乙的两倍;如果甲给乙9只羊,则两人的羊数量相同.则甲的羊数量为63 只.【分析】设甲放x只羊,乙放y只羊,根据“如果乙给甲9只羊,则甲的羊数量为乙的两倍;如果甲给乙9只羊,则两人的羊数量相同”列出方程组解答即可.【解答】解:设甲放x只羊,乙放y只羊,由题意得,解得:.答:甲的羊数量为63只.故答案为63.15.已知∠AOB=90°,射线OC在∠AOB内部,且∠AOC=20°,∠COD=50°,射线OE、OF 分别平分∠BOC、∠COD,则∠EOF的度数是10°或60°.【分析】先根据题意画出图形,再分OD在∠AOB内和OD在∠AOB外,根据角的和差关系和角平分线的定义可求∠EOF的度数.【解答】解:如图1,OD在∠AOB内,∵∠AOB=90°,∠AOC=20°,∴∠BOC=70°,∵射线OE平分∠BOC,∴∠EOC=35°,∵射线OF平分∠COD,∠COD=50°,∴∠FOC=25°,∴∠EOF=10°;如图2,OD在∠AOB外,∵∠AOB=90°,∠AOC=20°,∴∠BOC=70°,∵射线OE平分∠BOC,∴∠EOC=35°,∵射线OF平分∠COD,∠COD=50°,∴∠FOC=25°,∴∠EOF=60°.则∠EOF的度数是10°或60°.故答案为:10°或60°.16.王师傅将一根长133毫米的铜管锯成长为8毫米和长为13毫米两种规格的小铜钢管若干根,恰好用完.如果每个锯口都要损耗1毫米铜管.那么他共将铜管锯成了11 段.【分析】设锯成长为8毫米和长为13毫米两种规格的小铜钢管分别x、y根,由题意得出方程8x+13y+(x+y﹣1)=133,由x、y为正整数,得出符合条件的解为,即可得出答案.【解答】解:设锯成长为8毫米和长为13毫米两种规格的小铜钢管分别x、y根,由题意得:8x+13y+(x+y﹣1)=133,∵x、y为正整数,∴符合条件的解为,∴x+y=4+7=11(段);即王师傅共将铜管锯成了11段;故答案为:11.三.解答题(共6小题)17.计算:(﹣1)5+2×(﹣4)﹣(﹣2)2÷4.【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:原式=﹣1﹣8﹣1=﹣10.18.解方程组.【分析】首先对原方程组化简,然后①×2运用加减消元法求解.【解答】解:原方程组可化为:,①×2+②得11x=22,∴x=2,把x=2代入①得:y=3,∴方程组的解为.19.求多项式3y2﹣x2+2(2x2﹣3xy)﹣3(x2+y2)的值,其中|x﹣1|+(y+2)2=0.【分析】原式去括号、合并同类项化简,再由非负数的性质得出x和y的值,代入计算可得.【解答】解:原式=3y2﹣x2+4x2﹣6xy﹣3x2﹣3y2=﹣6xy,∵|x﹣1|+(y+2)2=0,∴x=1,y=﹣2,则原式=﹣6×1×(﹣2)=12.20.为了解某校七年级学生每周课外阅读情况,随机抽查了部分七年级学生第一学期每周课外阅读的时间,并用得到的数据绘制了两幅统计图(不完整)请根据图中提供的信息,回答下列问题:(1)本次共抽查了60 人,请补全条形统计图.(2)a=10 ,并写出每周阅读时间8小时的扇形所对圆心角的度数为36°.(3)如果该校共有七年级学生800人,请你估计“每周课外阅读时间不少于7小时”的学生人数大约有多少人?【分析】(1)由5小时的人数及其所占百分比可得总人数,用总人数减去5、6、7、9小时的人数求得8小时人数即可补全条形图;(2)用8小时的人数除以总人数可得a的值,再用360°乘以每周阅读时间8小时的人数所占比例可得;(3)用总人数乘以阅读时间是7、8、9小时人数和所占比例可得.【解答】解:(1)本次抽查的总人数为24÷40%=60(人),则8小时的人数为60﹣(24+12+15+3)=6(人),补全条形图如下:故答案为:60;(2)a%=×100%=10%,即a=10,每周阅读时间8小时的扇形所对圆心角的度数为360°×10%=36°,故答案为:10,36°;(3)估计“每周课外阅读时间不少于7小时”的学生人数大约有800×=320(人).21.小明早上从家去学校,如果每分钟走50米,将要迟到2分钟,如果每分钟走70米,将早到2分钟,求小明从家到学校的距离.【分析】设小明从家到学校的距离为x米,根据它们之间的时间关系列出方程并解答.【解答】解:设小明从家到学校的距离为x米,依题意得:﹣2=+2解方程得:x=700答:小明从家到学校的距离是700米.22.已知线段MN=2,点Q是线段MN的中点,先按要求画图形,再解决问题.(1)反向延长线段MN至点A,使AM=3MN;延长线段MN至点B,使BN=BM.(2)求线段BQ的长度.(3)若点P是线段AM的中点,求线段PQ的长度.【分析】(1)根据题意作图即可;(2)由线段中点的定义可得NQ=1,再根据BN=BM可得BN的长,根据线段的和差解答即可;(3)根据线段中点的定义求出MQ的长以及PM的长,根据线段的和差解答即可.【解答】解:(1)如图所示:;(2)∵点Q是线段MN的中点,∴NQ=,∵BN=BM,∴BN=MN=2,∴BQ=BN+NQ=2+1=3;(3)∵点Q是线段MN的中点,MQ=,AM=3MN=6,∵点P是线段AM的中点,∴PM=,∴PQ=PM+MQ=3+1=4.。

2018-2019学年七年级上学期期末考试数学试题(含两套)

2018-2019学年七年级上学期期末考试数学试题(含两套)

2018-2019学年七年级(上)期末数学试卷一、选择题(每题2分,共16分,将正确答案的字母填在括号内)1.﹣5的绝对值是()A.﹣5B.5C.D.﹣2.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×10133.已知代数式﹣3a m﹣1b6和ab2n是同类项,则m﹣n的值是()A.﹣1B.﹣2C.﹣3D.04.下列说法中:①一个有理数不是正数就是负数;②射线AB和射线BA是同一条射线;③0的相反数是它本身;④两点之间,线段最短,正确的有()A.1个B.2个C.3个D.4个5.某书店把一本书按进价提高60%标价,再按七折出售,这样每卖出一本书就可盈利6元,设每本书的进价是x元,根据题意列一元一次方程,正确的是()A.(1+60%)x=6B.60%x﹣x=6C.(1+60%)x﹣x=6D.(1+60%)x﹣x=66.已用点A、B、C、D、E的位置如图所示,下列结论中正确的是()A.∠AOB=130°B.∠AOB=∠DOEC.∠DOC与∠BOE互补D.∠AOB与∠COD互余7.已知线段AB=6,在直线AB上画线段BC,使BC=2,则线段AC的长()A.2B.4C.8D.8或48.实数a、b、c在数轴上的位置如图所示,则代数式|c﹣a|﹣|a+b|的值等于()A.c+b B.b﹣c C.c﹣2a+b D.c﹣2a﹣b二、填空题(每题2分,共16分,把答案写在题中横线上)9.|﹣|的相反数是.10.请写出一个单项式,同时满足下列条件:①含有字母m、n;②系数是负整数;③次数是3,你写的单项式为.11.如图,在正方形网格中,点O、A、B、C、D均是格点.若OE平分∠BOC,则∠DOE 的度数为°.12.已知|x+1|+(3﹣y)2=0,则x y的值是.13.已知a+b=2,则多项式2﹣3a﹣3b的值是.14.若一个角比它的补角大36°48′,则这个角为°′.15.甲组有33个人,乙组有27个人,从乙组调若干人到甲组后,甲组的人数恰好是乙组的3倍,求变化后乙组有人.16.有一列数4,7,x3,x4,…,x n,从第二个数起,每一个数都是它前一个数和后一个数和的一半,则当n≥2时,x n=.三、解答题(17题8分,18题4分,19题5分,20题5分,共22分)17.(8分)计算:(1)﹣22+8÷(﹣2)×﹣(﹣1)2019(2)﹣×[﹣32×(﹣)2﹣2]18.(4分)解方程:x﹣=1﹣19.(5分)先化简,再求值:3x2y﹣[2x2y﹣x(xy+3)],其中x=﹣,y=2.20.(5分)已知多项式A、B,其中A=x2+2x﹣1,某同学在计算A+B时,由于粗心把A+B 看成了A﹣B求得结果为﹣3x2+2x﹣1,请你算出A+B的正确结果.四、解答题(每题8分,共16分)21.(8分)如图,N为线段AC中点,点M、点B分别为线段AN、NC上的点,且满足AM:MB:BC=1:4:3.(1)若AN=6,求AM的长.(2)若NB=2,求AC的长.22.(8分)已知:如图,直线AB、CD相交于点O,OE⊥OC,OF平分∠AOE(1)若∠BOC=60°,则∠AOF的度数为.(2)若∠COF=x°,求∠BOC的度数.五、解答题(23题10分,24题10分,25题10分,共30分)23.(10分)上海到北京的G102次列车平均每小时行驶200公里,每天6:30发车,从北京到上海的G5次列车平均每小时行驶280公里,每天7:00发车,已知北京到上海高铁线路长约1180公里,问两车几点相遇?24.(10分)某商场购进西装30件,衬衫45件,共用了39000元,其中西装的单价是衬衫的5倍.(1)求西装和衬衫的单价各为多少元?(2)商场仍需要购买上面的两种产品55件(每种产品的单价不变),采购部预算共支出32000元,财会算了一下,说:“如果你用这些钱共买这两种产品,那么账肯定算错了”请你用学过的方程知识解释财会为什么会这样说?25.(10分)如图1,点O为直线AB上一点,过O点作射线OC,使∠AOC:∠BOC=1:3,将一直角三角板的直角顶点放在点O处,一边ON在射线OA上,另一边OM在直线AB的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB上,此时三角板旋转的角度为度.(2)在(1)旋转过程中,当旋转至图3的位置时,使得OM在∠BOC的内部,ON落在直线AB下方,试探究∠COM与∠BON之间满足什么等量关系,并说明理由.2018-2019学年辽宁省鞍山市七年级(上)期末数学试卷参考答案与试题解析一、选择题(每题2分,共16分,将正确答案的字母填在括号内)1.【分析】根据负数的绝对值等于它的相反数计算即可.【解答】解:﹣5的绝对值是5,故选:B.【点评】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:80万亿用科学记数法表示为8×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】由同类项的定义可先求得m和n的值,从而求出代数式的值.【解答】解:∵代数式﹣3a m﹣1b6和ab2n是同类项,∴m﹣1=1,2n=6,∴m=2,n=3,∴m﹣n=2﹣3=﹣1,故选:A.【点评】本题考查了同类项定义,定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.4.【分析】根据有理数的分类可得A的正误;根据射线的表示方法可得B的正误;根据相反数的定义可得C的正误;根据线段的性质可得D的正误.【解答】解:①一个有理数不是正数就是负数,说法错误,0既不是正数也不是负数;②射线AB与射线BA是同一条射线,说法错误,端点不同;③0的相反数是它本身,说法正确;④两点之间,线段最短,说法正确.故选:B.【点评】此题主要考查了相反数、有理数、线段的性质、射线的表示方法,关键是牢固掌握基础知识.5.【分析】设每本书的进价是x元,根据利润=售价﹣进价,即可得出关于x的一元一次方程,此题得解.【解答】解:设每本书的进价是x元,根据题意得:(1+60%)x•﹣x=6.故选:C.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.6.【分析】由题意得出∠AOB=50°,∠DOE=40°,∠DOC=50°,∠BOE=130°,得出∠DOC+∠BOE=180°即可.【解答】解:∵∠AOB=50°,∠DOE=40°,∠DOC=50°,∠BOE=130°,∴∠DOC+∠BOE=180°;故选:C.【点评】本题考查了余角和补角;根据题意得出各个角的度数是关键.7.【分析】由于在直线AB上画线段BC,那么CB的长度有两种可能:①当C在AB之间,此时AC=AB﹣BC;②当C在线段AB的延长线上,此时AC=AB﹣BC.然后代入已知数据即可求出线段AC的长度.【解答】解:∵在直线AB上画线段BC,∴CB的长度有两种可能:①当C在AB之间,此时AC=AB﹣BC=6﹣2=4cm;②当C在线段AB的延长线上,此时AC=AB+BC=6+2=8cm.故选:D.【点评】此题主要考查了线段的和差的计算.在未画图类问题中,正确理解题意很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.8.【分析】根据数轴得到b<a<0<c,根据有理数的加法法则,减法法则得到c﹣a>0,a+b<0,根据绝对值的性质化简计算.【解答】解:由数轴可知,b<a<0<c,∴c﹣a>0,a+b<0,则|c﹣a|﹣|a+b|=c﹣a+a+b=c+b,故选:A.【点评】本题考查的是实数与数轴,绝对值的性质,能够根据数轴比较实数的大小,掌握绝对值的性质是解题的关键.9.【分析】根据负数的绝对值是它的相反数,可得负数的绝对值,根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:,的相反数是﹣,故答案为:﹣.【点评】本题考查了相反数,先求绝对值,再求相反数.10.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据题意,得﹣2m2n(答案不唯一),故答案为:﹣2m2n(答案不唯一).【点评】本题考查了单项式的定义,解答本题的关键是理解单项式的定义中的单项式的次数的正确含义.11.【分析】观察图形可知,∠BOC=135°,∠COD=45°,根据角平分线的定义可得∠EOC,再根据角的和差关系即可求解.【解答】解:由图形可知,∠BOC=135°,∠COD=45°,∵OE平分∠BOC,∴∠EOC=67.5°,∴∠DOE=67.5°﹣45°=22.5°.故答案为:22.5【点评】此题考查了角的计算,角平分线的定义,关键是观察图形可得∠BOC=135°,∠COD=45°.12.【分析】直接利用非负数的性质以及偶次方的性质得出x,y的值进而得出答案.【解答】解:∵|x+1|+(3﹣y)2=0,∴x+1=0,3﹣y=0,解得:x=﹣1,y=3,则x y的值是:(﹣1)3=﹣1.故答案为:﹣1.【点评】此题主要考查了非负数的性质,正确得出x,y的值是解题关键.13.【分析】观察题中的两个代数式a+b和2﹣3a﹣3b,可以发现,2﹣3a﹣3b=2﹣3(a+b),因此可整体代入a+b=2,求出结果.【解答】解:2﹣3a﹣3b=2﹣3(a+b)因为a+b=2,所以原式=2﹣3×2=2﹣6=﹣4故答案为:﹣4.【点评】代数式中的字母表示的数没有明确告知,而是隐含在题设中,应考虑a+b为一个整体,然后利用“整体代入法”求代数式的值.14.【分析】设这个角为x°,则这个角的补角为(180﹣x)°,根据题意可得方程x﹣(180﹣x)=36.8,再解即可.【解答】解:36°48′=36.8°,设这个角为x°,则这个角的补角为(180﹣x)°,x﹣(180﹣x)=36.8,解得:x=108.4,108.4°=108°24′,故答案为:108;24.【点评】此题主要考查了余角和补角,关键是掌握余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.补角:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.15.【分析】根据从乙组调若干人到甲组后,甲组的人数恰好是乙组的3倍,可以列出相应的方程,从而可以解答本题.【解答】解:设变化后乙组有x人,33+(27﹣x)=3x,解得,x=15,即变化后乙组有15人,故答案为:15.【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程,利用方程的知识解答.16.【分析】根据题意分别计算出x3,x4,x5…,据此可得后面每个数均比前一个数大3,据此求解可得.【解答】解:由题意知=7,解得x3=10,=10,解得x4=13,=13,解得x5=16,……∴第n个数x n为3n+1,故答案为:3n+1.【点评】本题主要考查数字的变化规律,解题的关键是根据题意得出后面每个数均比前一个数大3的规律.三、解答题(17题8分,18题4分,19题5分,20题5分,共22分)17.【分析】(1)先算乘方,再算乘除法,最后加减法即可解答本题;(2)先算中括号里的,再根据有理数的乘法即可解答本题.【解答】解:(1)﹣22+8÷(﹣2)×﹣(﹣1)2019=﹣4+8×(﹣)×﹣(﹣1)=﹣4﹣1+1=﹣4;(2)﹣×[﹣32×(﹣)2﹣2]====9.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算顺序.18.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:4x﹣(x﹣1)=4﹣2(3﹣x),去括号得:4x﹣x+1=4﹣6+2x,移项合并得:x=﹣3.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.19.【分析】根据整式的运算法则即可求出答案.【解答】解:原式=3x2y﹣(2x2y﹣x2y﹣3x)=3x2y﹣(x2y﹣3x)=3x2y﹣x2y+3x=2x2y+3x当x=,y=2时,原式=2××2+3×()=1=.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.20.【分析】根据题意列出关系式,去括号合并即可得到结果.【解答】解:∵A=x2+2x﹣1,A﹣B=﹣3x2+2x﹣1,∴A+B=2A﹣(A﹣B)=2x2+4x﹣2﹣(﹣3x2+2x﹣1)=2x2+4x﹣2+3x2﹣2x+1=5x2+2x﹣1.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.四、解答题(每题8分,共16分)21.【分析】(1)根据线段中点的定义得到AC=2AN=12,于是得到AM=×AC=×12=;(2)根据线段中点的定义得到AN=AC,得到AB=AC=AC,列方程即可得到结论.【解答】解:(1)∵AN=6,N为线段AC中点,∴AC=2AN=12,∵AM:MB:BC=1:4:3.∴AM=×AC=×12=;(2)∵N为线段AC中点,∴AN=AC,∵AM:MB:BC=1:4:3,∴AB=AC=AC,∴BN=AB﹣AN=AC﹣AC=AC=2,∴AC=16.【点评】本题考查的是两点间的距离,正确理解线段中点的意义是解题的关键.22.【分析】(1)根据对顶角的性质得到∠AOD=∠BOC=60°,根据垂直的定义得到∠DOE=90°,根据角平分线的定义即可得到结论;(2)由垂直的定义得到∠DOE=∠COE=90°,根据角平分线的定义得到∠AOE=2∠EOF=180°﹣2x°,根据对顶角的性质即可得到结论.【解答】解:∵∠AOD=∠BOC=60°,∵OE⊥OC于点O,∴∠DOE=90°,∴∠AOE=30°,∵OF平分∠AOE,∴∠AOF=∠AOE=15°,故答案为:15°;(2)∵OE⊥OC于点O,∴∠COE=∠DOE=90°,∵∠COF=x°,∴∠EOF=x°﹣90°,∵OF平分∠AOE,∴∠AOE=2∠EOF=2x°﹣180°,∴∠AOD=90°﹣∠AOE=270°﹣2x°,∴∠BOC=∠AOD=270°﹣2x°.【点评】本题考查了垂线:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足,垂线的性质过一点有且只有一条直线与已知直线垂直.五、解答题(23题10分,24题10分,25题10分,共30分)23.【分析】设从北京到上海的G5次列车行驶x小时与G102次列车相遇,根据相遇时,两车行驶的路程和等于1180公里列出方程,求解即可.【解答】解:设从北京到上海的G5次列车行驶x小时与G102次列车相遇,根据题意,得200(x+)+280x=1180,解得x=2.25,2.25时=2时15分,7时+2时15分=9时15分.答:两车于9点15分相遇.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.24.【分析】(1)设衬衫的单价为x元,则西装的单价为5x元,由两种产品共39000元为等量关系建立方程求出其解即可;(2)设单价为21元的A种产品为y件,单价为25元的B种产品为(105﹣y)件,根据支出总额为2447元为等量关系建立方程求出其解就可以判断结论.【解答】解:(1)设衬衫的单价为x元,则西装的单价为5x元,根据题意,得30×5x+45x=39000解得:x=200 则:5x=1000答:衬衫的单价为200元,则西装的单价为1000元;(2)设购买衬衫的数量为y件,则购买西装的数量为(55﹣y)件,根据题意,得200y+1000(55﹣y)=32000,解得:y=28.75(不符合题意),所以,帐肯定算错了.【点评】本题考查了列一元一次方程的运用,解答时找准题目的等量关系是解答本题的关键.25.【分析】(1)根据OM的初始位置和旋转后在图2的位置进行分析;(2)依据已知先计算出∠BOC=135°,则∠MOB=135°﹣MOC,根据∠BON与∠MOB互补,则可用∠MOC表示出∠BON,从而发现二者之间的等量关系.【解答】解:(1)OM由初始位置旋转到图2位置时,在一条直线上,所以旋转了180°.故答案为180;(2)∵∠AOC:∠BOC=1:3,∴∠BOC=180°×=135°.∵∠MOC+∠MOB=135°,∴∠MOB=135°﹣∠MOC.∴∠BON=90°﹣∠MOB=90°﹣(135°﹣∠MOC)=∠MOC﹣45°.即∠COM﹣∠BON=45°.【点评】本题主要考查了角之间的和差关系,解题时一定要结合图形分析题目.2018—2019 学年度第一学期期末初一年级学业水平测试数学试卷(考试时间120分钟,全卷满分120分)注意事项:1.答卷I前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一学期期末模拟测试
七年级数学试题
(满分:150分 时间:150分钟)
一、选择题(本题共10小题,每小题3分,共30分)
1.﹣2的倒数是( )
A .﹣2
B . 2
C .
D . ﹣
2.下列各式的计算,正确的是 ( )
A .ab b a 523=+
B .mn mn n m 22422=-
C .x x x 5712-=+-
D .23522=-y y
3.已知线段AB=10cm ,点C 是直线..AB ..上一点,BC=4cm ,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是( ).
A 、5cm
B 、3cm
C 、5cm 或3cm
D 、7cm 4.已知b a m 225-和437a b n -是同类项,则n m +的值是( ). A 、2 B 、3 C 、4 D 、5
5.已知代数式x +2y 的值是3,则代数式2x +4y +1的值是( ) A. 1 B. 4 C. 7 D. 不能确定 6.下列运算中结果正确的是( )
A .633·x x x =;
B .422523x x x =+;
C .532)(x x =;
D .2224)()(c b bc bc -=-÷-
7.已知∠AOB=70°,∠BOC=30°,OM 平分AOB ,ON 平分∠BOC ,则∠MON=
A .50°
B .20°
C .20°或50°
D .不能确定
8.如果关于x 的一元一次方程2x+a=x-1的解是x=-4,那么a 的值为( ) A 3 B 5 C -5 D -13 9.观察下列各式
,, , , , , , , 656132187372932433813273933387654321========根据上述算式中的规律,你认为20082的末位数字是( ).
A 3
B 9
C 7
D 1 10.下列计算正确的是( )
A .066=÷a a
B .bc bc bc -=-÷-24)()(
C .1064y y y =+
D .16444)(b a ab = 二、填空题(本题共10小题,每小题4分,共40分)
11.计算20
231-⨯⎪⎭

⎝⎛= .
12.若|x+2|+(y ﹣1)2=0,则x+y= .
13.计算
2003
2002
)
2
1(2
⨯的值是__________
14.如图,已知线段AB =16 cm ,点M 在AB 上,AM ∶BM =1∶3,P ,Q 分别

AM

AB





PQ



___.
15.如图是某校初一学生到校方式的条形图,根据图形可得出步行人数占总人数的( )%.
16.有理数a ,b 在数轴上的位置如图所示,则|a +b|-2|a -b|化简的结果为 .
17.计算()3345)(a a a ---⋅的结果等于( )
18.如图所示,由泰山到青岛的某一次列车,运行途中停靠的车站依次是:泰山——济南——淄博——潍坊——青岛,那么要为这次列车制作的火车票有__________种.
19.若a x =2,a y =3,则a 3x ﹣2y =________
20.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n(n 是大于0的整数)个图形需要黑色棋子的个数是____.
三、解答题(共80分)
21.计算(每小题5分,共10分)
(1) -9÷3-(12-2
3)×12-32; (2) )2
3
(24)32(412)3(22---×++÷÷
22.解方程(每小题5分,共10分)
(1)
()175.024=+-x x (2)
421
123
x x -+-=
23.先化简,再求值:(每小题5分,共10分)
(1) ()()
x x x x 725123222---+-, 其中x = - 1
(2) 3x 2y -[2x 2y -3(2xy -x 2y)-xy],其中x =-1,y =-2.
24.如图,OE 为∠AOD 的角平线,∠COD=
4
1 ∠EOC ,∠COD=15。

(10分)
求(1)∠EOC 的大小;(2)∠AOD 的大小。

C
D
E
A
O
25. 小明每天早上要在7:50之前赶到距家1.2千米的学校上学。

一天,小明以60米/分的速度出发,5分钟后,小明的爸爸发现他忘了带语文书。

于是,爸爸立即以160米/分的速度去追小明,并且在途中追上了他。

(10分)
(1)爸爸追上小明用了多长时间?
(2)追上小明时,距离学校还有多远?
26.在商品市场经常可以听到小贩的叫嚷声和顾客的讨价还价声:“10元一个的玩具赛车打八折,快来买啊!”“能不能再便宜2元?”如果小贩真的让利(便宜)2元卖了,他还能获利20%,那么一个玩具赛车进价是多少元?(10分)
27.七年级(1)班在召开期末总结表彰会前,班主任安排班长去商店买奖品,下面是班长与售货员的对话:
根据这段
对话,你能算出钢笔和笔记本的单价各是多少吗?(10分)
28.某市为提高学生参与体育活动的积极性,围绕“你喜欢的体育运动项目(只写一项)”这一问题,对初一新生进行随机抽样调查.下面是根据调查结果绘制成的统计图(不完整).请你根据图中提供的信息解答下列问题:(10分)(1)本次抽样调查一共调查调查了多少名学生?
(2)根据条形统计图中的数据,求扇形统计图中“最喜欢足球运动”的学生数对应扇形的圆心角度数.(3)请将条形图补充完整.
(4)若该市2016年约有初一新生20000人,请你估计全市本届学生中“最喜欢足球运动”的学生有多少人?
七年级数学试卷答案
一选择题
二填空题
11. 41
12. -1 13. 1/2 14. 6cm 15. 50%
16. -3a+b 17.2a 9
18.20种 19. 8/9 20.n(n+2)
三.解答题
21.(1)-10 (2)-8 22.(1)9 (2)4/7 23.(1)2 (2)10 24.60度 90度 25.3分钟 720米 26.5元 27.5元 3元
28.(1)500人 (2)43.2度 (3)150人 (4)2400人。

相关文档
最新文档