北师大版数学七年级下 -第二学期第二次形成性测试.docx

合集下载

北师大版数学七年级下册综合训练100题-含答案

北师大版数学七年级下册综合训练100题-含答案

北师大版数学七年级下册综合训练100题含答案(题型:单选、多选、填空、解答题)一、单选题1.如图,一条公路经过两次转弯后又回到原来的方向,如果第一次的拐角为140°,则第二次的拐角为()A.40°B.50°C.140°D.150°2.下列各组中的三条线段能组成三角形的是()A.3,4,8B.5,6,11C.4,5,9D.3,9,73.下列图形中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.4.如图,直线DE经过点A,DE∥BC,∥B=45°,∥1=65°,则∥2=()A.65°B.70°C.75°D.80°5.下列计算正确的是()A.(a2)3=a5B.a2a3=a6C.a6÷a3=a3D.a2+a3=a5 6.下面不是轴对称图形的是()A.B.C.D .7.下列说法中是真命题的有( )∥一条直线的平行线只有一条.∥过一点与已知直线平行的直线只有一条.∥因为a∥b ,c∥b ,所以a∥c .∥经过直线外一点有且只有一条直线与已知直线平行.A .1个B .2个C .3个D .4个 8.下列计算中 , 正确的是 ( )A .()2236a a =B .()4312a a =C .2510a a x =D .632a a a ÷= 9.下列说法正确的是( )A .“一个不透明的袋中装有5个红球,从中摸出一个球是红球”是随机事件B .“在同一年出生的367名学生中,至少有两人的生日是同一天”是必然事件C .在一次抽奖活动中,“中奖的概率是”表示抽奖100次就一定会中奖D .“抛掷一枚硬币,硬币落地时正面朝上”是确定事件10.若23a =,25b =,215c =,则( )A .a b c +=B .1a b c ++=C .2a b c +=D .22a b c += 11.如图,AC BC ⊥,直线EF 经过点C ,若134∠=︒,则2∠的大小为( )A .56°B .66°C .54°D .46° 12.能把一个任意三角形分成面积相等的两部分是( )A .角平分线B .中线C .高D .A 、B 、C 都可以13.计算:⋅2a a 的结果是( )A .3aB .2aC .aD .22a 14.计算a 3•a 2的结果是( )A .a 5B .a 6C .a 3+a 2D .3a 215.一次数学活动中,检验两条纸带∥、∥的边线是否平行,小明和小丽采用两种不同的方法:小明对纸带∥沿AB折叠,量得∥1=∥2=50°;小丽对纸带∥沿GH折叠,发现GD与GC重合,HF与HE重合.则下列判断正确的是()A.纸带∥的边线平行,纸带∥的边线不平行B.纸带∥、∥的边线都平行C.纸带∥的边线不平行,纸带∥的边线平行D.纸带∥、∥的边线都不平行16.下列运算正确的是()A.a4+a2=a6B.(﹣2a2)3=﹣6a8C.6a﹣a=5D.a2•a3=a517.如图,在长a,宽b的一个长方形的场地的两边修一条公路,若公路宽为x则余下阴影部分的面积是A.2ab ax bx x--+B.2ab ax bx x---C.22ab ax bx x--+D.22ab ax bx x---18.新型冠状病毒的直径约为1mm8000,将18000用科学记数法表示为10na⨯的形式,下列说法正确的是()A.a,n都是负数B.a是正数,n是负数C.a,n都是正数D.a是负数,n是正数19.如图,AD是∥ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连结BF,CE.下列说法:∥∥ABD和∥ACD面积相等;∥∥BAD=∥CAD;∥∥BDF∥∥CDE;∥BF∥CE;∥CE=AE.其中正确的有()A .1个B .2个C .3个D .4个 20.如图,DC EF AB ∥∥,EH DB ∥,则图中与∥AHE 相等的角有( )A .3个B .4个C .5个D .6个 21.下列计算正确的是( )A .9a 3·2a 2=18a 5B .2x 5·3x 4=5x 9C .3 x 3·4x 3=12x 3D .3y 3·5y 3=15y 9 22.下列运算中,计算结果正确的是( )A .a 2•a 3=a 6B .(a 2)3=a 5C .a 2y 3÷y =a 2y 2D .(a 2b )2=a 2b 223.若1,2a b ab -==-,则()()22a b +-的值为( )A .8B .8-C .4D .4- 24.如图,已知CD =CA ,∥D =∥A ,添加下列条件中的( )仍不能证明∥ABC ∥∥DEC .A .∥DEC =∥B B .∥ACD =∥BCEC .CE =CBD .DE =AB 25.下列计算正确的是( )A .448a a a +=B .428a a a ⋅=C .()325a a =D .()2326ab a b = 26.下列运算正确的是( ).A .6a ÷2a =3aB .22532a a a -=C .235()a a a -⋅=D .527a b ab +=27.如图,E ,F 是四边形ABCD 的对角线BD 上的两点,AE ∥CF ,AB ∥CD ,BE =DF ,则下列结论:∥AE =CF ,∥AD =BC ,∥AD ∥BC ,∥∥BCF =∥DAE ,其中正确的个数为( )A .1个B .2个C .3个D .4个 28.1001010.254-⨯计算结果正确的是( ).A .1-B .1C .4D .4- 29.下列运算中,正确的是( )A .6530a a a =B .1836a a a ÷=C .22(2)4a a =D .336+a a a = 30.如图,在∥ABC 和∥DEF 中,给出以下六个条件中,以其中三个作为已知条件,不能判断∥ABC 和∥DEF 全等的是( ) ∥AB=DE ;∥BC=EF ;∥AC=DF ;∥∥A=∥D ;∥∥B=∥E ;∥∥C=∥F ;A .∥∥∥B .∥∥∥C .∥∥∥D .∥∥∥二、多选题31.下列说法正确的是( )A .过任意一点可作已知直线的一条平行线B .同一平面内两条不相交的直线是平行线C .在同一平面内,过直线外一点只能画一条直线与已知直线垂直D .平行于同一直线的两直线平行32.如图,1=2∠∠,=BC EF ,要添加一个条件使ABC DEF ≌△△.添加的条件可以是( )A .B E ∠=∠ B .A D ∠=∠C .AB ED = D .AB ED ∥ 33.以下列数字为长度的各组线段中,能构成三角形的有( )A .1,2,3B .2,3,4C .3,4,5D .4,5,6 34.下列说法中,不正确的是( )A .相等的两个角是直角B .一个角的补角一定是钝角C .若∥1+∥2+∥3=180°,则它们互补D .一个角的余角一定是锐角35.如图,下列结论中正确的是( ).A .∥1与∥2是同旁内角B .∥5与∥6是同旁内角C .∥1与∥4是内错角D .∥3与∥5是同位角36.在自习课上,小红为了检测同学们的学习效果,提出如下四种说法,其中错误的说法是( )A .三角形有且只有一条中线B .三角形的高一定在三角形内部C .三角形的两边之差大于第三边D .三角形按边分类可分为等腰三角形和不等边三角形37.下列运算错误的是( )A .()222436xy x y =B .22124x x -= C .725()()x x x -÷-=- D .()223632xy xy xy ÷=38.(多选)已知22(1)36x k x +-+是一个完全平方式,则k 的值为( ) A .7- B .5- C .5D .739.下列生活中的做法与其背后的数学原理对应正确的是( )A .砌墙时,在两端钉钉子,沿中间的拉线砌墙(两点确定一条直线)B .在景区两景点之间设计“曲桥”(垂线段最短)C .工人师傅砌门时,常用一根木条固定长方形门框(三角形具有稳定性)D .车轱辘设计为圆形(圆上的点到圆心的距离相等)40.下列说法中正确的是( )A .两个三角形关于某直线对称,那么这两个三角形全等B .两个图形关于某直线对称,且对应线段相交,则交点必在对称轴上C .两个图形关于某直线对称,对应点的连线不一定垂直对称轴D .若直线l 同时垂直平分','AA BB ,那么线段''AB A B =41.下列计算正确的是( )A .21211()24xy xy xy -⎛⎫⋅= ⎪⎝⎭B .22(23)(23)23a b a b a b +⋅-=-C .422()a a a --÷=-D .32ab ab ab -=42.已知α∠和∠β互余,给出下列表示∠β的补角的式子,其中正确的有( ) A .180β︒-∠ B .90α︒+∠ C .2αβ∠+∠ D .2βα∠+∠ 43.下列每组中的两个图形,不是全等图形的是 ( )A .B .C .D .44.如图,已知CD AB ⊥于点D ,现有四个条件:∥AD ED =;∥A BED ∠=∠;∥C B ∠=∠;∥CD BD =.那么能得出ADC EDB ≌的条件是( )A.∥∥B.∥∥C.∥∥D.∥∥45.代数式2(1)1--+能配成完全平方式,则k的值不可能是()x k xA.2或1B.2-或1-C.3或1-D.1-或3-46.如图,等腰三角形ABC中,AB=AC,D、E都在BC上,要使△ABD∥∥ACE,添加一个条件可行的是()A.AD=AE B.BD=CE C.BE=CD D.∥BAD=∥CAE 47.如图所示,l是四边形ABCD的对称轴,AD∥BC,现给出下列结论,其中正确的有()A.AB∥CD;B.AB=BC;C.AB∥BC;D.AO=OC 48.在△ABC和△AˊB′C′中,已知∥A=∥A′,AB=A′B′,下面判断中正确的是()A.若添加条件AC=A′C′,则△ABC∥∥A′B′C′B.若添加条件BC=B′C′,则△ABC∥∥A′B′C′C.若添加条件∥B=∥B′,则△ABC∥∥A′B′C′D.若添加条件∥C=∥C′,则△ABC∥∥A′B′C′49.如图,AD 是ABC 的中线,E 、F 分别是AD 和AD 延长线上的点,且DE DF =,连接BF 、CE ,下列说法正确的有( )A .BAD CAD ∠=∠B .ABD △和ACD 的面积相等C .BDF CDE ∆∆≌D .BF CE三、填空题50.已知三角形的三边长分别为3,8,x ,若x 为偶数,则x=_____________________.51.计算:x 6÷x 3=_________.52.如图,AB∥CD ,∥B+∥2=160°,则∥1= _______53.口袋里有大小相同的8个红球、4个白球和4个黄球,从中任意摸出1个球,摸出红球的可能性是____.54.如果直线a//b ,且直线c a ⊥,则直线c 与b 的位置关系_______ (“平行”或“垂直”) 55.两条直线互相垂直时,所得的四个角中有__________个直角.56.已知:如图,C 为BD 上一点,AB AD =.只需添加一个条件则可证明ABC ADC △≌△.这个条件可以是_____.(写出一个即可).57.已知6732α'∠=︒,则α∠的的补角等于__________.58.如图,直线AB ,CD 交于点O ,OE 平分BOC ∠,123∠=︒,则AOD ∠=_________︒.59.已知一张纸的厚度大约为0.0089cm ,这个数用科学记数法表示为______cm . 60.已知ab 2=﹣1,则(﹣ab )(a 2b 5﹣ab 3﹣b )的值为 ___.61.已知3m a =,9n a =,则2m n a +的值为______.62.如图,35A ∠=︒,65C '∠=︒,ABC 与A B C '''关于直线l 对称,则∥B=______.63.若三角形两条边的长分别是3、7,第三条边的长是整数,则第三条边长的最大值是________.64.如图,某海域有三个小岛A ,B ,O ,在小岛O 处观测到小岛A 在它北偏东62°的方向上,观测到小岛B 在它南偏东38°的方向上,则∥AOB 的余角的度数是_____.65.若7a b -=,12ab =-,则22a b += ______ .66.202020198(0.125)⨯-=______67.某商场举办有奖销售活动,每张奖券被抽中的可能性相同.若以每1000张奖券为一个开奖单位,设5个一等奖,15个二等奖,不设其他奖项,则只抽1张奖券恰好中奖的概率是_____.68.如图,AD ,BE ,CF 是△ABC 的三条中线,则AB=2__________,BD=__________,AE= 12__________.69.如图所示,直线PQ∥MN ,C 是MN 上一点,CE 交PQ 于A ,CF 交PQ 于B ,且∥ECF =90°,如果∥FBQ =50°,则∥ECM 的度数为__________;70.如图为6个边长相等的正方形的组合图形,则123-+=∠∠∠__.71.边长为3,x ,5的三条线段首尾顺次相接组成三角形,则x 的取值范围是 _______;若x 为整数,则组成三角形的周长的最大值是 ____________.72.将 0.000103 用科学记数法表示为___________.73.如图,在△ABC 中,AC =6,BC =8,若AC ,BC 边上的中线BE ,AD 垂直相交于O 点,则AB =_____.74.因式分解:281n -=__________________.75.计算:2(615)3x xy x -÷=_________.76.已知多项式(mx+5)(1﹣2x )展开后不含x 的一次项,则m 的值是________ . 77.若16=p a ,38a =,则3-p a 的值为______.78.如图,AD 是∥ABC 的中线,AB =8 cm ,∥ABD 与∥ACD 的周长差为2 cm ,则AC =________cm.79.已知//AB CD ,点M 、N 分别为AB 、CD 上的点,点E 、F 、G 为AB 、CD 内部的点,连接FM 、FN 、EM 、EN 、CM 、GN ,ME NE ⊥于E ,35BMF BME ∠=∠,35DNF DNE ∠=∠,MG 平分AMF ∠,NG 平分CNF ∠,则MGN ∠(小于平角)的度数为______.四、解答题80.如图,∥1=∥2,∥3=100°,求∥4的度数.81.先化简再求值:2(1)(1)(1)x x x +---,其中x =1.82.阅读材料并解答问题:七年级第一学期课本中有这样一个思考题:“你能根据图1中的图形来说明完全平方公式吗?”说明如下:图1中的面积可以表示为2()a b +;图1中的面积又可以表示为222a ab b ++;所以这个图形说明了完全平方公式222()2a b a ab b +=++除了完全平方公式可以用图形的面积来表示,实际上还有一些代数恒等式也可以用这种形式表示.(1)请写出图2所表示的代数恒等式:__________________________________; (2)请画一个图形,使它的面积能表示22(3)()34a b a b a ab b ++=++.83.先化简,再求值:22(2)()(3)52x y x y x y y x ⎡⎤+-+--÷⎣⎦,其中x =﹣3,y =﹣1.84.如图,某英语单词由四个字母组成,且四个字母都关于直线l 对称,请把这个单词填完整,并说出这个英语单词的汉语意思.85.下面是小明同学设计的“作一个角等于已知角”的尺规作图过程:已知:C ∠.求作:一个角,使它等于C ∠.作法:如图:∥在C ∠的两边上分别任取一点A 、B ;∥以点A 为圆心,AC 为半径画弧;以点B 为圆心,BC 为半径画弧;两弧交于点D ; ∥连结AD 、BD .所以D ∠即为所求作的角.请根据小明设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下列证明.证明:连结AB ,∥DA=AC ,DB=_____,AB =_______,∥∥DAB ∥∥CAB ( )(填推理依据).∥∥C =∥D .86.计算:m 2m 4+(m 3)2﹣m 8÷m 2.87.如图,直线AB ,CD 相交于点O ,EO AB ⊥,垂足为O ,OF 平分BOD ∠,15BOF =︒∠.求COE ∠的度数.88.如图,已知线段a ,求作以a 为底、以12a 为高的等腰三角形,这个等腰三角形有什么特征?89.计算:23244a a a a -+-+-()()()()90.计算(1) ()()2212324-⎛⎫-+⨯-- ⎪⎝⎭ (2)化简,再求值()()()2222x x x -+--+,其中3x =.91.将幂的运算逆向思维可以得到m n m n a a a +=⋅,m n m n a a a -=÷,()mn m n a a =,()m m m a b ab =,在解题过程中,根据算式的结构特征,逆向运用幂的运算法则,常可化繁为简,化难为易,使问题巧妙获解. (1)2021202115()5⨯= ______ ; (2)若1139273m m ⨯⨯=,求m 的值;92.先化简,再求值:()()()2122x x x +++-,其中=1x -.93.如图,点B 、点D 在线段AE 上,且AD BE =,CD 平分ACB ∠.(1)尺规作图:在线段DE 的上方作DEF ,使得DEF BAC ∠=∠,EF AC =;(2)在(1)的条件下,若60A ∠=︒,40FDE ∠=︒,求BCD ∠的度数.94.今年疫情期间,为防止疫情扩散,人们见面的机会少了,但是随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷,为此,孙老师设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种)进行调查.将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次参与调查的共有 人;在扇形统计图中,表示“微信”的扇形圆心角的度数为 ;其它沟通方式所占的百分比为 .(2)将条形统计图补充完整;(3)如果我国有13亿人在使用手机.∥请估计最喜欢用“微信”进行沟通的人数;∥在全国使用手机的人中随机抽取一人,用频率估计概率,求抽取的恰好使用“QQ”的概率是多少?95.(1)计算: 2015021π--+.(2)543()()()a b b a b a -÷-÷-96.如图,正方形ABCD 的对角线AC 的长度为3,E 为与点D 不重合的动点,以DE 为一边作正方形DEFG .设1DE d =,点F G 、与点C 的距离分别为23d d 、.(1)求证:ADE CDG ≌△△(2)求123d d d ++的最小值.97.已知:如图,C 是线段AB 上一点,分别以AC .BC 为边作等边∥DAC 和等边∥ECB ,AE 与BD .CD 相交于点F 、G ,CE 与BD 相交于点H .(1)求证:∥ACE∥∥DCB;(2)求∥AFB的度数.98.先化简下面代数式,再求值:(x+2)(x-2)+x(3-x),其中+1.99.如图:在平面直角坐标系中,∥ABC的三个顶点都在格点上.(1)画出∥ABC关于y轴对称的图形∥A1B1C1;(2)直接写出A1,B1,C1三点的坐标;(3)求∥ABC的面积.参考答案:1.C【分析】由于拐弯前、后的两条路平行,用平行线的性质求解即可.【详解】解:∥拐弯前、后的两条路平行,∥140B C ∠=∠=︒(两直线平行,内错角相等).故选:C .【点睛】本题考查平行线的性质,解答此题的关键是将实际问题转化为几何问题,利用平行线的性质求解.2.D【分析】根据三角形的三边关系定理:三角形两边之和大于第三边,针对每一个选项进行计算,可选出答案.【详解】解:A 、∥3+4<8,∥不能组成三角形,故本选项不符合题意;B 、∥5+6=11,∥不能组成三角形,故本选项不符合题意;C 、∥4+5=9,∥不能组成三角形,故本选项不符合题意;D 、∥3+7>9,∥能组成三角形,故本选项符合题意.故选:D .【点睛】本题主要考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.3.D【分析】轴对称图形:如果一个图形沿着一条直线对折后两端完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.中心对称图形:把一个图形绕某一个点旋转180︒,如果旋转后的图形能够和原来的图形互相重合.那么这个图形叫做中心对称图形.【详解】A 、是轴对称图形,不是中心对称图形;B 、是轴对称图形,也是中心对称图形;C 、是轴对称图形,不是中心对称图形;D 、不是轴对称图形,是中心对称图形.故选D.【点睛】此题考查的是轴对称图形和中心对称图形的判定,利用它们的定义判断一个图形是轴对称图形还是中心对称图形是解决此题的关键.4.B【分析】由DE ∥BC ,可得:45,DAB B ∠=∠=︒再利用平角的含义可得答案. 【详解】解: DE ∥BC ,∥B =45°,∥1=65°,45,DAB B ∴∠=∠=︒2=180170,DAB ∴∠︒-∠-∠=︒故选:.B【点睛】本题考查的是平角的定义,平行线的性质,掌握两直线平行,内错角相等是解题的关键.5.C【分析】根据幂的运算性质即可完成.【详解】A 、(a 2)3=a 6,故选项错误;B 、a 2a 3=a 5,故选项错误;C 、a 6÷a 3=a 3,故选项正确;D 、a 2与a 3不是同类项,不能合并,故选项错误;故选:C .【点睛】本题考查了幂的运算性质,关键是熟练掌握幂的运算性质.6.B【分析】如果一个图形沿着某条直线对折后,直线两旁的部分能够重合,就称此图形是轴对称图形,这条直线称为对称轴;根据轴对称图形的概念逐项判断即可.【详解】A 、是轴对称图形,不符合题意;B 、不是轴对称图形,故符合题意;C 、是轴对称图形,不符合题意;D 、是轴对称图形,不符合题意;故选:B【点睛】本题考查了轴对称图形的识别,掌握轴对称图形的概念是关键.7.B【详解】试题分析:∥一条直线的平行线只有一条是错误的;∥经过一点有且只有一条直线与已知直线平行,应强调在经过直线外一点,故是错误的. ∥因为a∥b ,a∥c ,所以b∥c ,正确.∥满足平行公理的推论,正确.故选B .考点:1.平行线;2.垂线.8.B【分析】根据同底数幂的乘法,同底数幂的除法,幂的乘方,积的乘方逐项分析判断即可求解.【详解】A.()2239a a =故该选项不正确,不符合题意;B.()4312a a =故该选项正确,符合题意;C.257a a a ⋅=故该选项不正确,不符合题意;D.633a a a ÷=故该选项不正确,不符合题意;故选: B .【点睛】本题考查了同底数幂的乘法,同底数幂的除法,幂的乘方,积的乘方,掌握以上运算法则是解题的关键.9.B【详解】试题分析:根据必然事件、不可能事件、随机事件的概念可区别各类事件. 解:A 、“一个不透明的袋中装有5个红球,从中摸出一个球是红球”是必然事件,故A 错误;B 、“在同一年出生的367名学生中,至少有两人的生日是同一天”是必然事件,故B 正确;C 、在一次抽奖活动中,“中奖的概率是”表示抽奖100次可能中奖,故C 错误;D 、“抛掷一枚硬币,硬币落地时正面朝上”是不确定事件,故D 错误;故选B .考点:随机事件;概率的意义.10.A【分析】根据同底数幂乘法的逆运算进行计算即可【详解】解:∥23a =,25b =,215c =,∥21535222+==⨯=⨯=a b c a b∥a b c +=故选:A【点睛】本题考查了同底数幂乘法的逆运算,熟练掌握法则是解题的关键11.A【分析】根据,∥1,∥2,和∥ACB 为180°,且∥ACB 为90°,所以∥1和∥2互余,由∥1度数可求出∥2度数.【详解】解:∥AC BC ⊥,∥90ACB ∠=︒,∥由图可知12180ACB ∠+∠+∠=︒,且90ACB ∠=︒,∥1290∠+∠=︒,∥2901903456∠=︒-∠=︒-︒=︒,故选:A .【点睛】本题考查,补角与余角的概念,能够根据图形中的角的位置关系求出角的度数关系式解决本题的关键.12.B【分析】根据等底同高的三角形的面积相等解答.【详解】解:三角形的中线把三角形分成等底等高的两个三角形,面积相等, 所以,能把一个任意三角形分成面积相等的两部分是中线.故选:B .【点睛】本题考查了三角形的面积,熟记等底同高的三角形的面积相等是解题的关键. 13.A【分析】利用同底幂乘法的运算法则计算可得.【详解】+==2213a a a a ⋅故选:A【点睛】本题考查同底幂的乘法,同底幂的乘法法则和乘方的运算法则容易混淆,需要注意.14.A【详解】根据同底数幂的乘法法则可得,原式= a 5,故选A.15.C【分析】直接利用翻折变换的性质结合平行线的判定方法得出答案.【详解】如图∥所示:∥∥1=∥2=50°,∥∥3=∥2=50°,∥∥4=∥5=180°-50°-50°=80°,∥∥2≠∥4,∥纸带∥的边线不平行;如图∥所示:∥GD与GC重合,HF与HE重合,∥∥CGH=∥DGH=90°,∥EHG=∥FHG=90°,∥∥CGH+∥EHG=180°,∥纸带∥的边线平行.故选C.【点睛】此题主要考查了平行线的判定以及翻折变换的性质,正确掌握翻折变换的性质是解题关键.16.D【分析】根据合并同类项法则、积的乘方、合并同类项法则、同底数幂的乘法法则运算即可求解.【详解】解:A.a4与a2不是同类项,所以不能合并,故本选项不合题意;B.(﹣2a2)3=﹣8a6,故本选项不合题意;C.6a﹣a=5a,故本选项不合题意;D.a2•a3=a5,故本选项符合题意.故选:D.【点睛】本题考查了合并同类项法则、积的乘方、同底数幂的乘法法则,正确记忆运算法则是解题关键.17.A【分析】由图可知,阴影部分的长是a-x,宽是b-x,然后根据长方形的面积公式求解即可.【详解】由题意得(a -x )(b -x )=2ab ax bx x --+.故选A .【点睛】本题考查了多项式与多项式的乘法的应用,多项式与多项式相乘,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加.18.B【分析】用科学记数法表示较小的数,一般形式为a ×10−n ,其中1≤|a |<10,n 为整数,据此判断即可. 【详解】解:41.251800010-=⨯ 0,0a n ∴><故选B【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a ×10−n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定,确定a 与n 的值是解题的关键.19.C【详解】解:∥∥AD 是∥ABC 的中线,∥BD =CD ,∥∥ABD 和∥ACD 面积相等;故∥正确;∥若在∥ABC 中,当AB ≠AC 时,AD 不是∥BAC 的平分线,即∥BAD ≠∥CAD .即∥不一定正确;∥∥AD 是∥ABC 的中线,∥BD =CD ,在∥BDF 和∥CDE 中,∥BD =CD ,∥BDF =∥CDE ,DF =DE ,∥∥BDF ∥∥CDE (SAS ).故∥正确;∥∥∥BDF ∥∥CDE ,∥∥CED =∥BFD ,∥BF ∥CE ;故∥正确;∥∥∥BDF ∥∥CDE ,∥CE =BF ,∥只有当AE=BF时,CE=AE.故∥不一定正确.综上所述,正确的结论是:∥∥∥,共有3个.故选C.20.C【分析】根据平行线的性质进行推导解答即可.【详解】解:如图,∥EG BD∥,∥∥1=∥DBA,∥∥,∥AB EF DC∥∥1=∥GEF,∥DBA=∥2,∥DBA=∥3,∥DBA=∥BDC,∥∥1=∥GEF=∥DBA=∥2=∥3=∥BDC,∥图中和∥1相等的角共有5个.故选C.【点睛】本题考查的是平行线的性质,熟悉平行线的性质:“两直线平行,同位角相等”和“两直线平行,内错角相等”,是能够正确解答本题的关键.21.A【分析】根据单项式的乘法法则计算求解即可得出答案.【详解】解:A.325⋅=,故A正确,符合题意;a a a9218B.549x x x⋅=,故B错误,不符合题意;236C.336x x x⋅=,故C错误,不符合题意;3412D.336⋅=,故D错误,不符合题意.3515y y y故选A.【点睛】本题主要考查了单项式与单项式相乘,熟练掌握单项式与单项式相乘的法则是解题的关键.22.C【分析】分别计算选项中的每一项a2•a3=a5,(a2)3=a6,(a2b)2=a4b2,即可求解.【详解】a2•a3=a5,故A不正确;(a2)3=a6,故B不正确;(a2b)2=a4b2,故D不正确;故选:C.【点睛】考核知识点:幂的运算.理解幂的乘方公式是关键.23.B【分析】先利用多项式乘以多项式展开所求的式子,再将已知条件作为整体直接代入求解即可.【详解】解:(a+2)(b−2)=ab−2a+2b−4=ab−2(a−b) −4将a−b=1,ab=−2代入得,ab−2(a−b) −4=−2−2×1 −4=−8.故选:B.【点睛】本题考查了多项式的乘法、多项式化简求值,掌握多项式的乘法法则是解题关键.需注意的是,这类题的考点是将已知条件作为一个整体代入求值,而不是求出a和b 的值.24.C【分析】结合题意,根据全等三角形的性质,对各个选项逐个分析,即可得到答案.【详解】增加∥DEC=∥B,得:DEC BD ACD CA ∠=∠⎧⎪∠=∠⎨⎪=⎩∥∥DEC∥∥ABC,即选项A可以证明;∥∥ACD=∥BCE∥ACD ACE BCE ACE∠+∠=∠+∠,即DCE ACB∠=∠∥D ACD CADCE ACB∠=∠⎧⎪=⎨⎪∠=∠⎩∥∥DEC∥∥ABC,即选项B可以证明;增加∥DEC=∥B,得:D A CD CA CE CB ∠=∠⎧⎪=⎨⎪⎩=∥不能证明∥DEC∥∥ABC,即选项C不可以证明;增加DE=AB,得:DE ABD A CD CA=⎧⎪∠=∠⎨⎪=⎩∥∥DEC∥∥ABC,即选项D可以证明;故选:C.【点睛】本题考查了全等三角形的知识;解题的关键是熟练掌握全等三角形的判定性质,从而完成求解.25.D【分析】直接利用合并同类项法则以及同底数幂的乘法运算法则、积的乘方运算法则分别计算得出答案.【详解】A、a4+a4=2a4,故此选项错误;B、a4•a2=a6,故此选项错误;C、(a2)3=a6,故此选项错误;D、(ab3)2=a2b6,正确.故选D.【点睛】此题主要考查了合并同类项以及同底数幂的乘法运算、积的乘方运算,正确掌握相关运算法则是解题关键.26.C【详解】试题分析:根据同底数幂的乘除法法则,合并同类项的定义,进行逐项分析解答,用排除法找到正确的答案.解:A、原式=a6﹣2=a4,故本选项错误,B、原式=(5﹣3)a2=2a2,故本选项错误,C、原式=a2•a3=a5,故本选项正确,D、原式中的两项不是同类项,不能进行合并,故本选项错误,故选C.考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.27.D【分析】根据全等三角形的判定得出∥ABE与∥CDF全等,进而利用全等三角形的性质判断即可.【详解】解:∥AE∥CF,AB∥CD,∥∥AEF=∥CFE,∥ABE=∥CDF,∥∥AEB=∥CFD,在∥ABE与∥CDF中ABE CDFBE DFAEB CFD∠=∠⎧⎪=⎨⎪∠=∠⎩,∥∥ABE∥∥CDF(ASA),∥AE=CF,∥BE=DF,∥BE+EF=DF+EF,即BF=DE,在∥ADE与∥CBF中AE CFAED CFB DE BF=⎧⎪∠=∠⎨⎪=⎩,∥∥ADE∥∥CBF(SAS),∥AD=BC,∥ADE=∥CBF,∥BCF=∥DAE∥AD∥BC,故选:D.【点睛】此题主要考查了全等三角形的判定,利用两边且夹角对应相等得出三角形全等是解题关键.28.D【分析】根据积的乘方运算法则计算即可.【详解】−0.25100×4101=−0.25100×4100×4=−(0.25×4)100×4=−1100×4=−1×4=−4.故选D .【点睛】本题主要考查了积的乘方,积的乘方,等于每个因式乘方的积.29.C【分析】分别根据合并同类项的法则、同底数幂的乘法、积的乘方和幂的乘方运算法则逐项判断即得答案.【详解】A 、6511a a a ⋅=故本选项运算错误,不符合题意;B 、18318315a a a a -÷==,故本选项运算错误,不符合题意;C 、22(2)4a a =,故本选项运算正确,符合题意;D 、333+2a a a =,故本选项运算错误,不符合题意.故选:C .【点睛】本题考查了合并同类项的法则和幂的运算性质,属于基础题型,熟练掌握幂的运算性质是解题的关键.30.D【详解】根据全等三角形的判定方法对组合进行判断即可.解:在∥ABC 和∥DEF 中,AB=DE ,∥B=∥C ,BC=EF ,∥∥ABC ∥∥DEF (SAS );∥A 不符合题意;在∥ABC 和∥DEF 中,AB=DE , BC=EF ,AC=DF ,∥∥ABC ∥∥DEF (SSS );∥B 不符合题意; 在∥ABC 和∥DEF 中,∥A=∥D ,∥C=∥F ,AB=DE ,∥∥ABC ∥∥DEF (AAS ),∥C 不符合题意; 在∥ABC 和∥DEF 中,D②③④不能判断∥ABC 和∥DEF 全等,故选D .“点睛”本题考查了全等三角形的判定方法对各选项分析判断利用排除法求解.31.BCD【分析】根据平行线的定义及平行公理进行判断.【详解】A. 若点在直线上,则不可以作出已知直线的平行线,因此 “过任意一点可作已知直线的一条平行线”说法错误;B. “同一平面内两条不相交的直线是平行线”说法正确;C. “在同一平面内,过直线外一点只能画一条直线与已知直线垂直”说法正确;D. “平行于同一直线的两直线平行”说法正确;故选BCD.【点睛】本题主要考查平行线的定义及平行公理,熟练掌握公理、定理是解决本题的关键.32.ABD【分析】已知一边和一角对应相等,再添加任意对对应角相等,或已知角的另一边相等就可以由AAS 、ASA 或SAS 判定两个三角形全等.【详解】解:选项A 中B ∠与E ∠是对应角,能与已知构成ASA 的判定,可以判定三角形全等,故选项A 符合题意;选项B 中A D ∠=∠是对应角,结合已知可以由AAS 判定ABC DEF ≌△△,故选项B 符合题意;选项C 中AB ED =是对应边,但不是两边及其夹角相等,无法判定ABC DEF ≌△△,故选项C 不合题意;选项D 中由已知//AB ED 可得B E ∠=∠,是对应角,结合已知可以由ASA 判定ABC DEF ≌△△,故选项D 符合题意;故选:ABD .【点睛】本此题考查了三角形全等的判定方法,解题的关键是熟练掌握三角形全等的判定方法.判定三角形全等的方法有:SSS ,SAS ,AAS ,ASA ,HL (直角三角形). 33.BCD【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边,逐项判断即可.【详解】解:A .123+=不能组成三角形,该项不符合题意;B .234+>,该项符合题意;C .345+>,该项符合题意;D .456+>,该项符合题意;故选:BCD .【点睛】本题考查三角形的成立条件,掌握三角形的三边关系是解题的关键. 34.ABC【分析】根据余角及补角的定义可逐项判断求解.【详解】解:A 、相等的两个角不一定是直角,故错误,符合题意;B 、一个钝角的补角是锐角,原说法错误,符合题意;C 、补角是指两个角,原说法错误,符合题意;D 、一个角的余角一定是锐角,说法正确,不符合题意;故选:ABC .【点睛】本题考查了余角和补角,熟知定义是解题的关键,属于基础题.35.AD【分析】根据“三线八角”的概念,结合图形找出他们之间的关系即可.【详解】解:A 、根据图形可知,1∠与2∠是同旁内角,该选项符合题意;B 、根据图形可知,5∠与6∠是内错角,该选项不符合题意;C 、根据图形可知,1∠与4∠不是内错角关系,该选项不符合题意;D 、根据图形可知,∥3与∥5是同位角,该选项符合题意;故选:AD .【点睛】本题考查“三线八角”的概念,能读图识图,从图形中结合“三线八角”的概念准确找到内错角、同位角和同旁内角是解决问题的关键.36.ABC【分析】三角形有三条中线对∥进行判断;钝角三角形三条高,有两条在三角形外部,对∥进行判断;根据三角形三边的关系对∥进行判断;根据三角形的分类对∥进行判断.【详解】解:A .三角形有3条中线,选项A 的说法是错误的;B .三角形的高不一定在三角形内部,选项B 的说法是错误的;C .三角形的两边之差小于第三边,选项C 的说法是错误的;D .三角形按边分类可分为等腰三角形和不等边三角形是正确的.故答案为:ABC .【点睛】本题考查了三角形的有关概念,属于基础题型.要注意等腰三角形与等边三角形两个概念的区别,掌握三角形有三条中线;钝角三角形三条高,有两条在三角形外部,三角形三边的关系;三角形的分类是解题关键.37.ABD【分析】由积的乘方判断,A 由负整数指数幂的含义判断,B 由同底数幂的除法判断,C 由积的乘方与单项式除以单项式判断,D 从而可得答案.【详解】解:()222439xy x y =,故A 符合题意; 2221222=,x x x -=⨯故B 符合题意;。

北师大版七年级下册数学期末考试试题及答案

北师大版七年级下册数学期末考试试题及答案

北师大版七年级下册数学期末考试试卷一、单选题1.我国众多科技实体在各自行业取得了举世瞩目的成就,大疆科技、华为集团、太极股份和凤凰光学等就是其中的杰出代表.上述四个企业的标志是轴对称图形的是( )A .B .C .D .2.下列计算中正确的是( ) A .235a b a +=B .44a a a ÷=C .248a a a ⋅=D .()326a a -=-3.如图,直线a ,b 被直线c 所截,a∥b ,若∥2=45°,则∥1等于( )A .125°B .130°C .135°D .145°4.以下列各组线段为边,能组成三角形的是( ) A .2cm 、2cm 、4cm B .2cm 、6cm 、3cm C .8cm 、6cm 、3cmD .11cm 、4cm 、6cm5.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y (米)与时间t (分钟)之间关系的大致图象是( )A .B .C .D .6.下列说法中,正确的是( )A .不可能事件发生的概率为0B .随机事件发生的概率为12 C .概率很小的事件不可能发生D .投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次 7.在下列运算中,正确的是( )A .222()x y x y -=-B .2(2)(3)6a a a +-=-C .222()2a b a ab b +=++D .22(2)(2)2x y x y x y -+=-8.如图,下列条件中能判定//AB CD 的是( )A .35∠=∠B .24∠∠=C .15180∠+∠=︒D .34∠=∠ 9.如图,工人师傅砌门时,常用木条EF 固定矩形门框ABCD ,使其不变形,这种做法的根据是( )A .两点之间线段最短B .矩形的对称性C .矩形的四个角都是直角D .三角形的稳定性10.如图,∥CAB =∥DBA ,再添加一个条件,不一定能判定∥ABC∥∥BAD 的是( )A .AC =BDB .∥1=∥2C .∥C =∥D D .AD =BC二、填空题11.一种花粉颗粒的直径约为0.0000058米,0.0000058用科学计数法表示为________. 12.计算:22(3)ab =_________.13.如图,DA∥CE 于点A ,CD∥AB ,∥1=30°,则∥D=_____.14.一个不透明的布袋中装有3个红球,5个黄球,2个白球,每个球除颜色外都相同,任意摸出一球,摸到黄球的概率为______.15.如果三角形底边上的高是6,底边长为x ,那么三角形的面积y 可以表示为________________;16.如图,四边形ABDC 的对称轴是AD 所在的直线,AC=5,DB=7,则四边形ABDC 的周长为_______17.珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,如图,若∥ABC=120°,∥BCD=80°,则∥CDE=__________度.三、解答题18.计算:022(3)2(1)π---+-;19.如图,已知∥1=∥2,∥D =60˚,求∥B 的度数.20.如图,已知线段AC ,BD 相交于点E ,A D ∠=∠,BE CE =,求证ABE DCE ∆≅∆.21.如图,方格纸中的每个小方格都是边长为1个单位的正方形,∥ABC 的顶点均在格点上,直线a 为对称轴,点A ,点C 在直线a 上. (1)作∥ABC 关于直线a 的轴对称图形∥ADC ; (2)若∥BAC =35°,则∥BDA = ; (3)∥ABD 的面积等于 .22.先化简,再求值:2(4)(2)---x x y x y ,其中x =﹣1,y =1.23.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是 ;(请选择正确的一个)A 、()()22a b a b a b -=+- B 、2222a ab b a b C 、()2a ab a a b +=+(2)若22164x y x y -=+=,,求x y -的值;(3)计算:22222111111111123420192020⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫----- ⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.24.在一只不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20个,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,然后把它放回袋中,不断重复,下表是活动进行中的一组统计数据:(1)表中的a=________;(2)“摸到白球”的概率的估计值是___________(精确到0.1); (3)试估算口袋中黑、白两种颜色的球各有多少个?25.如图所示,在一个边长为12cm 的正方形的四个角都剪去一个大小相等的小正方形,当小正方形的边长由小到大变化时,图中阴影部分的面积也随之发生变化.(1)在这个变化过程中,自变量、因变量各是什么?(2)如果小正方形的边长为xcm ,图中阴影部分的面积为ycm 2,请写出y 与x 的关系式; (3)当小正方形的边长由1cm 变化到5cm 时,阴影部分的面积是怎样变化的?26.在∥ABC中,AB=AC,D是BC边的中点,E、F分别是AD、AC边上的点.(1)如图∥,连接BE、EF,若∥ABE=∥EFC,求证:BE=EF;(2)如图∥,若B、E、F在一条直线上,且∥ABE=∥BAC=45°,探究BD与AE的数量之间有何等量关系,并证明你的结论;(3)如图∥,若AB=13,BC=10,AD=12,连接EC、EF,直接写出EC+EF的最小值.参考答案1.B【分析】根据轴对称图形的概念求解.【详解】A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选B.【点睛】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.D【解析】【分析】根据幂的运算法则即可依次判断.【详解】A.23+不能计算,故错误;a bB.34÷=,故错误;a a aC.246⋅=,故错误;a a aD.()326-=-,正确a a故选D.【点睛】此题主要考查幂的运算,解题的关键是熟知其运算法则.3.C【解析】【分析】根据两直线平行,同位角相等可得∥3=∥2,再根据邻补角的定义解答.【详解】如图,∥a∥b,∥2=45°,∥∥3=∥2=45°,∥∥1=180°−∥3=135°,故选:C.【点睛】本题考查了平行线的性质,解题的关键是掌握平行线性质定理定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.4.C【解析】【分析】根据三角形三条边的关系计算即可,三角形任意两边之和大于第三边,任意两边之差小于第三边.【详解】A. ∥2+2=4,∥ 2cm、2cm、4cm不能组成三角形,故不符合题意;B. ∥2+3<6,∥2cm、6cm、3cm不能组成三角形,故不符合题意;C. ∥3+6>8,∥8cm、6cm、3cm能组成三角形,故符合题意;D. ∥4+6<11,∥11cm、4cm、6cm不能组成三角形,故不符合题意;故选C.【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.5.B【解析】【详解】∥y轴表示当天爷爷离家的距离,X轴表示时间又∥爷爷从家里跑步到公园,在公园打了一会儿太极拳,然后沿原路慢步走到家,∥刚开始离家的距离越来越远,到公园打太极拳时离家的距离不变,然后回家时离家的距离越来越近又知去时是跑步,用时较短,回来是慢走,用时较多∥选项B中的图形满足条件.故选B.6.A【解析】【详解】试题分析:不可能事件发生的概率为0,故A正确;随机事件发生的概率为在0到1之间,故B 错误; 概率很小的事件也可能发生,故C 错误;投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件,D 错误; 故选A . 考点:随机事件. 7.C 【解析】 【分析】根据整式的运算法则即可判断. 【详解】A.222()2x y x xy y -=-+,故错误;B.2(2)(3)6a a a a +-=--,故错误;C.222()2a b a ab b +=++,正确D.22(2)(2)4x y x y x y -+=-,故错误; 故选C . 【点睛】此题主要考查整式的运算,解题的关键是熟知其运算法则. 8.D 【解析】 【分析】根据平行线的判定定理进行判断即可. 【详解】解:A 、根据同旁内角互补,两直线平行的判定定理可知35∠=∠不能判定//AB CD ; B 、2∠ 和4∠为对顶角,无法判定//AB CD ;C 、根据同位角相等,两直线平行的判定定理可知15180∠+∠=︒不能判定//AB CD ; D 、根据内错角相等,两直线平行的判定定理可知34∠=∠可得//AB CD . 故选:D . 【点睛】本题主要考查了平行线的判定定理,包括:∥同位角相等,两直线平行;∥内错角相等,两直线平行;∥同旁内角互补,两直线平行.9.D【解析】【分析】用木条EF固定矩形门框ABCD,即是组成∥AEF,故可用三角形的稳定性解释.【详解】解:加上EF后,原不稳定的四边形ABCD中具有了稳定的∥EAF,故这种做法根据的是三角形的稳定性.故选:D.【点睛】本题考查三角形稳定性的实际应用,熟悉相关性质是解题的关键.10.D【解析】【分析】根据全等三角形的判定定理(SAS,ASA,AAS,SSS)判断即可.【详解】解答:解:A.∥AC=BD,∥CAB=∥DBA,AB=AB,∥根据SAS能推出∥ABC∥∥BAD,故本选项错误;B.∥∥CAB=∥DBA,AB=AB,∥1=∥2,∥根据ASA能推出∥ABC∥∥BAD,故本选项错误;C.∥∥C=∥D,∥CAB=∥DBA,AB=AB,∥根据AAS能推出∥ABC∥∥BAD,故本选项错误;D.根据AD=BC和已知不能推出∥ABC∥∥BAD,故本选项正确;故选:D.【点睛】本题考查了对全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.11.5.8 ×10-6【解析】【详解】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.由此可得,此题的a=5.8,10的指数为﹣6.故答案为:5.8×10-6.考点:科学记数法.12.249a b【解析】【分析】根据积的乘方:()n n n ab a b =和幂的乘方()nm mn a a =计算即可. 【详解】解:()22222422933ab a b a b ⨯==故答案为:249a b .【点睛】此题考查的是幂的运算性质,掌握积的乘方和幂的乘方是解决此题的关键.13.60°【解析】【分析】先根据垂直的定义,得出∥BAD=60°,再根据平行线的性质,即可得出∥D 的度数.【详解】∥DA∥CE ,∥∥DAE=90°,∥∥1=30°,∥∥BAD=60°,又∥AB∥CD ,∥∥D=∥BAD=60°,故答案为60°.【点睛】本题主要考查了平行线的性质以及垂线的定义,解题时注意:两直线平行,内错角相等.14.1 2【解析】【分析】让黄球的个数除以球的总数即为摸到红球的概率.【详解】3个红球,5个黄球,2个白球,一共是10个搅拌均匀后从中任意摸出一个球,则摸出的球是黄球的概率是51 102=.故答案为:12.【点睛】用到的知识点为:概率=所求情况数与总情况数之比.15.3y x=【解析】【分析】直接利用三角形面积求法得出答案即可.【详解】∥三角形的底边长为xcm,底边上的高为6cm,∥三角形的面积y(cm2)可以表示为:y=3x.故答案为y=3x.【点睛】此题主要考查了函数关系式以及三角形面积求法,正确记忆三角形面积公式是解题关键.16.24【解析】【详解】∥四边形ABDC的对称轴是AD所在的直线,AC=5,DB=7,∥AB=AC=5,CD=BD=7,∥四边形ABDC的周长=AC+CD+BD+AB=5+7+7+5=24.故答案为24.17.20【解析】由已知珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,得AB∥DE ,过点C 作CF∥AB ,则CF∥DE ,由平行线的性质可得,∥BCF+∥ABC=180°,所以能求出∥BCF ,继而求出∥DCF ,又由CF∥DE ,所以∥CDE=∥DCF .【详解】解:过点C 作CF∥AB ,已知珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,∥AB∥DE ,∥CF∥DE ,∥∥BCF+∥ABC=180°,∥∥BCF=60°,∥∥DCF=20°,∥∥CDE=∥DCF=20°.故答案为:20.【点睛】此题考查的知识点是平行线的性质,关键是过C 点先作AB 的平行线,由平行线的性质求解.18.314【解析】【分析】根据实数的性质进行化简即可求解.【详解】解:022(3)2(1)π-----1114=-+ 314=.此题主要考查实数的运算,解题的关键是熟知负指数幂的运算法则.19.120B ∠=︒;【解析】【分析】首先证出∥1=∥3,从而得出AB∥CD ,然后推出∥D+∥B=180°,代入求出即可.【详解】解:如图:∥∥1=∥2,∥2=∥3,∥∥1=∥3,∥AB∥CD ,∥∥D+∥B=180°,∥∥D=60°,∥∥B=120°.【点睛】本题考查平行线的判定与性质,难度不大,掌握平行线的判定定理和性质定理是解题关键.20.见解析【解析】【分析】根据AAS 即可证明ABE DCE ∆≅∆.【详解】证明:在∥ABE 和∥DCE 中A D AEB DEC BE CE ∠∠⎧⎪∠=∠⎨⎪=⎩=∥∥ABE∥∥DCE(AAS).【点睛】此题主要考查全等三角形的判定,解题的关键是熟知全等三角形的判定定理.21.(1)如图见解析;(2)∥BDA=55°;(3)∥ABD的面积等于28.【解析】【分析】(1)根据网格结构找出点B关于直线a的对称点D的位置,然后与A、C顺次连接即可;(2)根据轴对称的性质解答即可;(3)根据三角形的面积公式列式计算即可得解.【详解】解:(1)∥ADC如图所示;(2)∥BAD=2∥BAC=2×35°=70°,∥AB=AD,∥∥BDA=1(180°-∥BAD)=55°;2故答案为55°;×8×7=28,(3)∥ABD的面积=12故答案为28.【点睛】本题考查了利用轴对称变换作图以及三角形面积的计算,熟练掌握网格结构准确找出对应点的位置.22.﹣4y 2,-4【解析】【分析】根据单项式乘多项式和完全平方公式可以化简题目中的式子,然后将x 、y 的值代入化简后的式子即可解答本题.【详解】解:x (x ﹣4y )﹣(x ﹣2y )2=x 2﹣4xy ﹣x 2+4xy ﹣4y 2=﹣4y 2,当y =1时,原式=﹣4×12=﹣4.【点睛】本题考查单项式乘多项式和完全平方公式的计算,掌握计算法则和公式结构正确计算是本题的解题关键.23.(1)A ;(2)4;(3)20214040 【解析】【分析】(1)观察图1与图2,根据图1中阴影部分面积22a b =-,图2中长方形面积()()a b a b =+-,得到验证平方差公式;(2)已知第一个等式左边利用平方差公式化简,将第二个等式代入求出所求式子的值即可; (3)先利用平方差公式变形,再约分即可得到结果.【详解】解:(1)根据图形得:图1中阴影部分面积22a b =-,图2中长方形面积()()a b a b =+-, ∴上述操作能验证的等式是22()()a b a b a b -=+-,故答案为: A ;(2)22()()16x y x y x y -=+-=,4x y +=,4x y ∴-=;(3)22222111111111123420192020⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫----- ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭111111(1)(1)(1)(1)(1)(1)223320202020=-+-+⋯-+20213243201920212233402020=⨯⨯⨯⨯⨯⋯⨯⨯ 1202122020=⨯ 20214040=. 【点睛】此题考查了平方差公式的几何背景以及因式分解法的运用,熟练掌握平方差公式的结构特征是解本题的关键,注意此类题目每一步都为后续解题提供了解题条件或方法.24.(1)0.58;(2)0.6;(3)白球的个数约为20×0.6=12个,黑球有20-12=8个【解析】【分析】(1)根据表中的数据,计算得出摸到白球的频率.(2)由表中数据即可得;(3)根据摸到白球的频率和球的总数求得两种球的数量即可.(1)a=290÷500=0.58,故答案为:0.58;(2)由表可知,当n 很大时,摸到白球的频率将会接近0.6,所以“摸到白球”的概率的估计值是0.6;故答案为:0.6;(3)因为当n 很大时,摸到白球的频率将会接近0.6;所以白球的个数约为20×0.6=12个,黑球有20-12=8个.【点睛】本题主要考查了如何利用频率估计概率,在解题时要注意频率和概率之间的关系,属于中考常考题型.25.(1)小正方形的边长是自变量,阴影部分的面积为因变量;(2)21444y x =-;(3)阴影部分的面积由140cm 2变到44cm 2【解析】【分析】(1)根据当小正方形的边长由小到大变化时,图中阴影部分的面积也随之发生变化,则小正方形的边长是自变量,阴影部分的面积为因变量;(2)根据阴影部分的面积=大正方形的面积-4个小正方形的面积,即可解答;(3)根据当小正方形的边长由1cm 变化到5cm 时,x 增大,x 2也随之增大,-4x 2则随着x 的增大而减小,所以y 随着x 的增大而减小.(1)∥当小正方形的边长由小到大变化时,图中阴影部分的面积也随之发生变化,∥小正方形的边长是自变量,阴影部分的面积为因变量;(2)由题意可得:2221241444y x x =-=-;(3)由(2)知:21444y x =-,当x=1cm 时,14441140y -⨯==(cm 2).当x=5cm 时,21444544y =-⨯=(cm 2).∥当小正方形的边长由1cm 变化到5cm 时,阴影部分的面积由140cm 2变到44cm 2【点睛】本题考查了函数关系式,解决本题的关键是列出函数关系式.26.(1)证明见解析;(2)2AE BD =,证明见解析;(3)12013【解析】【分析】(1)连接CE ,根据等腰三角形的性质可得BE CE =、A ABC CB =∠∠,经过倒角及角的和差运算可得∥ABE =∥ACE ,利用等边对等角即可得证;(2)根据已知易得ABF 和CEF △都是等腰直角三角形,通过证明CBF EAF ≌即可得出结论;(3)由(1)可得EC EF BE EF +=+,作BP AC ⊥于点P ,则BP 为BE EF +的最小值,利用等面积法即可求解.【详解】解:(1)连接CE ,,∥AB =AC ,D 是BC 边的中点,∥AD 为线段BC 的垂直平分线,A ABC CB =∠∠,∥BE CE =,∥EBC ECB ∠=∠,∥ABC EBC ACB ECB ∠-∠=∠-∠,即∥ABE =∥ACE ,∥∥ABE =∥EFC ,∥∥ACE =∥EFC ,∥EF CE =,∥BE EF =;(2)连接CE ,由(1)可得∥ABE =∥ACE , ∥∥ABE =∥BAC =45°, ∥ABF 和CEF △都是等腰直角三角形, ∥AF BF =,CF EF =, ∥CBF EAF ≌, ∥BC AE =,∥2AE BD =;(3)由(1)可知BE CE =, ∥EC EF BE EF +=+,作BP AC ⊥于点P ,则BP 为BE EF +的最小值,1122ABC S BC AD AC BP =⋅=⋅, 解得12013BP =,∥EC+EF 的最小值为12013.【点睛】本题考查等腰三角形的性质、全等三角形的判定与性质、线段最值等内容,掌握等腰三角形的性质是解题的关键.21。

2021年北师大版七年级数学下册全册知识点与典型例题配套练习

2021年北师大版七年级数学下册全册知识点与典型例题配套练习

4. 若 2x1 16 ,则 x=________.
5. 若 am a3a4 ,则 m=________;若 x4 xa x16 ,则 a=__________; 若 xx2 x3x4x5 x y ,则 y=______;若 ax (a)2 a5 ,则 x=_______.
6. 若 am 2, an 5 ,则 amn =________.
第一章 整式
一、整式关于概念
1、单项式:数与字母乘积,这样代数式叫单项式。单独一种数或字母也是单项式。
2、单项式系数:单项式中数字因数。
3、单项式次数:单项式中所有字母指数和。
4、多项式: 几种单项式和叫多项式。
5、多项式项及次数:构成多项式中单项式叫多项式项,多项式中次数最高项次数
叫多项式次数。
6、整式:单项式与多项式统称整式。(分母具有字母代数式不是整式)
(1)(2a) (x 2 y 3c),
(2)(x 2)( y 3) (x 1)( y 2)
(3)(x y)(2x 1 y) 2
(2)计算下图中阴影某些面积
8、平方差公式 法则:两数各乘以这两数差,等于这两数平方差。 数学符号表达:
(a b)(a b) a2 b2 其中a, b既可以是数, 也可以是代数式.
(4)( 2 a2bc3 ) ( 3 c5 ) (1 ab2c)
3
43
6、单项式乘以多项式
法则:单项式乘以多项式,就是依照分派律用单项式去乘多项式每一项,再把所得积相
加。
7、多项式乘以多项式
法则:多项式乘以多项式,先用一种多项式每一项去乘另一种多项式每一项,再把所得积
相加。
练习七:(1)计算下列各式。
3)1.5104 _____________

北师大七年级数学下册单元测试全套及答案

北师大七年级数学下册单元测试全套及答案

最新北师大版七年级数学下册单元测试全套及答案北师大版七年级下册 第一章 整式的运算单元测试题 一、精心选一选(每小题3分,共21分)1.多项式892334+-+xy y x xy 的次数是 ( )A. 3B. 4C. 5D. 62.下列计算正确的是 ( )A. 8421262x x x =⋅B. ()()m mmy y y =÷34 C. ()222y x y x +=+ D.3422=-a a、3.计算()()b a b a +-+的结果是 ( )A. 22a b -B. 22b a -C. 222b ab a +--D.222b ab a ++-4. 1532+-a a 与4322---a a 的和为 ( )A.3252--a aB. 382--a aC. 532---a aD. 582+-a a5.下列结果正确的是 ( )A. 91312-=⎪⎭⎫ ⎝⎛- B. 0590=⨯ C. ()17530=-. D. 8123-=-6. 若()682b a b a n m =,那么n m 22-的值是( )A. 10B. 52C. 20D. 32 ~7.要使式子22259y x +成为一个完全平方式,则需加上 ( )A. xy 15B. xy 15±C. xy 30D.xy 30±二、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分) 1.在代数式23xy , m ,362+-a a , 12 ,22514xy yz x - , ab32中,单项式有个,多项式有 个。

2.单项式z y x 425-的系数是 ,次数是 。

3.多项式5134+-ab ab 有 项,它们分别是 。

4. ⑴ =⋅52x x 。

⑵()=43y 。

)⑶ ()=322b a 。

⑷()=-425y x 。

⑸ =÷39a a 。

⑹=⨯⨯-024510 。

5.⑴=⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛325631mn mn 。

北师大数学七年级下册练习题

北师大数学七年级下册练习题

七年级下练习题题班级 姓名一、选择题(每小题3分,共30分)1.下列计算正确是( )A .a 23nB .a 2n •3nC .(a 4)26D .()5÷3=()22.已知,3,5=-=+xy y x 则=+22y x ( )A. 19B. a a 62+ C . 25 D.19-3.纳米是一种长度单位,1纳米=10﹣9米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示该种花粉的直径为( )A .3.5×104米B .3.5×10﹣4米C .3.5×10﹣5米D .3.5×10﹣9米4.(x ﹣1)(23)的计算结果是( )A .2x 2﹣3B .2x 2﹣x ﹣3C .2x 2﹣3D .x 2﹣2x ﹣35.如图,点E 在延长线上,下列条件中不能判定∥的是( )A .∠1=∠2B .∠3=∠4C .∠5=∠BD .∠∠180°6.下列乘法中,不能运用平方差公式进行运算的是( )A .()(x ﹣a )B .()(m ﹣b )C .(﹣x ﹣b )(x ﹣b )D .()(﹣a ﹣b ) 7.等腰三角形的周长为13,其中一边长为3,则该等腰三角形的底边为( )A .7B .7或5C .5D .38.若(x ﹣a )(x ﹣5)的展开式中不含有x 的一次项,则a 的值为( ) A . 0 B . 5 C . ﹣5 D . 5或﹣59.下列说法中正确的个数有( )(1)在同一平面内,不相交的两条直线必平行;(2)同旁内角互补;(3)相等的角是对顶角;(4)从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离;(5)经过直线外一点,有且只有一条直线及已知直线平行.A .2个B .3个C .4个D .5个10.如图,△中,∠α°,延长到D ,∠及∠的平分线相交于点A 1,∠A 1及∠A 1的平分线相交于点A 2,依此类推,∠﹣1及∠﹣1的平分线相交于点,则∠的度数为( ) A .B .C .D .二、填空题(每小题4分,共20分)11.计算:(﹣23z 2)2= .12.如图,直线、、相交于一点,∠1=50°,∠2=64°,则∠ 度.13.将两张长方形纸片如图所示摆放,使其中一张长方形纸片的一个顶点恰好落在另一张长方形纸片的一条边上,则∠1+∠2= .14.如果多项式x 2+82是一个完全平方式,则k 的值是 .15.46(310)(510)⨯⨯⨯= ;5x 3·x 4=三、计算及求值(共50分) 题号1 2 3 4 5 6 7 8 9 10 答案16.计算及求值(每小题5分,共20分)(1)(﹣)﹣2﹣(﹣2016)0+()11×(﹣)12;(2)(3x﹣2)2+(﹣3)(﹣x﹣3);(3)(9x4y3﹣6x232)÷(﹣3);(4)先化简,再求值[(2)2﹣y(4x)﹣8]÷(﹣2x).其中2,﹣1.四、解答题(共30分)17、用简便方法计算(每小题5分,共10分)(1)9992(2)2016×2018-2017218.(6分)已知:a﹣4,﹣1,求:()2和a2﹣62的值.19.(本题满分7分)已知:如图所示,∠∠,和分别平分∠和∠,∠∠.求证:∥.证明:∵和分别平分∠和∠(已知)∴∠∠,∠∠().又∵∠∠(已知),∴∠=∠(等量代换).又∵∠∠(已知),∴∠=∠(等量代换),∴∥.20.(本题满分7分)如图,已知∥,∠B=40°,是∠的平分线,⊥,求∠的度数.B卷(50分)五、填空题(4分,共20分)21.已知:32,95,33m﹣21= .22.若(x﹣2)(x2)的积中不含x的二次项和一次项,则..23.若a2﹣31=0,则= .24.已知等腰△中一腰上的高及另一腰的夹角为30°,则△的底角度数为度.25.已知△的面积为1,把它的各边延长一倍得△A1B1C1;再△A1B1C1的各边延长两倍得△A2B2C2;在△A2B2C2的各边延长三倍得△A3B3C3,△A3B3C3的面积为.六、解答题(每小题10分,共30分)26.(1)已知△三边长是a、b、c,化简代数式:﹣﹣﹣﹣﹣c﹣﹣a﹣;(2)已知x2+3x﹣1=0,求:x3+5x2+52015的值.27.先阅读理解下面的例题,再按要求解答下列问题:例题:求代数式y2+48的最小值.解:y2+482+44+4=(2)2+4∵(2)2≥0∴(2)2+4≥4∴y2+48的最小值是4.(1)求代数式m24的最小值;(2)求代数式4﹣x2+2x的最大值;(3)某居民小区要在一块一边靠墙(墙长15m)的空地上建一个长方形花园,花园一边靠墙,另三边用总长为20m的栅栏围成.如图,设(m),请问:当x取何值时,花园的面积最大?最大面积是多少?28.如图(1),在△中,∠90°,⊥,垂足为D.平分∠,交于点E,交于点F.(1)求证:;(2)若,,△、△、△的面积分别为S△、S△、S△,且S△24,则S△﹣S△;(3)将图(1)中的△沿向右平移到△A′D′E′的位置,使点E′落在边上,其它条件不变,如图(2)所示,试猜想:′及有怎样的数量关系?并证明你的结论.2015-2016学年四川省成都七年级(下)期中数学试卷参考答案及试题解析一、选择题(每小题3分,共30分)1.下列计算正确是()A.a23n B.a2n•3n C.(a4)26 D.()5÷3=()2【考点】整式的除法;合并同类项;同底数幂的乘法;幂的乘方及积的乘方.【分析】根据整式的除法,合并同类项的方法,以及同底数幂的乘法和幂的乘方及积的乘方的运算方法逐一判断即可.【解答】解:∵a2≠a3n,∴选项A不正确;∵a2n•3n,∴选项B正确;∵(a4)28,∴选项C不正确;∵()5÷34y2,∴选项D不正确.故选:B.2.下列各组长度的三条线段能组成三角形的是()A.1,2,3 B.1,1,2 C.1,2,2 D.1,3,5【考点】三角形三边关系.【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边,即可求解.【解答】解:根据三角形任意两边的和大于第三边,A、1+2=3,不能组成三角形,故错误,B、1+1=2,不能组成三角形,故错误,C、1+2=3>2,2﹣2=0<1,能够组成三角形,故正确,D、1+3=4<5,5﹣3=2>1,不能组成三角形,故错误,故选C.3.纳米是一种长度单位,1纳米=10﹣9米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示该种花粉的直径为()A.3.5×104米B.3.5×10﹣4米C.3.5×10﹣5米D.3.5×10﹣9米【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,及较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:35000纳米=35000×10﹣9米=3.5×10﹣5米.故选:C.4.(x﹣1)(23)的计算结果是()A.2x2﹣3 B.2x2﹣x﹣3 C.2x2﹣3 D.x2﹣2x﹣3【考点】多项式乘多项式.【分析】根据多项式乘以多项式的法则,可表示为()(),计算即可.【解答】解:(x﹣1)(23),=2x2﹣23x﹣3,=2x2﹣3.故选:A.5.如图,点E在延长线上,下列条件中不能判定∥的是()A.∠1=∠2 B.∠3=∠4 C.∠5=∠B D.∠∠180°【考点】平行线的判定.【分析】根据平行线的判定方法直接判定.【解答】解:选项B中,∵∠3=∠4,∴∥(内错角相等,两直线平行),所以正确;选项C中,∵∠5=∠B,∴∥(内错角相等,两直线平行),所以正确;选项D中,∵∠∠180°,∴∥(同旁内角互补,两直线平行),所以正确;而选项A中,∠1及∠2是直线、被所截形成的内错角,因为∠1=∠2,所以应是∥,故A错误.故选A.6.下列乘法中,不能运用平方差公式进行运算的是()A.()(x﹣a)B.()(m﹣b)C.(﹣x﹣b)(x﹣b)D.()(﹣a﹣b)【考点】平方差公式.【分析】根据平方差公式的特点:两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数解答.【解答】解:A、B、C、符合平方差公式的特点,故能运用平方差公式进行运算;D,两项都互为相反数,故不能运用平方差公式进行运算.故选D.7.等腰三角形的周长为13,其中一边长为3,则该等腰三角形的底边为()A.7 B.7或5 C.5 D.3【考点】等腰三角形的性质;三角形三边关系.【分析】分3长的边是腰和底边两种情况,分别利用三角形的周长,等腰三角形的性质和三角形的三边关系进行讨论即可求解.【解答】解:当长是3的边是底边时,三边为3,5,5,等腰三角形成立;当长是3的边是腰时,底边长是13﹣3﹣3=7,而3+3<7,不满足三角形的三边关系.故底边长是3.故选D.8.如图,下列条件不能证明△≌△的是()A.,B.∠∠D,∠∠C.,∠∠D D.,【考点】全等三角形的判定.【分析】利用全等三角形的判定方法:、、、、分别进行分析即可.【解答】解:A、,再加公共边可利用判定△≌△,故此选项不合题意;B、∠∠D,∠∠再加公共边可利用判定△≌△,故此选项不合题意;C、,∠∠D再加对顶角∠∠可利用判定△≌△,可得,,进而可得,再加公共边可利用判定△≌△,故此选项不合题意;D、,不能判定△≌△,故此选项不合题意;故选:D.9.下列说法中正确的个数有()(1)在同一平面内,不相交的两条直线必平行;(2)同旁内角互补;(3)相等的角是对顶角;(4)从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离;(5)经过直线外一点,有且只有一条直线及已知直线平行.A.2个B.3个C.4个D.5个【考点】平行线的性质;余角和补角;对顶角、邻补角.【分析】(1)根据平行线的定义解答;(2)根据平行线的性质解答;(3)根据对顶角的定义解答;(4)根据点到直线的距离的定义解答;(5)根据平行公理解答.【解答】解:(1)符合平行线的定义,故本选项正确;(2)应为“两直线平行,同旁内角互补”,故本选项错误;(3)相等的角是指度数相等的角,未必为对顶角,故本选项错误;(4)应为“从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离”股本选项错误;(5)这是平行公理,故本选项正确;故选A.10.如图,△中,∠α°,延长到D,∠及∠的平分线相交于点A1,∠A1及∠A1的平分线相交于点A2,依此类推,∠﹣1及∠﹣1的平分线相交于点,则∠的度数为()A.B.C.D.【考点】三角形内角和定理;三角形的外角性质.【分析】由∠A1∠A1+∠A1,∠∠∠A,而A1B、A1C分别平分∠和∠,得到∠2∠A1,∠2∠A1,于是有∠2∠A1,同理可得∠A1=2∠A2,即∠22∠A2,因此找出规律.【解答】解:∵A1B、A1C分别平分∠和∠,∴∠2∠A1,∠2∠A1,而∠A1∠A1+∠A1,∠∠∠A,∴∠2∠A1=α,∴∠A1=α°,同理可得∠A1=2∠A2,即∠22∠A2=α°,∴∠A2=α°,∴∠2n∠,∴∠α°•()()°.故选C.二、填空题(每小题3分,共15分)11.计算:(﹣23z2)2= 4x2y6z4.【考点】幂的乘方及积的乘方.【分析】根据积的乘方,即可解答.【解答】解:(﹣23z2)2=4x2y6z4,故答案为:4x2y6z4.12.如图,直线、、相交于一点,∠1=50°,∠2=64°,则∠74 度.【考点】对顶角、邻补角.【分析】根据平角意义求得∠,再根据对顶角求得结论.【解答】解:∵∠1=50°,∠2=64°,∴∠180°﹣∠1﹣∠2=74°∴∠∠74°,故答案为:74.13.将两张长方形纸片如图所示摆放,使其中一张长方形纸片的一个顶点恰好落在另一张长方形纸片的一条边上,则∠1+∠2= 90°.【考点】平行线的性质.【分析】过点B作∥,根据矩形的性质可得∥∥,再根据两直线平行,内错角相等可得∠1=∠3,∠2=∠4,然后求出∠1+∠2=∠,从而得证.【解答】证明:如图,过点B作∥,∵四边形是矩形纸片,∴∥,∴∥∥,∴∠1=∠3,∠2=∠4,∴∠1+∠2=∠3+∠4=∠90°,即∠1+∠2=90°.故答案为:90°.14.如果多项式x2+8是一个完全平方式,则k的值是16 .【考点】完全平方式.【分析】根据完全平方公式的乘积二倍项和已知平方项先确定出另一个数是4,平方即可.【解答】解:∵82×4•x,∴42=16.15.如图,△中,、分别平分∠和∠,过点F作∥交于点D,交于点E,那么下列结论:①△和△都是等腰三角形;②∠∠;③△的周长等于及的和;④.其中正确的是①③.(填序号,错选、漏选不得分)【考点】等腰三角形的判定;平行线的性质.【分析】由平行线得到角相等,由角平分线得角相等,根据平行线的性质及等腰三角形的判定和性质.【解答】解:①∵∥,∴∠∠,∠∠,∵是∠的平分线,是∠的平分线,∴∠∠,∠∠,∵∠∠,∠∠,∴△,△都是等腰三角形.∴①正确;②∵△不是等腰三角形,∴②∠∠,是错误的;③∵△,△都是等腰三角形.∴,,即有,∴△的周长.∴③正确,共2个正确的;④∵△不是等腰三角形,∴∠≠∠,∴∠≠∠,∴是错误的;故答案为:①③.三、计算及求值(每小题24分,共24分)16.计算及求值(1)(﹣)﹣2﹣(﹣2016)0+()11×(﹣)12;(2)(3x﹣2)2+(﹣3)(﹣x﹣3);(3)(9x4y3﹣6x232)÷(﹣3);(4)先化简,再求值[(2)2﹣y(4x)﹣8]÷(﹣2x).其中2,﹣1.【考点】整式的混合运算—化简求值;零指数幂;负整数指数幂.【分析】(1)=(﹣4)2=16,对于()11×(﹣)12;先将(﹣)12化为,再拆项变成,利用积的乘方的逆运算进行计算;(2)利用完全平方差公式和平方差公式计算,注意(﹣3)(﹣x﹣3)=(﹣3)(﹣3﹣x)=9﹣x2;(3)多项式除以单项式,把多项式的每一项都及单项式相除,最后相加即可;(4)先化简,按运算顺序,再代入求值.【解答】解:(1)(﹣)﹣2﹣(﹣2016)0+()11×(﹣)12,=16﹣1+(×)11×,,=16.5;(2)(3x﹣2)2+(﹣3)(﹣x﹣3),=9x2﹣124+9﹣x2,=8x2﹣1213;(3)(9x4y3﹣6x232)÷(﹣3),=9x4y3÷(﹣3)﹣6x2y÷(﹣3)+32÷(﹣3),=﹣3x3y2+2x﹣y;(4)先化简,再求值[(2)2﹣y(4x)﹣8]÷(﹣2x).其中2,﹣1.原式=[4x2+42﹣y2﹣4﹣8]÷(﹣2x),=(4x2﹣8)÷(﹣2x),=﹣24y.当2,﹣1时,原式=﹣2×2+4×(﹣1)=﹣4﹣4=﹣8.四、解答题(共31分)17.解关于x的方程:(2)2﹣(x﹣2)(2)=6.【考点】平方差公式;完全平方公式;解一元一次方程.【分析】先转化为一般式方程,然后解关于x的一元一次方程.【解答】解:(2)2﹣(x﹣2)(2)=6,x2+44﹣x2+4=6,46﹣8,﹣.18.已知:a﹣4,﹣1,求:()2和a2﹣62的值.【考点】完全平方公式.【分析】依据完全平方公式对代数式进行变形,然后整体代入进行求解即可.【解答】解:()2=(a﹣b)2+442+4×(﹣1)=16﹣4=12.a2﹣62=(a﹣b)2﹣416+4=20.19.如图,已知点A、F、E、C在同一直线上,∥,∠∠,.(1)从图中任找两对全等三角形,并用“≌”符号连接起来;(2)求证:.【考点】全等三角形的判定及性质.【分析】(1)本题有三对三角形全等,分别是△≌△,△≌△,△≌△(2)先根据利用等式的性质得:,由∥得内错角相等,则△≌△,得出结论.【解答】解:(1)△≌△,△≌△,(2)∵,∴,即,∵∥,∴∠∠,∵∠∠,∴△≌△(),∴.20.平面内的两条直线有相交和平行两种位置关系.(1)如图1,若∥,点P在、外部,则有∠∠,又因∠是△的外角,故∠∠∠D.得∠∠B﹣∠D.将点P移到、内部,如图2,以上结论是否成立?若成立,说明理由;若不成立,则∠、∠B、∠D之间有何数量关系?请证明你的结论;(2)在如图2中,将直线绕点B逆时针方向旋转一定角度交直线于点Q,如图3,则∠、∠B、∠D、∠之间有何数量关系?(不需证明);(3)根据(2)的结论求如图4中∠∠∠∠∠E的度数.【考点】平行线的性质;三角形内角和定理;三角形的外角性质.【分析】(1)延长交于点E,根据∥得出∠∠,再由三角形外角的性质即可得出结论;(2)连接并延长,由三角形外角的性质得出∠∠∠,∠∠∠,由此可得出结论;(3)由(2)的结论得:∠∠∠E.∠∠∠D.再根据∠∠∠180°即可得出结论.【解答】解:(1)不成立,结论是∠∠∠D.延长交于点E,∵∥,∴∠∠,又∵∠∠∠D,∴∠∠∠D;(2)结论:∠∠∠∠D.连接并延长,∵∠是△的外角,∠是△的外角,∴∠∠∠,∠∠∠,∴∠∠∠∠∠∠,即∠∠∠∠D;(3)由(2)的结论得:∠∠∠E.∠∠∠D.又∵∠∠∠180°∴∠∠∠∠∠180°.(或由(2)的结论得:∠∠∠∠E且∠∠,∴∠∠∠∠∠180°.五、填空题(4分,共20分)21.已知:32,95,33m﹣21= .【考点】同底数幂的除法;同底数幂的乘法;幂的乘方及积的乘方.【分析】逆运用同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加以及幂的乘方,底数不变指数相乘进行计算即可得解.【解答】解:33m﹣21=33m÷32n×31,=(3m)3÷(32)n×3,=23÷9n×3,=8÷9×3,=.故答案为:.22.若(x﹣2)(x2)的积中不含x的二次项和一次项,则 2 . 4 .【考点】多项式乘多项式.【分析】本题需先根据已知条件求出(x﹣2)及(x2)的积,再根据积中不出现一次项和二次项这个条件,即可求出a、b的值.【解答】解:(x﹣2)(x2)32﹣2x2﹣2﹣2b∵积中不含x的二次项和一次项,∴a﹣2=0,b﹣20,解得2,4.故答案为:2,4.23.若a2﹣31=0,则= 7 .【考点】完全平方公式.【分析】将配方为完全平方式,再通分,然后将a2﹣31=0变形为a2+1=﹣3a,再代入完全平方式求值.【解答】解:∵=(a22﹣2)=()2﹣2=()2﹣2①;又∵a2﹣31=0,于是a2+1=3a②,将②代入①得,原式=()2﹣2=9﹣2=7.故答案为7.24.已知等腰△中一腰上的高及另一腰的夹角为30°,则△的底角度数为30或60 度.【考点】等腰三角形的性质.【分析】等腰三角形一腰上的高及另一腰的夹角为30°,但没有明确此等腰三角形是锐角三角形还是钝角三角形,因此,有两种情况,需分类讨论.【解答】解:当等腰三角形为锐角三角形时,如图1,由已知可知,∠30°,又∵⊥,∴∠90°,∴∠60°,∴∠∠60°.当等腰三角形为钝角三角形时,如图2,由已知可知,∠30°,又∵⊥,∴∠60°,∴∠∠30°.故答案为:30或60.25.已知△的面积为1,把它的各边延长一倍得△A1B1C1;再△A1B1C1的各边延长两倍得△A2B2C2;在△A2B2C2的各边延长三倍得△A3B3C3,△A3B3C3的面积为4921 .【考点】三角形的面积.【分析】先根据根据等底的三角形高的比等于面积比求出△A1B1C1及△A2B2C2的面积,再根据两三角形的倍数关系求解即可.【解答】解:△及△A11底相等(1B),高为1:2(1=2),故面积比为1:2,∵△面积为1,∴S△A1B12.同理可得,S△C1B12,S△12,∴S△A1B1C1△C1B1△1△A1B1△2+2+2+1=7;如图,连接A2C1,根据A2B1=2A1B1,得到:A1B1:A2A1=1:3,因而若过点B1,A2作△A1B1C1及△A1A2C1的A1C1边上的高,则高线的比是1:3,因而面积的比是1:3,则△A2B1C1的面积是△A1B1C1的面积的2倍,则△A2B1C1的面积是14,同理可以得到△A2B2C1的面积是△A2B1C1面积的2倍,是28,则△A2B2B1的面积是42,同理△B2C2C1和△A2C2A1的面积都是42,△A2B2C2的面积是7×19=133,同理△A3B3C3的面积是7×19×37=4921,故答案为:4921.六、解答题(每小题10分,共30分)26.(1)已知△三边长是a、b、c,化简代数式:﹣﹣﹣﹣﹣c﹣﹣a﹣;(2)已知x2+3x﹣1=0,求:x3+5x2+52015的值.【考点】因式分解的应用;整式的加减;三角形三边关系.【分析】(1)根据三角形的三边关系即三角形的两边之和大于第三边,两边之差小于第三边,去掉绝对值,再根据整式加减的法则即可得出答案.(2)先据x2+3x﹣1=0,得出x2+31,再将x3+5x2+52015化简为含有x2+3x的代数式,然后整体代入即可求出所求的结果.【解答】解:(1)∵a、b、c是△三边的长,∴﹣﹣﹣﹣﹣c﹣﹣a﹣﹣c﹣(c﹣)﹣(﹣)+(﹣)﹣c﹣﹣﹣c﹣a﹣=2a﹣2c;(2)∵x2+3x﹣1=0,∴x2+31,∴x3+5x2+52015,(x2+3x)+2x2+52015=2x2+62015=2(x2+3x)+2015=2+2015=2017.27.先阅读理解下面的例题,再按要求解答下列问题:例题:求代数式y2+48的最小值.解:y2+482+44+4=(2)2+4∵(2)2≥0∴(2)2+4≥4∴y2+48的最小值是4.(1)求代数式m24的最小值;(2)求代数式4﹣x2+2x的最大值;(3)某居民小区要在一块一边靠墙(墙长15m)的空地上建一个长方形花园,花园一边靠墙,另三边用总长为20m的栅栏围成.如图,设(m),请问:当x取何值时,花园的面积最大?最大面积是多少?【考点】配方法的应用;非负数的性质:偶次方.【分析】(1)多项式配方后,根据完全平方式恒大于等于0,即可求出最小值;(2)多项式配方后,根据完全平方式恒大于等于0,即可求出最大值;(3)根据题意列出关系式,配方后根据完全平方式恒大于等于0,即可求出最大值以及x的值即可.【解答】解:(1)m24=()2+,∵()2≥0,∴()2+≥,则m24的最小值是;(2)4﹣x2+2﹣(x﹣1)2+5,∵﹣(x﹣1)2≤0,∴﹣(x﹣1)2+5≤5,则4﹣x2+2x的最大值为5;(3)由题意,得花园的面积是x(20﹣2x)=﹣2x2+20x,∵﹣2x2+20﹣2(x﹣5)2+50∵﹣2(x﹣5)2≤0,∴﹣2(x﹣5)2+50≤50,∴﹣2x2+20x的最大值是50,此时5,则当5m时,花园的面积最大,最大面积是50m2.28.如图(1),在△中,∠90°,⊥,垂足为D.平分∠,交于点E,交于点F.(1)求证:;(2)若,,△、△、△的面积分别为S△、S△、S△,且S△24,则S△﹣S△ 2 ;(3)将图(1)中的△沿向右平移到△A′D′E′的位置,使点E′落在边上,其它条件不变,如图(2)所示,试猜想:′及有怎样的数量关系?并证明你的结论.【考点】全等三角形的判定及性质;三角形的面积;角平分线的性质;等腰三角形的判定及性质.【分析】(1)求出∠∠,∠∠,根据三角形外角性质得出∠∠,即可得出答案;(2)求出△和△的面积,再相减即可求出答案;(3)过F作⊥于H,求出,证△′≌△,推出′,都减去′即可.【解答】(1)证明:如图(1),∵在△中,∠90°,⊥,∴∠∠90°,∴∠∠90°,∠∠90°,∴∠∠B,∵平分∠,∴∠∠,∴∠∠∠∠,∴∠∠,∴.(2)解:∵S△24,,,∴S△△△×24=6①,S△△△×24=8②,∴②﹣①得:S△﹣S△8﹣6=2,故答案为:2.(3)′,证明:如图(2),过F作⊥于H,∵⊥,∴∥,∴∠′=∠,∵△沿平移到△A′D′E′,∴′E′,′′,∴四边形′E′是平行四边形,∴′∥,∵∠90°,∴∠′=∠90°=∠,∵平分∠,∠90°,⊥,∴,∵,∴,在△′和△中∴△′≌△(),∴′,∴′﹣′﹣E′F,即′.2017年2月17日。

北师大版七年级数学试题(含答案)

北师大版七年级数学试题(含答案)

北师大版七年级下册测试题(满分120分,时间120分钟)一、选择题(每题3分。

共30分)1、病毒是一种体型非常小的微生物,现已知的最小病毒为双联病毒科,直径0.000000018m ,用科学计数法表示为( C )A.18×10-9B.1.8×10-9C.1.8×10-8D.1.8×1082.如果(x-2)(x+3)=x 2++px+q ,则p 、q 的值是( A )A.p=1,q=-6B.p=5,q=-6C.p=5,q=6D.p=1,q=63.下列说法正确的是( D )A.相等的角是对顶角B.同位角相等C.内错角相等D.对顶角相等4.如图,是赛车跑道的一段示意图,其中AB ∥DE ,测得∠B=140º,∠D=120º,则∠C 的度数为( B )A.120ºB.100ºC.140º D90º(第4题图) (第5题图)5.如图是某地一天内气温的变化曲线,当天该地的温差是( A )A.18℃B.9℃C.20℃D.40℃6.下列条件中,能用边角边...证明△ABC ≌△DEF 的是( B ) A.∠A=∠D,∠B=∠E,AB=DE B.AB=DE,BC=EF,∠B=∠EC.AC=EF,BC=ED,∠B=∠ED.AB=DE,∠B=∠E,AC=DF7.长方形的周长为24cm ,其中宽为xcm (x>0),其面积为ycm 2,现将长边截去一段,使其变成一个正方形,则截去部分的面积为( C )A.)12(x xy x -- B.x x )(-12 C.)212(x x - D.x xy - 8.关于尺规作图,下列说法正确的是( C )A.画图工具可以用三角板代替直尺,用量角器代替圆规B.只要条件允许,可以用量角器来度量角的度数,用三角尺量取线段的长度C.直尺只能用来作直线、线段、射线或延长线段;圆规用来作圆和圆弧D.尺规作图所用的工具中,都不能取一条已知长度的线段9.如果多项式221624y mxy x ++是一个完全平方式,则m 的值为( A )A.±8B.±16C.±32D.±410.电视机售价连续两次降价10%,降价后每台电视机的售价为a 元,则该电视机的原价为( D )A.0.81a 元B.1.21a 元C.元21.1aD.元81.0a 解析:设原价为x 。

2020最新北师大版七年级数学下册全册试卷及答案(含单元期中期末全套)〈精〉

2020最新北师大版七年级数学下册全册试卷及答案(含单元期中期末全套)〈精〉
20、(本题8分)若(x2+mx-8) (x2-3x+n)的展开式中不含x2和x3项,求m和n的值
21、(本题8分)若 =2005, =2006, =2007,求 的值。
22、(本题8分).说明代数式 的值,与 的值无关。
23、(本题8分)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形
C.50°、130°
D.60°、120°
11、下列语句正确的是( )
A.一个角小于它的补角
B.相等的角是对顶角
C.同位角互补,两直线平行
D.同旁内角互补,两直线平行
12、图中与∠1是内错角的角的个数是( )
A.2个
B.3个
C.4个
D.5个
13、如图,直线AB和CD相交于点O,∠AOD和∠BOC的和为202°,那么∠AOC的度数为( )
(a-b)2+______=(a+b)2
18.若x2-3x+a是完全平方式,则a=_______.
19.多项式5x2-7x-3是____次_______项式.
20.用科学记数法表示-0.000000059=________.
21.若-3xmy5与0.4x3y2n+1是同类项,则m+n=______.
A.89°
B.101°
C.79°
D.110°
14、如图,∠1和∠2是对顶角的图形的个数有( )
A.1个
B.2个
C.3个
D.0个
15、如图,直线a、b被直线c所截,现给出下列四个条件:①∠1=∠5,②∠1=∠7,③∠2+∠3=180°,④∠4=∠7,其中能判定a∥b的条件的序号是( )
33.(ab+1)2-(ab-1)2

初中数学北师大版七年级下册竞赛试题

初中数学北师大版七年级下册竞赛试题

奥林匹克赛题一、选择题:1、已知数轴上三点A、B、C分别表示有理数、1、一1,那么表示()(A)A、B两点的距离(B)A、C两点的距离(C)A、B两点到原点的距离之和(D)A、C两点到原点的距离之和2、王老伯在集市上先买回5只羊,平均每只元,稍后又买回3只羊,平均每只元,后来他以每只的价格把羊全部卖掉了,结果发现赔了钱,赔钱的原因是()(A)(B)(C)(D)与、的大小无关3、两个正数的和是60,它们的最小公倍数是273,则它们的乘积是()(A)273(B)819(C)1199(D)19114、某班级共48人,春游时到杭州西湖划船.每只小船坐3人,租金16元,每只大船坐5人,租金24元,则该班至少要花租金()(A)188元(B)192元(0232元(D)240元5、已知三角形的周长是,其中一边是另一边2倍,则三角形的最小边的范围是()(A)与之间(B)与之间(C)与之间(D)与之间6、两个相同的瓶子装满酒精溶液.一个瓶子中酒精与水的容积之比为:1,另一个瓶子中酒精与水的容积之比是",把两瓶溶液混在一起,混合液中酒精与水的容积之比是() (A)(B)(C)(D)二、填空题:7、已知,,,且>>,则=:8、设多项式,已知当=0时,:当时,,则当时,=:9、将正偶数按下表排列成5列:第1列第2列第3列第4列第5列第一行2 4 6 8第二行16141210第三行18 202224第四行3230 28 26根据表中的规律,偶数2004应推在第行,第列:10、甲、乙两人从400米的环形跑道上一点A背向同时出发,8分钟后两人第五次相遇,已知每秒钟甲比乙多走0.1米,那么两人第五次相遇的地点与点A沿胞道上的最短路程是__________米:11、有人问李老师:“你班里有多少学生?”,李老师说:“我班现在有一半学生在参加数学竞赛.四分之一的学生在参加音乐兴趣小组,七分之一的学生在阅览室,还剩三个女同学在看电视”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学试卷 桑水出品
2015-2016学年度第二学期第二次形成性测试
初一数学试题
一、选择题(每题3分,共24分)
1.下列计算正确的是( )
A.3232a a a =+
B.428a a a =÷
C.623·a a a =
D. 326()a a = 2.如果多项式x 2+mx +16是一个二项式的完全平方式,那么m 的值为( )
A .4
B .8
C .±8
D .-8
3.下列方程组①2131x y y z -=⎧⎨=+⎩ ②231x y x =⎧⎨-=⎩③123xy x y =⎧⎨+=⎩④1111x y x y ⎧+=⎪⎨⎪+=⎩
⑤11x y =⎧⎨=⎩ 其中是二元一次方程组的有 ( )
A .2个
B .3个
C .4个
D .5个
4.以下几个不等式的变形:①由x+7>8得x >1;②由3x ﹣1>x+7得x >4;③由﹣3<x 得x >﹣3;④由x <2x+3得x >3;⑤由﹣3x >﹣6得x >2.其中正确的有( )
A .2个
B .3个
C .4个
D .5个
5.关于x 的不等式ax+3a >3+x 的解集为x <﹣3,则a 应满足( )
A .a <1
B .a >1
C .a ≥1
D .a ≤1
6.四川雅安地震期间,为了紧急安置60名地震灾民,需要搭建可容纳6人或4人的帐篷,若所搭建的帐篷恰好能容纳这60名灾民,则不同的搭建方案有( )
A .1种
B .11种
C .6种
D .9种
7. 关于x ,y 的二元一次方程组
的解满足x ﹣y >2,则a 的取值范围是( ) A.a>3 B.a>-3 C.a<-3
D. a <3
8.我校举行初一年级数学竞赛,共有20道题。

评分办法:答对一题记6分,答错一题扣2 分,不答不得分也不扣分。

粗心的李明同学有一道题漏写,要想本次竞赛成绩不低于80分,那么他要达到目标,答对的题数不少于( )
A.17 B .16 C .14
D .15
二、填空题(每题3分,共30分)
9.某种细菌的存活时间只有0.000 012秒,则用科学记数法表示该数据为 秒. 10. 已知21x y =⎧⎨=⎩
是方程26x ay +=的解,则a = . 11.若2x |m|+(m+1)y=3m ﹣1是关于x ,y 的二元一次方程,则m 的值是 .
12.若关于x 的不等式3m ﹣2x <7﹣x 的解集是x >2,则m 的值为 .
13.在二元一次方程3x+2y=2中,x 与y 互为相反数,则x y
= .
14. 若a m =8,a n =2,则a m+n = .
15. 分解因式:a 3-a = .
16. 不等式≥x ﹣2的非负整数解是 . 17.如果方程组⎩
⎨⎧=-+=+5)1(,1073y a ax y x 的解中的x 与y 的值相等,那么a 的值是 . 18.某班学生到农村劳动,一名男生因病不能参加,另有三名男生体质较弱,教师安排他们与女生一起抬土,两人抬一筐土,其余男生全部挑土(一根扁担,两只筐),这样安排劳动时恰需要筐68个,扁担40根,则这个班共有 人.
三 、解答题(本大题共9小题,共66分,解答时应写出必要的文字说明、证明过程或演算步骤)
19. (本题8分)计算.
(1)()()2201302013113.14323π-⎛⎫⎛⎫--+⨯- ⎪ ⎪⎝⎭⎝⎭ (2)(2x +y)2
-(2x +y)(2x -y)
20. (本题8分)解下列方程组.
(1) (2 )111234
y x x y +⎧-⎪+=⎨⎪+=⎩ 21. (本题8分)解下列不等式.
(1)3﹣(2x ﹣3)≥3(3﹣2x ) (2)
22. (本题6)若代数式234x - -1 的值不小于43
x -的值,试求x 的取值范围,并把结果在数轴上表示出来。

23. (本题6分)甲、乙两人同求方程7ax by -=的整数解,甲正确地求出一个解为11x y =⎧⎨=-⎩
,乙把7ax by -=看成1ax by -=,求得一个解为12x y =⎧⎨=⎩ ,求a 、b 的值。

24. (本题6分)如图,在3×3的方阵图中,填写了一些数和代数式(其
中每个代数式都表示一个数),使得每行的3个数、每列的3个数、斜对
角的3个数之和均相等.
(1)求错误!未找到引用源。

、错误!未找到引用源。

的值;
(2)写出a 、b 、 c 的值;
25.(本题10分)“六一”临近,某旅行社准备组织“亲子一家游”活动,
报名的人数共有69人,其中成人的人数比儿童人数的2倍少3人.
(1)则旅游团中成人有 人, 儿童有 人。

(2)旅行社为了吸引游客,打算给游客准备一件T 恤衫,成人T 恤衫每购买10件赠送1件儿童T 恤衫(不足10件不赠送),儿童T 恤衫每件15元,旅行社购买服装的费用不超过1200元,请问每件成人T 恤衫的价格最高是多少元?
26.(本题14分)我校“小记者站”同学周末到新河花卉基地参加社会实践活动,该基地有玫瑰花和薰衣草两种花卉。

活动后,李明同学了解到:花卉基地有甲乙两家种植户,种植面积与卖花总收入如下表.(假设不同种植户种植的同种花卉每亩卖花平均收入相等)
种植户 玫瑰花种植面积(亩) 薰衣草种植面积(亩) 卖花总收入(元)

5 3 33500 乙 3 7 43500
(1)试求玫瑰花、薰衣草每亩卖花的平均收入各是多少?
(2)甲、乙种植户计划合租30亩地用来种植玫瑰花和薰衣草,根据市场调查,要求玫瑰花的种植面积大于薰衣草的种植面积(两种花的种植面积均为整数亩).花卉基地对种植
玫瑰花的种植户给予补贴:种植玫瑰花的面积不超过15亩的部分,每亩补贴100元;超过15亩但不超过20亩的部分,每亩补贴200元;超过20亩的部分每亩补贴300元.设玫瑰花的种植面积为m亩.
①则m满足条件:<m ≤
②若设总收入为w元,用含m的代数式表示w.
③为了使总收入不低于128000元,则他们有几种种植方案?。

相关文档
最新文档