【中考模拟】天津市武清区2017年中考数学模拟试卷(含答案)

合集下载

【中考模拟2017】天津市 2017年九年级数学中考模拟试卷 六(含答案)

【中考模拟2017】天津市 2017年九年级数学中考模拟试卷 六(含答案)

2017年九年级数学中考模拟试卷一、选择题:1.若│x│=2,│y│=3,则│x+y│的值为( )A.5B.-5C.5或1D.以上都不对2.在Rt△ABC中,∠C=90°,AC=3,AB=4,那么cosA的值是()A. B. C. D.3.下列说法中错误的是().A.成中心对称的两个图形全等B.成中心对称的两个图形中,对称点的连线被对称轴平分C.中心对称图形的对称中心是对称点连线的中心D.中心对称图形绕对称中心旋转180°后,都能与自身重合4.已知数349028用四舍五入法保留两个有效数字约是3.5×105,则所得近似数精确到()A.十位B.千位C.万位D.百位5.由5个大小相同的小正方体拼成的几何体如图所示,则下列说法正确的是()A.主视图的面积最小B.左视图的面积最小C.俯视图的面积最小D.三个视图的面积相等6.我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:①log216=4;②log525=5;③log20.5=﹣1.其中正确的是()A.①②B.①③C.②③D.①②③7.若,则w=()8.方程x2﹣x﹣1=0的解的情况是()A.有两个不相等的实数根 B.没有实数根C.有两个相等的实数根 D.有一个实数根9.下列各式中,一定能成立的是()A. B.C. D.10.如图,将正方形对折后展开(图④是连续两次对折后再展开),再按图示方法折叠,能够得到一个直角三角形,且它的一条直角边等于斜边的一半.这样的图形有()A.4个B.3个C.2个D.1个11.下列函数中,是反比例函数的为()A.y=B.y=C.y=2x+1D.2y=x12.将函数y=x2+x的图象向右平移a(a>0)个单位,得到函数y=x2-3x+2的图象,则a的值为()A.1B.2C.3D.4二、填空题:13.若二次三项式x2+(2m-1)x+4是一个完全平方式,则m= .14.式子在实数范围内有意义,则x的范围是.15.一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球个.16.已知正比例函数的图象在第二、第四象限,则m的值为17.如图,点P是RtΔABC斜边AB上的任意一点(A、B两点除外)过点P作一条直线,使截得的三角形与RtΔABC相似,这样的直线可以作条.18.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过(﹣3,0),对称轴直线为x=﹣1,给出四个结论:①16a﹣4b+c>0;②abc>0;③一元二次方程ax2+bx+c=5没有实数根;④(x1,y1),(x2,y2)是抛物线上的两点,且x1<﹣1<x2,﹣1﹣x1<x2+1,则y1>y2.其中结论正确的个数为三、解答题:19.解不等式组:.20.今年4月,我市某中学举行了“爱我中国•朗诵比赛”活动,根据学生的成绩划分为A、B、C、D四个等级,并绘制了如下两种不完整的统计图.根据图中提供的信息,回答下列问题:(1)参加朗诵比赛的学生共有人,并把条形统计图补充完整;(2)扇形统计图中,m= ,n= ;C等级对应扇形的圆心角为度;(3)学校准备从获A等级的学生中随机选取2人,参加市举办的朗诵比赛,请利用列表法或树形图法,求获A 等级的小明参加市朗诵比赛的概率.21.如图,PA,PB是⊙O的切线,A,B为切点,∠OAB=30°.(1)求∠APB的度数;(2)当OA=3时,求AP的长.22.如图,随着我市铁路建设进程的加快,现规划从A地到B地有一条笔直的铁路通过,但在附近的C处有一大型油库,现测得油库C在A地的北偏东60°方向上,在B地的西北方向上,AB的距离为250(+1)米.已知在以油库C为中心,半径为200米的范围内施工均会对油库的安全造成影响.问若在此路段修建铁路,油库C 是否会受到影响?请说明理由.23.某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价每天增加x元(x为10的整数倍).(1)设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围;(2)设宾馆一天的利润为w元,求w与x的函数关系式;(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?24.在正方形ABCD中,连接BD.(1)如图1,AE⊥BD于E.直接写出∠BAE的度数.(2)如图1,在(1)的条件下,将△AEB以A旋转中心,沿逆时针方向旋转30°后得到△AB′E′,AB′与BD交于M,AE′的延长线与BD交于N.①依题意补全图1;②用等式表示线段BM、DN和MN之间的数量关系,并证明.(3)如图2,E、F是边BC、CD上的点,△CEF周长是正方形ABCD周长的一半,AE、AF分别与BD交于M、N,写出判断线段BM、DN、MN之间数量关系的思路.(不必写出完整推理过程)25.如图,已知在平面直角坐标系中,点A(4,0)是抛物线y=ax2+2x﹣c上的一点,将此抛物线向下平移6个单位后经过点B(0,2),平移后所得的新抛物线的顶点记为C,新抛物线的对称轴与线段AB的交点记为P.(1)求平移后所得到的新抛物线的表达式,并写出点C的坐标;(2)求∠CAB的正切值;(3)如果点Q是新抛物线对称轴上的一点,且△BCQ与△ACP相似,求点Q的坐标.参考答案1.C2.B3.B4.C5.B6.B7.D8.A9.A10.B11.A12.B13.答案为:2.5或-1.5.14.答案为:x≥1且x≠2.15.答案为:8.16.答案为:-2;17.略18.3个;19.,不等式①的解集为:x<4,不等式②的解集为:x>2.故不等式组的解集为:2<x<4.20.解:(1)48,0.81;(2)P=0.8;21.答案为:∠APB=60°AP=322.【解答】解:过点C作CD⊥AB于D,∴AD=CD•cot45°=CD,BD=CD•cot30°=CD,∵BD+AD=AB=250(+1)(米),即CD+CD=250(+1),∴CD=250,250米>200米.答:在此路段修建铁路,油库C是不会受到影响.23.24.解:(1)∵BD是正方形ABCD的对角线,∴∠ABD=∠ADB=45°,∵AE⊥BD,∴∠ABE=∠BAE=45°,(2)①依题意补全图形,如图1所示,②BM、DN和MN之间的数量关系是BM2+MD2=MN2,将△AND绕点D顺时针旋转90°,得到△AFB,∴∠ADB=∠FBA,∠BAF=∠DAN,DN=BF,AF=AN,∵在正方形ABCD中,AE⊥BD,∴∠ADB=∠ABD=45°,∴∠FBM=∠FBA+∠ABD=∠ADB+∠ABD=90°,在Rt△BFM中,根据勾股定理得,FB2+BM2=FM2,∵旋转△ANE得到AB1E1,∴∠E1AB1=45°,∴∠BAB1+∠DAN=90°﹣45°=45°,∵∠BAF=DAN,∴∠BAB1+∠BAF=45°,∴∠FAM=45°,∴∠FAM=∠E1AB1,∵AM=AM,AF=AN,∴△AFM≌△ANM,∴FM=MN,∵FB2+BM2=FM2,∴DN2+BM2=MN2,(3)如图2,将△ADF绕点A顺时针旋转90°得到△ABG,∴DF=GB,∵正方形ABCD的周长为4AB,△CEF周长为EF+EC+CF,∵△CEF周长是正方形ABCD周长的一半,∴4AB=2(EF+EC+CF),∴2AB=EF+EC+CF ∵EC=AB﹣BE,CF=AB﹣DF,∴2AB=EF+AB﹣BE+AB﹣DF,∴EF=DF+BE,∵DF=GB,∴EF=GB+BE=GE,由旋转得到AD=AG=AB,∵AM=AM,∴△AEG≌△AEF,∠EAG=∠EAF=45°,和(2)的②一样,得到DN2+BM2=MN2.25.。

天津市五区2017中考第一次模拟考试数学试卷(含答案)

天津市五区2017中考第一次模拟考试数学试卷(含答案)

2017年天津市部分区初中毕业生学业考试第一次模拟练习数学参考答案一、选择题(本大题共12小题,每小题3分,共36分) (1)D (2)C (3)C (4)B (5)A (6)B (7)C(8)D(9)A(10)C(11)A(12)B二、填空题(本大题共6小题,每小题3分,共18分) (13)16(14)26x y (15)2(2)x - (16)21y x =-(答案不惟一,满足0≤b 即可)(171-(18);(Ⅱ)如图,作正方形ANMB ,取格点D ,P ,使得AD=5,AP=4,连接DN ,找到使PQ ∥DN 的格点Q ,连接PQ ,交AN 于点F ,同理找到点E ,连接EF ,则矩形AFEB 即为所求. 三、解答题(本大题共7小题,共66分) (19)(本小题8分)解:(Ⅰ)3x ≥-;…………………………………………………………………2' (Ⅱ)2x <; …………………………………………………………………4'(Ⅲ)6'(Ⅳ)32x -≤<; …………………………………………………………………8'(20)(本小题8分)解:(Ⅰ)25. ………………………………………………………………………1' (Ⅱ)观察条形统计图,∵ 1.503 1.556 1.604 1.655 1.7021.59x ⨯+⨯+⨯+⨯+⨯=≈,第(18)题∴ 这组数据的平均数约为1.59.……………………………………………3'∵ 在这组数据中,1.55出现了6次,出现的次数最多,∴ 这组数据的众数为1.55.…………………………………………………5'∵ 将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.60, 有1.60 1.601.602+=, ∴ 这组数据的中位数为1.60.………………………………………………7' (Ⅲ)不能. ……………………………………………………………………8' (21)(本小题10分)证明:(Ⅰ)如图,连接OB .………………………………………………………1' ∵AB 是⊙O 的切线,∴OB AE ⊥. …………………………………………………………………2' ∵CE AE ⊥,∴OB ∥CE .………………………………………………………………………3' ∴∠OBC =∠BCE . ∵ OB OC =,∴∠OBC =∠OCB . ……………………………………………………………4' ∴∠BCE =∠OCB ,即CB 平分∠ACE .………………………………………5'(Ⅱ)如图,连接DB . 在Rt △BCE中5BC ===. ……………………………6'∵ CD 是⊙O 的直径,∴∠CBD =90°.∴CBD E ∠=∠.………………………………………………………………………7' 又∵DCB BCE ∠=∠, ∴BCE DCB ∠=∠cos cos 即BCCEDC BC =…………………………………………8' ∴554DC =即DC =254. …………………………………………………………9'25B第(20)题图B第(20)题图(22)(本小题10分)解:过点D 作DM ⊥BC 于M ,DN ⊥AC 于N ,则四边形DNCM 是矩形.………………………1' ∵DA =6,斜坡FA 的坡比i∴DN =132AD =.………………………………2' AN=………………………………………3' 设大树BC 的高度为x 米.在Rt BAC △中,48BAC ∠=︒,tan BCBAC AC∠=,………………………………4' ∴0tan 48 1.11BC xAC AC==≈. ∴ 1.11xAC ≈.………………………………………………………………………5' ∴DM =NC =AN +AC= 1.11x +. 由题意得30BDM ∠=︒,在Rt BDM △中,DMBMBDM =∠tan ,……………6' ∴tan 30)1.11x BM DM =︒==.……………………………7' 又∵BM =3BC MC x -=- ∴3)1.11xx -=. ………………………………………………………8' ∴ 12.5x ≈. ………………………………………………………………………10' 答:大树BC 的高度约为12.5米. (23)(本小题10分)解:(Ⅰ) 表一:港口从甲仓库运(吨)从乙仓库运(吨)A 港 x 100-xB 港80-xx -30………………………3'表二: 港口从甲仓库运到港口费用(元) 从乙仓库运到港口费用(元)NMA 港 14x 20(100-x )B 港10(80-x )8(x -30)………………………6' (Ⅱ)设总运费W 元,由(Ⅰ)可知,总运费为:()()()14201001080830W x x x x =+-+-+-82560W x =-+.……………………………………………………………………7' 其中,080010070x x ⎧⎨-⎩≤≤≤≤,解得30≤x ≤80 . ………………………………8'∵ 80-<,∴ W 随x 的增大而减小.∴ 当80x =时,W 取得最小值1920. …………………………………………9' 答:此时方案为:把甲仓库的物资(80吨)全部运往A 港口,再从乙仓库运20吨往A 港口,乙仓库余下的物资(50吨)全部运往B 港口. …………………………10' (24)(本小题10分)解:(Ⅰ)x =15 cm ;……………………2'(Ⅱ)(1)当0≤x ≤6时,如图2所示. ∠GDB=60°,∠GBD =30°,DB =x ,得DG =12x , BG x,重叠部分的面积为2111222y DG BG x x x=⋅=⨯=;…………4' (2)当6<x ≤12时,如图3所示. BD =x ,DG =12x ,BGx ,BE =x ﹣6,EH)6x -.重叠部分的面积为1122BDG BEHy S S DG BG BE EH =-=⋅-⋅ 即)222162y x x =--=+-;…6' ③当12<x ≤15时,如图4所示.AC =6,BC =,BD =x ,BE =(x ﹣6),EG )6x -,重叠部分的面积为1122ABC BEGy S S AC BC BE EG =-=⋅-⋅,即)226y x x=-=++8'综上所述:()))2220661212115xxxy xx x⎪⎪⎪=+-⎨⎪⎪≤≤≤+⎪≤+⎪⎩<<;………9'(Ⅲ)点M与点N10'如图5所示作NG⊥DE于G点,点M在NG上时MN最短.NG是DEF∆的中位线,12NG EF==12MB CB==又∵∠B=30°,∴12MG MB==∴MN最小==(25)(本小题10分)解:(Ⅰ)联立两直线解析式可得21y xy x=--⎧⎨=-⎩,解得11xy=-⎧⎨=⎩,∴B点坐标为(﹣1,1),…………………………………………………………………1'又C点为B点关于原点的对称点,∴C点坐标为(1,﹣1),…………………………………………………………………2'因为抛物线解析式为12-+=bxaxy把B、C两点坐标代入可得⎩⎨⎧-+=---=1111baba,解得,⎩⎨⎧-==11ba∴抛物线解析式为21y x x=--;………………………………………………………4'(Ⅱ)(1)当四边形PBQC为菱形时,则PQ⊥BC,∵直线BC解析式为y x=-,∴直线PQ解析式为y x=,……………………………5'联立抛物线解析式可得21y xy x x=⎧⎨=--⎩,解得11xy⎧=⎪⎨=⎪⎩或11xy⎧=⎪⎨=⎪⎩∴P点坐标为(1-或(1++; ……………………………………7' (2)当t=0时,四边形PBQC 的面积最大;最大面积是2.…………………………8' 理由如下:如图,过P 作PD ∥y 轴,交y x =-于点D ,分别过点B ,C 作BE ⊥PD ,CF PD ⊥,垂足分别为E ,F .则点P 的坐标为()2,1,t t t -- 点D 的坐标为(),.t t -∴ PD ()2211;t t t t =----=-+BE+CF=2.∴ PDCF PD BE PD S PBC =∙+∙=∆2121 ∴12+-=∆t S PBC∴ S 四边形PBQC ()2222122PBC S t t ∆==-+=-+.∴ 当t=0时,四边形PBQC 的面积最大,面积最大值为2.…………………………10'PDQEF。

(含参考答案)2017年天津市中考数学试卷

(含参考答案)2017年天津市中考数学试卷

2017年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算(﹣3)+5的结果等于()A.2 B.﹣2 C.8 D.﹣82.(3分)cos60°的值等于()A.B.1 C.D.3.(3分)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C.D.4.(3分)据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为()A.0.1263×108 B.1.263×107C.12.63×106D.126.3×1055.(3分)如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C. D.6.(3分)估计的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.(3分)计算的结果为()A.1 B.a C.a+1 D.8.(3分)方程组的解是()A.B.C.D.9.(3分)如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是()A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC10.(3分)若点A(﹣1,y1),B(1,y2),C(3,y3)在反比例函数y=﹣的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y311.(3分)如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD 上一个动点,则下列线段的长度等于BP+EP最小值的是()A.BC B.CE C.AD D.AC12.(3分)已知抛物线y=x2﹣4x+3与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,则平移后的抛物线解析式为()A.y=x2+2x+1 B.y=x2+2x﹣1 C.y=x2﹣2x+1 D.y=x2﹣2x﹣1二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算x7÷x4的结果等于.14.(3分)计算的结果等于.15.(3分)不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.16.(3分)若正比例函数y=kx (k 是常数,k ≠0)的图象经过第二、四象限,则k 的值可以是 (写出一个即可).17.(3分)如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点F ,G 分别在边BC ,CD 上,P 为AE 的中点,连接PG ,则PG 的长为 .18.(3分)如图,在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上.(1)AB 的长等于 ;(2)在△ABC 的内部有一点P ,满足S △PAB :S △PBC :S △PCA =1:2:3,请在如图所示的网格中,用无刻度...的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明) .三、解答题(本大题共7小题,共66分。

天津市2017年中考数学真题试题(含扫描答案)

天津市2017年中考数学真题试题(含扫描答案)

2017年天津市初中毕业生学业考试试卷数 学一、选择题:1.计算5)3(+-的结果等于( )A .2B .2-C .8D .8- 2.060cos 的值等于( ) A 3 B .1 C .22D .213.在一些美术字中,有的汉子是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )4.据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为( )A .8101263.0⨯ B .710263.1⨯ C .61063.12⨯ D .5103.126⨯ 5.右图是一个由4个相同的正方体组成的立体图形,它的主视图是( )6.估计38的值在( )A .4和5之间B .5和6之间 C. 6和7之间 D .7和8之间 7.计算111+++a a a 的结果为( )A .1B .a C. 1+a D .11+a 8.方程组⎩⎨⎧=+=1532y x xy 的解是( )A .⎩⎨⎧==32y x B .⎩⎨⎧==34y x C. ⎩⎨⎧==84y x D .⎩⎨⎧==63y x9.如图,将ABC ∆绕点B 顺时针旋转060得DBE ∆,点C 的对应点E 恰好落在AB 延长线上,连接AD .下列结论一定正确的是( )A .E ABD ∠=∠B .C CBE ∠=∠ C. BC AD // D .BC AD = 10.若点),1(1y A -,),1(2y B ,),3(3y C 在反比例函数xy 3-=的图象上,则321,,y y y 的大小关系是( ) A .321y y y << B .132y y y << C. 123y y y << D .312y y y <<11.如图,在ABC ∆中,AC AB =,CE AD ,是ABC ∆的两条中线,P 是AD 上一个动点,则下列线段的长度等于EP BP +最小值的是( )A .BCB .CE C. AD D .AC12.已知抛物线342+-=x x y 与x 轴相交于点B A ,(点A 在点B 左侧),顶点为M .平移该抛物线,使点M 平移后的对应点'M 落在x 轴上,点B 平移后的对应点'B 落在y 轴上,则平移后的抛物线解析式为( )A .122++=x x yB .122-+=x x y C. 122+-=x x y D .122--=x x y 二、填空题13.计算47x x ÷的结果等于 .14.计算)74)(74(-+的结果等于 .15.不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是 .16.若正比例函数kx y =(k 是常数,0≠k )的图象经过第二、四象限,则k 的值可以是 (写出一个即可).17.如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点G F ,分别在边CD BC ,上,P 为AE 的中点,连接PG ,则PG 的长为 .18.如图,在每个小正方形的边长为1的网格中,点C B A ,,均在格点上. (1)AB 的长等于 ;(2)在ABC ∆的内部有一点P ,满足2:1:::=∆∆∆PCA PBC PAB S S S ,请在如图所示的网格中,用无刻度...的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明) .三、解答题19.解不等式组⎩⎨⎧+≤≥+34521x x x请结合题意填空,完成本题的解答. (1)解不等式①,得 ; (2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为 .20.某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的跳水运动员人数为 ,图①中m 的值为 ; (2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.21.已知AB 是⊙O 的直径,AT 是⊙O 的切线,050=∠ABT ,BT 交⊙O 于点C ,E 是AB 上一点,延长CE 交⊙O 于点D .(1)如图①,求T ∠和CDB ∠的大小;(2)如图②,当BC BE =时,求CDO ∠的大小.①②22.如图,一艘海轮位于灯塔P 的北偏东064方向,距离灯塔120海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东045方向上的B 处,求BP 和BA 的长(结果取整数). 参考数据:05.264tan ,44.064cos ,90.064sin 000≈≈≈,2取414.1.23.用4A 纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元. 设在同一家复印店一次复印文件的页数为x (x 为非负整数). (1)根据题意,填写下表:(2)设在甲复印店复印收费1y 元,在乙复印店复印收费2y 元,分别写出21y y ,关于x 的函数关系式; (3)当70>x 时,顾客在哪家复印店复印花费少?请说明理由.24.将一个直角三角形纸片ABO 放置在平面直角坐标系中,点)0,3(A ,点)1,0(B ,点)0,0(O .P 是边AB 上的一点(点P 不与点B A ,重合),沿着OP 折叠该纸片,得点A 的对应点'A . (1)如图①,当点'A 在第一象限,且满足OB B A ⊥'时,求点'A 的坐标;(2)如图②,当P 为AB 中点时,求B A '的长;(3)当030'=∠BPA 时,求点P 的坐标(直接写出结果即可).25.已知抛物线32-+=bx x y (b 是常数)经过点)0,1(-A . (1)求该抛物线的解析式和顶点坐标;(2))1,(m P 为抛物线上的一个动点,P 关于原点的对称点为'P . ①当点'P 落在该抛物线上时,求m 的值;②当点'P 落在第二象限内,2'A P 取得最小值时,求m 的值.11。

2017年天津市部分区中考数学一模试卷含答案

2017年天津市部分区中考数学一模试卷含答案
第 1 页
(C)
(D)
(7)估计 2 3 的值在 (A) 1 和 2 之间 (B) 2 和 3 之间 (C) 3 和 4 之间 (D) 4 和 5 之间
x2 x (8)化简 的结果为 x 1 1 x
(A) x 1
(B) x 1
(C) x
(D) x
(9)若关于 x 的方程 x 2 3 x a 0 有一个根为 1 ,则另一个根为 (A) 2 (B) 2 (C) 4 (D) 3 (10)如图,在 Rt△ ABC 中, AB 9 , BC 6 ,B 90 ,将 Rt△ ABC 折叠,使点 A 与 BC 的中点 D 重合,折痕为 PQ ,则线段 BQ 的长度为
机密★启用前
2017 年天津市部分区初中毕业生学业考试第一次模拟练习


考试时间:2017 年 4 月 19 日 本试卷分为第Ⅰ卷(选择题)、第Ⅱ卷(非选择题)两部分。第Ⅰ卷第 1 页至第 3 页,第Ⅱ卷第 4 页至第 8 页。试卷满分 120 分。考试时间 100 分钟。 答卷前,请你务必将自己的姓名、考生号、考点校、考场号、座位号填写在“答题卡”上,并在 规定位置粘贴考试用条形码。答题时,务必将答案涂写在“答题卡”上,答案答在试卷上无效。考试 结束后,将本试卷和“答题卡”一并交回。 祝你考试顺利!
(5)实数 a , b 在数轴上对应点的位置如图所示.把 a , b ,0 按照从小到大的排列顺序,正确的是
b 0 a
(A) a b 0 (B) 0 a b (6)如图所示的几何体的俯视图是
(C) b 0 a
(D) 0 b a
第(6)题
(A)
(B)
① 2 x 6, 解不等式组 3( x 1) 2 x 5, ②

中考全真数学模拟试卷及答案

中考全真数学模拟试卷及答案

2017年中考全真数学模拟试卷一一、选择题本大题共10小题,每小题3分,共30分;1.“互联网+”已全面进入人们的日常生活,据有关部门统计,目前全国4G用户数达到亿,其中亿用科学记数法表示为A.×104B.×106C.×108D.×1082.如图,圆柱体中挖去一个小圆柱,那么这个几何体的主视图和俯视图分别为A.B.C.D.3.四个互不相等的整数的积是9,那么这四个整数的和等于A.27 B.9 C.0 D.以上答案都不对4.计算:﹣a23A.a6B.﹣a6C.a5D.﹣a55.如图,将一块直角三角板的直角顶点放在直尺的一边上.如果∠1=50°,那么∠2的度数是A.30°B.40°C.50°D.60°6.平面直角坐标系内的点A﹣1,2与点B﹣1,﹣2关于A.y轴对称B.x轴对称C.原点对称D.直线y=x对称7.化简2933mm m---的结果是A.3m+B.3m-C.33mmD.33mm8.如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则矩形MNPQ的面积是A.10 B.16 C.20 D.369.二次函数y=ax2+bx+ca≠0的图象如图所示,则下列说法:①abc<0;②2a+b=0;③9a+3b+c>0;④当﹣1<x<3时,y<0;⑤当x<0时,y随x的增大而减小,其中正确的个数为A.1 B.2 C.3 D.410.如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为A.cm B.cm C.cm D. 4cm二、填空题本大题共9小题,每小题4分,共36分11.如果互为,a b相反数,,x y互为倒数,则()+-的值是20142015a b xy__________;12.如图,若AB=AC,BD=CD,∠B=20°,∠BDC=120°,则∠A等于__________度.13.已知点A2,y1、Bm,y2是反比例函数y=的图象上的两点,且y1<y2.写出满足条件的m的一个值,m可以是.14.如图,已知矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于E,AD=8,AB=4,则DE的长为.15.下面的频数分布折线图分别表示我国A市与B市在2014年4月份的日平均气温的情况,记该月A市和B市日平均气温是8℃的天数分别为a 天和b天,则a+b= .16.对于X、Y定义一种新运算“”:XY=aX+bY,其中a、b为常数,等式右边是通常的加法和乘法的运算.已知:35=15,47=28,那么23= .17.如图,P A.PB分别切⊙O于A.B,点C、M是⊙O上的点,∠AMB=60°,过点C作的切线交P A.PB于E、F,△PEF的外心在PE上.已知PA=3,则AE 的长为.18.观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第16个数据应是结果需化简.19.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为.三、解答题本大题共9小题,共84分20. 9分1计算:﹣12009×﹣﹣2+﹣π0+|1﹣sin60°|;2解方程组..21. 9分先化简,再求值:,其中x=222. 9分星期天,身高为1.6米的小红、小涛来到一个公园,用他们所学的知识测算一座塔的高度.如图,小红站在A处测得她看塔顶C的仰角α为45°,小涛站在B处测得塔顶C的仰角β为30°,他们又测出A.B 两点的距离为41.5米,假设他们的眼睛离头顶都是10厘米,求塔高结果保留根号.23. 9分一个盒子中装有两个红球和三个白球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,求两次都摸到白球的概率.24. 9分如图,在直角坐标系中,矩形O ABC的顶点O与坐标原点重合,顶点A,C分别在坐标轴上, 顶点B的坐标4,2,过点D0,3和E6,0的直线分别于AB,BC交于点M,N.1求直线D E的解析式和点M的坐标;若反比例函数y=x>0的图象经过点M,求该反比函数的解析式,并通过计算判断点N是否在该函数的图象上.25. 9分我们规定:线段外一点和这条线段两个端点连线所构成的角叫做这个点对这条线段的视角.如图1,对于线段AB及线段AB外一点C,我们称∠ACB为点C对线段AB的视角.如图2,在平面直角坐标系xoy中,已知点D0,4,E0,1.1⊙P为过D,E两点的圆,F为⊙P上异于点D,E的一点.①如果DE为⊙P的直径,那么点F对线段DE的视角∠DFE为度;②如果⊙P的半径为,那么点F对线段DE的视角∠DFE为度;2点G为x轴正半轴上的一个动点,当点G对线段DE的视角∠DGE最大时,求点G的坐标.26. 10分某纪念币从2013年11月11日起开始上市,通过市场调查得知该纪念币每1枚的市场价y单位:元与上市时间x单位:天的数据如下:41036上市时间x天市场价y元9051901根据上表数据,在某一特定时期内,可从下列函数中选取一个恰当的函数描述纪念币的市场价y与上市时间x的变化关系:①y=ax+ba≠0;②y=ax﹣h2+k a≠0;③y=a≠0.你可选择的函数的序号是.2利用你选取的函数,求该纪念币上市多少天时市场价最低,最低价格是多少27. 10分阅读下面材料:小明遇到这样一个问题:如图1,在等边三角形ABC内有一点P,且PA=3,PB=4,PC=5,求∠APB度数.小明发现,利用旋转和全等的知识构造△AP′C,连接PP′,得到两个特殊的三角形,从而将问题解决如图2.请回答:图1中∠APB的度数等于,图2中∠PP′C的度数等于.参考小明思考问题的方法,解决问题:如图3,在平面直角坐标系xOy中,点A坐标为﹣,1,连接AO.如果点B是x轴上的一动点,以AB为边作等边三角形AB C.当Cx,y在第一象限内时,求y与x之间的函数表达式.28. 10分如图,抛物线y=ax2+bx﹣5a≠0经过点A4,﹣5,与x轴的负半轴交于点B,与y轴交于点C,且OC=5OB,抛物线的顶点为点D.1求这条抛物线的表达式;2联结AB、BC、CD、DA,求四边形ABCD的面积;3如果点E在y轴的正半轴上,且∠BEO=∠ABC,求点E的坐标.答案解析一、选择题1. 分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:将亿用科学记数法表示为:×108.故选:C.2.分析:直接利用组合体结合主视图以及俯视图的观察角度得出答案.解:由几何体所示,可得主视图和俯视图分别为:和.故选:B.3.分析:根据题意可得出这四个数的值,继而可以确定这四个数的和解:由题意得:这四个数小于等于9,且互不相等.再由乘积为9可得,四个数中必有3和-3,∴四个数为:1,-1,3,-3,和为0.故选C.4.分析:根据积的乘方计算即可.解:﹣a23=﹣a6,故选B.5.分析:由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.解:如图,,∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°﹣50°=40°.故选B.6.分析:根据关于x轴对称点的坐标特点:纵坐标互为相反数,横坐标不变可得答案.解:平面直角坐标系内的点A﹣1,2与点B﹣1,﹣2关于x轴对称.故选:B.7.解:2299(m3)(m3)3 3333m mmm m m m-+--===+----,故选A8.分析:易得当R在PN上运动时,面积不断在增大,当到达点P时,面积开始不变,到达Q后面积不断减小,得到PN和QP的长度,相乘即可得所求的面积.解:∵x=4时,及R从N到达点P时,面积开始不变,∴PN=4,同理可得QP=5,∴矩形的面积为4×5=20.故选C.9.分析:①由抛物线的开口方向向下,与y轴交点在负半轴,对称轴在y 轴右侧,确定出a,b及c的正负,即可对于abc的正负作出判断;②函数图象的对称轴为:x=﹣=1,所以b=﹣2a,即2a+b=0;③根据抛物线与x轴的交点即可求得抛物线的对称轴,然后把x=3代入方程即可求得相应的y的符号;④由图象得到函数值小于0时,x的范围即可作出判断;⑤由图象得到当x<0时,y随x的变化而变化的趋势.解:根据图示知,抛物线开口方向向上,抛物线与y轴交与负半轴,对称轴在y轴右侧,则a>0,c<0,b<0,所以abc>0.故①错误;根据图象得对称轴x=1,即﹣=1,所以b=﹣2a,即2a+b=0,故②正确;当x=3时,y=0,即9a+3b+c=0.故③错误;根据图示知,当﹣1<x<3时,y<,故④正确;根据图示知,当x<0时,y随x的增大而减小,故⑤正确;故选C.10.解:连接OD,OC,作DE⊥AB于E,OF⊥AC于F,∵∠CAD=∠BAD角平分线的性质,∴=,∴∠DOB=∠OAC=2∠BAD,∴△AOF≌△OED,∴OE=AF=AC=3cm,在Rt△DOE中,DE==4cm,在Rt△ADE中,AD==4cm.故选A.二、填空题11.分析:根据互个数的和可得a+b=0,互为倒数的两个数的积等于1可得;解:依题意a+b=0;xy=1,2014a+b-2015xy=0-2015×1=-2015.12.分析:根据SSS证△BAD≌△CAD,根据全等得出∠BAD=∠CAD,∠B=∠C=20°,根据三角形的外角性质得出∠BDF=∠B+∠BAD,∠CDF=∠C+∠CAD,求出∠BDC=∠B+∠C+∠BAC,代入求出即可.解:过D作射线AF,在△BAD和△CAD中,,∴△BAD≌△CADSSS,∴∠BAD=∠CAD,∠B=∠C=20°,∵∠BDF=∠B+∠BAD,∠CDF=∠C+∠CAD,∴∠BDF+∠CDF=∠B+∠BAD+∠C+∠CAD,∴∠BDC=∠B+∠C+∠BAC,∵∠C=∠B=20°,∠BDC=120°,∴∠BAC=80°.故答案为:80.13.分析:由于y=在一、三象限,根据题意判定A.B在第一象限,根据反比例函数的性质即可求解.解:由于y=在一、三象限,y随x的增大而减小,若满足y1<y2,点A2,y1在第一象限,Bm,y2在第一象限,若满足y1<y2,则m满足的条件是0<m <2;故答案为1.14.分析:设DE=x,则AE=8﹣x.先根据折叠的性质和平行线的性质,得∠EBD=∠CBD=∠EDB,则BE=DE=x,然后在直角三角形ABE中根据勾股定理即可求解.解:设DE=x,则AE=8﹣x.根据折叠的性质,得∠EBD=∠CB D.∵AD∥BC,∴∠CBD=∠ADB,∴∠EBD=∠EDB,∴BE=DE=x.在直角三角形ABE中,根据勾股定理,得x2=8﹣x2+16,解得x=5.故答案为:5.15.分析:根据折线图即可求得a、b的值,从而求得代数式的值.解答解:根据图表可得:a=10,b=2,则a+b=10+2=12.故答案为:12.16.分析:本题是一种新定义运算题目.首先要根据运算的新规律,得出3a+5b=15①4a+7b=28②,①②﹣①即可得出答案.解:∵XY=aX+bY,35=15,47=28,∴3a+5b=15 ①4a+7b=28 ②,②﹣①=a+2b=13 ③,①﹣③=2a+3b=2,而23=2a+3b=2.17.分析:由切线长定理知:PA=PB,CE=CF,由△PEF的外心在PE上,知该三角形是直角三角形,由∠M=60°,可计算出∠P的度数,利用特殊角间关系,表示出AE、PE、PF、FB,利用EF=AE+BF可得方程,求出AE的长.解:连接O A.O B.∵∠AMB=60°,∴∠AOB=120°∵P A.PB分别切⊙O于A.B,∴PA=PB=3,∠OAP=∠OBP=90°,在四边形PAOB中,∠P=360°﹣∠PAO﹣∠AOB﹣∠OBP=60°∵△PEF的外心在PE上,∴△PEF是直角三角形,且∠PFE=90°.在Rt△PEF中,∵∠P=60°,∴PE=2PF,EF=PF.设AE的长为x,则PE=3﹣AE=3﹣x,则PF=3﹣x,EF=3﹣x,BF=3﹣PF=3+x∵EF是⊙O的切线,∴EA=EC,FC=F B.∵EF=EC+FC=AE+BF∴3﹣x=x+3+x,∴x=2﹣3.18.分析:通过观察可知,规律是根号外的符号以及根号下的被开方数依次是:﹣11+1×0,﹣12+1,﹣13+1…﹣1n+1,可以得到第16个的答案.解:由题意知道:题目中的数据可以整理为:,﹣12+1,…﹣1n+1,∴第16个答案为:.故答案为:.19.分析:根据翻折的性质,可得B′E的长,根据勾股定理,可得CE的长,根据等腰三角形的判定,可得答案.解:i当B′D=B′C时,过B′点作GH∥AD,则∠B′GE=90°,当B′C=B′D时,AG=DH=DC=8,由AE=3,AB=16,得BE=13.由翻折的性质,得B′E=BE=13.∴EG=AG﹣AE=8﹣3=5,∴B′G===12,∴B′H=GH﹣B′G=16﹣12=4,∴DB′===4ii当DB′=CD时,则DB′=16易知点F在BC上且不与点C、B重合.iii当CB′=CD时,∵EB=EB′,CB=CB′,∴点E、C在BB′的垂直平分线上,∴EC垂直平分BB′,由折叠可知点F与点C重合,不符合题意,舍去.综上所述,DB′的长为16或4.故答案为:16或4.三、解答题20.分析:1根据乘方的法则,绝对值的性质,三角函数的特殊值计算.2根据二元一次方程的代入法和加减消元法求解.解:1原式=﹣1×4+1+|1﹣|4分=﹣4+1+1﹣=﹣2﹣=﹣. 6分2由①×2+②得:7x=14,x=2,2分把x=2代入①得:y=﹣2. 4分∴原方程的解为. 6分21.分析:先算括号里面的,再算除法,最后把x的值代入进行计算即可.解:原式=+÷﹣=÷=÷==,当x=2时,原式==.22.分析:利用锐角三角函数关系得出PM的长,再利用=tan30°,求出x 的值即可.解:设塔底面中心为O,塔高xm,MN∥AB与塔中轴线相交于点P,得到△CPM、△CPN是直角三角形,则=tan45°,∵tan45°=1,∴x﹣=PM=CP,在Rt△CPN中, =tan30°,即=,解得:x=.答:塔高为m.23.分析:首先根据题意列出表格,然后由表格即可求得所有等可能的结果与两次都摸到白球的情况,再利用概率公式即可求得答案.解:列表得:第二次第一次红球1 红球2 白球1 白球2 白球3红球1 红1,红1 红1,红2 红1,白1 红1,白2 红1,白3红球2 红2,红1 红2,红2 红2,白1 红2,白2 红2,白3白球1 白1,红1 白1,红2 白1,白1 白1,白2 白1,白3白球2 白2,红1 白2,红2 白2,白1 白2,白2 白2,白3白球3 白3,红1 白3,红1 白3,白1 白3,白2 白3,白3∵共有25种等可能的结果,两次都摸到白球的有9种情况,∴两次都摸到红球的概率为:.24.分析:1设直线DE的解析式为y=kx+b,将D0,3,E6,0代入,利用待定系数法求出直线DE的解析式;由矩形的性质可得M点与B点纵坐标相等,将y=2 代入直线DE的解析式,求出x的值,即可得到M的坐标;将点M代入y=,利用待定系数法求出反比函数的解析式,再由直线D E 的解析式求出N点坐标, 进而即可判断点N是否在该函数的图象上.解:1设直线D E的解析式为y=kx+b,∵D0,3,E6,0,∴,解得,∴直线DE的解析式为y=﹣x+3;当y=2 时,﹣x+3=2,解得x=2,∴M的坐标为;∵反比例函数y=x>0的图象经过点M,∴m=2×2=4,∴该反比函数的解析式是y=;∵直线DE的解析式为y=﹣x+3,∴当x=4 时,y=﹣×4+3=1,∴N点坐标为4,1,∵4×1=4,∴点N在函数y=的图象上.25. 分析:1①利用直径所对的圆周角是直角直接写出答案即可;②作PM⊥y轴于点M,构造直角三角形,根据弦长和半径的长利用垂径定理及解直角三角形的知识求得圆心角的度数,从而求得视角的度数即可;2根据题意得到⊙P与x轴相切,G为切点时,∠DGE最大;首先根据点P 在线段ED的垂直平分线上,得到PG=,然后过点P作PH⊥DE于点H,得到EH=DE=,从而连接PE,在Rt△PEH中,PE=PG=,EH=,求得点G的坐标即可.解:1①如图1,当DE为⊙P的直径时,视角为90°;②如图2,作PM⊥y轴于点M,∵DE=3,∴ME=,∵PD=PE=,∴∠MPE=60°,∴∠F=60°,当点F位于劣弧DE上时,∠F为120°,∴∠DFE为60°或120°,故答案为:90°;60°或120°.2如图3,当⊙P与x轴相切,G为切点时,∠DGE最大,由题意知,点P在线段ED的垂直平分线上,∴PG=,过点P作PH⊥DE于点H,∴EH=DE=,∵PG⊥x轴,∴四边形PHOG为矩形.连接PE,在Rt△PEH中,PE=PG=,EH=,∴PH=2.所以点G2,0.26.分析:1根据市场价y单位:元与上市时间x单位:天的数据,逐一判断出可选择的函数的序号是哪个即可.2根据二次函数最值的求法,求出该纪念币上市多少天时市场价最低,最低价格是多少即可.解答:解:1①设纪念币的市场价y与上市时间x的变化关系是y=ax+b 时,则,解得.∴y=﹣+116,∵﹣×36+116=﹣118≠90,∴纪念币的市场价y与上市时间x的变化关系不是y=﹣+116;②设纪念币的市场价y与上市时间x的变化关系是y=ax﹣h2+k a≠0时,则解得∴y=x﹣202+26,∴纪念币的市场价y与上市时间x的变化关系是y=x﹣202+26.③4×90=360,10×51=510,36×90=3240,∵360≠510≠3240,∴纪念币的市场价y与上市时间x的变化关系不是y=a≠0.∴选择的函数的序号是②.2∵y=x﹣202+26,∴当x=20时,y有最小值26,∴该纪念币上市20天时市场价最低,最低价格为26元.答:该纪念币上市20天时市场价最低,最低价格为26元.27.分析:阅读材料:把△APB绕点A逆时针旋转60°得到△ACP′,根据旋转的性质可得P′A=PA,P′C=PB,∠PAP′=60°,然后求出△APP′是等边三角形,根据等边三角形的性质求出PP′=PA=3,∠AP′P=60°,再利用勾股定理逆定理求出∠PP′C=90°,然后求出∠AP′C,即为∠APB的度数;再利用全等三角形的判定和性质以及等边三角形的性质得出DF=CF,进而得出函数解析式即可.解答:解:阅读材料:把△APB绕点A逆时针旋转60°得到△ACP′,由旋转的性质,P′A=PA=3,P′D=PB=4,∠PAP′=60°,∴△APP′是等边三角形,∴PP′=PA=3,∠AP′P=60°,∵PP′2+P′C2=32+42=25,PC2=52=25,∴PP′2+P′C2=PC2,∴∠PP′C=90°,∴∠AP′C=∠AP′P+∠PP′C=60°+90°=150°;故∠APB=∠AP′C=150°;故答案为:150°;90°;如图3,在y轴上截取OD=2,作CF⊥y轴于F,AE⊥x轴于E,连接AD和CD,∵点A的坐标为﹣,1,∴tan∠AOE=,∴AO=OD=2,∠AOE=30°,∴∠AOD=60°.∴△AOD是等边三角形,又∵△ABC是等边三角形,∴AB=AC,∠CAB=∠OAD=60°,∴∠CAD=∠OAB,∴△ADC≌△AO B.∴∠ADC=∠AOB=150°,又∵∠ADF=120°,∴∠CDF=30°.∴DF=CF.∵Cx,y且点C在第一象限内,∴y﹣2=x,∴y=x+2x>0.28.分析:1先得出C点坐标,再由OC=5BO,得出B点坐标,将A.B两点坐标代入解析式求出a,b;2分别算出△ABC和△ACD的面积,相加即得四边形ABCD的面积;3由∠BEO=∠ABC可知,tan∠BEO=tan∠ABC,过C作AB边上的高CH,利用等面积法求出CH,从而算出tan∠ABC,而BO是已知的,从而利用tan∠BEO=tan∠ABC可求出EO长度,也就求出了E点坐标.解:1∵抛物线y=ax2+bx﹣5与y轴交于点C,∴C0,﹣5,∴OC=5.∵OC=5OB,∴OB=1,又点B在x轴的负半轴上,∴B﹣1,0.∵抛物线经过点A4,﹣5和点B﹣1,0,∴,解得,∴这条抛物线的表达式为y=x2﹣4x﹣5.2由y=x2﹣4x﹣5,得顶点D的坐标为2,﹣9.连接AC,∵点A的坐标是4,﹣5,点C的坐标是0,﹣5,又S△ABC=×4×5=10,S△ACD=×4×4=8,∴S四边形ABCD=S△ABC+S△ACD=18.3过点C作CH⊥AB,垂足为点H.∵S△ABC=×AB×CH=10,AB=5,∴CH=2,在RT△BCH中,∠BHC=90°,BC=,BH==3,∴tan∠CBH==.∵在RT△BOE中,∠BOE=90°,tan∠BEO=,∵∠BEO=∠ABC,∴,得EO=,∴点E的坐标为0,.。

天津市武清区2017年中考数学二模试卷(有答案)

天津市武清区2017年中考数学二模试卷(有答案)

2017年天津市武清区中考数学二模试卷一、选择题(本大题共12小题,每小题3分,共36分)1.计算4+(﹣6)的结果等于()A.﹣2 B.2 C.10 D.﹣102.sin45°的值等于()A.B.1 C.D.3.在美术字中,有些汉字是轴对称的,下面四个字不属于轴对称图形的是()A.B.C.D.4.2017年春运期间,全国水运旅客发送量约为43500000人次,将43500000用科学记数法表示应为()A.0.435×107B.43.5×106C.43.5×107D.4.35×1075.从正面观察如图的两个立体图形,得到的平面图形是()A. B.C. D.6.如图,数轴上点A表示的数可能是()A.B.C.D.7.矩形具有而菱形不具有的性质是()A.对角线互相平分 B.对角线互相垂直C.对角线相等D.对角线平分一组对角8.已知反比例函数y=,当1<x<3时,y的最小整数值是()A.3 B.4 C.5 D.69.把△ABC沿BC方向平移,得到△A′B′C′,随着平移距离的不断增大,△A′CB的面积大小变化情况是()A.增大B.减小C.不变D.不确定10.若分式的x和y均扩大为原来各自的10倍,则分式的值()A.不变B.缩小到原分式值的C.缩小到原分式值的D.缩小到原分式值的11.如图,把八个等圆按相邻两两外切摆放,其圆心连线构成一个正八边形,设正八边形内侧八个扇形(无阴影部分)面积之和为S1,正八边形外侧八个扇形(阴影部分)面积之和为S2,则=()A.B.C.D.112.如果抛物线y=﹣x2+bx与x轴交于A、B两点,且顶点为C,那么当∠ACB=120°,b的值是()A.±B.±C.D.二、填空题(本大题共6小题,每小题3分,共18分)13.计算:(x﹣3y)(﹣6x)=.14.在一个不透明的袋子中有3个白球,4个黄球,5个红球,这些球除了颜色不同外其余完全相同,从袋子中摸出一个球,则它是红球的概率是.15.如图,点P在∠MON的平分线上,点A、B在∠MON的两边上,若要使△AOP≌△BOP,那么需要添加一个条件是.16.为解决群众看病贵的问题,有关部门决定降低药价,对某种原价为100元的药品进行连续两次降价后为81元,设平均每次降价的百分率为x,则根据题意可列方程为.17.如图,已知矩形ABCD,AB=8cm,BC=6cm,点Q为BC中点,在DC上取一点P,使△APQ 的面积等于18cm2,则DP的长度为cm.18.如图,在每个小正方形的边长为1的网格中,点A,B均在格点上.(Ⅰ)线段AB的长为.(Ⅱ)请利用网格,用无刻度的直尺在AB上作出点P,使AP=,并简要说明你的作图方法(不要求证明)..三、解答题(本大题共7小题,共66分)19.解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.20.某校260名学生参加植树活动,要求每人植4~7棵,活动结束后,随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵,B:5棵,C:6棵,D:7棵,并将各类的人数绘制了扇形统计图(如图1)和条形统计图(如图2),请根据相关信息解答下列问题:(Ⅰ)图1中m的值为;(Ⅱ)补全图2,并求出抽查的20名学生每人植树量数据的众数、中位数;(Ⅲ)求抽查的20名学生平均每人的植树量(保留一位小数),并估计全校260名学生共植树多少棵?21.已知四边形ABCD是平行四边形,CD为⊙O的切线,点C是切点.(Ⅰ)如图1,若AB为⊙O直径,求四边形ABCD各内角的度数;(Ⅱ)如图2,若AB为弦,⊙O的半径为3cm,当BC=2cm时,求CD的长.22.如图1是一种折叠椅,忽略其支架等的宽度,得到他的侧面简化结构图(图2),支架与坐板均用线段表示,若座板DF平行于地面MN,前支撑架AB与后支撑架AC分别与座板DF交于点E、D,现测得DE=20厘米,DC=40厘米,∠AED=58°,∠ADE=76°.(1)求椅子的高度(即椅子的座板DF与地面MN之间的距离)(精确到1厘米)(2)求椅子两脚B、C之间的距离(精确到1厘米)(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,sin76°≈0.97.cos76°≈0.24,tan76°≈4.00)23.如表是某校七~九年级某月课外兴趣小组(分文艺小组和科技小组)活动时间统计表,其中各年级同一兴趣小组每次活动时间相同.观察表格,七、八年级科技小组活动次数相同,文艺小组活动次数相差 次,活动总时间相差 h ,由此可知文艺小组每次活动时间为 h ,进而可知科技小组每次活动时间为 h ;依题意可得a 与b 的关系式为 ,因为a 与b 是自然数,所以a= ,b= ; (Ⅱ)若学校重新规定:九年级每月课外兴趣小组活动总次数为8次,在文艺小组与科技小组每次活动时间保持不变的情况下,求出九年级每月课外兴趣小组活动总时间y (h )与文艺小组活动次数x (次)之间的函数关系式(其中规定x 为大于1且小于8的自然数). 24.在平面直角坐标系中,O 为坐标原点,点A 坐标为(﹣2,0),∠OAB=90°,∠AOB=30°,将△OAB 绕点O 按顺时针方向旋转,旋转角为α(0°<α≤150°),在旋转过程中,点A 、B 的对应点分别为点A′、B′.(Ⅰ)如图1,当α=60°时,直接写出点A′ 、B′的坐标;(Ⅱ)如图2,当α=135°时,过点B′作AB 的平行线交AA′延长线于点C ,连接BC ,AB′. ①判断四边形AB′CB 的形状,并说明理由, ②求此时点A′和点B′的坐标;(Ⅲ)当α由30°旋转到150°时,(Ⅱ)中的线段B′C 也随之移动,请求出B′C 所扫过的区域的面积?(直接写出结果即可).25.已知抛物线y=﹣x 2﹣2x +3交x 轴于点A 、C (点A 在点C 左侧),交y 轴于点B . (Ⅰ)求A ,B ,C 三点坐标;(Ⅱ)如图1,点D 为AC 中点,点E 在线段BD 上,且BE=2DE ,连接CE 并延长交抛物线于点M ,求点M 坐标;(Ⅲ)如图2,将直线AB绕点A按逆时针方向旋转15°后交y轴于点G,连接CG,点P为△ACG 内一点,连接PA、PC、PG,分别以AP、AG为边,在它们的左侧作等边△APR和等边△AGQ,求PA+PC+PG的最小值,并求当PA+PC+PG取得最小值时点P的坐标(直接写出结果即可).2017年天津市武清区中考数学二模试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.计算4+(﹣6)的结果等于()A.﹣2 B.2 C.10 D.﹣10【考点】19:有理数的加法.【分析】依据有理数的加法法则计算即可.【解答】解:4+(﹣6)=﹣(6﹣4)=﹣2.故选:A.2.sin45°的值等于()A.B.1 C.D.【考点】T5:特殊角的三角函数值.【分析】根据特殊角的三角函数值得出即可.【解答】解:sin45°=,故选D.3.在美术字中,有些汉字是轴对称的,下面四个字不属于轴对称图形的是()A.B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形进行分析即可.【解答】解:A、属于轴对称图形,故此选项错误;B、属于轴对称图形,故此选项错误;C、属于轴对称图形,故此选项错误;D、不属于轴对称图形,故此选项正确;故选:D.4.2017年春运期间,全国水运旅客发送量约为43500000人次,将43500000用科学记数法表示应为()A.0.435×107B.43.5×106C.43.5×107D.4.35×107【考点】1I:科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:43500000=4.35×107.故选:D.5.从正面观察如图的两个立体图形,得到的平面图形是()A. B.C.D.【考点】I1:认识立体图形.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看左边是一个矩形,右边是一个正方形,故选:A.6.如图,数轴上点A表示的数可能是()A.B.C.D.【考点】29:实数与数轴.【分析】设A点表示的数为x,则2<x<3,再根据每个选项中的范围进行判断.【解答】解:如图,设A点表示的数为x,则2<x<3,∵1<<2,1<<2,2<<3,3<<4,∴符合x取值范围的数为.故选C.7.矩形具有而菱形不具有的性质是()A.对角线互相平分 B.对角线互相垂直C.对角线相等D.对角线平分一组对角【考点】LB:矩形的性质;L8:菱形的性质.【分析】根据矩形的对角线互相平分、相等和菱形的对角线互相平分、垂直、对角线平分一组对角,即可推出答案.【解答】解:A、对角线互相平分是菱形矩形都具有的性质,故A选项错误;B、对角线互相垂直是菱形具有而矩形不具有的性质,故B选项错误;C、矩形的对角线相等,菱形的对角线不相等,故C选项正确;D、对角线平分一组对角是菱形具有而矩形不具有的性质,故D选项错误;故选:C.8.已知反比例函数y=,当1<x<3时,y的最小整数值是()A.3 B.4 C.5 D.6【考点】G4:反比例函数的性质.【分析】根据反比例函数系数k>0,结合反比例函数的性质即可得知该反比例函数在x>0中单调递减,再结合x的取值范围,可得出y的取值范围,取其内的最小整数,本题得解.【解答】解:在反比例函数y=中k=6>0,∴该反比例函数在x>0内,y随x的增大而减小,当x=3时,y==2;当x=1时,y==6.∴当1<x<3时,2<y<6.∴y的最小整数值是3.故选A.9.把△ABC沿BC方向平移,得到△A′B′C′,随着平移距离的不断增大,△A′CB的面积大小变化情况是()A.增大B.减小C.不变D.不确定【考点】Q2:平移的性质.【分析】根据平移的性质得到AA′∥BC,从而说明△A′CB的底边BC的长度不变,高不变,确定正确的选项.【解答】解:∵把△ABC沿BC方向平移,得到△A′B′C′,∴AA′∥BC,∴△A′CB的底边BC的长度不变,高不变,∴△A′CB的面积大小变化情况是不变,故选C.10.若分式的x和y均扩大为原来各自的10倍,则分式的值()A.不变B.缩小到原分式值的C.缩小到原分式值的D.缩小到原分式值的【考点】65:分式的基本性质.【分析】根据分式的分子分母都乘以(或除以)同一个不为零的整式,可得答案.【解答】解:式的x和y均扩大为原来各自的10倍,得==,故选:C.11.如图,把八个等圆按相邻两两外切摆放,其圆心连线构成一个正八边形,设正八边形内侧八个扇形(无阴影部分)面积之和为S1,正八边形外侧八个扇形(阴影部分)面积之和为S2,则=()A.B.C.D.1【考点】MO:扇形面积的计算;MM:正多边形和圆.【分析】先根据正多边形的内角和公式可求正八边形的内角和,根据周角的定义可求正八边形外侧八个扇形(阴影部分)的内角和,再根据半径相等的扇形面积与圆周角成正比即可求解.【解答】解:∵正八边形的内角和为(8﹣2)×180°=6×180°=1080°,正八边形外侧八个扇形(阴影部分)的内角和为360°×8﹣1080°=2880°﹣1080°=1800°,∴==.故选:B .12.如果抛物线y=﹣x 2+bx 与x 轴交于A 、B 两点,且顶点为C ,那么当∠ACB=120°,b 的值是( )A .±B .±C .D .【考点】HA :抛物线与x 轴的交点.【分析】将解析式配方成顶点式得对称轴及其顶点纵坐标,作CD ⊥AB 于点D ,由∠BCD=∠ACB=60°、tan ,得=,解之可得答案.【解答】解:∵y=﹣x 2+bx=﹣(x ﹣)2+,∴抛物线的对称轴为x=,顶点C 的纵坐标为,如图,过点C 作CD ⊥AB 于点D ,由抛物线对称性知∠ACD=∠BCD=∠ACB=60°,则tan ,即=,解得:b=0(舍)或b=±,故选:A .二、填空题(本大题共6小题,每小题3分,共18分) 13.计算:(x ﹣3y )(﹣6x )= ﹣6x 2+18xy . 【考点】4A :单项式乘多项式.【分析】根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.【解答】解:原式=﹣6x2+18xy.故答案是:﹣6x2+18xy.14.在一个不透明的袋子中有3个白球,4个黄球,5个红球,这些球除了颜色不同外其余完全相同,从袋子中摸出一个球,则它是红球的概率是.【考点】X4:概率公式.【分析】先求出总球的个数,再根据概率公式即可得出答案.【解答】解:∵袋子中有3个白球,4个黄球,5个红球,共有12个球,∴从袋子中摸出一个球,则它是红球的概率是;故答案为:.15.如图,点P在∠MON的平分线上,点A、B在∠MON的两边上,若要使△AOP≌△BOP,那么需要添加一个条件是AO=BO或∠OAP=∠OBP或∠APO=∠BPO(写出一个即可).【考点】KB:全等三角形的判定.【分析】判断两个三角形全等的方法有“SSS”,“SAS”,“ASA”,“AAS”.此题要证△AOP≌△BOP,通过题中已知的OP为∠MON的平分线,可得∠AOP=∠BOP,还有一条公共边OP=OP,若添加AO=BO,则可根据“SAS”来判定,若添加∠OAP=∠OBP,则可根据“AAS”来判定,若添加∠APO=∠BPO,则可根据“ASA”来判定.综上可得出此题的答案.【解答】解:可以添加的条件有:AO=BO,∠OAP=∠OBP,∠APO=∠BPO,证明:∵OP为∠MON的平分线,∴∠AOP=∠BOP,若添加的条件为AO=BO,在△AOP和△BOP中,OA=OB,∠AOP=∠BOP,OP=OP,∴△AOP≌△BOP.所以添加的条件为AO=BO,能得到△AOP≌△BOP;若添加的条件为∠OAP=∠OBP,在△AOP和△BOP中,∠OAP=∠OBP,∠AOP=∠BOP,OP=OP,∴△AOP≌△BOP.所以添加的条件为∠OAP=∠OBP,能得到△AOP≌△BOP;若添加的条件为∠APO=∠BPO,在△AOP和△BOP中,∠AOP=∠BOP,OP=OP,∠APO=∠BPO∴△AOP≌△BOP.所以添加的条件为∠APO=∠BPO,能得到△AOP≌△BOP;故答案为:AO=BO或∠OAP=∠OBP或∠APO=∠BPO(写出一个即可).16.为解决群众看病贵的问题,有关部门决定降低药价,对某种原价为100元的药品进行连续两次降价后为81元,设平均每次降价的百分率为x,则根据题意可列方程为100(1﹣x)2=81.【考点】AC:由实际问题抽象出一元二次方程.【分析】设平均每次的降价率为x,则经过两次降价后的价格是100(1﹣x)2,根据关键语句“连续两次降价后为81元,”可得方程100(1﹣x)2=81.【解答】解:由题意得:100(1﹣x)2=81,故答案为:100(1﹣x)2=81.17.如图,已知矩形ABCD,AB=8cm,BC=6cm,点Q为BC中点,在DC上取一点P,使△APQ 的面积等于18cm2,则DP的长度为4cm.【考点】LB:矩形的性质.=S矩形ABCD﹣S△ADP﹣S△ABQ﹣S△PCQ,列出方程即可解决问题.【分析】设DP=x,根据S△APQ【解答】解:设DP=x.=S矩形ABCD﹣S△ADP﹣S△ABQ﹣S△PCQ,AD=BC=6,AB=CD=8,BQ=CQ=3,∵S△APQ∴18=48﹣•x•6﹣(8﹣x)•3﹣•8•3,∴x=4,故答案为4.18.如图,在每个小正方形的边长为1的网格中,点A,B均在格点上.(Ⅰ)线段AB的长为2.(Ⅱ)请利用网格,用无刻度的直尺在AB上作出点P,使AP=,并简要说明你的作图方法(不要求证明).取格点M,N,连接MN交AB于P,则点P即为所求.【考点】N4:作图—应用与设计作图;KQ:勾股定理.【分析】利用勾股定理列式求出AB=2,然后作一小正方形对角线,使对角线与AB的交点满足AP:BP=2:1即可.【解答】解:(1)由勾股定理得,AB==2;(2)∵AB=2,所以,AP=时AP:BP=2:1.点P如图所示.取格点M,N,连接MN交AB于P,则点P即为所求;故答案为:取格点M,N,连接MN交AB于P,则点P即为所求.三、解答题(本大题共7小题,共66分)19.解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得x<3;(Ⅱ)解不等式②,得x≥﹣4;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为﹣4≤x<3.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(Ⅰ)解不等式①,得x<3;(Ⅱ)解不等式②,得:x≥﹣4;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为:﹣4≤x<3,故答案为:(Ⅰ)x<3;(Ⅱ)x≥﹣4;(Ⅳ)﹣4≤x<3.20.某校260名学生参加植树活动,要求每人植4~7棵,活动结束后,随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵,B:5棵,C:6棵,D:7棵,并将各类的人数绘制了扇形统计图(如图1)和条形统计图(如图2),请根据相关信息解答下列问题:(Ⅰ)图1中m的值为30;(Ⅱ)补全图2,并求出抽查的20名学生每人植树量数据的众数、中位数;(Ⅲ)求抽查的20名学生平均每人的植树量(保留一位小数),并估计全校260名学生共植树多少棵?【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图;W2:加权平均数;W4:中位数;W5:众数.【分析】(Ⅰ)由单位1减去其余的百分比求出m的值即可;(Ⅱ)补全图2,求出抽查的20名学生每人植树量数据的众数、中位数即可;(Ⅲ)求出20名学生平均每人植树的棵树,进而估计出全校学生共植树的棵树即可.【解答】解:(Ⅰ)图1中m的值为30;故答案为:30;(Ⅱ)补全图2,如图所示,∵在这组数据中,5出现了8次,出现的次数最多,∴这组数据的众数为5,∵将这组数据按照从小到大顺序排列,其中处于中间的两个数都是5,∴这组数据的中位数为5;(Ⅲ)==5.3(棵),则调查的20名学生平均每人的植树量5.3棵,5.3×260=1378(棵),则估计全校260名学生共植树1378棵.21.已知四边形ABCD是平行四边形,CD为⊙O的切线,点C是切点.(Ⅰ)如图1,若AB为⊙O直径,求四边形ABCD各内角的度数;(Ⅱ)如图2,若AB为弦,⊙O的半径为3cm,当BC=2cm时,求CD的长.【考点】MC:切线的性质;L5:平行四边形的性质.【分析】(1)如图1中,连接OC.只要证明△OCB是等腰直角三角形即可解决问题(2)如图2中,连接OC交AB于点E,连接OB,由(1)可知:AB⊥OC,设OE=xcm,则CE=(3﹣x)cm,想办法构建方程即可解决问题;【解答】解:(1)如图1中,连接OC.∵CD切⊙O于点C,∴CD⊥OC,∵四边形ABCD是平行四边形,∴AB∥OC,∵四边形ABCD是平行四边形,∴AB∥CD,∴AB⊥CD,∵OC=OB,∴∠B=∠OCB=45°,∴∠BCD=∠OCD+∠OCB=135°,∵四边形ABCD是平行四边形,∴∠DAB=∠DCB=135°,∠D=∠B=45°.(2)如图2中,连接OC交AB于点E,连接OB,由(1)可知:AB⊥OC,∴OB2﹣OE2=BE2,BC2﹣CE2=EB2,设OE=xcm,则CE=(3﹣x)cm,∴OB=3,BC=2,∴32﹣x2=22﹣(3﹣x)2,∴x=,即OE=cm,∴BE==cm,∴AB=2BE=cm,∵四边形ABCD 平行四边形,∴CD=AB=cm.22.如图1是一种折叠椅,忽略其支架等的宽度,得到他的侧面简化结构图(图2),支架与坐板均用线段表示,若座板DF平行于地面MN,前支撑架AB与后支撑架AC分别与座板DF交于点E、D,现测得DE=20厘米,DC=40厘米,∠AED=58°,∠ADE=76°.(1)求椅子的高度(即椅子的座板DF与地面MN之间的距离)(精确到1厘米)(2)求椅子两脚B、C之间的距离(精确到1厘米)(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,sin76°≈0.97.cos76°≈0.24,tan76°≈4.00)【考点】T8:解直角三角形的应用.【分析】(1)作DP⊥MN于点P,即∠DPC=90°,由DE∥MN知∠DCP=∠ADE=76°,根据DP=CDsin ∠DCP可得答案;(2)作EQ⊥MN于点Q可得四边形DEQP是矩形,知DE=PQ=20,EQ=DP=39,再分别求出BQ、CP的长可得答案.【解答】解:(1)如图,作DP⊥MN于点P,即∠DPC=90°,∵DE∥MN,∴∠DCP=∠ADE=76°,则在Rt△CDP中,DP=CDsin∠DCP=40×sin76°≈39(cm),答:椅子的高度约为39厘米;(2)作EQ⊥MN于点Q,∴∠DPQ=∠EQP=90°,∴DP∥EQ,又∵DF∥MN,∠AED=58°,∠ADE=76°,∴四边形DEQP是矩形,∠DCP=∠ADE=76°,∠EBQ=∠AED=58°,∴DE=PQ=20,EQ=DP=39,又∵CP=CDcos∠DCP=40×cos76°≈9.6(cm),BQ==≈24.4(cm),∴BC=BQ+PQ+CP=24.4+20+9.6≈54(cm),答:椅子两脚B、C之间的距离约为54cm.23.如表是某校七~九年级某月课外兴趣小组(分文艺小组和科技小组)活动时间统计表,其中各年级同一兴趣小组每次活动时间相同.观察表格,七、八年级科技小组活动次数相同,文艺小组活动次数相差1次,活动总时间相差2h,由此可知文艺小组每次活动时间为2h,进而可知科技小组每次活动时间为 1.5 h;依题意可得a与b的关系式为2a+1.5b=7,因为a与b是自然数,所以a=2,b=2;(Ⅱ)若学校重新规定:九年级每月课外兴趣小组活动总次数为8次,在文艺小组与科技小组每次活动时间保持不变的情况下,求出九年级每月课外兴趣小组活动总时间y(h)与文艺小组活动次数x(次)之间的函数关系式(其中规定x为大于1且小于8的自然数).【考点】FH:一次函数的应用.【分析】(Ⅰ)七、八年级科技小组活动次数相同,文艺小组活动次数相差1次,活动总时间相差2h,由此可知文艺小组每次活动时间为2h,进而可知科技小组每次活动时间为1.5h;进而可得a与b的关系式,再根据a与b是自然数,求出a与b的值;(Ⅱ)如果文艺小组活动次数为x,则科技小组活动次数为8﹣x,根据每月课外兴趣小组活动总时间=文艺小组每次活动时间×文艺小组活动次数+科技小组每次活动时间×科技小组活动次数,得出y与x之间的函数关系式.【解答】解:(Ⅰ)∵七、八年级科技小组活动次数相同,文艺小组活动次数相差4﹣3=1次,活动总时间相差12.5﹣10.5=2h,∴文艺小组每次活动时间为2h,科技小组每次活动时间为(12.5﹣4×2)÷3=1.5h;∵九年级课外小组活动总时间为7h,∴2a+1.5b=7,∵a与b是自然数,∴a=2,b=2.故答案为1,2,2,1.5;2a+1.5b=7,2,2;(Ⅱ)如果文艺小组活动次数为x,则科技小组活动次数为8﹣x,根据题意,得y=2x+1.5(8﹣x),即y=0.5x+12.24.在平面直角坐标系中,O为坐标原点,点A坐标为(﹣2,0),∠OAB=90°,∠AOB=30°,将△OAB绕点O按顺时针方向旋转,旋转角为α(0°<α≤150°),在旋转过程中,点A、B的对应点分别为点A′、B′.(Ⅰ)如图1,当α=60°时,直接写出点A′(﹣,3)、B′(0,4)的坐标;(Ⅱ)如图2,当α=135°时,过点B′作AB的平行线交AA′延长线于点C,连接BC,AB′.①判断四边形AB′CB的形状,并说明理由,②求此时点A′和点B′的坐标;(Ⅲ)当α由30°旋转到150°时,(Ⅱ)中的线段B′C也随之移动,请求出B′C所扫过的区域的面积?(直接写出结果即可).【考点】KY:三角形综合题.【分析】(Ⅰ)如图1中,作A′E⊥OB′于E.解直角三角形求出EO,A′E即可解决问题;(Ⅱ)①如图2中,结论:四边形AB′CB是平行四边形.只要证明B′C∥AB,B′C=AB;②过点A′作A′E⊥x轴于E.过点B′作B′F⊥A′E于F,解直角三角形求出OE、EF、B′F即可;,由此计算即可;(Ⅲ)B′C扫过的面积=S平行四边形B′B″C″C′【解答】解:(Ⅰ)如图1中,作A′E⊥OB′于E.在Rt′△OA′B′中,∵∠A′OB′=30°,OA′=2,∴cos30°=,∴OB′=4,∴B′(0,4),在Rt△OA′E中,∵OA′=2,∴A′E=,OE=A′E=3,∴A′(﹣,3).故答案为(﹣,3),(0,4).(Ⅱ)①如图2中,结论:四边形AB′CB是平行四边形.理由:∵B′C∥AB,∴∠B′CA=∠BAC,∵∠BAC+∠CAO=90°,∴∠B′CA′+∠CAO=90°,又∵∠B′A′C+∠OA′A=90°,且旋转得到OA=OA′,则∠CAO=∠OA′A,∴∠B′CA′=∠B′A′C,∴B′C=B′A′,又∵A′B′=AB,∴B′C=AB,∴四边形AB′CB是平行四边形.②过点A′作A′E⊥x轴于E.由A(﹣2,0),可得OA=2,又∵∠OAB=90°,∠AOB=30°,∴AB=2,OB=4,则OA′=2,A′B′=2,由∠AOA′=135°,得到∠A′OE=45°,∴OE=A′E=OA′=,∴点A′(,),过点B′作B′F⊥A′E于F,由∠EA′O=45°,得∠EA′B′=45°,∴B′F=A′F=×2=,∴EF=﹣,OE+B′F=+,∴点B′(+,﹣).(Ⅲ)如图3中,B′C扫过的面积=S平行四边形B′B″C″C′=6×2=12.25.已知抛物线y=﹣x2﹣2x+3交x轴于点A、C(点A在点C左侧),交y轴于点B.(Ⅰ)求A,B,C三点坐标;(Ⅱ)如图1,点D为AC中点,点E在线段BD上,且BE=2DE,连接CE并延长交抛物线于点M,求点M坐标;(Ⅲ)如图2,将直线AB绕点A按逆时针方向旋转15°后交y轴于点G,连接CG,点P为△ACG 内一点,连接PA、PC、PG,分别以AP、AG为边,在它们的左侧作等边△APR和等边△AGQ,求PA+PC+PG的最小值,并求当PA+PC+PG取得最小值时点P的坐标(直接写出结果即可).【考点】HF:二次函数综合题.【分析】(Ⅰ)抛物线y=﹣x2﹣2x+3中,令y=﹣x2﹣2x+3=0,可得A(﹣3,0),C(1,0);当x=0时,可得B(0,3);(Ⅱ)首先利用A、C坐标,求出D的坐标,根据BE=2ED,求出点E坐标,求出直线CE,利用方程组求交点坐标M即可;(Ⅲ)先证明△QAR≌△GAP即可得出QR=PG,进而得到PA+PC+PG=PR+PC+QR,可得当Q,R,P,C共线时,PA+PC+PG的值最小,即为线段QC的长,作QN⊥OA于N,AM⊥QC于M,PK⊥OA于K,利用勾股定理求得QC的长,再求出AM,CM,利用等边三角形性质求出AP、PM、PC,由此即可解决问题.【解答】解:(Ⅰ)抛物线y=﹣x2﹣2x+3中,令y=﹣x2﹣2x+3=0,可得x1=1,x2=﹣3,∴A(﹣3,0),C(1,0),当x=0时,y=3,∴B(0,3);(Ⅱ)∵点D为AC中点,A(﹣3,0),C(1,0),∴D(﹣1,0),∵BE=2DE,B(0,3),∴E(﹣,1),设直线CE为y=kx+b,把C(1,0),E(﹣,1)代入,可得,解得,∴直线CE为y=﹣x+,解方程组,可得或,∵M在第二象限,∴M(﹣,);(Ⅲ)∵△APR和△AGQ是等边三角形,∴AP=AR=PR,AQ=AG,∠QAG=∠RAP=60°,∴∠QAR=∠GAP,在△QAR和△GAP中,,∴△QAR≌△GAP(SAS),∴QR=PG,∴PA+PC+PG=PR+PC+QR,∴当Q,R,P,C共线时,PA+PC+PG的值最小,即为线段QC的长,如图3,作QN⊥OA于N,作AM⊥CQ于M,作PK⊥CN于K,依题意得∠GAO=45°+15°=60°,AO=3,∴AG=GQ=QA=6,∠AGO=30°,OG=3,∵∠AGQ=60°,∴∠QGO=90°,∴Q(﹣6,3),在Rt△QNC中,QN=3,CN=6+1=7,∴QC==2,即PA+PC+PG的最小值为2,∴sin∠ACM==,∴AM==,∵△APR是等边三角形,∴∠APM=60°,PM=AM,MC==,∴PC=CM﹣PM=,∵sin∠PCN==,cos∠PCN==,∴PK=,CK=,∴OK=,∴P(﹣,).。

2017年天津市武清区中考数学一模试卷

2017年天津市武清区中考数学一模试卷

2017年天津市武清区中考数学一模试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)﹣的相反数是()A.B.﹣ C.5 D.﹣52.(3分)sin60°的值等于()A.B.C.D.3.(3分)下列图案中,属于轴对称图形的是()A.B.C.D.4.(3分)移动互联网已经全面进入人们的日常生活,全国用户总数量超过3.87亿人,将3.87亿用科学记数法表示应为()A.0.387×109B.3.87×108C.38.7×107D.387×1065.(3分)实数a,b在数轴上的对应点的位置如图所示,把﹣a,b,0按照从小到大的顺序排列,正确的是()A.﹣a<b<0 B.0<﹣a<b C.b<0<﹣a D.0<b<﹣a6.(3分)如图所示的几何体的俯视图是()A.B.C.D.7.(3分)估计2的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间8.(3分)化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x9.(3分)若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为()A.﹣2 B.2 C.4 D.﹣310.(3分)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为PQ,则线段BQ的长度为()A.B.C.4 D.511.(3分)如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=的图象上.若点B在反比例函数y=的图象上,则k的值为()A.﹣4 B.4 C.﹣2 D.212.(3分)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:①abc<0;②>0;③ac﹣b+1=0;④2a+b=0其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)从甲、乙、丙、丁4名三好学生中随机抽取2名学生担任国旗队升旗手,则抽取的2名学生恰好是乙和丙的概率是.14.(3分)计算(﹣xy3)2的结果等于.15.(3分)多项式x(x﹣1)﹣3x+4因式分解的结果等于.16.(3分)若一次函数y=2x+b的图象不经过第二象限,则此函数的解析式可以为(写出一个即可)17.(3分)如图,正方形ABCD绕点B逆时针旋转30°后得到正方形BEFG,EF 与AD相交于点H,延长DA交GF于点K.若正方形ABCD边长为,则HD的长为.18.(3分)如图,将△ABC放在每个小正方形的边长为1的网格中,点A,B,C 均在格点上.(Ⅰ)计算AB边的长为;(Ⅱ)请在如图所示的网格中,用无刻度的直尺作出一个以AB为边的矩形,使矩形的面积等于△ABC的面积,并简要说明你的作图方法(不要求证明)三、解答题(本大题共7小题,共66分)19.(8分)解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的阶级在数轴上表示出来;(Ⅳ)原不等式组的解集为20.(8分)在一次初中生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)图①中a的值为;(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数(结果保留小数点后两位);(Ⅲ)根据这组初赛成绩,由高到低确定7人进入复赛,请直接写出初赛成绩为1.60m的运动员能否进入复赛.21.(10分)如图,已知三角形ABC的边AB是⊙0的切线,切点为B.AC经过圆心0并与圆相交于点D、C,过C作直线CE丄AB,交AB的延长线于点E.(1)求证:CB平分∠ACE;(2)若BE=3,CE=4,求⊙O的半径.22.(10分)如图所示,某中学九年级数学活动小组选定测量学校前面小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°.若斜坡FA的坡比i=1:,求大树的高度.(结果保留一位小数)参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,取1.73.23.(10分)为保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口A的费用分别为14元/吨,20元/吨;从甲、乙两仓库运送物资到港口B的费用分别为10元/吨、8元/吨.(Ⅰ)设从甲仓库运往A港口x吨,试填写表格.表一表二(Ⅱ)给出能完成此次运输任务的最节省费用的调配方案,并说明理由.24.(10分)两个三角板ABC,DEF,按如图所示的位置摆放,点B与点D重合,边AB与边DE在同一条直线上(假设图形中所有的点,线都在同一平面内).其中,∠C=∠DEF=90°,∠ABC=∠F=30°,AC=DE=6cm.现固定三角板DEF,将三角板ABC沿射线DE方向平移,当点C落在边EF上时停止运动.设三角板平移的距离为x(cm),两个三角板重叠部分的面积为y(cm2).(1)当点C落在边EF上时,x=cm;(2)求y关于x的函数解析式,并写出自变量x的取值范围;(3)设边BC的中点为点M,边DF的中点为点N.直接写出在三角板平移过程中,点M与点N之间距离的最小值.25.(10分)在平面直角坐标系中,O为原点,直线y=﹣2x﹣1与y轴交于点A,与直线y=﹣x交于点B,点B关于原点的对称点为点C.(Ⅰ)求过B,C两点的抛物线y=ax2+bx﹣1解析式;(Ⅱ)P为抛物线上一点,它关于原点的对称点为Q.①当四边形PBQC为菱形时,求点P的坐标;②若点P的横坐标为t(﹣1<t<1),当t为何值时,四边形PBQC面积最大?最大值是多少?并说明理由.2017年天津市武清区中考数学一模试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)(2014•广安)﹣的相反数是()A.B.﹣ C.5 D.﹣5【解答】解:﹣的相反数是.故选:A.2.(3分)(2017•宁河县一模)sin60°的值等于()A.B.C.D.【解答】解:sin60°=×=,故选:C.3.(3分)(2017•宁河县一模)下列图案中,属于轴对称图形的是()A.B.C.D.【解答】解:A、沿直线折叠直线两旁的部分不能完全重合,不是轴对称图形,故A不符合题意;B、沿直线折叠直线两旁的部分不能完全重合,不是轴对称图形,故B不符合题意;C、沿直线折叠直线两旁的部分能完全重合,是轴对称图形,故C符合题意;D、沿直线折叠直线两旁的部分不能完全重合,不是轴对称图形,故D不符合题意;故选:C.4.(3分)(2017•宁河县一模)移动互联网已经全面进入人们的日常生活,全国用户总数量超过3.87亿人,将3.87亿用科学记数法表示应为()A.0.387×109B.3.87×108C.38.7×107D.387×106【解答】解:将3.87亿用科学记数法表示为:3.87×108故选:B.5.(3分)(2017•宁河县一模)实数a,b在数轴上的对应点的位置如图所示,把﹣a,b,0按照从小到大的顺序排列,正确的是()A.﹣a<b<0 B.0<﹣a<b C.b<0<﹣a D.0<b<﹣a【解答】解:∵b<0<a,|a|>|b|,∴﹣a<b<0.故选:A.6.(3分)(2015•河南)如图所示的几何体的俯视图是()A.B.C.D.【解答】解:从上面看左边一个正方形,右边一个正方形,故选:B.7.(3分)(2017•宁河县一模)估计2的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间【解答】解:∵(2)2=12,9<12<16,∴3<2<4.故选C.8.(3分)(2014•南通)化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x【解答】解:=﹣===x,故选:D.9.(3分)(2015•衡阳)若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为()A.﹣2 B.2 C.4 D.﹣3【解答】解:设一元二次方程的另一根为x1,则根据一元二次方程根与系数的关系,得﹣1+x1=﹣3,解得:x1=﹣2.故选A.10.(3分)(2016•呼伦贝尔)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为PQ,则线段BQ的长度为()A.B.C.4 D.5【解答】解:设BQ=x,由折叠的性质可得DQ=AQ=9﹣x,∵D是BC的中点,∴BD=3,在Rt△BQD中,x2+32=(9﹣x)2,解得:x=4.故线段BQ的长为4.故选:C.11.(3分)(2015•孝感)如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=的图象上.若点B在反比例函数y=的图象上,则k的值为()A.﹣4 B.4 C.﹣2 D.2【解答】解:过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.设点A的坐标是(m,n),则AC=n,OC=m,∵∠AOB=90°,∴∠AOC+∠BOD=90°,∵∠DBO+∠BOD=90°,∴∠DBO=∠AOC,∵∠BDO=∠ACO=90°,∴△BDO∽△OCA,∴==,∵OB=2OA,∴BD=2m,OD=2n,因为点A在反比例函数y=的图象上,则mn=1,∵点B在反比例函数y=的图象上,B点的坐标是(﹣2n,2m),∴k=﹣2n•2m=﹣4mn=﹣4.故选A.12.(3分)(2017•宁河县一模)如图,二次函数y=ax2+bx+c(a≠0)的图象与x 轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:①abc<0;②>0;③ac﹣b+1=0;④2a+b=0其中正确结论的个数是()A.1 B.2 C.3 D.4【解答】解:①∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴的右侧,∴b>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①正确;②∵抛物线与x轴有两个交点,∴b2﹣4ac>0,∵a<0,∴<0,所以②不正确;③∵C(0,c),OA=OC,∴A(﹣c,0),把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,∴ac﹣b+1=0,所以③正确;④当﹣=1时,b=﹣2a,2a+b=0,而本题的对称轴不确定值,所以④不正确;本题正确的有:①③,2个,故选B.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2017•宁河县一模)从甲、乙、丙、丁4名三好学生中随机抽取2名学生担任国旗队升旗手,则抽取的2名学生恰好是乙和丙的概率是.【解答】解:画树状图为:共有12种等可能的结果数,其中抽取的2名学生恰好是乙和丙的结果数为2,所以抽取的2名学生恰好是乙和丙的概率==.故答案为.14.(3分)(2017•宁河县一模)计算(﹣xy3)2的结果等于x2y6.【解答】解:(﹣xy3)2=(﹣1)2•x2•(y3)2=x2y6,故等答案为:x2y6.15.(3分)(2017•宁河县一模)多项式x(x﹣1)﹣3x+4因式分解的结果等于(x ﹣2)2.【解答】解:x(x﹣1)﹣3x+4=x2﹣x﹣3x+4=x2﹣4x+4=(x﹣2)2.故答案为:(x﹣2)2.16.(3分)(2017•宁河县一模)若一次函数y=2x+b的图象不经过第二象限,则此函数的解析式可以为y=2x﹣1(写出一个即可)【解答】解:∵一次函数y=2x+b的图象不经过第二象限,∴b<0.故答案为:y=2x﹣1.17.(3分)(2017•宁河县一模)如图,正方形ABCD绕点B逆时针旋转30°后得到正方形BEFG,EF与AD相交于点H,延长DA交GF于点K.若正方形ABCD边长为,则HD的长为﹣1.【解答】解:连接BH,如图所示:∵四边形ABCD和四边形BEFG是正方形,∴∠BAH=∠ABC=∠BEH=∠F=90°,由旋转的性质得:AB=EB,∠CBE=30°,∴∠ABE=60°,在Rt△ABH和Rt△EBH中,,∴Rt△ABH≌△Rt△EBH(HL),∴∠ABH=∠EBH=∠ABE=30°,AH=EH,∴AH=AB•tan∠ABH=×=1,∴HD=AD﹣AH=﹣1,故答案为:﹣1.18.(3分)(2017•宁河县一模)如图,将△ABC放在每个小正方形的边长为1的网格中,点A,B,C均在格点上.(Ⅰ)计算AB边的长为;(Ⅱ)请在如图所示的网格中,用无刻度的直尺作出一个以AB为边的矩形,使矩形的面积等于△ABC的面积,并简要说明你的作图方法(不要求证明)【解答】解:(1)AB==.故答案为:;(2)如图所示,矩形ABHG即为所求.三、解答题(本大题共7小题,共66分)19.(8分)(2017•宁河县一模)解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得x≥﹣3;(Ⅱ)解不等式②,得x<2;(Ⅲ)把不等式①和②的阶级在数轴上表示出来;(Ⅳ)原不等式组的解集为﹣3≤x<2【解答】解:(Ⅰ)系数化成1得x≥﹣3.故答案是:x≥﹣3;(Ⅱ)去括号,得3x+3<2x+5,移项,得3x﹣2x<5﹣3,合并同类项,得x<2.故答案是:x<2;(Ⅲ);(Ⅳ)不等式组的解集是﹣3≤x<2.故答案是:﹣3≤x<2.20.(8分)(2017•宁河县一模)在一次初中生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)图①中a的值为25;(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数(结果保留小数点后两位);(Ⅲ)根据这组初赛成绩,由高到低确定7人进入复赛,请直接写出初赛成绩为1.60m的运动员能否进入复赛.【解答】解:(1)∵a%=1﹣(15%+30%+20%+10%)=25%,∴a=25,故答案为:25;(2)平均数为≈1.60(m),1.55m出现次数最多,故众数为1.55m;19个数据的中位数为第10个数据,故中位数为1.60m;(3)由条形图知,分数从高到低1.70m的有2人,1.65m的有5人,共7人,∴初赛成绩为1.60m的运动员不能进入复赛.21.(10分)(2015•铜仁市)如图,已知三角形ABC的边AB是⊙0的切线,切点为B.AC经过圆心0并与圆相交于点D、C,过C作直线CE丄AB,交AB的延长线于点E.(1)求证:CB平分∠ACE;(2)若BE=3,CE=4,求⊙O的半径.【解答】(1)证明:如图1,连接OB,∵AB是⊙0的切线,∴OB⊥AB,∵CE丄AB,∴OB∥CE,∴∠1=∠3,∵OB=OC,∴∠1=∠2,∴∠2=∠3,∴CB平分∠ACE;(2)如图2,连接BD,∵CE丄AB,∴∠E=90°,∴BC===5,∵CD是⊙O的直径,∴∠DBC=90°,∴∠E=∠DBC,∴△DBC∽△CBE,∴,∴BC2=CD•CE,∴CD==,∴OC==,∴⊙O的半径=.22.(10分)(2017•宁河县一模)如图所示,某中学九年级数学活动小组选定测量学校前面小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°.若斜坡FA的坡比i=1:,求大树的高度.(结果保留一位小数)参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,取1.73.【解答】解:过点D作DM⊥BC于点M,DN⊥AC于点N,则四边形DMCN是矩形,∵DA=6,斜坡FA的坡比i=1:,∴DN=AD=3,AN=AD•cos30°=6×=3,设大树的高度为x,∵在斜坡上A处测得大树顶端B的仰角是48°,∴tan48°=≈1.11,∴AC=,∴DM=CN=AN+AC=3+,∵在△ADM中,=,∴x﹣3=(3+)•,解得:x≈13.答:树高BC约13米23.(10分)(2017•宁河县一模)为保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口A的费用分别为14元/吨,20元/吨;从甲、乙两仓库运送物资到港口B的费用分别为10元/吨、8元/吨.(Ⅰ)设从甲仓库运往A港口x吨,试填写表格.表一表二(Ⅱ)给出能完成此次运输任务的最节省费用的调配方案,并说明理由.【解答】解:(Ⅰ)设从甲仓库运x吨往A港口,则从甲仓库运往B港口的有(80﹣x)吨,从乙仓库运往A港口的有(100﹣x)吨,运往B港口的有50﹣(80﹣x)=(x﹣30)吨,费用分别为14x元,10(80﹣x)元,20(100﹣x)元,8(x﹣30)元.故答案分别为x,100﹣x,80﹣x,x﹣30;20(100﹣x),10(80﹣x),8(x﹣30);(Ⅱ)因为y=14x+20(100﹣x)+10(80﹣x)+8(x﹣30)=﹣8x+2560,x的取值范围是30≤x≤80.因为y随x增大而减少,所以当x=80时总运费最小,当x=80时,y=﹣8×80+2560=1920,此时方案为:把甲仓库的全部运往A港口,再从乙仓库运20吨往A港口,乙仓库的余下的全部运往B港口.24.(10分)(2015•吉林)两个三角板ABC,DEF,按如图所示的位置摆放,点B 与点D重合,边AB与边DE在同一条直线上(假设图形中所有的点,线都在同一平面内).其中,∠C=∠DEF=90°,∠ABC=∠F=30°,AC=DE=6cm.现固定三角板DEF,将三角板ABC沿射线DE方向平移,当点C落在边EF上时停止运动.设三角板平移的距离为x(cm),两个三角板重叠部分的面积为y(cm2).(1)当点C落在边EF上时,x=15cm;(2)求y关于x的函数解析式,并写出自变量x的取值范围;(3)设边BC的中点为点M,边DF的中点为点N.直接写出在三角板平移过程中,点M与点N之间距离的最小值.【解答】解:(1)如图1所示:作CG⊥AB于G点.,在Rt△ABC中,由AC=6,∠ABC=30,得BC==6.在Rt△BCG中,BG=BC•cos30°=9.四边形CGEH是矩形,CH=GE=BG+BE=9+6=15cm,故答案为:15;(2)①当0≤x <6时,如图2所示.,∠GDB=60°,∠GBD=30°,DB=x ,得DG=x ,BG=x ,重叠部分的面积为y=DG•BG=×x ×x=x 2②当6≤x <12时,如图3所示.,BD=x ,DG=x ,BG=x ,BE=x ﹣6,EH=(x ﹣6).重叠部分的面积为y=S △BDG ﹣S △BEH =DG•BG ﹣BE•EH ,即y=×x ×x ﹣(x ﹣6)(x ﹣6)化简,得y=﹣x 2+2x ﹣6;③当12<x ≤15时,如图4所示., AC=6,BC=6,BD=x ,BE=(x ﹣6),EG=(x ﹣6),重叠部分的面积为y=S △ABC ﹣S △BEG =AC•BC ﹣BE•EG ,即y=×6×6﹣(x ﹣6)(x ﹣6), 化简,得y=18﹣(x 2﹣12x +36)=﹣x 2+2x +12;综上所述:y=;(3)如图5所示作NG ⊥DE 于G 点.,点M 在NG 上时MN 最短,NG 是△DEF 的中位线,NG=EF=.MB=CB=3,∠B=30°,MG=MB=,MN最小=3﹣=.25.(10分)(2017•宁河县一模)在平面直角坐标系中,O为原点,直线y=﹣2x ﹣1与y轴交于点A,与直线y=﹣x交于点B,点B关于原点的对称点为点C.(Ⅰ)求过B,C两点的抛物线y=ax2+bx﹣1解析式;(Ⅱ)P为抛物线上一点,它关于原点的对称点为Q.①当四边形PBQC为菱形时,求点P的坐标;②若点P的横坐标为t(﹣1<t<1),当t为何值时,四边形PBQC面积最大?最大值是多少?并说明理由.【解答】解:(Ⅰ)联立两直线解析式可得,解得,∴B点坐标为(﹣1,1),又C点为B点关于原点的对称点,∴C点坐标为(1,﹣1),∵直线y=﹣2x﹣1与y轴交于点A,∴A点坐标为(0,﹣1),设抛物线解析式为y=ax2+bx+c,把A、B、C三点坐标代入可得,解得,∴抛物线解析式为y=x2﹣x﹣1;(Ⅱ)①当四边形PBQC为菱形时,则PQ⊥BC,∵直线BC解析式为y=﹣x,∴直线PQ解析式为y=x,联立抛物线解析式可得,解得或,∴P点坐标为(1﹣,1﹣)或(1+,1+);②当t=0时,四边形PBQC的面积最大.理由如下:如图,过P作PD⊥BC,垂足为D,作x轴的垂线,交直线BC于点E,=2S△PBC=2×BC•PD=BC•PD,则S四边形PBQC∵线段BC长固定不变,∴当PD最大时,四边形PBQC面积最大,又∠PED=∠AOC(固定不变),∴当PE最大时,PD也最大,∵P点在抛物线上,E点在直线BC上,∴P点坐标为(t,t2﹣t﹣1),E点坐标为(t,﹣t),∴PE=﹣t﹣(t2﹣t﹣1)=﹣t2+1,∴当t=0时,PE有最大值1,此时PD有最大值,即四边形PBQC的面积最大.参与本试卷答题和审题的老师有:HLing;2300680618;王学峰;放飞梦想;zhjh;zhangCF;sd2011;守拙;tcm123;gsls;zjx111;曹先生;家有儿女;szl;三界无我;CJX;弯弯的小河(排名不分先后)菁优网2017年5月24日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年九年级数学中考模拟试卷
一、选择题:
1.若|a|=3,|b|=2,且a+b>0,那么a-b的值是()
A.5或1
B.1或-1
C.5或-5
D.-5或-1
2.如图,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是( )
A.2
B.
C.
D.
3.下面的图形中,既是轴对称图形又是中心对称图形的是()
4.为缓解中低收入人群和新参加工作的大学生住房的需求,某市将新建保障住房3600000套,把
3600000用科学记数法表示应是()
A.0.36×107
B.3.6×106
C.3.6×107
D.36×105
5.下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是()
6.下列说法中正确的是().
7.下列计算正确的是()
A.2÷2﹣1=-1
B.
C.(﹣2x﹣2)﹣3=6x6
D.
8.一元二次方程x2+x+0.25=0的根的情况是( )
A.有两个不相等的实数根
B.有两个相等的实数根
C.无实数根
D.无法确定根的情况
9.在函数y=中,自变量x的取值范围是()
A.x≥﹣2且x≠0
B.x≤2且x≠0
C.x≠0
D.x≤﹣2
10.如图,平行四边形ABCD中,DB=DC,∠C=70°,AE⊥BD于E,则∠DAE等于()
A.20°
B.25°
C.30°
D.35°
11.已知反比例函数,当1<x<2时,y的取值范围是( )
A.0<y<5
B.1<y<2
C.5<y<10
D.y>10
12.已知二次函数y=x2+2x﹣3,当自变量x取m时,对应的函数值小于0,设自变量分别取m﹣4,m+4时对应的函数
值为y1,y2,则下列判断正确的是()
A.y1<0,y2<0
B.y1<0,y2>0
C.y1>0,y2<0
D.y1>0,y2>0
二、填空题:
13.分解因式:x2y﹣y= .
14.计算2﹣的结果是.
15.在一个袋子里装有10个球,其中6个红球,3个黄球,1个绿球,这些球除颜色外,形状、大小、质地等完全相同,充分搅匀后,在看不到球的条件下,随机从这个袋子中摸出一球,不是红球的概率是.
16.如图,正比例函数y=kx,y=mx,y=nx在同一平面直角坐标系中的图象如图所示.则系数k,m,n的大小关系是__________.
17.如图,点A的坐标为(-4,0),直线y=x+n与坐标轴交于点B,C,连接AC,如果∠ACD=90°,则n的值为________.
18.已知菱形A
B1C1D1的边长为2,∠A1B1C1=60°,对角线A1C1,B1D1相交于点O.以点O为坐标原点,分别以OA1,
1
OB1所在直线为x轴、y轴,建立如图所示的直角坐标系.以B1D1为对角线作菱形B1C2D1A2∽菱形A1B1C1D1,再以A2C2为对角线作菱形A2B2C2D2∽菱形B1C2D1A2,再以B2D2为对角线作菱形B2C3D2A3∽菱形A2B2C2D2,…,按此规律继续作下去,在x轴的正半轴上得到点A1,A2,A3,…,A n,则点A n的坐标为____________.
三、解答题:
19.解不等式组:,并把不等式组的解集在数轴上表示出来.
20.某超市计划经销一些特产,经销前,围绕“A:绥中白梨,B:虹螺岘干豆腐,C:绥中六股河鸭蛋,D:兴城红崖子花生”四种特产,在全市范围内随机抽取了部分市民进行问卷调查:“我最喜欢的特产是什么?”(必选且只选一种).现将调查结果整理后,绘制成如图所示的不完整的扇形统计图和条形统计图.
请根据所给信息解答以下问题:
(1)请补全扇形统计图和条形统计图;
(2)若全市有280万市民,估计全市最喜欢“虹螺岘干豆腐”的市民约有多少万人?
(3)在一个不透明的口袋中有四个分别写上四种特产标记A、B、C、D的小球(除标记外完全相同),随机摸出一个小球然后放回,混合摇匀后,再随机摸出一个小球,则两次都摸到“A”的概率为.
21.如图,已知在△ABC中,BC=AC,以BC为直径的⊙O与边AB相交于点D,DE⊥AC,垂足为点E.
(1)求证:点D是AB的中点;
(2)判断DE与⊙O的位置关系,并证明你的结论;
(3)若⊙O的直径为18,cosB=,求DE的长.
22.如图,禁止捕鱼期间,某海上稽查队在某海域巡逻,上午某一时刻在A处接到指挥部通知,在他们东北方向距
离12海里的B处有一艘捕鱼船,正在沿南偏东75°方向以每小时10海里的速度航行,稽查队员立即乘坐巡逻船以每小时14海里的速度沿北偏东某一方向出发,在C处成功拦截捕鱼船,求巡逻船从出发到成功拦截捕鱼船所用的时间.
23.市移动通讯公司开设了两种通讯业务: “全球通”使用者先缴50元月基础费, 然后每通话1分钟, 再付电
话费0.4元; “神州行”不缴月基础费, 每通话1分钟, 付话费0.6元(这里均指市内通话). 若一个月内通话x 分钟, 两种通讯方式的费用分别为y1元和y2元.
(1)写出y1、y2与x之间的函数关系式;
(2)一个月内通话多少分钟, 两种通讯方式的费用相同?
(3)若某人预计一个月内使用话费200元, 则应选择哪种通讯方式较合算?
24.如图1,在△ABC中,AB=AC,射线BP从BA所在位置开始绕点B顺时针旋转,旋转角为α(0°<α<180°)
(1)当∠BAC=60°时,将BP旋转到图2位置,点D在射线BP上.若∠CDP=120°,则∠ACD ∠ABD(填“>”、“=”、“<”),线段BD、CD与AD之间的数量关系是;
(2)当∠BAC=120°时,将BP旋转到图3位置,点D在射线BP上,若∠CDP=60°,求证:BD﹣CD=AD;
(3)将图3中的BP继续旋转,当30°<α<180°时,点D是直线BP上一点(点P不在线段BD上),若∠CDP=120°,
请直接写出线段BD、CD与AD之间的数量关系(不必证明).
25.如图,已知抛物线y=﹣x2+2x经过原点O,且与直线y=x﹣2交于B,C两点.
(1)求抛物线的顶点A的坐标及点B,C的坐标;
(2)求证:∠ABC=90°;
(3)在直线BC上方的抛物线上是否存在点P,使△PBC的面积最大?若存在,请求出点P的坐标;若不存在,请说明理由;
(4)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.
参考答案
1.A
2.B
3.C
4.B
5.B
6.C
7.D
8.B
9.A
10.A
11.C
12.D
13.答案为:y(x+1)(x﹣1).
14.解:原式=2×﹣3=﹣3=﹣2,故答案为:﹣2.
15.答案为:0.4.
16.略
17.答案为:;
18.答案为:(3n-1,0)
19.答案为:﹣1≤x<4
20.
21.解:(1) 证明:在等腰梯形ABCD中,AD∥BC. ∴AB=DC,∠B=∠C
∵ OE=OC ∴∠OEC=∠C ∴∠B=∠OEC ∴OE∥AB
(2) 证明:连结OF,∵⊙O与AB切于点F ,∴OF⊥AB,∵EH⊥AB∴OF ∥EH 又∵OE∥AB∴四边形OEHF为平行四边形∴EH= OF∵OF=0.5CD=0.5AB∴EH=0.5AB (3)解:连结DE,设⊙O的半径为r,∵CD是⊙O的直径,∴∠DEC=90°则∠DEC=∠EHB
又∵∠B=∠C ∴△EHB∽△DEC ∴
∵,∴,
在中,∴,
解得:∴⊙O的半径为
22.解:设巡逻船从出发到成功拦截所用时间为小时.
如图所示,由题得,
,,
过点作的延长线于点,
在中,,
∴.
∴.
在中,由勾股定理得:
解此方程得(不合题意舍去).
答:巡逻船从出发到成功拦截所用时间为2小时。

23.(1)y1=50+0.4x(x≥0的整数);y2=0.6x(x≥0的整数)
(2)x=250
(3)“全球通”可通话375分钟,“神州行”可通话分钟,∴选择“全球通”较合算。

24.(1)∠ACD=∠ABD,BD=CD+AD;(2)略;(3)BD+CD=AD.
25.。

相关文档
最新文档