2018-2019学年人教A版高中数学必修一习题课1集合练习含解析
高中数学必修一人教A版1.1 集合的概念练习(含答案及解析)(19)

1.1 集合的概念一、单选题1.已知集合{}240A x x =-=∣,则集合A 的所有子集的个数是( ) A .1 B .2 C .3 D .4答案:D解析:可用列举法列出所有子集即可. 详解:集合{}{}2402,2A xx =-==-∣, 则集合A 的子集有∅、{}2、{}2,2-、{}2-. 集合A 的所有子集的个数为4. 故选:D.2.下列各组中的M 、P 表示同一集合的个数是( ) ①{}3,1M =-,{(3,1)}P =-; ②{(3,1)}M =,{(1,3)}P =;③{}21M yy x ==-∣,{}1P t t =∣ ④{}21M yy x ==-∣,{}2(,)1P x y y x ==-∣. A .0 B .1 C .2 D .3答案:B解析:利用集合相等的概念判断. 详解:在①中,}1{3M =-,是数集,{(3,1)}P =-是点集,二者不是同一集合,故①错误; 在②中,{(3,1)}M =,{(1,3)}P =表示的不是同一个点,故②错误;在③中,{}21[1,)M yy x ==-=-∞∣,{1}[1,)P t t ===-+∞∣,二者表示同一集合,故③正确; 在④中,{}21M yy x ==-∣表示数集,{}2(,)1P x y y x ==-∣表示点集,故④错误. 故选:B.3.已知集合{}1,3,4,5,8A =,{}2,3,5,6,8B = ,若{}|,C x x A x B =∈∉,则集合C =( ) A .{}1,2,4,6 B .{}3,5,8C .{}1,4D .{}2,6答案:C解析:根据x A ∈且x B ∉先确定出C 中的元素,则C 可确定出. 详解:因为x A ∈且x B ∉,且仅有1,1,4,4A B A B ∈∉∈∉,所以C 中有元素:1,4, 所以{}1,4C =, 故选:C.4.设集合{}1,2,4A =,{}240B x x x m =-+=.若{}1A B ⋂=,则B = ( )A .{}1,3-B .{}1,0C .{}1,3D .{}1,5答案:C 详解:∵ 集合{}124A =,,,{}2|40B x x x m =-+=,{}1A B = ∴1x =是方程240x x m -+=的解,即140m -+= ∴3m =∴{}{}{}22|40|43013B x x x m x x x =-+==-+==,,故选C5.已知集合A=y|y=|x|﹣1,x∈R},B=x|x≥2},则下列结论正确的是 A .﹣3∈A B .3∉BC .A∩B=BD .A∪B=B答案:C 详解:试题分析:集合{}|1A y y =≥-A B B B A ∴⊆∴⋂= 考点:集合间的关系6.下列几组对象可以构成集合的是( ) A .充分接近π的实数的全体 B .善良的人C .世界著名的科学家D .某单位所有身高在1.7m 以上的人答案:D解析:研究是否能组成集合,只需观察描述的对象没有一个明确的标准,再逐一检验即可. 详解:解:选项A ,B ,C 所描述的对象没有一个明确的标准,故不能构成一个集合, 选项D 的标准唯一,故能组成集合. 故选:D . 点睛:本题考查了集合的概念,属于基础题.7.已知集合 A={}2|20,1,x x x a A a -+≥∉且则实数的取值范围是A .(],1-∞B .[)1,+∞C .(),1-∞D .[)0,+∞答案:C 详解:本题考查了集合与元素的关系. 解:解得:8.已知集合A =x∈N|x<6},则下列关系式不成立的是( ) A .0∈A B .1.5∉A C .-1∉A D .6∈A答案:D解析:根据集合的定义求解出集合A ,进而逐项验证答案即可. 详解:∵A=x∈N|x<6},A ∴0,1,2,3,4,5}, ∴6∉A ,选项ABC 不符合题意,选项D 符合题意 故选:D.9.已知集合22{(,)|1}A x y x y =+=,{(,)|}B x y y x ==,则A B 中元素的个数为( ) A .0 B .1 C .2 D .3答案:C 解析:联立221y xx y =⎧⎨+=⎩,解方程组,即可求出221x y +=与y x =的交点个数,即A B 中元素的个数. 详解:联立221y x x y =⎧⎨+=⎩,解得22x y ⎧=⎪⎪⎨⎪=⎪⎩22x y ⎧=⎪⎪⎨⎪=⎪⎩即221x y +=与y x =相交于两点22⎝⎭,22⎛ ⎝⎭, 故A B 中有两个元素. 故选:C .点睛:本题考查集合的元素个数,考查学生的计算求解能力,属于基础题. 二、填空题1.已知关于x 的不等式2x x a +-≤2的解集为P ,若1P ∉,则实数a 的取值范围为________.答案:1(,1]2-解析:先根据1P ∈得不等式解得范围,再根据其补集得结果. 详解:若1P ∈,则12210111a a a a ++∴≥∴>--≤2或12a ≤- 因为1P ∉,所以112a -<≤ 故答案为:1(,1]2- 点睛:本题考查根据元素与集合关系求参数,考查基本分析求解能力,属基础题.2.设集合{}{}222221234512345,,,,,,,,,A a a a a a B a a a a a ==,其中12345,,,,a a a a a 是五个不同的正整数,{}123451414,,,10a a a a a A B a a a a <<<<⋂=+=,若A B 中所有元素的和为246,则满足条件的集合A 的个数为________ 答案:2解析:由题意可得211a a =,所以141,9a a ==,分类讨论当33a =和23a =时情况,即可得出结果.详解:由题意可得211a a =,所以141,9a a ==.由于B 中有9,因此A 中有3.若33a =,则22a =,于是2255551+23914981+246146a a a a +++++++=⇒+=,无正整数解. 若23a =,则2222353533551+3+91981246152+++++++=⇒+++=a a a a a a a a ,212+12=156>152,所以51011a ≤≤,当510a =时,36a =; 当511a =时,34a =;因此满足条件的A 共有2个,分别为{}{}1,3,4,9,11,1,3,6,9,10 故答案为:23.若不等式34x b -<的解集中的整数有且仅有5,6,则b 的取值范围是______.答案:[]16,17解析:先求得不等式34x b -<的解集4433b bx -++<<,根据不等式34x b -<的解集中的整数有且仅有5,6,得出不等式组44534673b b -+⎧≤<⎪⎪⎨+⎪<≤⎪⎩,即可求解,得到答案.详解:由题意,不等式34x b -<,即434x b -<-<,解得4433b bx -++<<, 要使得不等式34x b -<的解集中的整数有且仅有5,6,则满足44534673b b -+⎧≤<⎪⎪⎨+⎪<≤⎪⎩,解得1617b ≤≤,即实数b 的取值范围是[]16,17.故答案为[]16,17. 点睛:本题主要考查了绝对值不等式的求解,以及集合的应用,其中解答中正确求解绝对值不等式,根据题设条件得到不等式组是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.4.三角形的周长为31,三边a ,b ,c 均为整数,且a b c ≤≤,则满足条件的三元数组(,,)a b c 的个数为______.答案:24解析:根据三角形三边关系、周长为31,a b c ≤≤可求得313132c ≤<且max 10a =,采用列举法列举出所有可能的结果,从而得到三元数组的个数. 详解:由三角形三边关系及周长可得:31a b c a b c a c b++=⎧⎪+>⎨⎪>-⎩312c ⇒<又a b c ≤≤ 331c ∴≥,331a ≤,即313c ≥,313a ≤ 313132c ∴≤<,所以c 所有可能的取值为:11,12,13,14,15且max 10a = ①当11c =时,1010a b =⎧⎨=⎩或911a b =⎧⎨=⎩②当12c =时,910a b =⎧⎨=⎩或811a b =⎧⎨=⎩或712a b =⎧⎨=⎩③当13c =时,99a b =⎧⎨=⎩或810a b =⎧⎨=⎩或711a b =⎧⎨=⎩或612a b =⎧⎨=⎩或513a b =⎧⎨=⎩④当14c =时,89a b =⎧⎨=⎩或710a b =⎧⎨=⎩或611a b =⎧⎨=⎩或512a b =⎧⎨=⎩或413a b =⎧⎨=⎩或314a b =⎧⎨=⎩⑤当15c =时,88a b =⎧⎨=⎩或79a b =⎧⎨=⎩或610a b =⎧⎨=⎩或511a b =⎧⎨=⎩或412a b =⎧⎨=⎩或313a b =⎧⎨=⎩或214a b =⎧⎨=⎩或115a b =⎧⎨=⎩则三元数组(),,a b c 共有:2356824++++=个 本题正确结果:24 点睛:本题考查三角形三边关系,解题关键是能够得到边长的取值范围,然后根据分类计数原理,采用列举的方法求得结果.5.已知集合()()21|,}0{x x x x a x R --+=∈中的所有元素之和为1,则实数a 的取值范围为__________.答案:{}1,04⎛⎫+∞ ⎪⎝⎭解析:首先确定集合中包含元素1;分别在20x x a -+=无实根、有两个相等实根和有两个不等实根三种情况下,讨论元素之和是否为1,综合可求得结果. 详解:令10x -=,解得:1x =①若20x x a -+=无实根,即140a ∆=-<,解得:14a > 此时集合只有一个元素1,满足题意②若20x x a -+=有两个相等实根,即140a ∆=-=,解得:14a =2104x x ∴-+=,解得:12x = ∴集合为11,2⎧⎫⎨⎬⎩⎭,不满足元素之和为1③若20x x a -+=有两个不等实根,即140a ∆=->,解得:14a < 设此时方程20x x a -+=的两根为12,x x ,则121x x =+ 若11x ≠,21x ≠,此时集合为{}121,,x x ,不满足元素之和为1若11x =,则20x =,此时集合为{}1,0,满足元素之和为1 120a x x ∴==综上所述:{}1,04a ⎛⎫∈+∞ ⎪⎝⎭故答案为:{}1,04⎛⎫+∞ ⎪⎝⎭点睛:本题考查根据集合中元素的个数求解参数范围的问题,易错点是忽略集合中元素的互异性,在20x x a -+=有两个不等实根的情况下,忽略其中一个根为1的情况,造成求解错误. 三、解答题1.已知集合(){}*12|,,,,,1,2,,(2)n n i S X X x x x x N i n n ==∈=≥.对于()12,,,n A a a a =,()12,,,n n B b b b S =∈,定义()1122,,,n n AB b a b a b a =---;()12,,,n a a a λ()12,,,()n a a a λλλλ=∈R ;A与B 之间的距离为11221(,)ni i i d A B a b a b a b ==-=-+-++∑n n a b -.(1)当5n =时,设(1,2,1,2,5)A =,(2,4,2,1,3)B =,求(,)d A B ;(2)证明:若,,n A B C S ∈,且0λ∃>,使AB BC λ=,则(,)(,)(,)d A B d B C d A C +=; (3)记20(1,1,,1)I S =∈,若20,A B S ∈,且(,)(,)13d I A d I B ==,求(,)d A B 的最大值.答案:(1)(,)7d A B =(2)证明见解析(3)26解析:(1)当5n =时,由51(,)i i i d A B a b ==-∑直接求解即可;(2)设()12,,,n A a a a =,()12,,,n B b b b =,()12,,,n C c c c =,则由题意可得存在0λ>,使得()i i i i b a c b λ-=-,其中1,2,,i n =,得出 i i b a -与i i c b -同为非负数或同为负数,再计算(,)(,)d A B d B C +化简即可证明;(3)设(1,2,320),,,i i b a i -=中有m (20)m ≤项为非负数,20m -项负数,不妨设1,2,3,,i m =时,0i i b a -;1,2,,20i m m =++时,0i i b a -<,利用(,)(,)13d I A d I B ==,得出20201123iii i a b ====∑∑,整理()()2012121(,)2im ii m d A B a bb b b a a a ==-=+++-+++⎡⎤⎣⎦∑求出12m a a a m ++⋯+,12313n b b b b m +++⋯+≤+,即可得出(,)d A B 的最大值. 详解:(1)当5n =时,由51(,)i i i d A B a b ==-∑得(,)|12||24||12||21||53|7d A B =-+-+-+-+-=所以(,)7d A B =(2)设()12,,,n A a a a =,()12,,,n B b b b =,()12,,,n C c c c = 因为0λ∃>,使AB BC λ=所以0λ∃>,使得()()11221122,,,,,,n n n n b a b a b a c a c a c a λ---=--- 即存在0λ>,使得()i i i i b a c b λ-=-,其中1,2,,i n = 所以i i b a -与i i c b -同为非负数或同为负数所以11(,)(,)n ni i i i i i d A B d B C a b b c ==+=-+-∑∑()1n i i i i i b a c b ==-+-∑1(,)ni i i c a d A C ==-=∑(3)012(,)i i i d A B a b ==-∑设(1,2,320),,,i i b a i -=中有m (20)m ≤项为非负数,20m -项负数 不妨设1,2,3,,i m =时,0i i b a -;1,2,,20i m m =++时,0i i b a -<(,)(,)13d I A d I B ==()()20201111i i i i a b ==∴-=-∑∑整理得到20201123i i i i a b ====∑∑201(,)i i i d A B b a ==-∑()()()()21212201220i m m m m m m b b b a a a a a a b b b ++++=+++-++⋯+++++-+++⎡⎤⎡⎤⎣⎦⎣⎦()()12122m m b b b a a a =+++-+++⎡⎤⎣⎦()()12312201220n m m b b b b b b b b b b +++++⋯+=++⋯+-+++()2320113m m ≤--⨯=+ 1220(20)120m m b b b m m +++++-⨯=-12m a a a m ++⋯+()()12312201220n m m b b b b b b b b b b ++∴+++⋯+=++⋯+-+++()2320113m m ≤--⨯=+ (,)2(13)26d A B m m ∴+-=故(,)d A B 的最大值为26 点睛:本题主要考查了集合新定义有关证明,属于较难题. 2.求方程22x x -=答案:{1,3}-解析:令22,0x x y y -=,求解关于y 的一元二次方程,再反求x 即可. 详解:令22,0x x y y -=,则原方程化为y =两边平方,整理得2230y y --=, 即(3)(1)0y y -+=. 解得,y y ==-1231,由0y 知1y ≠-,所以3y =, 即223x x -=, 解得3x =或1x =-.经检验,原方程的解集为{1,3}-. 点睛:本题考查利用换元法求解带根式的方程,属中档题;注意检验. 3.用描述法表示下列集合,并思考能否用列举法表示该集合 (1)所有能被3整除的自然数(2)不等式²230x x +-<的解集 (3)²230x x +-=的解集答案:答案见解析.解析:根据集合的表示法求解. 详解:(1){|3,}x x n n N =∈,集合中元素个数无穷,不能用列举法表示; (2)2230x x +-<,即(1)(3)0x x -+<,31x -<<,集合为{|31}x x -<<,集合中元素有无数个,不能用列举法表示; (3)集合可表示为2{|230}x x x +-=,列举法表示为{3,1}-.。
高中数学必修一人教A版1.1 集合的概念练习(含答案及解析)(5)

1.1 集合的概念一、单选题1.在2N,0N ,5Q Z +-∈∈-∈中,正确的个数为( )A .1B .2C .3D .4答案:A解析:根据数集的表示方法,逐个判定,即可求解.详解:由数集的表示方法知N 为自然数集,N +为正整数集,Q 为有理数集,可得2N -∈,0N +∈Q 不正确;5Z -∈正确;故选:A.2.已知集合(){}22,|2,,A x y x y x y =+≤∈∈N N ,则A 中元素的个数为( )A .4B .9C .8D .6答案:A解析:根据题中条件,分别讨论0x =和1x =两种情况,即可得出结果.详解:因为222x y +≤,x N ∈,y ∈N ,当0x =时,0y =,1;当1x =时,0y =,1,所以共有4个元素,故选:A.点睛:本题主要考查判断集合中元素的个数,属于基础题型.3.设集合A =1,2,4},集合{|}B x x a b a A b A +∈∈==,,,则集合B 中的元素个数为( )A .4B .5C .6D .7答案:C解析:集合A =1,2,4},集合{|}B x x a b a A b A +∈∈==,,,所以{}234568B =,,,,,,共6个元素.故选C.4.若以集合A 的四个元素a 、b 、c 、d 为边长构成一个四边形,则这个四边形可能是( )A .梯形B .平行四边形C .菱形D .矩形答案:A详解: 由集合元素的互异性可得a 、b 、c 、d 互不相等,所以四边形的四条边互不相等,结合各选项可得该四边形可能为梯形.选A .点睛:集合中的元素具有确定性、互异性、无序性三个特征,对于集合中的元素的这三个特征,特别是无序性和互异性在解题时经常用到;解题后要进行检验,要重视符号语言与文字语言之间的相互转化.5.下面关于集合的表示正确的个数是( )①{}{}2332≠,,; ②{}{}()11x y x y y x y ,+==+=; ③{}{}11x x y y >=>; ④{}{}11x x y y x y +==+=.A .0B .1C .2D .3答案:C解析:∵集合中的元素具有无序性,∴①2,3}=3,2},①不成立;(x ,y )x+y=1}是点集,而yx+y=1}不是点集,②不成立; 由集合的性质知③④正确.故选C .6.已知集合U =R ,2{|5}A x Z x =∈<,(){}220B x x x =->,则图中阴影部分表示的集合为A .{}2B .{}1,2C .{}0,2D .{}0,1,2答案:C解析:先求出集合A=-2,-1,0,1,2},B=x|x <2,且x≠0},从而C U B=x|x≥2或x=0},由此能求出图中阴影部分表示的集合A∩(C U B ).详解:图中阴影部分表示的集合为()U C B A ⋂.∵2{|5}A x Z x =∈<,(){}220B x x x =->,∴[]2,1,0,1,2A =--,()(),00,2B =-∞⋃,∴(){}0,2U C B A ⋂=.故选C .点睛:在解题时,需要清楚元素与集合的关系以及集合间的关系,能使用Venn 图表达集合的关系及运算.7.对任意x M ∈,总有2x M ∉M ,若{}0,1,2,3,4,5M ⊆,则满足条件的非空集合M 的个数是( )A .11B .12C .15D .16答案:A解析:根据题意,0M ∉且1M ∉,且2、4不同时在集合M 中,对集合M 分两种情况讨论:①2M ∉且4M ∉;②2和4有且只有一个在集合M 中,分别列举出符合条件的集合M ,即可得出答案.详解:2111==,200=,由题意可知0M ∉且1M ∉,由于242=, 所以,2和4不同时在集合M 中.①当2M ∉且4M ∉时,则符合条件的集合M 有:{}3、{}5、{}3,5,共3种;②若2和4有且只有一个在集合M 中,则符合条件的集合M 有:{}2、{}2,3、{}2,5、{}2,3,5、{}4、{}3,4、{}4,5、{}3,4,5,共8种.综上所述,满足条件的非空集合M 的个数是3811+=.故选:A.点睛:本题考查满足条件的集合个数的求解,列举出满足条件的集合即可,考查分类讨论思想的应用,属于中等题.8.下列集合中表示同一集合的是( )A .{(3,2)}M =,{(2,3)}N =B .{2,3}M =,{3,2}N =C .{(,)1}M x y x y =+=∣,{1}N y x y =+=∣ D .{2,3}M =,{(2,3)}N =答案:B解析:利用集合的定义和元素的三个性质,对A 、B 、C 、D 四个选项进行一一判断; 详解:A.M 、N 都是点集,()3,2与()2,3是不同的点,则M 、N 是不同的集合,故错误;B.2,3M ,{}3,2N =,根据集合的无序性,集合M ,N 表示同一集合,故正确;C.{}(,)1M x y x y =+=∣,M 集合的元素表示点的集合,{}1N y x y =+=∣,N 表示直线1x y +=的纵坐标,是数集,故不是同一集合,故错误;D.2,3M集合M 的元素是两个数字2,3,{}(2,3)N =,集合N 的元素是一个点()2,3,故错误;故选:B.点睛:本题主要考查集合的定义及元素的性质,属于基础题.9.设集合{|21,},5A x x k k Z a ==+∈=,则有( )A .a A ∈B .a A -∈C .{}a A ∈D .{}a A ⊇答案:A解析:5221a ==⨯+,结合集合A,即可得出结果.详解:5221a A ==⨯+∈. 故选:A点睛:本题考查元素和集合的关系,考查学生对基本概念的理解,属于基础题.二、多选题1.若集合A =x∈N|x 2≤1},1a =-,则下列结论不正确的是A .a A ∉B .a∈AC .a}∈AD .a}∉A答案:BCD解析:本题先将集合A 用列举法表示,再判断a 与A 的关系即可.详解:集合A =x∈N|x 2≤1}=0,1},1a =-,根据元素和集合的关系得到a A ∉.故选:BCD.点睛:本题考查元素与集合的关系,是基础题.2.设集合2{|0}A x x x =+=,则下列表述不正确的是( )A .{0}A ∈B .1A ∉C .{1}A -∈D .0A ∈答案:AC解析:求出集合2{|0}{0A x x x =+==,1}-,利用元素与集合的关系能判断正确结果.详解:解:集合2{|0}{0A x x x =+==,1}-,0A ∴∈,1A -∈,{}0A ⊂,{}1A -⊂,1A ∉.∴AC 选项均不正确,BD 选项正确.故选:AC .点睛:本题主要考查元素与集合的关系,属于基础题.3.(多选题)已知集合2{4,21,}A a a =--,{}5,1,9B a a =--,下列结论正确的是( )A .当5a =时,9()AB ∈⋂B .当3a =时,9()A B ∈⋂C .当3a =-时,9()A B ∈⋂D .当5a =时,{9}()A B =⋂ E.当3a =-时,{9}()A B =⋂答案:ACE解析:分别就5a =,3a =,3a =-根据集合交集运算的基本关系,求出A B ,即可求出结果. 详解:当5a =时,{4,9,25}A =-,{0,4,9} B =-,{4,9}A B =-,A 正确,D 错误;当3a =时,512a a -=-=-,不满足集合中元素的互异性,B 错误;当3a =-时,{4,7,9}A =--,{8,4,9}B =-,{9}A B =,C 、E 正确.故选:ACE.点睛:本题主要考查了集合之间的交集运算的关系,熟练掌握子集的概念是解决本题的关键.4.若集合{}2|210A x px x =++=中有且只有一个元素,则实数p 的值为( )A .0B .1-C .2D .1答案:AD 解析:分0p =,和0p ≠两种情况讨论,可得0p =,或1p =.详解:当0p =时,可得1={}2A -,符合题意;当0p ≠时,因为方程210px x ++=有唯一解,所以440,1p p ∆=-=∴=.故选:AD.5.已知集合{}22133A a a a =+++,,,且1A ∈,则实数a 的可能值为( ) A .0B .1-C .1D .2-答案:ABD解析:由已知条件可得出关于实数a 的等式,结合集合中的元素满足互异性可得出实数a 的值. 详解:已知集合{}22133A a a a =+++,,且1A ∈,则11a +=或2331a a ++=,解得0a =或1a =-或2a =-.若0a =,则{}2,1,3A =,合乎题意;若1a =-,则{}2,0,1A =,合乎题意;若2a =-,则{}2,1,1A =-,合乎题意.综上所述,0a =或1a =-或2a =-.故选:ABD.三、填空题1.定义P*Q =ab|a∈P,b∈Q},若P =0,1,2},Q =1,2,3},则P*Q 中元素的个数是________.答案:6解析:由题意结合描述法、列举法表示集合可得集合P*Q ,即可得解.详解:若a =0,则ab =0;若a =1,则ab =1,2,3;若a =2,则ab =2,4,6;故P*Q =0,1,2,3,4,6},共6个元素.故答案为:6.点睛:本题考查了描述法、列举法表示集合的应用,考查了运算求解能力,属于基础题.2.由实数x ,-x ,|x|________个元素.答案:2解析:化简根式可知不论x 取何值所给实数最多只能写成两种形式.详解:因为|x|x ,x =-,所以不论x 取何值,最多只能写成两种形式:x ,-x ,故集合中最多含有2个元素.故答案为:2点睛:本题考查根式的化简、集合的概念,属于基础题.3.已知集合{}1,2A =,{}2,3B a a =+,若A B={1}⋂则实数a 的值为________答案:1详解:由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意,故答案为1.点睛:(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致错误.(3)防范空集.在解决有关,A B A B ⋂=∅⊆等集合问题时,往往容易忽略空集的情况,一定要先考虑∅时是否成立,以防漏解.4.某个含有三个实数的集合既可表示为,,0b b a⎧⎫⎨⎬⎩⎭,也可表示为a ,a +b ,1},则a 2015+b 2015的值为____.答案:0解析:根据所给的一个集合的两种表达形式,看出第一种表达形式中,只有a +b 一定不等式0,重新写出集合的两种形式,把两种形式进行比较,得出a ,b 的值,得到结果. 详解:解:∵集合既可以表示成b ,b a,0},又可表示成a ,a +b ,1}∴a+b 一定等于0在后一种表示的集合中有一个元素是1只能是b.∴b=1,a =-1∴a 2015+b 2015=0.点睛:本题考查集合的元素的三个特性和集合相等.易错点在于忽略集合中元素的互异性.5.若集合{}2|40,?A x x x k x R =++=∈中只有一个元素,则实数k 的值为_______.答案:4解析:∵240x x k ++=由唯一的实根,∴164k 0∆=-=,解得:4k =,故答案为4.四、解答题1.已知集合A 含有两个元素3a -和21a -,a R ∈,若3A -∈,求实数a 的值.答案:0a =或1a =-解析:根据元素与集合关系列方程,再验证互异性即得结果.详解:因为3A -∈,所以33213a a -=-⎧⎨-≠-⎩或33213a a -≠-⎧⎨-=-⎩ 解得0a =或1a =-点睛:本题考查根据元素与集合关系求参数,考查基本分析求解能力,属基础题.2.已知集合A=x|ax 2+2x+1=0,a∈R},(1)若A 只有一个元素,试求a 的值,并求出这个元素;(2)若A 是空集,求a 的取值范围;(3)若A 中至多有一个元素,求a 的取值范围.答案:(1)详见解析;(2)1a >;(3)0a =或1a ≥解析:(1)根据方程为一次方程与二次方程分类讨论,对应求解得结果,(2)根据方程无解条件列不等式,解得结果,(3)A 中至多只有一个元素就是A 为空集,或有且只有一个元素,所以求(1)(2)结果的并集即可.详解:(1)若A 中只有一个元素,则方程ax 2+2x+1=0有且只有一个实根,当a=0时,方程为一元一次方程,满足条件,此时x=-12,当a≠0,此时△=4-4a=0,解得:a=1,此时x=-1,(2)若A 是空集,则方程ax 2+2x+1=0无解,此时△=4-4a <0,解得:a >1.(3)若A 中至多只有一个元素,则A 为空集,或有且只有一个元素,由(1),(2)得满足条件的a 的取值范围是:a=0或a≥1.点睛:本题考查方程的解与对应集合元素关系,考查基本分析求解能力,属基础题.3.有下列三个集合:①x|y=x2+1,y≥1,y∈R};②y|y=x2+1,x∈R};③(x,y)|y=x2+1};(1)它们是不是相同的集合?(2)它们的各自含义是什么?答案:(1)不是;(2)答案见解析.解析:(1)由各个集合的特征进行判断;(2)由用描述法表示集合的方法进行判断详解:解:(1)①x|y=x2+1,y≥1,y∈R}=[0,+∞);②y|y=x2+1,x∈R}=[1,+∞);③(x,y)|y=x2+1}是点集,它们不是相同的集合;(2)①x|y=x2+1,y≥1,y∈R}表示函数的定义域;②y|y=x2+1,x∈R},表示函数的值域;③(x,y)|y=x2+1}表示点的集合.。
2018年高中人教A版数学必修1课时作业1 含解析

课时作业(一)集合的含义一、选择题1.①某班视力较好的同学;②方程x2-1=0的解集;③漂亮的花儿;④空气中密度大的气体.其中能组成集合的是()A. ②B. ①③C. ②④D. ①②④答案:A解析:求解这类题目要从集合元素的确定性、互异性出发.①③④不符合集合元素的确定性,故不能组成集合.2.若一个集合中的三个元素a,b,c是△ABC的三边长,则此三角形一定不是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形答案:D解析:△ABC的三边长两两不等,故选D.3.设不等式3-2x<0的解集为M,下列结论正确的是()A. 0∈M,2∈MB. 0∉M,2∈MC. 0∈M,2∉MD. 0∉M,2∉M答案:B解析:从四个选项来看,本题是判断0和2与集合M 间的关系,因此只需判断0和2是不是不等式3-2x<0的解即可.当x=0时,3-2x=3>0,所以0不属于M,即0∉M;当x=2时,3-2x=-1<0,所以2属于M,即2∈M.4.已知2a∈A,a2-a∈A,若集合A中含有2个元素,则下列说法中正确的是()A.a取全体实数B.a取除0以外的所有实数C.a取除3以外的所有实数D .a 取除0和3以外的所有实数答案:D 解析:根据集合中的元素具有互异性知,2a ≠a 2-a ,∴a ≠0且a ≠3.故选D.5.由a 2,2-a,4组成一个集合A ,A 中含有3个元素,则实数a 的取值可以是( )A. 1B. -2C. 6D. 2答案:C 解析:由题设知,a2,2-a,4互不相等,即⎩⎪⎨⎪⎧a 2≠2-a ,a 2≠4,2-a ≠4,解得a ≠±2且a ≠1.当实数a 的取值是6时,三个数分别为36,-4,4,可以构成集合,故选C.6.已知集合A 含有三个元素2,4,6,且当a ∈A ,有6-a ∈A ,则a 为( )A. 2B. 2或4C. 4D. 0答案:B 解析:若a =2∈A ,则6-a =4∈A ; 若a =4∈A ,则6-a =2∈A ; 若a =6∈A ,则6-a =0∉A .故选B. 二、填空题7.设集合A 是由1,-2,a 2-1三个元素构成的集合,集合B 是由1,a 2-3a,0三个元素构成的集合,若A =B ,则实数a =________.答案:1 解析:由集合相等的概念,得⎩⎪⎨⎪⎧a 2-1=0,a 2-3a =-2,解得a =1.8.已知集合A 由方程(x -a )(x -a +1)=0的根构成,且2∈A ,则实数a =________.答案:2或3 解析:由(x -a )(x -a +1)=0得x =a 或x =a -1.又∵2∈A ,∴当a =2时,a -1=1,集合A 中的元素为1,2,符合题意;当a -1=2时,a =3,集合A 中的元素为2,3,符合题意. 综上可知,a =2或a =3.9.如果有一集合含有三个元素1,x ,x 2-x ,则实数x 的取值范围是________.答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ∈R ,且x ≠0,1,2,1±52 解析:由元素的互异性,得⎩⎪⎨⎪⎧x ≠1,x 2-x ≠1,x 2-x ≠x ,解得x ≠0,1,2,1±52.10.设a ,b ∈R ,集合A 中有三个元素1,a +b ,a ,集合B 中含有三个元素0,ba ,b ,且A =B ,则a +b =________.答案:0 解析:由于B 中元素是0,ba ,b ,故a ≠0,b ≠0. 又A =B ,∴a +b =0.11.由实数t ,|t |,t 2,-t ,t 3所构成的集合M 中最多含有________个元素.答案:4 解析:由于|t |至少与t 和-t 中的一个相等,故集合M 中至多有4个元素,如当t =-2时,t ,-t ,t 2,t 3互不相同,集合M 中含有4个元素.三、解答题12.已知集合A 是由a -2,2a 2+5a,12三个元素组成的,且-3∈A ,求a 的值.解:由-3∈A ,得-3=a -2或-3=2a 2+5a , ∴a =-1或a =-32.当a =-1时,a -2=-3,2a 2+5a =-3,不符合集合中元素的互异性,故a =-1舍去.当a =-32时,a -2=-72,2a 2+5a =-3,符合题意. ∴a =-32.13.设P ,Q 为两个非空实数集合,P 中含有0,2,5三个元素,Q 中含有1,2,6三个元素,定义集合P +Q 中的元素是a +b ,其中a ∈P ,b ∈Q ,则P + Q 中元素的个数是多少?解:∵当a =0时,b 依次取1,2,6,得a +b 的值分别为1,2,6; 当a =2时,b 依次取1,2,6,得a +b 的值分别为3,4,8; 当a =5时,b 依次取1,2,6,得a +b 的值分别为6,7,11. 由集合元素的互异性知P +Q 中元素为1,2,3,4,6,7,8,11,共8个. 14.设集合A 中含有三个元素3,x ,x 2-2x . (1)求实数x 应满足的条件; (2)若-2∈A ,求实数x 的值.解:(1)由集合元素的互异性,得⎩⎪⎨⎪⎧x ≠3,x 2-2x ≠x ,x 2-2x ≠3,解得x ≠-1,x ≠0且x ≠3.(2)若-2∈A ,则x =-2或x 2-2x =-2. 由于x 2-2x =(x -1)2-1≥-1, 所以x =-2. 尖子生题库15.设S 是由满足下列条件的实数所构成的集合: ①1∉S ;②若a ∈S ,则11-a ∈S .请回答下列问题:(1)若2∈S ,则S 中必有另外两个数,求出这两个数; (2)求证:若a ∈S ,则1-1a ∈S ;(3)在集合S 中元素能否只有一个?若能,把它求出来;若不能,请说明理由.(1)解:∵2∈S,2≠1,∴11-2=-1∈S .∵-1∈S ,-1≠1,∴11-(-1)=12∈S .∵12∈S ,12≠1,11-12=2∈S .∴集合S 中另外两个数为-1和12. (2)证明:∵a ∈S ,∴11-a ∈S ,∴11-11-a ∈S , 即11-11-a =1-a 1-a -1=1-1a ∈S (a ≠0). 若a =0,则11-a =1∈S ,不合题意.∴a =0∉S .∴若a ∈S ,则1-1a ∈S . (3)解:集合S 中的元素不能只有一个.理由:假设集合S中只有一个元素a,则根据题意知a=11-a,即a2-a+1=0,此方程无实数解,所以a≠11-a.因此集合S中不能只有一个元素.。
新教材人教A版高中数学必修第一册全册课时练习(一课一练,附解析)

新教材人教A版高中数学必修第一册全册课时练习1.1.1集合的概念 (2)1.1.2集合的表示 (3)1.2集合间的基本关系 (5)1.3.1并集与交集 (7)1.3.2补集及集合运算的综合应用 (8)1.4.1充分条件与必要条件 (11)1.4.2充要条件 (12)1.5.1全称量词与存在量词 (13)1.5.2全称量词命题与存在量词命题的否定 (14)2.1等式性质与不等式性质 (16)2.2.1基本不等式 (17)2.2.2利用基本不等式求最值 (18)2.3.1二次函数与一元二次方程、不等式 (19)2.3.2一元二次不等式的应用 (20)3.1.1.1函数的概念 (21)3.1.1.2函数概念的应用 (22)3.1.2.1函数的表示法 (24)3.1.2.2分段函数 (25)3.2.1.1函数的单调性 (26)3.2.2.1函数奇偶性的概念 (30)3.2.2.2函数奇偶性的应用 (32)3.3幂函数 (36)3.4函数的应用(一) (37)4.1.1根式 (40)4.1.2指数幂及其运算 (41)4.2.1指数函数及其图象性质 (43)4.2.2指数函数的性质及其应用 (44)4.3.1对数的概念 (47)4.3.2 对数的运算 (48)4.4.1对数函数及其图象 (49)4.2.2对数函数的性质及其应用 (51)4.4.3不同函数增长的差异 (53)4.5.1函数的零点与方程的解 (54)4.5.2用二分法求方程的近似解 (57)4.5.3函数模型的应用 (58)5.1.1任意角 (60)5.1.2弧度制 (61)5.2.1三角函数的概念 (62)5.2.2同角三角函数的基本关系 (64)5.3.1诱导公式二、三、四 (66)5.3.2诱导公式五、六 (67)5.4.1正弦函数、余弦函数的图象 (69)5.4.2.1正弦函数、余弦函数的性质(一) ...................................................................... 71 5.4.2.2正弦函数、余弦函数的性质(二) ...................................................................... 73 5.4.3正切函数的性质与图象 ........................................................................................ 75 5.5.1.1两角差的余弦公式 ............................................................................................. 76 5.5.1.2两角和与差的正弦、余弦公式 ......................................................................... 78 5.5.1.3两角和与差的正切公式 ..................................................................................... 80 5.5.1.4二倍角的正弦、余弦、正切公式 ..................................................................... 81 5.5.2.1简单的三角恒等变换 ......................................................................................... 83 5.5.2.2三角恒等变换的应用 ......................................................................................... 84 5.6.1函数y =A sin(ωx +φ)的图象(一) .......................................................................... 86 5.6.2函数y =A sin(ωx +φ)的图象(二) .......................................................................... 88 5.7三角函数的应用 . (90)1.1.1集合的概念1.已知a ∈R ,且a ∉Q ,则a 可以为( ) A . 2 B .12 C .-2 D .-13[解析]2是无理数,所以2∉Q ,2∈R .[答案] A2.若由a 2,2019a 组成的集合M 中有两个元素,则a 的取值可以是( ) A .a =0 B .a =2019 C .a =1D .a =0或a =2019[解析] 若集合M 中有两个元素,则a 2≠2019a .即a ≠0,且a ≠2019.故选C . [答案] C3.下列各组对象能构成集合的有( )①接近于0的实数;②小于0的实数;③(2019,1)与(1,2019);④1,2,3,1. A .1组 B .2组 C .3组D .4组[解析] ①中“接近于0”不是一个明确的标准,不满足集合中元素的确定性,所以不能构成集合;②中“小于0”是一个明确的标准,能构成集合;③中(2019,1)与(1,2019)是两个不同的对象,是确定的,能构成集合,注意该集合有两个元素;④中的对象是确定的,可以构成集合,根据集合中元素的互异性,可知构成的集合为{1,2,3}.[答案] C4.若方程ax2+ax+1=0的解构成的集合中只有一个元素,则a为( )A.4 B.2C.0 D.0或4[解析] 当a=0时,方程变为1=0不成立,故a=0不成立;当a≠0时,Δ=a2-4a =0,a=4,故选A.[答案] A5.下列说法正确的是________.①及第书业的全体员工形成一个集合;②2019年高考试卷中的难题形成一个集合;③方程x2-1=0与方程x+1=0所有解组成的集合中共有3个元素;④x,3x3,x2,|x|形成的集合中最多有2个元素.[解析] ①及第书业的全体员工是一个确定的集体,能形成一个集合,正确;②难题没有明确的标准,不能形成集合,错误;③方程x2-1=0的解为x=±1,方程x+1=0的解为x=-1,由集合中元素的互异性知,两方程所有解组成的集合中共有2个元素1,-1,故错误;④x=3x3,x2=|x|,故正确.[答案] ①④1.1.2集合的表示1.用列举法表示集合{x|x2-2x+1=0}为( )A.{1,1} B.{1}C.{x=1} D.{x2-2x+1=0}[解析] ∵x2-2x+1=0,即(x-1)2=0,∴x=1,选B.[答案] B2.已知集合A={x∈N*|-5≤x≤5},则必有( )A.-1∈A B.0∈AC.3∈A D.1∈A[解析] ∵x∈N*,-5≤x≤5,∴x=1,2,即A={1,2},∴1∈A,选D. [答案] D3.一次函数y =x -3与y =-2x 的图象的交点组成的集合是( ) A .{1,-2} B .{x =1,y =-2} C .{(-2,1)}D .{(1,-2)}[解析] 由⎩⎪⎨⎪⎧y =x -3,y =-2x 得⎩⎪⎨⎪⎧x =1,y =-2,∴交点为(1,-2),故选D.[答案] D4.若A ={-2,2,3,4},B ={x |x =t 2,t ∈A },用列举法表示集合B 为________. [解析] 当t =-2时,x =4; 当t =2时,x =4; 当t =3时,x =9; 当t =4时,x =16; ∴B ={4,9,16}. [答案] {4,9,16}5.选择适当的方法表示下列集合: (1)绝对值不大于2的整数组成的集合;(2)方程(3x -5)(x +2)=0的实数解组成的集合; (3)一次函数y =x +6图象上所有点组成的集合.[解] (1)绝对值不大于2的整数是-2,-1,0,1,2,共有5个元素,则用列举法表示为{-2,-1,0,1,2}.(2)方程(3x -5)(x +2)=0的实数解仅有两个,分别是53,-2,用列举法表示为⎩⎨⎧⎭⎬⎫53,-2. (3)一次函数y =x +6图象上有无数个点,用描述法表示为{(x ,y )|y =x +6}.课内拓展 课外探究 集合的表示方法1.有限集、无限集根据集合中元素的个数可以将集合分为有限集和无限集.当集合中元素的个数有限时,称之为有限集;而当集合中元素的个数无限时,则称之为无限集.当集合为有限集,且元素个数较少时宜采用列举法表示集合;对元素个数较多的集合和无限集,一般采用描述法表示集合.对于元素个数较多的集合或无限集,其元素呈现一定的规律,在不产生误解的情况下,也可以列举出几个元素作为代表,其他元素用省略号表示.【典例1】 用列举法表示下列集合: (1)正整数集;(2)被3整除的数组成的集合.[解] (1)此集合为无限集,且有一定规律,用列举法表示为{1,2,3,4,…}.(2)此集合为无限集,且有一定规律,用列举法表示为{…,-6,-3,0,3,6,…}.[点评] (1){1,2,3,4,…}一般不写成{2,1,4,3,…};(2)此题中的省略号不能漏掉.2.集合含义的正确识别集合的元素类型多是以数、点、图形等形式出现的.对于已知集合必须弄清集合元素的形式,特别是对于用描述法给定的集合要弄清它的代表元素是什么,代表元素有何属性(如表示数集、点集等).【典例2】已知下面三个集合:①{x|y=x2+1};②{y|y=x2+1};③{(x,y)|y=x2+1}.问:它们是否为同一个集合?它们各自的含义是什么?[解] ∵三个集合的代表元素互不相同,∴它们是互不相同的集合.集合①{x|y=x2+1}的代表元素是x,即满足条件y=x2+1中的所有x,∴{x|y=x2+1}=R.集合②{y|y=x2+1}的代表元素是y,满足条件y=x2+1的y的取值范围是y≥1,∴{y|y =x2+1}={y|y≥1}.集合③{(x,y)|y=x2+1}的代表元素是(x,y),可认为是满足条件y=x2+1的实数对(x,y)的集合,也可认为是坐标平面内的点(x,y),且这些点的坐标满足y=x2+1.∴{(x,y)|y=x2+1}={P|P是抛物线y=x2+1上的点}.[点评] 使用特征性质描述来表示集合时,首先要明确集合中的元素是什么,如本题中元素的属性都与y=x2+1有关,但由于代表元素不同,因而表示的集合也不一样.1.2集合间的基本关系1.下列四个关系式:①{a,b}⊆{b,a};②∅={∅};③∅{0};④0∈{0}.其中正确的个数是( )A.4 B.3C.2 D.1[解析] 对于①,任何集合是其本身的子集,正确;对于②,相对于集合{∅}来说,∅∈{∅},也可以理解为∅⊆{∅},错误;对于③,空集是非空集合的真子集,故∅{0}正确;对于④,0是集合{0}的元素,故0∈{0}正确.[答案] B2.集合A={x|-1≤x<2,x∈N}的真子集的个数为( )A .4B .7C .8D .16[解析] A ={-1,0,1},其真子集为∅,{-1},{0},{1},{-1,0},{-1,1},{0,1},共有22-1=4(个).[答案] A3.已知集合A ={3,-1},集合B ={|x -1|,-1},且A =B ,则实数x 等于( ) A .4 B .-2 C .4或-2D .2[解析] ∵A =B ,∴|x -1|=3,解得x =4或x =-2. [答案] C4.已知集合A ⊆{0,1,2},且集合A 中至少含有一个偶数,则这样的集合A 的个数为________.[解析] 集合{0,1,2}的子集为:∅,{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2},其中含有偶数的集合有6个.[答案] 65.设集合A ={x |-1≤x ≤6},B ={x |m -1≤x ≤2m +1},已知B ⊆A . (1)求实数m 的取值范围;(2)当x ∈N 时,求集合A 的子集的个数.[解] (1)当m -1>2m +1,即m <-2时,B =∅,符合题意. 当m -1≤2m +1,即m ≥-2时,B ≠∅. 由B ⊆A ,借助数轴(如图),得⎩⎪⎨⎪⎧m -1≥-1,2m +1≤6,解得0≤m ≤52.综上所述,实数m 的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪⎪m <-2或0≤m ≤52. (2)当x ∈N 时,A ={0,1,2,3,4,5,6}, ∴集合A 的子集的个数为27=128.1.3.1并集与交集1.设集合A ={-1,1,2,3,5},B ={2,3,4},C ={x ∈R |1≤x <3},则(A ∩C )∪B =( ) A .{2} B .{2,3} C .{-1,2,3}D .{1,2,3,4}[解析] 因为A ∩C ={1,2},所以(A ∩C )∪B ={1,2,3,4},选D. [答案] D2.集合P ={x ∈Z |0≤x <3},M ={x ∈R |x 2≤9},则P ∩M 等于( ) A .{1,2} B .{0,1,2} C .{x |0≤x ≤3}D .{x |0≤x <3}[解析] 由已知得P ={0,1,2},M ={x |-3≤x ≤3}, 故P ∩M ={0,1,2}. [答案] B3.已知集合A ={x |x >2或x <0},B ={x |-5<x <5},则( ) A .A ∩B =∅ B .A ∪B =R C .B ⊆AD .A ⊆B[解析] ∵A ={x |x >2或x <0},B ={x |-5<x <5},∴A ∩B ={x |-5<x <0或2<x <5},A ∪B =R .故选B.[答案] B4.设集合M ={x |-3≤x <7},N ={x |2x +k ≤0},若M ∩N ≠∅,则实数k 的取值范围为________.[解析] 因为N ={x |2x +k ≤0}=⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x ≤-k 2,且M ∩N ≠∅,所以-k2≥-3⇒k ≤6.[答案] k ≤65.已知集合M ={x |2x -4=0},集合N ={x |x 2-3x +m =0}, (1)当m =2时,求M ∩N ,M ∪N . (2)当M ∩N =M 时,求实数m 的值.[解] (1)由题意得M ={2}.当m =2时,N ={x |x 2-3x +2=0}={1,2}, 则M ∩N ={2},M ∪N ={1,2}.(2)∵M ∩N =M ,∴M ⊆N .∵M ={2},∴2∈N . ∴2是关于x 的方程x 2-3x +m =0的解,即4-6+m=0,解得m=2.由(1)知,M∩N={2}=M,适合题意,故m=2.1.3.2补集及集合运算的综合应用1.已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=( )A.{x|x≥0} B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}[解析] ∵A={x|x≤0},B={x|x≥1},∴A∪B={x|x≤0或x≥1},∴∁U(A∪B)={x|0<x<1}.故选D.[答案] D2.已知三个集合U,A,B之间的关系如图所示,则(∁U B)∩A=( )A.{3} B.{0,1,2,4,7,8}C.{1,2} D.{1,2,3}[解析] 由Venn图可知U={0,1,2,3,4,5,6,7,8},A={1,2,3},B={3,5,6},所以(∁U B)∩A={1,2}.[答案] C3.设全集U={x∈N|x≤8},集合A={1,3,7},B={2,3,8},则(∁U A)∩(∁U B)=( )A.{1,2,7,8} B.{4,5,6}C.{0,4,5,6} D.{0,3,4,5,6}[解析] ∵U={x∈N|x≤8}={0,1,2,3,4,5,6,7,8},∴∁U A={0,2,4,5,6,8},∁U B={0,1,4,5,6,7},∴(∁U A)∩(∁U B)={0,4,5,6}.[答案] C4.全集U={x|0<x<10},A={x|0<x<5},则∁U A=________.[解析] ∁U A={x|5≤x<10},如图所示.[答案] {x|5≤x<10}5.设全集U={2,3,a2+2a-3},A={|2a-1|,2},且∁U A={5},求实数a的值.[解] ∵∁U A={5},∴5∈U,但5∉A,∴a2+2a-3=5,解得a=2或a=-4.当a=2时,|2a-1|=3,这时A={3,2},U={2,3,5}.∴∁U A={5},适合题意.∴a=2.当a=-4时,|2a-1|=9,这时A={9,2},U={2,3,5},A⃘U,∴∁U A无意义,故a =-4应舍去.综上所述,a=2.课内拓展课外探究空集对集合关系的影响空集是不含任何元素的集合,它既不是有限集,也不是无限集.空集就像一个无处不在的幽灵,解题时需处处设防,提高警惕.空集是任何集合的子集,其中“任何集合”当然也包括了∅,故将会出现∅⊆∅.而此时按子集理解不能成立,原因是前面空集中无元素,不符合定义,因此知道这一条是课本“规定”.空集是任何非空集合的真子集,即∅A(而A≠∅).既然A≠∅,即必存在a∈A而a∉∅,∴∅A.由于空集的存在,关于子集定义的下列说法有误,如“A⊆B,即A为B中的部分元素所组成的集合”.因为从“部分元素”的含义无法理解“空集是任何集合的子集”、“A是A 的子集”、“∅⊆∅”等结论.在解决诸如A⊆B或A B类问题时,必须优先考虑A=∅时是否满足题意.【典例1】已知集合A={x|x2-2x-8=0},B={x|x2+ax+a2-12=0},求满足B⊆A 的a的值组成的集合.[解] 由已知得A={-2,4},B是关于x的一元二次方程x2+ax+a2-12=0(*)的解集.方程(*)根的判别式Δ=a2-4(a2-12)=-3(a2-16).(1)若B=∅,则方程(*)没有实数根,即Δ<0,∴-3(a2-16)<0,解得a <-4或a >4.此时B ⊆A .(2)若B ≠∅,则B ={-2}或{4}或{-2,4}.①若B ={-2},则方程(*)有两个相等的实数根x =-2, ∴(-2)2+(-2)a +a 2-12=0,即a 2-2a -8=0. 解得a =4或a =-2.当a =4时,恰有Δ=0; 当a =-2时,Δ>0,舍去.∴当a =4时,B ⊆A . ②若B ={4},则方程(*)有两个相等的实数根x =4, ∴42+4a +a 2-12=0,解得a =-2,此时Δ>0,舍去.③若B ={-2,4},则方程(*)有两个不相等的实数根x =-2或x =4,由①②知a =-2,此时Δ>0,-2与4恰是方程的两根.∴当a =-2时,B ⊆A .综上所述,满足B ⊆A 的a 值组成的集合是{a |a <-4或a =-2或a ≥4}.[点评] ∅有两个独特的性质,即:(1)对于任意集合A ,皆有A ∩∅=∅;(2)对于任意集合A ,皆有A ∪∅=A .正因如此,如果A ∩B =∅,就要考虑集合A 或B 可能是∅;如果A ∪B =A ,就要考虑集合B 可能是∅.【典例2】 设全集U =R ,集合M ={x |3a -1<x <2a ,a ∈R },N ={x |-1<x <3},若N ⊆(∁UM ),求实数a 的取值集合.[解] 根据题意可知:N ≠∅,又∵N ⊆(∁U M ). ①当M =∅,即3a -1≥2a 时,a ≥1. 此时∁U M =R ,N ⊆(∁U M )显然成立. ②当M ≠∅,即3a -1<2a 时,a <1.由M ={x |3a -1<x <2a },知∁U M ={x |x ≤3a -1或x ≥2a }.又∵N ⊆(∁U M ),∴结合数轴分析可知⎩⎪⎨⎪⎧a <1,3≤3a -1,或⎩⎪⎨⎪⎧a <1,2a ≤-1,得a ≤-12.综上可知,a 的取值集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪a ≥1或a ≤-12. [点评] 集合的包含关系是集合知识重要的一部分,在后续内容中应用特别广泛,涉及集合包含关系的开放性题目都以子集的有关性质为主,因此需要对相关的性质有深刻的理解.对于有限集,在处理包含关系时可列出所有的元素,然后依条件讨论各种情况,找到符合条件的结果.1.4.1充分条件与必要条件1.若a∈R,则“a=2”是“(a-1)(a-2)=0”的( )A.充分条件B.必要条件C.既不是充分条件,也不是必要条件D.无法判断[解析] 因为a=2⇒(a-1)(a-2)=0,而(a-1)(a-2)=0不能推出a=2,故a=2是(a-1)(a-2)=0的充分条件,应选A.[答案] A2.设x∈R,则x>2的一个必要条件是( )A.x>1 B.x<1C.x>3 D.x<3[解析] 因为x>2⇒x>1,所以选A.[答案] A3.下列命题中,是真命题的是( )A.“x2>0”是“x>0”的充分条件B.“xy=0”是“x=0”的必要条件C.“|a|=|b|”是“a=b”的充分条件D.“|x|>1”是“x2不小于1”的必要条件[解析] A中,x2>0⇒x>0或x<0,不能推出x>0,而x>0⇒x2>0,故x2>0是x>0的必要条件.B中,xy=0⇒x=0或y=0,不能推出x=0,而x=0⇒xy=0,故xy=0是x=0的必要条件.C中,|a|=|b|⇒a=b或a=-b,不能推出a=b,而a=b⇒|a|=|b|,故|a|=|b|是a=b的必要条件.D中,|x|>1⇒x2不小于1,而x2不小于1不能推出|x|>1,故|x|>1是x2不小于1的充分条件,故本题应选B.[答案] B4.若集合A={1,m2},B={2,4},则“m=2”是“A∩B={4}”的____________条件.[答案] 不必要(填必要、不必要)5.(1)若“x<m”是“x>2或x<1”的充分条件,求m的取值范围.(2)已知M={x|a-1<x<a+1},N={x|-3<x<8},若N是M的必要条件,求a的取值范围.[解] (1)记A={x|x>2或x<1},B={x|x<m}由题意可得B⊆A,即{x|x<m}⊆{x|x>2或x<1}.所以m ≤1.故m 的取值范围为{m |m ≤1}. (2)因为N 是M 的必要条件,所以M ⊆N .于是⎩⎪⎨⎪⎧a -1≥-3,a +1≤8,从而可得-2≤a ≤7.故a 的取值范围为{a |-2≤a ≤7}.1.4.2充要条件1.设x ∈R ,则“x <-1”是“|x |>1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件[解析] 因为x <-1⇒|x |>1,而|x |>1⇒x <-1或x >1,故“x <-1”是“|x |>1”的充分不必要条件.[答案] A2.“x 2+(y -2)2=0”是“x (y -2)=0”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件D .既不充分也不必要条件[解析] x 2+(y -2)2=0,即x =0且y =2,∴x (y -2)=0.反之,x (y -2)=0,即x =0或y =2,x 2+(y -2)2=0不一定成立.[答案] B3.已知A ,B 是非空集合,命题p :A ∪B =B ,命题q :A B ,则p 是q 的( ) A .充要条件B .充分不必要条件C .既不充分也不必要条件D .必要不充分条件[解析] 由A ∪B =B ,得A B 或A =B ;反之,由A B ,得A ∪B =B ,所以p 是q 的必要不充分条件.[答案] D4.关于x 的不等式|x |>a 的解集为R 的充要条件是________. [解析] 由题意知|x |>a 恒成立,∵|x |≥0,∴a <0. [答案] a <05.已知x ,y 都是非零实数,且x >y ,求证:1x <1y的充要条件是xy >0.[证明] 证法一:①充分性:由xy >0及x >y ,得x xy >y xy ,即1x <1y.②必要性:由1x <1y ,得1x -1y <0,即y -xxy<0.因为x >y ,所以y -x <0,所以xy >0. 所以1x <1y的充要条件是xy >0.证法二:1x <1y ⇔1x -1y <0⇔y -xxy<0.由条件x >y ⇔y -x <0,故由y -xxy<0⇔xy >0. 所以1x <1y⇔xy >0,即1x <1y的充要条件是xy >0.1.5.1全称量词与存在量词1.下列命题中,不是全称量词命题的是( ) A .任何一个实数乘0都等于0 B .自然数都是正整数C .对于任意x ∈Z,2x +1是奇数D .一定存在没有最大值的二次函数 [解析] D 选项是存在量词命题. [答案] D2.下列命题中,存在量词命题的个数是( )①有些自然数是偶数;②正方形是菱形;③能被6整除的数也能被3整除;④任意x ∈R ,y ∈R ,都有x 2+|y |>0.A .0B .1C .2D .3[解析] 命题①含有存在量词;命题②可以叙述为“所有的正方形都是菱形”,故为全称量词命题;命题③可以叙述为“一切能被6整除的数也能被3整除”,是全称量词命题;命题④是全称量词命题.故有1个存在量词命题.[答案] B3.下列命题是“∀x ∈R ,x 2>3”的另一种表述方法的是( ) A .有一个x ∈R ,使得x 2>3B .对有些x ∈R ,使得x 2>3 C .任选一个x ∈R ,使得x 2>3 D .至少有一个x ∈R ,使得x 2>3[解析] “∀x ∈R ,x 2>3”是全称量词命题,改写时应使用全称量词. [答案] C4.对任意x >8,x >a 恒成立,则实数a 的取值范围是________. [解析] ∵对于任意x >8,x >a 恒成立,∴大于8的数恒大于a ,∴a ≤8. [答案] a ≤85.判断下列命题是全称量词命题还是存在量词命题?并判断其真假. (1)∃x ∈R ,|x |+2≤0;(2)存在一个实数,使等式x 2+x +8=0成立;(3)在平面直角坐标系中,任意有序实数对(x ,y )都对应一点. [解] (1)存在量词命题.∵∀x ∈R ,|x |≥0,∴|x |+2≥2,不存在x ∈R , 使|x |+2≤0.故命题为假命题. (2)存在量词命题.∵x 2+x +8=⎝ ⎛⎭⎪⎫x +122+314>0,∴命题为假命题.(3)在平面直角坐标系中,任意有序实数对(x ,y )与平面直角坐标系中的点是一一对应的,所以该命题是真命题.1.5.2全称量词命题与存在量词命题的否定1.命题“∃x ∈R ,x 2-2x -3≤0”的否定是( ) A .∀x ∈R ,x 2-2x -3≤0 B .∃x ∈R ,x 2-2x -3≥0 C .∃x 0∈R ,x 2-2x -3>0 D .∀x ∈R ,x 2-2x -3>0[解析] 存在量词命题的否定是全称量词命题,一方面要改量词即“∃”改为“∀”;另一方面要否定结论,即“≤”改为“>”.故选D.[答案] D2.已知命题p :∀x >0,x 2≥2,则它的否定为( )A .∀x >0,x 2<2 B .∀x ≤0,x 2<2 C .∃x ≤0,x 2<2 D .∃x >0,x 2<2[答案] D3.全称量词命题“所有能被5整除的整数都是奇数”的否定是( ) A .所有能被5整除的整数都不是奇数 B .所有奇数都不能被5整除C .存在一个能被5整除的整数不是奇数D .存在一个奇数,不能被5整除[解析] 全称量词命题的否定是存在量词命题,而选项A ,B 是全称量词命题,所以选项A ,B 错误.因为“所有能被5整除的整数都是奇数”的否定是“存在一个能被5整除的整数不是奇数”,所以选项D 错误,选项C 正确,故选C.[答案] C4.对下列命题的否定,其中说法错误的是( )A .p :∀x ≥3,x 2-2x -3≥0;p 的否定:∃x ≥3,x 2-2x -3<0B .p :存在一个四边形的四个顶点不共圆;p 的否定:每一个四边形的四个顶点共圆C .p :有的三角形为正三角形;p 的否定:所有的三角形不都是正三角形D .p :∃x ∈R ,x 2+2x +2≤0;p 的否定:∀x ∈R ,x 2+2x +2>0[解析] 若p :有的三角形为正三角形,则p 的否定:所有的三角形都不是正三角形,故C 错误.[答案] C5.写出下列命题的否定,并判断其真假. (1)菱形是平行四边形;(2)与圆只有一个公共点的直线是圆的切线; (3)存在一个三角形,它的内角和大于180°; (4)∃x ∈R ,使得x 2+x +1≤0.[解] (1)题中命题的否定为“存在一个菱形不是平行四边形”,这个命题为假命题. (2)是全称量词命题,省略了全称量词“任意”,即“任意一条与圆只有一个公共点的直线是圆的切线”,否定为:存在一条与圆只有一个公共点的直线不是圆的切线;这个命题为假命题.(3)题中命题的否定为“所有三角形的内角和都小于或等于180°”,这个命题为真命题.(4)题中命题的否定为“∀x ∈R ,x 2+x +1>0”,这个命题为真命题.因为x 2+x +1=x 2+x +14+34=⎝⎛⎭⎪⎫x +122+34>0.2.1等式性质与不等式性质1.下列说法正确的为( ) A .若1x =1y,则x =yB .若x 2=1,则x =1 C .若x =y ,则x =yD .若x <y ,则x 2<y 2[解析] ∵1x =1y,且x ≠0,y ≠0,两边同乘以xy ,得x =y .[答案] A2.设a ,b 为非零实数,若a <b ,则下列不等式成立的是( ) A .a 2<b 2B .ab 2<a 2b C .1ab 2<1a 2bD .b a <a b[解析] 用a =-1,b =1,试之,易排除A ,D.再取a =1,b =2,易排除B. [答案] C3.下列命题中正确的个数是( ) ①若a >b ,b ≠0,则a b>1; ②若a >b ,且a +c >b +d ,则c >d ; ③若a >b ,且ac >bd ,则c >d . A .0 B .1 C .2 D .3[解析] ①若a =2,b =-1,则不符合;②取a =10,b =2,c =1,d =3,虽然满足a >b 且a +c >b +d ,但不满足c >d ,故错;③当a =-2,b =-3,取c =-1,d =2,则不成立.[答案] A4.若x ≠2或y ≠-1,M =x 2+y 2-4x +2y ,N =-5,则M 与N 的大小关系为________. [解析] ∵x ≠2或y ≠-1,∴M -N =x 2+y 2-4x +2y +5=(x -2)2+(y +1)2>0,∴M >N . [答案] M >N5.若-1≤a ≤3,1≤b ≤2,则a -b 的范围为________. [解析] ∵-1≤a ≤3,-2≤-b ≤-1, ∴-3≤a -b ≤2. [答案] -3≤a -b ≤22.2.1基本不等式1.若ab >0,则下列不等式不一定能成立的是( ) A .a 2+b 2≥2ab B .a 2+b 2≥-2ab C .a +b2≥abD .b a +a b≥2[解析] C 选项由条件可得到a 、b 同号,当a 、b 均为负号时,不成立. [答案] C 2.已知a >1,则a +12,a ,2aa +1三个数的大小顺序是( ) A.a +12<a <2a a +1 B.a <a +12<2aa +1C.2a a +1<a <a +12 D.a <2a a +1≤a +12 [解析] 当a ,b 是正数时,2ab a +b ≤ab ≤a +b2≤a 2+b 22(a ,b ∈R +),令b =1,得2aa +1≤a ≤a +12.又a >1,即a ≠b ,故上式不能取等号,选C.[答案] C3.b a +ab≥2成立的条件是________.[解析] 只要b a 与a b都为正,即a 、b 同号即可. [答案] a 与b 同号4.设a ,b ,c 都是正数,试证明不等式:b +c a +c +a b +a +bc≥6. [证明] 因为a >0,b >0,c >0, 所以b a +ab ≥2,c a +a c ≥2,b c +c b≥2,所以⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫b c +c b ≥6,当且仅当b a =a b ,c a =a c ,c b =bc, 即a =b =c 时,等号成立.所以b +c a +c +a b +a +bc≥6.2.2.2利用基本不等式求最值1.已知y =x +1x-2(x >0),则y 有( )A .最大值为0B .最小值为0C .最小值为-2D .最小值为2[答案] B2.已知0<x <1,则当x (1-x )取最大值时,x 的值为( ) A.13 B.12 C.14D.23[解析] ∵0<x <1,∴1-x >0.∴x (1-x )≤⎝ ⎛⎭⎪⎫x +1-x 22=14,当且仅当x =1-x ,即x =12时,等号成立.[答案] B3.已知p ,q ∈R ,pq =100,则p 2+q 2的最小值是________. [答案] 2004.已知函数f (x )=4x +ax(x >0,a >0)在x =3时取得最小值,则a =________. [解析] 由基本不等式,得4x +a x≥24x ·a x =4a ,当且仅当4x =a x,即x =a2时,等号成立,即a2=3,a =36.[答案] 365.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =12x 2-200x +80000,该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?[解] 由题意可知,二氧化碳每吨的平均处理成本为y x =12x +80000x-200≥212x ·80000x-200=200, 当且仅当12x =80000x,即x =400时等号成立,故该单位月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元.2.3.1二次函数与一元二次方程、不等式1.不等式-x 2-5x +6≤0的解集为( ) A .{x |x ≥6或x ≤-1} B .{x |-1≤x ≤6} C .{x |-6≤x ≤1}D .{x |x ≤-6或x ≥1}[解析] 由-x 2-5x +6≤0得x 2+5x -6≥0, 即(x +6)(x -1)≥0, ∴x ≥1或x ≤-6. [答案] D2.一元二次方程ax 2+bx +c =0的根为2,-1,则当a <0时,不等式ax 2+bx +c ≥0的解集为( )A .{x |x <-1或x >2}B .{x |x ≤-1或x ≥2}C .{x |-1<x <2}D .{x |-1≤x ≤2}[解析] 结合二次函数y =ax 2+bx +c (a <0)的图象可得{x |-1≤x ≤2},故选D. [答案] D3.若不等式ax 2+8ax +21<0的解集是{x |-7<x <-1},那么a 的值是( ) A .1 B .2 C .3 D .4[解析] 由题可知-7和-1为ax 2+8ax +21=0的两个根,∴-7×(-1)=21a,a =3.[答案] C4.不等式x 2-4x +5≥0的解集为________. [解析] ∵Δ=(-4)2-4×5=-4<0, ∴不等式x 2-4x +5≥0的解集为R . [答案] R5.当a >-1时,关于x 的不等式x 2+(a -1)x -a >0的解集是________. [解析] 原不等式可化为(x +a )(x -1)>0, 方程(x +a )(x -1)=0的两根为-a,1, ∵a >-1,∴-a <1,故不等式的解集为{x |x <-a 或x >1}. [答案] {x |x <-a 或x >1}2.3.2一元二次不等式的应用1.不等式x -2x +3>0的解集是( ) A .{x |-3<x <2} B .{x |x >2} C .{x |x <-3或x >2} D .{x |x <-2或x >3}[解析] 不等式x -2x +3>0⇔(x -2)(x +3)>0的解集是{x |x <-3或x >2},所以C 选项是正确的.[答案] C2.若集合A ={x |-1≤2x +1≤3},B =⎩⎨⎧⎭⎬⎫x |x -2x ≤0,则A ∩B =( ) A .{x |-1≤x <0} B .{x |0<x ≤1} C .{x |0≤x ≤2}D .{x |0≤x ≤1}[解析] ∵A ={x |-1≤x ≤1},B ={x |0<x ≤2},∴A ∩B ={x |0<x ≤1}. [答案] B3.若不等式x 2+mx +m2>0的解集为R ,则实数m 的取值范围是( )A .m >2B .m <2C .m <0或m >2D .0<m <2[解析] 由题意得Δ=m 2-4×m2<0,即m 2-2m <0,解得0<m <2.[答案] D4.已知不等式x 2+ax +4<0的解集为空集,则a 的取值范围是( ) A .-4≤a ≤4 B .-4<a <4 C .a ≤-4或a ≥4D .a <-4或a >4[解析] 依题意应有Δ=a 2-16≤0,解得-4≤a ≤4,故选A. [答案] A5.某产品的总成本y (万元)与产量x (台)之间的函数关系式为y =3000+20x -0.1x 2(0<x <240,x ∈R ),若每台产品的售价为25万元,则生产者不亏本(销售收入不小于总成本)时最低产量是( )A .100台B .120台C .150台D .180台 [解析] 3000+20x -0.1x 2≤25x ⇔x 2+50x -30000≥0,解得x ≤-200(舍去)或x ≥150. [答案] C3.1.1.1函数的概念1.函数f (x )=x -1x -2的定义域为( ) A .[1,2)∪(2,+∞) B .(1,+∞) C .[1,2)D .[1,+∞)[解析] 由题意可知,要使函数有意义,需满足{ x -1≥0,x -2≠0,即x ≥1且x ≠2.[答案] A2.函数y =1-x 2+x 的定义域为( ) A .{x |x ≤1}B .{x |x ≥0}C .{x |x ≥1或x ≤-1}D .{x |0≤x ≤1}[解析] 由题意可知⎩⎪⎨⎪⎧1-x 2≥0,x ≥0,解得0≤x ≤1.[答案] D 3.函数f (x )=(x +2)(1-x )x +2的定义域为( )A .{x |-2≤x ≤1}B .{x |-2<x <1}C .{x |-2<x ≤1}D .{x |x ≤1}[解析] 要使函数有意义,需⎩⎪⎨⎪⎧(x +2)(1-x )≥0,x +2≠0,解得-2≤x ≤1,且x ≠-2,所以函数的定义域是{x |-2<x ≤1}.[答案] C4.集合{x |-1≤x <0或1<x ≤2}用区间表示为________. [解析] 结合区间的定义知,用区间表示为[-1,0)∪(1,2]. [答案] [-1,0)∪(1,2]5.已知矩形的周长为1,它的面积S 是其一边长为x 的函数,则其定义域为________(结果用区间表示).[解析] 由实际意义知x >0,又矩形的周长为1,所以x <12,所以定义域为⎝ ⎛⎭⎪⎫0,12.[答案] ⎝ ⎛⎭⎪⎫0,123.1.1.2函数概念的应用1.下列各组函数中,表示同一个函数的是( )A .y =x -1和y =x 2-1x +1B .y =x 0和y =1C .f (x )=(x -1)2和g (x )=(x +1)2D .f (x )=(x )2x 和g (m )=m(m )2[解析] A 中的函数定义域不同;B 中y =x 0的x 不能取0;C 中两函数的对应关系不同,故选D.[答案] D2.设f (x )=x 2-1x 2+1,则f (2)f ⎝ ⎛⎭⎪⎫12=( )A .1B .-1 C.35 D .-35[解析] f (2)f ⎝ ⎛⎭⎪⎫12=22-122+1⎝ ⎛⎭⎪⎫122-1⎝ ⎛⎭⎪⎫122+1=35-3454=35×⎝ ⎛⎭⎪⎫-53=-1.[答案] B3.下列函数中,值域为(0,+∞)的是( ) A .y =x B .y =1xC .y =1xD .y =x 2+1[解析] y =x 的值域为[0,+∞),y =1x的值域为(-∞,0)∪(0,+∞),y =x 2+1的值域为[1,+∞).[答案] B4.已知函数f (x )的定义域是[0,2],则函数g (x )=f (2x )x -1的定义域是( ) A .[0,1] B .[0,1) C .[0,1)∪(1,4]D .(0,1)[解析] 由f (x )的定义域是[0,2]知,{ 0≤2x ≤2,x -1≠0, 解得0≤x <1,所以g (x )=f (2x )x -1的定义域为[0,1). [答案] B5.已知函数f (x )=2x -3,x ∈{x ∈N |1≤x ≤5},则函数f (x )的值域为________. [解析] ∵x ∈{1,2,3,4,5} ∴f (x )=2x -3∈{-1,1,3,5,7}. ∴f (x )的值域为{-1,1,3,5,7}. [答案] {-1,1,3,5,7}3.1.2.1函数的表示法1.y 与x 成反比,且当x =2时,y =1,则y 关于x 的函数关系式为( ) A .y =1xB .y =-1xC .y =2xD .y =-2x[解析] 设y =k x ,当x =2时,y =1,所以1=k 2,得k =2.故y =2x.[答案] C2.由下表给出函数y =f (x ),则f [f (1)]等于( )x 1 2 3 4 5 y45321A.1 B .2 C .4 D .[解析] 由题意得f (1)=4,所以f [f (1)]=f (4)=2. [答案] B3.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶.与以上事件吻合得最好的图象是( )[解析] 距学校的距离应逐渐减小,由于小明先是匀速运动,故前段是直线段,途中停留时距离不变,后段加速,直线段比前段下降的快,故应选C.[答案] C4.若3f (x -1)+2f (1-x )=2x ,则f (x )的解析式为__________________. [解析] (换元法)令t =x -1,则x =t +1,t ∈R , 原式变为3f (t )+2f (-t )=2(t +1),①以-t 代替t ,①式变为3f (-t )+2f (t )=2(1-t ),②由①②消去f (-t )得f (t )=2t +25,∴f (x )=2x +25.[答案] f (x )=2x +255.已知f (x )=x +b ,f (ax +1)=3x +2,求a ,b 的值. [解] 由f (x )=x +b ,得f (ax +1)=ax +1+b . ∴ax +1+b =3x +2,∴a =3,b +1=2,即a =3,b =1.3.1.2.2分段函数1.已知f (x )=⎩⎪⎨⎪⎧10,x <0,10x ,x ≥0,则f [f (-7)]的值为( )A .100B .10C .-10D .-100[解析] ∵f (-7)=10,∴f [f (-7)]=f (10)=10×10=100. [答案] A2.下列图形是函数y =x |x |的图象的是( )[解析] ∵f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2,x <0,分别画出y =x 2(取x ≥0部分)及y =-x 2(取x <0部分)即可.[答案] D3.函数f (x )=⎩⎪⎨⎪⎧2x ,0≤x ≤1,2,1<x <2,3,x ≥2的值域是( )A .RB .[0,2]∪{3}C .[0,+∞)D .[0,3][解析] 当0≤x ≤1时,0≤f (x )≤2,当1<x <2时,f (x )=2,当x ≥2时,f (x )=3.故0≤f (x )≤2或f (x )=3,故选B.[答案] B4.下图中的图象所表示的函数的解析式为( )A .y =32|x -1|(0≤x ≤2)B .y =32-32|x -1|(0≤x ≤2)C .y =32-|x -1|(0≤x ≤2)D .y =1-|x -1|(0≤x ≤2)[解析] 可将原点代入,排除选项A ,C ;再将点⎝ ⎛⎭⎪⎫1,32代入,排除D 项. [答案] B5.设函数f (x )=⎩⎪⎨⎪⎧x 2+2x +2,x ≤0,-x 2,x >0.若f [f (a )]=2,则a =________.[解析] 当a ≤0时,f (a )=a 2+2a +2>0,f [f (a )]<0,显然不成立;当a >0时,f (a )=-a 2,f [f (a )]=a 4-2a 2+2=2,则a =±2或a =0,故a = 2.[答案] 23.2.1.1函数的单调性1.如图所示,函数y =f (x )在下列哪个区间上是增函数( )A .[-4,4]B .[-4,-3]∪[1,4]C .[-3,1]D .[-3,4][解析] 观察题中图象知,函数在[-3,1]上是增函数. [答案] C2.下列函数中,在(-∞,0]内为增函数的是( ) A .y =x 2-2 B .y =3xC .y =1+2xD .y =-(x +2)2[解析] 选项A ,B 在(-∞,0)上为减函数,选项D 在(-2,0]上为减函数,只有选项C 满足在(-∞,0]内为增函数.故选C.[答案] C3.若函数f (x )=(2a -1)x +b 是R 上的减函数,则实数a 的取值范围是( )A.⎣⎢⎡⎭⎪⎫12,+∞B.⎝ ⎛⎦⎥⎤-∞,12C.⎝ ⎛⎭⎪⎫-12,+∞ D.⎝⎛⎭⎪⎫-∞,12 [解析] 由一次函数的性质得2a -1<0,即a <12.故选D.[答案] D4.已知函数f (x )为定义在区间[-1,1]上的增函数,则满足f (x )<f ⎝ ⎛⎭⎪⎫12的实数x 的取值范围为________.[解析] 因为f (x )在区间[-1,1]上为增函数,且f (x )<f ⎝ ⎛⎭⎪⎫12,所以⎩⎪⎨⎪⎧-1≤x ≤1,x <12,解得-1≤x <12.[答案] ⎣⎢⎡⎭⎪⎫-1,125.已知函数f (x )=x -1x +1,判断f (x )在(0,+∞)上的单调性并用定义证明. [解] f (x )在(0,+∞)上单调递增. 证明如下:任取x 1>x 2>0,f (x 1)-f (x 2)=x 1-1x 1+1-x 2-1x 2+1=2(x 1-x 2)(x 1+1)(x 2+1),由x 1>x 2>0知x 1+1>0,x 2+1>0,x 1-x 2>0,故f (x 1)-f (x 2)>0,即f (x )在(0,+∞)上单调递增.3.2.1.2函数的最大(小)值1.函数f (x )在[-2,+∞)上的图象如图所示,则此函数的最大、最小值分别为( )A .3,0B .3,1C .3,无最小值D .3,-2[解析] 观察图象可以知道,图象的最高点坐标是(0,3),从而其最大值是3;另外从图象看,无最低点,即该函数不存在最小值.故选C.[答案] C2.已知函数f (x )=|x |,x ∈[-1,3],则f (x )的最大值为( ) A .0 B .1 C .2 D .3[解析] 作出函数f (x )=|x |,x ∈[-1,3]的图象,如图所示.根据函数图象可知,f (x )的最大值为3.[答案] D3.下列函数在[1,4]上最大值为3的是( ) A .y =1x+2B .y =3x -2C .y =x 2D .y =1-x[解析] B 、C 在[1,4]上均为增函数,A 、D 在[1,4]上均为减函数,代入端点值,即可求得最值,故选A.[答案] A4.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为________(m).[解析] 设矩形花园的宽为y m ,则x 40=40-y 40, 即y =40-x ,矩形花园的面积S =x (40-x )=-x 2+40x =-(x -20)2+400,当x =20时,面积最大.[答案] 205.已知二次函数y =x 2-4x +5,分别求下列条件下函数的最小值: (1)x ∈[-1,0];(2)x ∈[a ,a +1].[解] (1)∵二次函数y =x 2-4x +5的对称轴为x =2且开口向上, ∴二次函数在x ∈[-1,0]上是单调递减的. ∴y min =02-4×0+5=5.(2)当a ≥2时,函数在x ∈[a ,a +1]上是单调递增的,y min =a 2-4a +5;当a +1≤2即a ≤1时,函数在[a ,a +1]上是单调递减的,y min =(a +1)2-4(a +1)+5=a 2-2a +2;当a <2<a +1即1<a <2时,y min =22-4×2+5=1.故函数的最小值为⎩⎪⎨⎪⎧a 2-2a +2,a ≤1,1,1<a <2,a 2-4a +5,a ≥2.3.2.2.1函数奇偶性的概念1.函数y =f (x ),x ∈[-1,a ](a >-1)是奇函数,则a 等于( ) A .-1 B .0 C .1D .无法确定[解析] 由-1+a =0,得a =1.选C. [答案] C2.下列函数是偶函数的是( ) A .y =x B .y =2x 2-3C .y =1xD .y =x 2,x ∈[0,1][解析] A 项中的函数为奇函数;C 、D 选项中的函数定义域不关于原点对称,既不是奇函数,也不是偶函数;B 项中的函数为偶函数.故选B.[答案] B3.函数f (x )=1x-x 的图象( )A .关于y 轴对称B .关于直线y =x 对称C .关于坐标原点对称D .关于直线y =-x 对称[解析] 函数f (x )=1x-x 的定义域为(-∞,0)∪(0,+∞),关于原点对称,且f (-x )=-1x -(-x )=x -1x=-f (x ),所以f (x )是奇函数,图象关于原点对称.[答案] C4.若f (x )=(x +a )(x -4)为偶函数,则实数a =________.[解析] 由f (x )=(x +a )(x -4)得f (x )=x 2+(a -4)x -4a ,若f (x )为偶函数,则a -4=0,即a =4.[答案] 45.已知y =f (x )是偶函数,y =g (x )是奇函数,它们的定义域都是[-3,3],且它们在[0,3]上的图象如图所示,求不等式f (x )g (x )<0的解集.[解] 由题知,y =f (x )是偶函数,y =g (x )是奇函数. 根据函数图象的对称性画出y =f (x ),y =g (x )在[-3,0]上的图象如图所示.由图可知f (x )>0⇔0<x <2或-2<x <0,g (x )>0⇔1<x <3或-1<x <0.f (x )g (x )<0⇔⎩⎪⎨⎪⎧f (x )>0,g (x )<0或⎩⎪⎨⎪⎧f (x )<0,g (x )>0,可求得其解集是{x |-2<x <-1或0<x <1或2<x <3}.3.2.2.2函数奇偶性的应用1.函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=-x +1,则当x <0时,f (x )的解析式为( )A .f (x )=-x +1B .f (x )=-x -1C .f (x )=x +1D .f (x )=x -1[解析] 设x <0,则-x >0.∴f (-x )=x +1,又函数f (x )是奇函数. ∴f (-x )=-f (x )=x +1, ∴f (x )=-x -1(x <0). [答案] B2.设f (x )是R 上的偶函数,且在[0,+∞)上单凋递增,则f (-2),f (-π),f (3)的大小顺序是( )A .f (-π)>f (3)>f (-2)B .f (-π)>f (-2)>f (3)C .f (3)>f (-2)>f (-π)D .f (3)>f (-π)>f (-2) [解析] ∵f (x )是R 上的偶函数, ∴f (-2)=f (2),f (-π)=f (π), 又f (x )在[0,+∞)上单调递增,且2<3<π, ∴f (π)>f (3)<f (2), 即f (-π)>f (3)>f (-2). [答案] A3.已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 的取值范围为( )A.⎝ ⎛⎭⎪⎫13,23B.⎣⎢⎡⎭⎪⎫13,23C.⎝ ⎛⎭⎪⎫12,23D.⎣⎢⎡⎭⎪⎫12,23 [解析] 由于f (x )为偶函数,且在[0,+∞)上单调递增,则不等式f (2x -1)<f ⎝ ⎛⎭⎪⎫13,即-13<2x -1<13,解得13<x <23.。
2018-2019学年高中数学人教A版必修一练习:1.1.1 集合的含义与表示 第一课时 集合的含义 Word版含解析

第一章集合与函数概念1.1 集合1.1.1 集合的含义与表示第一课时集合的含义【选题明细表】1.(2018·山东省邹平双语学校月考)在“①高一数学课本中的难题;②所有的正三角形;③方程x2+2=0的实数解.”中,能表示成集合的是( C )(A)② (B)③ (C)②③(D)①②③解析:“高一数学课本中的难题”不确定,不能表示成集合;“正三角形”“方程x2+2=0的实数解”都是确定的,所以能表示成集合.故选C.2.若由a2,2 018a组成的集合M中有两个元素,则a的取值可以是( C )(A)0 (B)2 018(C)1 (D)0或2 018解析:若集合M中有两个元素,则a2≠2 018a.即a≠0且a≠2 018.故选C.3.下列表示的关系中正确的个数有( A )①0∉N ②3.14∉Q ③π∈R ④3∈{x|x≤}(A)1个(B)2个(C)3个(D)4个解析:①0∈N,②3.14是有理数,所以3.14∈Q,③π∈R显然正确,④3=,所以3∉{x|x≤},所以正确的只有③.4.(2018·杨浦区高一期中)由实数x,-x,|x|,,-所组成的集合,最多含元素( A )(A)2个(B)3个(C)4个(D)5个解析:当x>0时,x=|x|=,-=-x<0,此时集合共有2个元素,当x=0时,x=|x|==-=-x=0,此时集合共有1个元素,当x<0时,=|x|=-x,-=-x,此时集合共有2个元素,综上,此集合最多有2个元素,故选A.5.下列各组中集合P与Q,表示同一个集合的是( A )(A)P是由元素1,,π构成的集合,Q是由元素π,1,|-|构成的集合(B)P是由π构成的集合,Q是由3.14159构成的集合(C)P是由2,3构成的集合,Q是由有序数对(2,3)构成的集合(D)P是满足不等式-1≤x≤1的自然数构成的集合,Q是方程x2=1的解集解析:由于A中P,Q的元素完全相同,所以P与Q表示同一个集合,而B,C,D中P,Q 的元素不相同,所以P与Q不能表示同一个集合.故选A.6.设A是方程x2-ax-5=0的解集,且-5∈A,则实数a的值为( A )(A)-4 (B)4 (C)1 (D)-1解析:因为-5∈A,所以(-5)2-a×(-5)-5=0,所以a=-4.故选A.7.已知集合A含有三个元素1,0,x,若x2∈A,则实数x=.解析:因为x2∈A,所以x2=1,或x2=0,或x2=x,所以x=±1,或x=0,当x=0,或x=1时,不满足集合中元素的互异性,所以x=-1.答案:-18.(2018·钦州高一月考)已知集合A满足条件:当p∈A时,总有∈A(p≠0且p≠-1),已知2∈A,则集合A的元素个数至少为.解析:若2∈A,则=-∈A,=-∈A,=2∈A,即A={2,-,-}共有3个元素.答案:39.(2018·徐州高一期中)设A是由一些实数构成的集合,若a∈A,则∈A,且1∉A,(1)若3∈A,求A;(2)证明:若a∈A,则1-∈A;(3)A能否只有一个元素,若能,求出集合A,若不能,说明理由.(1)解:因为3∈A,所以=-∈A,所以=∈A,所以=3∈A,所以A={3,-,}.(2)证明:因为a∈A,所以∈A,所以==1-∈A.(3)解:假设集合A只有一个元素,记A={a},则a=,即a2-a+1=0有且只有一个解,又因为Δ=(-1)2-4=-3<0,所以a2-a+1=0无实数解.与a2-a+1=0有且只有一个实数解矛盾.所以假设不成立,即集合A不能只有一个元素.10.已知集合M={m|m=a+b,a,b∈Q},则下列元素中属于集合M的元素个数是( B )①m=1+π②m=③m=④m=+(A)0 (B)1 (C)2 (D)3解析:①m=1+π,π∉Q,故m∉M;②m==2+∉M;③m==1-∈M;④m=+=∉M.故选B.11.已知集合M是方程x2-x+m=0的解组成的集合,若2∈M,则下列判断正确的是( C )(A)1∈M (B)0∈M (C)-1∈M (D)-2∈M解析:法一由2∈M知2为方程x2-x+m=0的一个解,所以22-2+m=0,解得m=-2. 所以方程为x2-x-2=0,解得x1=-1,x2=2.故方程的另一根为-1.选C.法二由2∈M知2为方程x2-x+m=0的一个解,设另一解为x0,则由韦达定理得解得x0=-1,m=-2.故选C.12.设A表示集合{2,3,a2+2a-3},B表示集合{|a+3|,2},已知5∈A且5∉B.求a的值.解:因为5∈A,5∉B,所以即所以a=-4.13.某研究性学习小组共有8位同学,记他们的学号分别为1,2,3,…,8.现指导老师决定派某些同学去市图书馆查询有关数据,分派的原则为若x号同学去,则8-x 号同学也去.请你根据老师的要求回答下列问题:(1)若只有一个名额,请问应该派谁去?(2)若有两个名额,则有多少种分派方法?解:(1)分派去图书馆查数据的所有同学构成一个集合,记作M,则有x∈M,8-x∈M.若只有一个名额,即M中只有一个元素,必须满足x=8-x,故x=4,所以应该派学号为4的同学去.(2)若有两个名额,即M中有且仅有两个不同的元素x和8-x,从而全部含有两个元素的集合M应含有1,7或2,6或3,5.也就是有两个名额的分派方法有3种.。
推荐学习2018-2019学年高中数学人教版A版必修一学案:第一单元 习题课 集合及其运算

习题课集合及其运算学习目标 1.理解集合的相关概念,会判断集合间的关系(难点、重点).2.会进行集合间的运算.1.设集合A={x|-1<x<2},集合B={x|1<x<3},则A∪B等于()A.{x|-1<x<3}B.{x|-1<x<1}C.{x|1<x<2}D.{x|2<x<3}解析借助数轴知A∪B={x|-1<x<3}.答案 A2.设A={x|x=2k,k∈Z},B={x|x=2k+1,k∈Z},则()A.A⊆B B.B⊆A C.A∩B=∅D.A∪B=R解析易知A是偶数集,B是奇数集,故A∩B=∅.答案 C3.若U={1,2,3,4,5,6,7,8},A={1,2,3},B={5,6,7},则(∁U A)∩(∁U B)=________.解析(∁U A)∩(∁U B)={4,5,6,7,8}∩{1,2,3,4,8}={4,8}.答案{4,8}4.已知集合A={x|x2+2x-2a=0},若A=∅,则实数a的取值范围是________.解析由题意得方程x2+2x-2a=0无实数根,故Δ=22+8a<0,解得a<-1 2.答案{a|a<-1 2}类型一集合的基本概念【例1】(1)设集合A={1,2,4},集合B={x|x=a+b,a∈A,b∈A},则集合B中有________个元素.A.4B.5C.6D.7(2)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是()A.1B.3C.5D.9解析(1)∵a∈A,b∈A,x=a+b,所以x=2,3,4,5,6,8,∴B中有6个元素,故选C.(2)当x=0,y=0时,x-y=0;当x=0,y=1时,x-y=-1;当x=0,y=2时,x-y=-2;当x=1,y=0时,x-y=1;当x=1,y=1时,x-y=0;当x=1,y=2时,x-y=-1;当x=2,y=0时,x-y=2;当x=2,y=1时,x-y=1;当x=2,y=2时,x-y=0.根据集合中元素的互异性知,B中元素有0,-1,-2,1,2,共5个.答案(1)C(2)C规律方法与集合中的元素有关问题的求解策略(1)确定集合的元素是什么,即集合是数集还是点集.(2)看这些元素满足什么限制条件.(3)根据限制条件列式求参数的值或确定集合中元素的个数,但要注意检验集合是否满足元素的互异性.【训练1】 (1)设集合A ={x |x 2-3x +2=0},则满足A ∪B ={0,1,2}的集合B 的个数是( )A .1B .3C .4D .6(2)已知集合M ={1,m +2,m 2+4},且5∈M ,则m 的值为________.解析 (1)易知A ={1,2},又A ∪B ={0,1,2},所以集合B 可以是:{0},{0,1},{0,2},{0,1,2}.(2)当m +2=5时,m =3,M ={1,5,13},符合题意;当m 2+4=5时,m =1或m =-1,若m =1,M ={1,3,5},符合题意;若m =-1,则m +2=1,不满足元素的互异性,故m =3或1.答案 (1)C (2)3或1类型二 集合间的基本关系【例2】 (1)已知集合A ={x |x 2-3x +2=0,x ∈R},B ={x |0<x <5,x ∈N},则满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .4(2)设A ={1,4,2x },若B ={1,x 2},若B ⊆A ,则x =________.(3)已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,则实数m 的取值范围是________. 解析 (1)用列举法表示集合A ,B ,根据集合关系求出集合C 的个数.由x 2-3x +2=0得x =1或x =2,∴A ={1,2}.由题意知B ={1,2,3,4},∴满足条件的C 可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}.(2)由B ⊆A ,则x 2=4或x 2=2x .当x 2=4时,x =±2,但x =2时,2x =4,这与集合元素的互异性相矛盾;当x 2=2x 时,x =0或x =2,但x =2时,2x =4,这与集合元素的互异性相矛盾.综上所述,x =-2或x =0.(3)当B =∅时,有m +1≥2m -1,则m ≤2.当B ≠∅时,若B ⊆A ,如图.则⎩⎪⎨⎪⎧ m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4.综上,m 的取值范围为m ≤4.答案 (1)D (2)0或-2 (3){m |m ≤4}规律方法 根据两集合的关系求参数的方法(1)若集合元素是一一列举的,依据集合间的关系,转化为解方程(组)求解,此时注意集合中元素的互异性;(2)若集合表示的是不等式的解集,常依据数轴转化为不等式(组)求解,此时需注意端点值能否取到. 注意:若题目中含有条件B ⊆A ,A ∩B =B ,A ∪B =A ,则要注意B 是否可为空集,有时需分类讨论.【训练2】 已知集合A ={2,3},B ={x |mx -6=0},若B ⊆A ,则实数m 等于( )A .3B .2C .2或3D .0或2或3解析 当m =0时,方程mx -6=0无解,B =∅,满足B ⊆A ;当m ≠0时,B =⎩⎨⎧⎭⎬⎫6m ,因为B ⊆A ,所以6m =2或6m=3,解得m =3或m =2. 答案 D方向1 【例3-1】 (1)已知集合A ,B 均为全集U ={1,2,3,4}的子集,且∁U (A ∪B )={4},B ={1,2},则A ∩(∁U B )等于( )A .{3}B .{4}C .{3,4}D .∅ (2)已知全集U =R ,A ={x |x <-1或x >3},B ={x |0<x <4},则(∁R A )∩B =________.解析 (1)由U ={1,2,3,4},∁U (A ∪B )={4},知(A ∪B )={1,2,3},又B ={1,2},所以A 中一定有元素3,没有元素4,所以A ∩(∁U B )={3}.(2)(∁R A )∩B ={x |-1≤x ≤3}∩{x |0<x <4}={x |0<x ≤3}.答案 (1)A (2){x |0<x ≤3}方向2 利用集合的运算求参数的值或范围【例3-2】 (1)设集合A ={x |-1≤x ≤2},B ={x |-1<x ≤4},C ={x |-3<x <2}且集合A ∩(B ∪C )={x |a ≤x ≤b },则a =________,b =________.(2)已知集合A ={x |x 2-4ax +2a +6=0},B ={x |x <0},若A ∩B ≠∅,求a 的取值范围.(1)解析 ∵B ∪C ={x |-3<x ≤4},∴A (B ∪C ),∴A ∩(B ∪C )=A .由题意{x |a ≤x ≤b }={x |-1≤x ≤2},∴a =-1,b =2.答案 -1 2(2)解 因为A ∩B ≠∅,所以A ≠∅,即方程x 2-4ax +2a +6=0有实数根,所以Δ=(-4a )2-4(2a +6)≥0,即(a +1)(2a -3)≥0,所以⎩⎪⎨⎪⎧ a +1≥0,2a -3≥0或⎩⎪⎨⎪⎧a +1≤0,2a -3≤0, 解得a ≥32或a ≤-1.① 又B ={x |x <0},所以方程x 2-4ax +2a +6=0至少有一个负根.若方程x 2-4ax +2a +6=0有根,但没有负根,则需有⎩⎪⎨⎪⎧ Δ≥0,x 1+x 2=4a ≥0,x 1x 2=2a +6≥0,解得a ≥32. 所以方程至少有一负根时有a <32.② 由①②取公共部分得a ≤-1.即当A ∩B ≠∅时,a 的取值范围为{a |a ≤-1}.规律方法 集合运算问题的常见类型及解题策略(1)离散型数集或抽象集合间的运算,常借助Venn 图求解;(2)连续型数集的运算,常借助数轴求解;(3)已知集合的运算结果求集合,常借助数轴或Venn 图求解;(4)根据集合运算结果求参数,先把符号语言译成文字语言,然后适时应用数形结合求解.【训练3】 已知集合A ={x |2≤x <7},B ={x |3<x <10},C ={x |x <a }.(1)求A ∪B ,(∁R A )∩B .(2)若A ∩C ≠∅,求a 的取值范围.解 (1)因为A ={x |2≤x <7},B ={x |3<x <10},所以A ∪B ={x |2≤x <10}.因为A ={x |2≤x <7},所以∁R A ={x |x <2或x ≥7},则(∁R A )∩B ={x |7≤x <10}.(2)因为A ={x |2≤x <7},C ={x |x <a },且A ∩C ≠∅,所以a >2,所以a 的取值范围是{a |a >2}.1.集合中的元素的三个特征.特别是无序性和互异性在解题时经常用到,解题后要进行检验,要重视符号语言与文字语言之间的相互转化.2.对连续数集间的运算,借助数轴的直观性,进行合理转化,对已知连续数集间的关系,求其中参数的取值范围时,要注意单独考察等号能否取到.3.对离散的数集间的运算或抽象集合间的运算,可借助Venn 图,这是数形结合思想的体现.。
高中数学(人教A版)必修一课时作业1.1集合.1 Word版含解析

第一章级基础巩固一、选择题.在“①高一数学中的难题;②所有的正三角形;③方程-=的实数解”中,能够构成集合的是( ).②.③.②③.①②③[解析]高一数学中的难题的标准不确定,因而构不成集合,而正三角形标准明确,能构成集合,方程-=的解也是确定的,能构成集合,故选..用列举法表示集合{-+=}为( ).{}.{}.{=}.{-+=}[解析]∵-+=,∴=.故集合为单元素集合.故选. .已知集合={≤},=+,则与集合的关系是( ).∈.∉.=.{}∈[解析]由于+<,所以∈..方程组(\\(+=-=))的解集是( ).(\\(==-)).{,=且=-}.{,-}.{(,)=且=-}[解析]解方程组(\\(+=-=))得(\\(==-)),用描述法表示为{(,)=且=-},用列举法表示为{(,-)},故选..已知集合={,,}中的三个元素是△的三边长,那么△一定不是( ).锐角三角形.直角三角形.钝角三角形.等腰三角形[解析]由集合中元素的互异性知,,互不相等,故选.二、填空题.用符号∈与∉填空:;∉;*∉() ;*∈;(-)∈.∈;∉+{()};∉{};∈() {()}.∉{()};()∈().∉,若=-,则∈()若=,则[解析]()只要熟记常用数集的记号所对应的含义就很容易辨别.()中是集合{}的元素;但整数不是点集{()}的元素;同样()是集合{()}的元素;因为坐标顺序不同,()不是集合{()}的元素.()平方等于的数是±,当然是实数,而平方等于-的实数是不存在的..设,∈,集合{,+,}=,则-=[解析]显然≠,则+=,=-,=-,所以=-,=,-=.三、解答题.用适当的方法表示下列集合,并指出它们是有限集还是无限集()不超过的非负质数的集合;()大于的所有自然数的集合.[解析]()不超过的非负质数有,用列举法表示为{},是有限集.()大于的所有自然数有无限个,故可用描述法表示为{>,∈},是无限集.级素养提升一、选择题.下列集合中,不同于另外三个集合的是( ).{=}.{=}.{}.{(-)=}[解析]{=}={-},另外三个集合都是{},选..下列六种表示法:①{=-,=};②{(,)=-,=};③{-};④(-);⑤{(-)};⑥{(,)=-或=}.能表示方程组(\\(+=,-+=))的解集的是( ).②⑤⑥.①②③④⑤⑥.②③④⑤.②⑤[解析]方程组(\\(+=,-+=))的解是(\\(=-,=.))故选..已知集合是由,,-+三个元素组成的集合,且∈,则实数的值为( ).或或..或.[解析]因为∈,所以=或-+=,解得=或=或=.又集合中的元素要满足互异性,对的所有取值进行一一检验可得=,故选..已知,,为非零实数,代数式+++的值所组成的集合是,则下列判断正确的是( ).∈.∈.-∉.∉[解析]当>时,=,当<时,=-,故当,,全为正时,原式=;当,,两正一负时,<,原式=;当,,两负一正时,>,原式=;当,,全为负时,<,原式=-,故的元素有,-,∴∈.故选.二、填空题。
高一数学人教A版必修1课后训练:1-1集合-集合的表示

课后训练千里之行 始于足下1.方程组1,9x y x y +=⎧⎨-=⎩的解集是( ).A .(5,4)B .{5,-4}C .{(-5,4)}D .{(5,-4)}2.下列集合中表示同一集合的是( ).A .M ={(3,2)},N ={(2,3)}B .M ={(x ,y )|x +y =1},N ={y |x +y =1}C .M ={4,5},N ={5,4}D .M ={1,2},N ={(1,2)}3.定义集合运算:{}|,,A B z z xy x A y B *==∈∈.设A ={1,2},B ={0,2},则集合A B *的所有元素之和为( ).A .0B .2C .3D .64.集合A ={x |x =2k ,k ∈Z },B ={x |x =2k +1,k ∈Z },C ={x |x =4k +1,k ∈Z }.若a ∈A ,b ∈B ,则一定有( ).A .a +b ∈AB .a +b ∈BC .a +b ∈CD .a +b ∈A ,B ,C 中任一个5.已知集合A ={1,2,3},B ={1,2},C ={(x ,y )|x ∈A ,y ∈B },用列举法表示集合C =________.6.用符号“∈”或“∉”填空.(1) R, {|x x <; (2)3________{x |x =n 2+1,n ∈N *};(3)(1,1)________{y |y =x 2},(1,1)________{(x ,y )|y =x 2}.7.下面三个集合:A ={x |y =x 2+1};B ={y |y =x 2+1};C ={(x ,y )|y =x 2+1}.问:(1)它们是不是相同的集合?(2)它们各自的含义是什么?8.已知集合A ={x |kx 2-8x +16=0}只有一个元素,试求实数k 的值,并用列举法表示集合A .百尺竿头 更进一步设S 是由满足下列条件的实数所构成的集合:①1S ∉;②若a ∈S ,则11S a∈-.请解答下列问题:(1)若2∈S ,则S 中必有另外两个数,求出这两个数;(2)求证:若a ∈S ,则11S a-∈. (3)在集合S 中元素能否只有一个?请说明理由.(4)求证:集合S 中至少有三个不同的元素.参考答案1.答案:D解析:{}1,(,)|(5,4)9x y x y x y ⎧+=⎫⎧=-⎨⎨⎬-=⎩⎩⎭. 2.答案:C解析:集合{(3,2)}与{(2,3)}是两个不同的集合,(3,2)与(2,3)是两个不同的元素,A 错误;B 中M 是点集,N 是数集,因此集合M 与N 不相同;同理,D 中集合M 是两个数,而集合N 中是一个点(1,2),D 错误.3.答案:D解析:由于x ∈A ,y ∈B ,那么在计算xy 时,可以进行如下分类:(1)x =1,y =0;(2)x =1,y =2;(3)x =2,y =0;(4)x =2,y =2.依题意,{}0,2,4A B *=,其所有元素之和为6.4.答案:B解析:考查对集合概念的理解,注意集合是研究元素特征的,即不能出现a +b =(2k )+(2k +1)=4k +1的错误;应为a +b =2k 1+(2k 2+1)=2(k 1+k 2)+1(k 1、k 2∈Z ),由于k 1+k 2∈Z ,得a +b ∈B .5.答案:{(1,1),(1,2),(2,1),(2,2),(3,1),(3,2)}解析:∵C ={(x ,y )|x ∈A ,y ∈B },∴满足条件的点为(1,1),(1,2),(2,1),(2,2),(3,1),(3,2).6.答案:(1)∈ ∉ (2) ∉ (3) ∉ ∈解析:(1) R ,而=>∴{|x x <.(2)要判定3是否为集合中的元素,只需分析方程n 2+1=3(n ∈N +)是否有解.∵n 2+1=3,∴*N n =,∴{}2*3|1,N x x n n ∉=+∈. (3)(1,1)是一个有序实数对,在坐标平面上表示一个点,而{y |y =x 2}表示二次函数函数值构成的集合,故{}2(1,1)|y y x ∉=. 集合{(x ,y )|y =x 2}表示抛物线y =x 2上的点构成的集合(点集),且满足y =x 2,∴(1,1)∈{(x ,y )|y =x 2}.7.解:(1)在A 、B 、C 三个集合中,虽然代表元素满足的表达式一致,但代表元素互不相同,所以它们是互不相同的集合.(2)集合A 的代表元素是x ,满足y =x 2+1,故A ={x |y =x 2+1}=R .集合B 的代表元素是y ,满足y =x 2+1的y ≥1,故B ={y |y =x 2+1}={y |y ≥1}.集合C 的代表元素是(x ,y ),满足条件y =x 2+1,即表示满足y =x 2+1的实数对(x ,y );也可认为满足条件y =x 2+1的坐标平面上的点.因此,C ={(x ,y )|y =x 2+1}={点P ∈平面α|P 是抛物线y =x 2+1上的点}.8.解:当k =0时,原方程变为-8x +16=0,所以x =2,此时集合A ={2};当k ≠0时,要使一元二次方程kx 2-8x +16=0只有一个实根,需64640k ∆=-=,即k =1.此时方程的解为x 1=x 2=4,集合A ={4}.百尺竿头 更进一步(1)解:∵2∈S, 21≠,∴1112S =-∈-. ∵-1∈S ,11-≠,∴111(1)2S =∈--. ∵12S ∈,112≠,∴12112S =∈-. ∴-1,12S ∈,即集合S 中另外两个数为-1和12. (2)证明:∵a ∈S ,∴11S a∈-. ∴111111S a a =-∈--(a ≠0,因为若a =0,则111S a =∈-,不合题意). (3)解:集合S 中的元素不能只有一个.理由:假设集合S 中只有一个元素. 则根据题意知11a a =-,即a 2-a +1=0.此方程无实数解,∴11a a ≠-.因此集合S 中不能只有一个元素.(4)证明:由(2)知a ∈S 时,11S a ∈-, 11S a -∈. 现证明a ,11a -,11a-三个数互不相等. ①若11a a =-,即a 2-a +1=0,方程无解,∴11a a≠-; ②若11a a=-,即a 2-a +1=0,方程无解,∴11aa ≠-;③若1111a a=--,即a2-a+1=0,方程无解,∴1111a a≠--.综上所述,集合S中至少有三个不同的元素.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题课(一) 集 合
(时间:45分钟 满分:75分)
一、选择题(每小题5分,共30分)
1.设集合A ={x |x ≤4},m =1,则下列关系中正确的是( ) A .m ⊆A B .m ∉A C .{m }∈A
D .m ∈A
解析:因为A ={x |x ≤4},m =1所以m ∈A ,故选D. 答案:D
2.下列图形中,表示M ⊆N 的是( )
答案:C
3.已知集合M ={x |-3<x ≤5},N ={x |x <-5或x >5},则M ∪N =( ) A .{x |x <-5或x >-3} B .{x |-5<x <5} C .{x |-3<x <5}
D .{x |x <-3或x >5}
解析:∵集合M ={x |-3<x ≤5},N ={x |x <-5或x >5},∴M ∪N ={x |x <-5或x >-3},故选A.
答案:A
4.集合A ={0,2,a },B ={1,a 2},若A ∪B ={0,1,2,4,16},则a 的值为( ) A .0 B .1 C .2
D .4
解析:A ={0,2,a },B ={1,a 2
},A ∪B ={0,1,2,4,16},显然⎩
⎪⎨⎪⎧
a 2=16
a =4, 解得a =4.
答案:D
5.已知A ,B 均为集合U ={1,3,5,7,9}的子集,且A ∩B ={3},(∁U B )∩A ={9},则A =( )
A .{1,3}
B .{3,7,9}
C .{3,5,9}
D .{3,9}
解析:因为A∩B={3},所以3∈A,
又(∁U B)∩A={9},
所以9∈A.
若5∈A,则5∉B(否则5∈A∩B),从而5∈∁U B,则(∁U B)∩A={5,9},与题中条件矛盾,故5∉A.
同理1∉A,7∉A,故A={3,9}.
答案:D
6.如图,I是全集,M,P,S是I的子集,则阴影部分所表示的集合是()
A.(M∩P)∩S B.(M∩P)∪S
C.(M∩P)∩(∁I S) D.(M∩P)∪(∁I S)
解析:观察Venn图,可知阴影部分既在表示集合M的区域中又在表示集合P的区域中,即在表示集合M,P的公共区域内,且在表示集合S的区域外,即在集合∁I S中.根据集合运算的概念,可得阴影部分表示的集合为(M∩P)∩(∁I S).
答案:C
二、填空题(每小题5分,共20分)
7.若A={-2,2,3,4},B={x|x=t2,t∈A},则用列举法表示B=__________.
解析:本题主要考查了集合的描述法与列举法.因为集合A={-2,2,3,4},B={x|x=t2,t∈A},当t=-2和2时,x=4;当t=3时,x=9;当t=4时,x=16,用列举法表示B={4,9,16}.
答案:{4,9,16}
8.集合{1,2,3,4}的不含有2的真子集为________.
答案:∅,{1},{3},{4},{1,3},{1,4},{3,4},{1,3,4}
9.已知集合A={x∈R||x+2|<3},集合B={x∈R|(x-m)(x-2)<0},且A∩B=(-1,n),则m=________,n=________.
解析:A={x|-5<x<1},因为A∩B={x|-1<x<n},B={x|(x-m)(x-2)<0},所以m=-1,n=1.
答案:-1 1
10.已知全集U=A∪B中有m个元素,(∁U A)∪(∁U B)中有n个元素.若A∩B非空,则A∩B的元素个数为________.
解析:∵(∁U A)∪(∁U B)=∁U(A∩B),并且全集U中有m个元素,∁U(A∩B)中有n个元素,∴A∩B中的元素个数为m-n.
答案:m -n 三、解答题
11.(本小题满分12分)已知全集U =R ,集合A ={x |1≤x ≤3或4<x <6},集合B ={x |2≤x <5},求下列集合.
(1)∁U A 及∁U B ; (2)A ∩(∁U B ); (3)(∁U A )∪B .
解:(1)∁U A ={x |x <1或3<x ≤4或x ≥6}, ∁U B ={x |x <2或x ≥5}.
(2)A ∩(∁U B )={x |1≤x ≤3或4<x <6}∩{x |x <2或x ≥5}={x |1≤x <2或5≤x <6}. (3)(∁U A )∪B ={x |x <1或3<x ≤4或x ≥6}∪{x |2≤x <5}={x |x <1或2≤x <5或x ≥6}. 12.(本小题满分13分)已知集合A ={x |ax 2-3x +1=0,a ∈R }. (1)若A 是空集,求a 的取值范围;
(2)若A 中至多只有一个元素,求a 的取值范围. 解:(1)若A 是空集,则方程ax 2-3x +1=0无实数根,
当a =0时,不满足,所以⎩⎪⎨⎪⎧
a ≠0Δ=9-4a <0
,
解得a >94.因此若A 是空集,a 的取值范围为a >9
4
.
(2)若A 中至多只有一个元素,则A =∅或A 中只有一个元素. 当A =∅时,由(1)知a >9
4;
当A 中只有一个元素时,
可得a =0或⎩
⎪⎨⎪⎧
a ≠0
Δ=9-4a =0,
解得a =0或a =9
4
.
综上所述,若A 中至多只有一个元素,a 的取值范围为⎩
⎨⎧
a ⎪
⎪⎭
⎬⎫a =0或a ≥94.。