高考数学(理)圆锥曲线综合最值、范围、证明问题
2024届高考一轮复习数学课件(新教材人教A版强基版):圆锥曲线中的综合问题全文

所以B→D=(x1-2,y1),B→E=(x2-2,y2),
则(x1-2)(x2-2)+y1y2=0,
将x1=ky1+m,x2=ky2+m代入上式得
(k2+1)y1y2+k(m-2)(y1+y2)+(m-2)2=0,
将
①
代
入
上
式
得
(k2+
1)
m2-4 k2+4
+
k(m
-
2)
-k2+2km4 +
(m
x1+x2=-8 267m,x1x2=4m227-3, y1y2=6x1x2+ 6m(x1+x2)+m2=24m2-3-2748m2+27m2, ∵O→A·O→B=0,∴x1x2+y1y2=0, 代入根与系数的关系得 m2=12,m=±2 3,满足 Δ>0, ∴直线 l 的方程为 y= 6x±2 3.
4k2+1
又直线 OP 的斜率为--12--00=12,且直线 OP 与 MQ 不重合,
所以MQ∥OP.
题型二 定点与定值
例 2 (2022·济南模拟)已知椭圆 C:ax22+by22=1(a>b>0)的左、右顶点分别为 A,B,点 P(0,2),连接 PA,PB 交椭圆 C 于点 M,N,△PAB 为直角三角 形,且|MN|=35|AB|. (1)求椭圆的标准方程;
设经过点F且斜率为k(k≠0)的直线的方程为y=kx+1,与曲线C的方 程联立得 y=kx+1, x32+y42=1, 消去 y 整理得(4+3k2)x2+6kx-9=0, Δ=36k2+4×9×(4+3k2)=144(1+k2)>0恒成立, 设M(x1,y1),N(x2,y2),
则|MN|= 1+k2|x1-x2|= 1+k2×4+Δ3k2=124+1+3kk22, x1+x2=-4+6k3k2,
高中数学高考17第一部分 板块二 专题五 解析几何 第3讲 圆锥曲线中的最值、范围、证明问题(大题)

设M(x1,y1),M′(x2,y2), 设 MF1 的方程为 x=my- 3,
x=my- 3,
由x42+y2=1
得(m2+4)y2-2 3my-1=0,
故yy11+y2=y2=-mm2 221++3m44.,
设F1M与F2N的距离为d,四边形F1F2NM的面积为S,
则 S=12(|F1M|+|F2N|)d=12(|F1M′|+|F1M|)d=12|MM′|d= S△MF2M′,
2
PART TWO
真题体验 押题预测
真题体验 (2018·全国Ⅰ,文,20)设抛物线C:y2=2x,点A(2,0),B(-2,0),过点A的直线l与 C交于M,N两点. (1)当l与x轴垂直时,求直线BM的方程;
解 当l与x轴垂直时,l的方程为x=2, 可得点M的坐标为(2,2)或(2,-2). 所以直线 BM 的方程为 y=12x+1 或 y=-12x-1. 即x-2y+2=0或x+2y+2=0.
所以 y1+y2=2k,y1y2=-4.
直线 BM,BN 的斜率之和 kBM+kBN=x1y+1 2+x2y+2 2=x2y1+x1x+1y22+x22+y12+ y2.
①
将 x1=yk1+2,x2=yk2+2 及 y1+y2,y1y2 的表达式代入①式分子,
可得 x2y1+x1y2+2(y1+y2)=2y1y2+4kky1+y2=-8k+8=0.
当且仅当 t2=92,即 t=±322时取等号.
故△BPQ
的面积的最大值为
2 2.
热点二 范围问题
圆锥曲线的范围问题的常见解法 (1)几何法:若题目中的条件和结论能明显体现几何特征和意义,则考虑利用图形 性质来解决; (2)代数法:若题目中的条件和结论能体现一种明确的函数关系或不等关系或已知 参数与新参数之间的等量关系等,则可利用这些关系去求参数的范围.
高考数学《圆锥曲线的概念与性质,与弦有关的计算问题》复习

高考考点
1. 圆锥曲线的定义、标准方程与性质 2. 圆锥曲线中的最值(范围)及与弦有关的问题 3. 直线与圆锥曲线位置关系的判断与证明问题 4. 圆锥曲线中的定点,定值问题
考点解读
1.求圆锥曲线的标准方程、离心率、双曲线的渐近线方程 2.考查圆锥曲线的定义、性质
设 AB 是过抛物线 y2=2 px p 0 焦点 F 的弦,若 A(x1,y1),B(x2,y2 ) ,
则
①x1x2=
p2 4
,
y1 y2=
p2
;
②弦长
AB
=x1+x2+p=
2 sin
p
2
( 为弦 AB 的倾斜角);
③ 1 1 2 ;④以弦 AB 为直径的圆与准线相切. | FA | | FB | p
y=
b a
x;
焦点坐标 F1(-c,0),F2 c,0 .
②双曲线
y2 a2
x2 b2
=1
(a
0,b
0) 的渐近线方程为
y=
a b
x,
焦点坐标 F1(0,-c),F2 (0,c) .
(3)抛物线的焦点坐标与准线方程
①抛物线 y2= 2 px p 0 的焦点坐标为 ( p ,0) ,准线方程为 x= p .
3.与相交有关的向量问题的解决方法 在解决直线与圆锥曲线相交,所得弦端点的有关的向量问题时, 一般需利用相应的知识,将该关系转化为端点坐标满足的数量关系, 再将其用横(纵)坐标的方程表示,从而得到参数满足的数量关系,进而求解. 4.圆锥曲线中最值问题:主要是求线段长度的最值、三角形面积的最值等.
5.圆锥曲线中的范围问题:关键是选取合适的变量建立目标函数和不等关系. 该问题主要有以下三种情况: (1)距离型:若涉及焦点,则可以考虑将圆锥曲线定义和平面几何性质结合起来求解; (2)若是圆锥曲线上的点到直线的距离,则可设出与已知直线平行的直线方程, 再代入圆锥曲线方程中,用判别式等于零求得切点坐标, 这个切点就是距离取得最值的点,若是在圆或椭圆上, 则可将点的坐标以参数形式设出,转化为三角函数的最值求解.
新高考方案二轮-数学(新高考版)大题专攻(二) 第1课时 圆锥曲线中的最值、范围、证明问题

(2)已知 O 为坐标原点,M,N 为椭圆上不重合两点,且 M,N 的中点 H
落在直线 y=12x 上,求△MNO 面积的最大值.
[解题微“点”]
(1)利用―A→G ·―B→G =0 及 e= 23构建方程组求 a,b, 即得椭圆方程; 切入点 (2)设出点 M,N 与 H 的坐标,表示出直线 MN 的方 程,与椭圆联立,利用弦长公式和点到直线的距离 公式表示△MNO 的面积后求最大值 障碍点 不要漏掉 Δ>0,利用此条件可求参数的取值范围
解:(1)依题意,2c=6,则 b= 9-5=2,
则双曲线 C:x52-y42=1,B1(0,-2),F2(3,0).
设直线 l:4x+3y+m=0,将 B1(0,-2)代入解得 m=6,
此时 l:4x+3y+6=0,F2 到 l 的距离为 d=158.
(2)设双曲线上的点 P(x,y)满足―PB→1 ·―PB→2 =-2, 即 x2+y2=b2-2,又xa22-by22=1⇒y2=ba22x2-b2,
[对点训练] (2021·济南三模)已知抛物线C:x2=4y,过点P(1,-2)作斜率为k(k>0)的直线l1与 抛物线C相交于A,B两点. (1)求k的取值范围; (2)过P点且斜率为-k的直线l2与抛物线C相交于M,N两点,求证:直线AM、BN 及y轴围成等腰三角形.
解:(1)由题意设直线 l1 的方程为 y+2=k(x-1), 由xy+2=24=y,kx-1, 得到:x2-4kx+4k+8=0, 由题意知 Δ>0,所以 k2-k-2>0,即 k<-1 或 k>2. 因为 k>0,所以 k 的取值范围为(2,+∞).
[提分技巧] 解决范围问题的常用方法
利用待求量的几何意义,确定出极端位置后,利 数形结合法
第3讲 大题专攻——圆锥曲线中的最值、范围、证明问题 2023高考数学二轮复习课件

当t∈(2,3)时,u′>0,u=4t3-t4单调递增,
当t∈(3,4)时,u′<0,u=4t3-t4单调递减,
所以当
t=3
时,u
取得最大值,则
S
也取得最大值,最大值为3 4
3.
目录
圆锥曲线中的范围问题
【例2】 已知抛物线E:x2=2py(p>0)的焦点为F,点P在抛物线E上,点P 的横坐标为2,且|PF|=2. (1)求抛物线E的标准方程; 解 法一:依题意得 F0,2p,设 P(2,y0),则 y0=2-p2,因为点 P 是抛 物线 E 上一点,所以 4=2p2-2p,即 p2-4p+4=0,解得 p=2.所以抛物 线 E 的标准方程为 x2=4y. 法二:依题意,设 P(2,y0),代入抛物线 E 的方程 x2=2py 可得 y0=2p,由 抛物线的定义可得|PF|=y0+p2,即 2=2p+p2,解得 p=2.所以抛物线 E 的 标准方程为 x2=4y.
4 1+k2· k2+b.
因为x2=4y,即y=x42,所以y′=x2,则抛物线在点A处的切线斜率为
x1 2
,在
点A处的切线方程为y-x421=x21(x-x1),即y=x21x-x421,
目录
同理得抛物线在点B处的切线方程为y=x22x-x422,
联立得yy= =xx2212xx--xx442212, ,则xy==xx114x+22=x2-=b2,k, 即P(2k,-b).
+ 2, 圆心O(0,0)到MN的距离d= m22+1=1⇒m2=1.
联立xx= 2+m3yy+2=32,⇒(m2+3)y2+2 2my-1=0⇒4y2+2 2my-1=0,
|MN|=
1+m2·
8m2+16= 4
2020年高考山东版高考理科数学 10.4 圆锥曲线的综合问题

(1)求C的方程; (2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的 中点为M.证明:直线OM的斜率与直线l的斜率的乘积为定值.
解析
(1)由题意有
a2 a
b2
= 2 2
, a42 + b22 =1,解得a2=8,b2=4.
所以C的方程为x 2 +y 2 =1.
84
(2)证明:设直线l:y=kx+b(k≠0,b≠0),A(x1,y1),B(x2,y2),M(xM,yM).将y=kx+b代
入x 2 +y 2 =1得(2k2+1)x2+4kbx+2b2-8=0.
84
故xM=x1 x2
2
= 2kb
2k 2 1
,yM=k·xM+b=2 k 2b1
.
于是直线OM的斜率kOM=xy MM =-2 1k ,即kOM·k=-12 .
消去y得(4k2+3)x2-8k2x+4k2-12=0,
得xM= 12 · 4k82k2
3
= 4k 2
4k 2
3
,yM=k(xM-1)=-4 k32k
3
,
同理可得xN= 4
4 3k
2
,yN=- 1 (xN-1)= 3k
k
4 3k
2
,
若M,N关于x轴对称后得到M',N',
则得到的直线M'N'与MN关于x轴对称,
是k>0,k≠3.
由(1)得OM的方程为y=- 9 x.
k
设点P的横坐标为xP.
由
y
9 k
2024年高考数学专项复习圆锥曲线九大题型归纳(解析版)

题型一:弦的垂直平分线问题题型二:动弦过定点的问题题型三:过已知曲线上定点的弦的问题题型四:向量问题题型五:面积问题题型六:弦或弦长为定值、最值问题题型七:直线问题圆锥曲线九大题型归纳题型八:对称问题题型九:存在性问题:(存在点,存在直线y =kx +m ,存在实数,存在图形:三角形(等比、等腰、直角),四边形(矩形、菱形、正方形),圆)题型一:弦的垂直平分线问题1过点T (-1,0)作直线l 与曲线N :y 2=x 交于A 、B 两点,在x 轴上是否存在一点E (x 0,0),使得ΔABE 是等边三角形,若存在,求出x 0;若不存在,请说明理由。
2024年高考数学专项复习圆锥曲线九大题型归纳(解析版)【涉及到弦的垂直平分线问题】这种问题主要是需要用到弦AB 的垂直平分线L 的方程,往往是利用点差或者韦达定理产生弦AB 的中点坐标M ,结合弦AB 与它的垂直平分线L 的斜率互为负倒数,写出弦的垂直平分线L 的方程,然后解决相关问题,比如:求L 在x 轴y 轴上的截距的取值范围,求L 过某定点等等。
有时候题目的条件比较隐蔽,要分析后才能判定是有关弦AB 的中点问题,比如:弦与某定点D 构成以D 为顶点的等腰三角形(即D 在AB 的垂直平分线上)、曲线上存在两点AB 关于直线m 对称等等。
2例题分析1:已知抛物线y =-x 2+3上存在关于直线x +y =0对称的相异两点A 、B ,则|AB |等于题型二:动弦过定点的问题1已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为32,且在x 轴上的顶点分别为A 1(-2,0),A 2(2,0)。
(I )求椭圆的方程;(II )若直线l :x =t (t >2)与x 轴交于点T ,点P 为直线l 上异于点T 的任一点,直线PA 1,PA 2分别与椭圆交于M 、N 点,试问直线MN 是否通过椭圆的焦点?并证明你的结论题型三:过已知曲线上定点的弦的问题1已知点A 、B 、C 是椭圆E :x 2a 2+y 2b 2=1(a >b >0)上的三点,其中点A (23,0)是椭圆的右顶点,直线BC 过椭圆的中心O ,且AC ∙BC =0,BC =2AC ,如图。
高考数学解析几何增分策略:最值与范围、证明问题

=1的左、右焦点分别是F1,F2,
椭圆上有不同的三点A,B,C,且BF2⊥Ox,|F2A|,|F2B|,
|F2C|成等差数列.
(1)求弦AC的中点M的横坐标;
(2)设弦AC的垂直平分线的方程为y=kx+m(k≠0),求m的
取值范围.
[思维流程]
[解] (1)由题意可得,F2(4,0),|F2B|=95. 设A(x1,y1),C(x2,y2), 由|F2A|=a-ex1,得|F2A|=5-45x1. 同理:|F2C|=5-45x2. 因为|F2A|,|F2B|,|F2C|成等差数列, 所以5-45x1+5-45x2=2×95, 由此有x1+x2=8, 所以弦AC的中点的横坐标x=4.
由2 3 6<t<2,得14<k2<12,∴|AB|=
1+k2·2
2· 1-2k2 1+2k2
=2 1+22k22+1+12k2-1. 令u=1+12k2,则u∈12,23,∴|AB|=2 2u2+u-1∈0,235.
∴|AB|的取值范围为0,23 5.
题型三 证明问题 圆锥曲线中的证明问题是高考的热点内容之一,常见的有 位置关系方面的,如证明相切、垂直、过定点等;数量关系方 面的,如存在定值、恒成立、值相等、角相等、三点共线 等.在熟悉圆锥曲线的定义和性质的前提下,要多采用直接法 证明,但有时也会用到反证法.
解:(1)依题意可设圆C方程为x2+y2=b2, ∵圆C与直线x-y+ 2=0相切,∴b= 12+| 2-| 12=1, ∴a2-c2=1,由ac= 22,解得a= 2, ∴椭圆C的方程为x22+y2=1.
(2)证明:依题意可知直线l斜率存在,设l方程为y=k(x-2),代 入x22+y2=1,整理得(1+2k2)x2-8k2x+8k2-2=0, ∵l与椭圆有两个交点,∴Δ>0,即2k2-1<0. 设A(x1,y1),B(x2,y2),直线AF,BF的斜率分别为k1,k2,则 x1+x2=1+8k22k2,x1x2=81k+2-2k22.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题 圆锥曲线综合应用(2)- 最值、范围、证明问题一、 高考题型特点:最值、范围、证明问题是高考圆锥曲线大题中的常考题型,难度中等偏上。
二、重难点:1.求解圆锥曲线中的最值问题主要有两种方法:一是利用几何方法,即利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数方法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数,然后利用函数方法、不等式方法等进行求解.2.圆锥曲线中的范围问题: (1)解决这类问题的基本思路是建立目标函数和不等关系.(2)建立目标函数的关键是选用一个合适 的变量,其原则是这个变量能够表达要解决的问题;建立不等关系的关键是运用圆锥曲线的几何特征、判别式法或基本不等式等灵活处理.3.圆锥曲线中的证明问题常以椭圆、抛物线为载体,借助设而不求法,考查数形结合思想、方程思想、化归与转化能力、逻辑思维能力、运算求解能力. 三、易错注意点:本部分对学生的能力要求较高,解题中主要数形结合及各种方法的综合应用,同时对数学推理运算能力有很高的要求。
四、典型例题:例1.(2019全国卷III )已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积. 【解析】(1)设()111,,,2D t A x y ⎛⎫-⎪⎝⎭,则2112x y =.由于y'x =,所以切线DA 的斜率为1x ,故11112y x x t+=- . 整理得112 2 +1=0. tx y -设()22,B x y ,同理可得222 2 +1=0tx y -.故直线AB 的方程为2210tx y -+=.所以直线AB 过定点1(0,)2.(2)由(1)得直线AB 的方程为12y tx =+. 由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=. 于是()2121212122,1,121x x t x x y y t x x t +==-+=++=+,()()2222121212||11421AB t x t x x x x t =+-=++-=+.设12,d d 分别为点D ,E 到直线AB 的距离,则21221,1d t d t =+=+.因此,四边形ADBE 的面积()(22121||312S AB d d t t =+=++设M 为线段AB 的中点,则21,2M t t ⎛⎫+⎪⎝⎭. 由于EM AB ⊥u u u u r u u u r ,而()2,2EM t t =-u u u u r ,AB u u u r 与向量(1, )t 平行,所以()220t t t +-=.解得t =0或1t =±.当t =0时,S =3;当1t =±时,42S =因此,四边形ADBE 的面积为3或42例2.(2019全国卷II )已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG △是直角三角形; (ii )求PQG △面积的最大值.【解析】(1)由题设得1222y y x x ⋅=-+-,化简得221(||2)42x y x +=≠,所以C 为中心在坐标原点,焦点在x 轴上的椭圆,不含左右顶点.(2)(i )设直线PQ 的斜率为k ,则其方程为(0)y kx k =>.由22142y kxx y =⎧⎪⎨+=⎪⎩得212x k =+.记212u k=+,则(,),(,),(,0)P u uk Q u uk E u --.于是直线QG 的斜率为2k,方程为()2k y x u =-.由22(),2142k y x u x y ⎧=-⎪⎪⎨⎪+=⎪⎩得22222(2)280k x uk x k u +-+-=.① 设(,)G G G x y ,则u -和G x 是方程①的解,故22(32)2G u k x k +=+,由此得322G uk y k =+.从而直线PG 的斜率为322212(32)2uk uk k u k kuk -+=-+-+. 所以PQ PG ⊥,即PQG △是直角三角形.(ii )由(i )得2||21PQ k =+221||uk k PG +=, 所以△PQG 的面积222218()18(1)||12(12)(2)12()k k k k S PQ PG k k k k++===++++‖. 设t =k +1k,则由k >0得t ≥2,当且仅当k =1时取等号.因为2812t S t=+在[2,+∞)单调递减,所以当t =2,即k =1时,S 取得最大值,最大值为169. 因此,△PQG 面积的最大值为169. 例3.(2016年山东)平面直角坐标系xOy 中,椭圆C :()222210x y a b a b+=>>的离心率是3,抛物线E :22x y =的焦点F 是C 的一个顶点.(Ⅰ)求椭圆C 的方程;(Ⅱ)设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交与不同的两点A ,B ,线段AB的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M . (i )求证:点M 在定直线上;(ii )直线l 与y 轴交于点G ,记PFG △的面积为1S ,PDM △的面积为2S ,求12S S的最大值及取得最大值时点P 的坐标.【解析】(Ⅰ) 由离心率是23,有224=b a , 又抛物线y x 2=2的焦点坐标为)21,0(F ,所以21=b ,于是1=a ,所以椭圆C 的方程为1=4+22y x .(Ⅱ) (i )设P 点坐标为2,),(0)2m Pm m >(, 由y x 2=2得x y =′,所以E 在点P 处的切线l 的斜率为m , 因此切线l 的方程为2=2m mx -y ,设),(),,(2211y x B y x A ,),(00y x D ,将2=2m mx -y 代入1=4+22y x ,得0=1+4)4+12322-m x m -x m (.于是23214+14=+m m x x ,232104+12=2+=m m x x x , 又2200222(14)m m y mx m -=-=+, 于是 直线OD 的方程为x m-y 41=. 联立方程x m -y 41=与m x =,得M 的坐标为1(,)4M m -. 所以点M 在定直线41=y -上.(ii )在切线l 的方程为2=2m mx -y 中,令0x =,得22m y =-,即点G 的坐标为2(0,)2m G -,又2(,)2m P m ,1(0,)2F , 所以4)1+(=×21=S 21m m GF m ;再由32222(,)412(41)m m D m m -++,得 )1+4(8)1+2(=1+4+2×41+2×21=S 2222322m m m m m m m于是有 222221)1+2()1+)(1+4(2=S S m m m . 令1+2=2m t ,得222111+2=)1+)(21(2=S S t -t t t t -当21=1t时,即2=t 时,21S S 取得最大值49.此时21=2m ,22=m ,所以P 点的坐标为)41,22P(. 所以21S S 的最大值为49,取得最大值时点P 的坐标为21()24P . 例4.(2016年全国卷II)已知椭圆:E 2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于,A M 两点,点N 在E 上,MA NA ⊥. (Ⅰ)当4,||||t AM AN ==时,求AMN ∆的面积; (Ⅱ)当2AM AN =时,求k 的取值范围. 【解析】(I )设11(,)M x y ,则由题意知10y >.当4t =时,椭圆E 的方程为22143x y +=,A 点坐标为()20-,, 由已知及椭圆的对称性知,直线AM 的倾斜角为4π. 因此直线AM 的方程为2y x =+.将2x y =-代入22143x y +=得27120y y -=. 解得0y =或127y =,所以1127y =. 所以AMN △的面积为21112121442227749AMN S AM ∆==⨯⨯⨯=. (Ⅱ)由题意知3,0,(,0)t k A t >>,则直线AM 的方程为(y k x t =+,联立(2213x y t y k x t ⎧+=⎪⎨⎪=⎩并整理得,()222223230tk x tk x t k t +++-=解得x t =23t tk tx -=所以2223611t tk t t AM k t k -=+=+由题意MA NA ⊥,所以AN 的方程为1()y x t k=-+, 同理可得26(1)||k t k AN +=由2AM AN =,得22233k tk k t=++,即3(2)3(21)k t k k -=- 当32k =时上式成立,因此23632k kt k -=-. 因为3t >,即236332k k k ->-,整理得()()231202k k k +-<- 即3202k k -<-,解得322k <<. 五、强化提升训练:1.(2019·广东佛山模拟)已知中心在坐标原点,焦点在x 轴上的椭圆M 的离心率为12,椭圆上异于长轴顶点的任意点A 与左、右两焦点F 1,F 2构成的三角形中面积的最大值为 3.(1)求椭圆M 的标准方程;(2)若A 与C 是椭圆M 上关于x 轴对称的两点,连接CF 2与椭圆的另一交点为B ,求证:直线AB 与x 轴交于定点P ,并求PA →·F 2C →的取值范围.【解析】(1)由题意知c a =12,12·2c ·b =3,a 2=b 2+c 2,解得c =1,a =2,b = 3.所以椭圆M 的标准方程是x 24+y 23=1.(2)证明:设A (x 1,y 1),B (x 2,y 2),C (x 1,-y 1),直线AB :y =kx +m .将y =kx +m ,代入x 24+y 23=1得,(4k 2+3)x 2+8kmx +4m 2-12=0.则x 1+x 2=-8km 4k 2+3,x 1x 2=4m 2-124k 2+3.因为B ,C ,F 2共线,所以kBF 2=kCF 2,即kx 2+m x 2-1=-kx 1+mx 1-1, 整理得2kx 1x 2+(m -k )(x 1+x 2)-2m =0,所以2k 4m 2-124k 2+3-(m -k )8km4k 2+3-2m =0,解得m =-4k .所以直线AB :y =k (x -4),与x 轴交于定点P (4,0).因为y 21=3-34x 21,所以PA →·F 2C →=(x 1-4,y 1)·(x 1-1,-y 1)=x 21-5x 1+4-y 21=74x 21-5x 1+1=74⎝⎛⎭⎪⎫x 1-1072-187.因为-2<x 1<2,所以PA →·F 2C →的取值范围是⎣⎢⎡⎭⎪⎫-187,18.2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,短轴长为2.(1)求椭圆C 的标准方程;(2)设直线l :y =kx +m 与椭圆C 交于M ,N 两点,O 为坐标原点,若k OM ·k ON =54,求原点O 到直线l 的距离的取值范围.【解析】(1)由题意知e =c a =32,2b =2,又a 2=b 2+c 2,所以b =1,a =2, 所以椭圆C 的标准方程为x 24+y 2=1.(2)设M (x 1,y 1),N (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1,得(4k 2+1)x 2+8kmx +4m 2-4=0.则Δ=(8km )2-4(4k 2+1)(4m 2-4)>0,化简得m 2<4k 2+1. ①x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1,y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2,若k OM ·k ON =54,则y 1y 2x 1x 2=54,即4y 1y 2=5x 1x 2,所以4k 2x 1x 2+4km (x 1+x 2)+4m 2=5x 1x 2,则(4k 2-5)x 1x 2+4km (x 1+x 2)+4m 2=0,所以(4k 2-5)·4m 2-14k 2+1+4km ·⎝ ⎛⎭⎪⎫-8km 4k 2+1+4m 2=0,化简得m 2+k 2=54. ② 由①②得0≤m 2<65,120<k 2≤54.因为原点O 到直线l 的距离d =|m |1+k2,所以d 2=m 21+k 2=54-k 21+k 2=-1+941+k2, 又120<k 2≤54,所以0≤d 2<87,解得0≤d <2147. 所以原点O 到直线l 的距离的取值范围为⎣⎢⎡⎭⎪⎫0,2147.3.若F 1,F 2分别是椭圆E :x 25+y 2=1的左、右焦点,F 1,F 2关于直线x +y -2=0的对称点是圆C 的一条直径的两个端点.(1)求圆C 的方程;(2)设过点F 2的直线l 被椭圆E 和圆C 所截得的弦长分别为a ,b .当ab 取最大值时,求直线l 的方程.【解析】(1)因为F 1(-2,0),F 2(2,0),所以圆C 半径为2,圆心C 是原点O 关于直线x +y -2=0的对称点.设C (p ,q ),由⎩⎪⎨⎪⎧q p =1,p 2+q2-2=0得p =q =2,所以C (2,2).所以圆C 的方程为(x -2)2+(y -2)2=4.(2)设直线l 的方程为x =my +2,则圆心C 到直线l 的距离d =|2m |1+m2,所以b =222-d 2=41+m2,由⎩⎪⎨⎪⎧x =my +2x 2+5y 2=5得(5+m 2)y 2+4my -1=0,设直线l 与椭圆E 交于两点A (x 1,y 1),B (x 2,y 2),则y 1+y 2=-4m 5+m 2,y 1·y 2=-15+m2, a =|AB |=1+m2y 1+y 22-4y 1y 2=25m 2+1m 2+5,ab =85m 2+1m 2+5=85m 2+1+4m 2+1≤25,当且仅当m 2+1=4m 2+1,即m =±3时等号成立.所以当m =±3时,ab 取最大值.此时直线l 的方程为x ±3y -2=0.4.(2019·梅州一模)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为点F 1,F 2,其离心率为12,短轴长为2 3.(1)求椭圆C 的标准方程;(2)过点F 1的直线l 1与椭圆C 交于M ,N 两点,过点F 2的直线l 2与椭圆C 交于P ,Q 两点,且l 1∥l 2,证明:四边形MNPQ 不可能是菱形.【解析】(1)由已知,得c a =12,b =3,又c 2=a 2-b 2,故解得a 2=4,b 2=3,所以椭圆C 的标准方程为x 24+y 23=1.(2)证明:由(1),知F 1(-1,0),如图, 易知直线MN 不能平行于x 轴,所以令直线MN 的方程为x =my -1,M (x 1,y 1),N (x 2,y 2),联立方程⎩⎪⎨⎪⎧3x 2+4y 2-12=0x =my -1得(3m 2+4)y 2-6my -9=0,所以y 1+y 2=6m 3m 2+4,y 1y 2=-93m 2+4.此时|MN |=1+m2[y 1+y 22-4y 1y 2].同理,令直线PQ 的方程为x =my +1,P (x 3,y 3),Q (x 4,y 4), 此时y 3+y 4=-6m 3m 2+4,y 3y 4=-93m 2+4,此时|PQ |=1+m2[y 3+y 42-4y 3y 4],故|MN |=|PQ |.所以四边形MNPQ 是平行四边形.若平行四边形MNPQ 是菱形,则OM ⊥ON ,即OM →·ON →=0,于是有x 1x 2+y 1y 2=0. 又x 1x 2=(my 1-1)(my 2-1)=m 2y 1y 2-m (y 1+y 2)+1, 所以有(m 2+1)y 1y 2-m (y 1+y 2)+1=0, 整理得到-12m 2-53m 2+4=0, 即12m 2+5=0,上述关于m 的方程显然没有实数解, 故四边形MNPQ 不可能是菱形.5.已知动圆C 过定点F 2(1,0),并且内切于定圆F 1:(x +1)2+y 2=12. (1)求动圆圆心C 的轨迹方程;(2)若曲线y 2=4x 上存在两个点M ,N ,(1)中曲线上有两个点P ,Q ,并且M ,N ,F 2三点共线,P ,Q ,F 2三点共线,PQ ⊥MN ,求四边形PMQN 的面积的最小值.【解析】(1)设动圆的半径为r ,则|CF 2|=r ,|CF 1|=23-r ,所以|CF 1|+|CF 2|=23>|F 1F 2|,由椭圆的定义知动圆圆心C 的轨迹是以F 1,F 2为焦点的椭圆,且a =3,c =1,所以b =2,动圆圆心C 的轨迹方程是x 23+y 22=1.(2)当直线MN 的斜率不存在时,直线PQ 的斜率为0,易得|MN |=4,|PQ |=23,四边形PMQN 的面积S =4 3.当直线MN 的斜率存在时,设直线MN 的方程为y =k (x -1)(k ≠0),联立方程得⎩⎪⎨⎪⎧y =k x -1,y 2=4x ,消元得k 2x 2-(2k 2+4)x +k 2=0,设M (x 1,y 1),N (x 2,y 2),则⎩⎪⎨⎪⎧x 1+x 2=4k 2+2,x 1x 2=1,|MN |=1+k2⎝ ⎛⎭⎪⎫4k 2+22-4=4k 2+4.因为PQ ⊥MN ,所以直线PQ 的方程为y =-1k(x -1),由⎩⎪⎨⎪⎧ y =-1k x -1,x 23+y 22=1,得(2k 2+3)x 2-6x +3-6k 2=0. 设P (x 3,y 3),Q (x 4,y 4),则⎩⎪⎨⎪⎧ x 3+x 4=62k 2+3,x 3x 4=3-6k 22k 2+3,|PQ |=1+1k 2⎝ ⎛⎭⎪⎫62k 2+32-4×3-6k 22k 2+3=43k 2+12k 2+3. 则四边形PMQN 的面积S =12|MN ||PQ |=12⎝ ⎛⎭⎪⎫4k 2+443k 2+12k 2+3=83k 2+12k 22k 2+3.令k 2+1=t ,t >1,则S =83t 2t -12t +1=83-1t 2-1t +2=83-⎝ ⎛⎭⎪⎫1t +122+94. 因为t >1,所以0<1t <1,易知-⎝ ⎛⎭⎪⎫1t +122+94的范围是(0,2),所以S >832=4 3. 综上可得S ≥43,S 的最小值为4 3.6.(2019·安庆二模)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且过点(2,2). (1)求椭圆C 的标准方程;(2)设A 、B 为椭圆C 的左、右顶点,过C 的右焦点F 作直线l 交椭圆于M ,N 两点,分别记△ABM ,△ABN 的面积为S 1,S 2,求|S 1-S 2|的最大值.【解析】(1)根据题意可得:c a =22,4a 2+2b 2=1,a 2=b 2+c 2, 解得:a 2=8,b =2.故椭圆C 的标准方程为:x 28+y 24=1. (2)由(1)知F (2,0),当直线l 的斜率不存在时,S 1=S 2,于是|S 1-S 2|=0;当直线l 的斜率存在时,设直线l :y =k (x -2)(k ≠0),设M (x 1,y 1),N (x 2,y 2), 联立⎩⎪⎨⎪⎧ y =k x -2,x 28+y 24=1,得(1+2k 2)x 2-8k 2x +8k 2-8=0. ∴x 1+x 2=8k 21+2k 2,x 1x 2=8k 2-81+2k2,于是|S 1-S 2|=12×42×|y 1+y 2|=22|k (x 1+x 2)-4k |=22⎪⎪⎪⎪⎪⎪k ×8k 21+2k 2-4k =82|k |1+2k 2=821|k |+2|k |≤8222=4.当且仅当k =±22时等号成立,此时|S 1-S 2|的最大值为4. 综上,|S 1-S 2|的最大值为4.7.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,右焦点为F ,且该椭圆过点⎝⎛⎭⎪⎫1,-32. (1)求椭圆C 的方程;(2)当动直线l 与椭圆C 相切于点A ,且与直线x =433相交于点B 时,求证:△FAB 为直角三角形. 【解析】(1)由题意得c a =32,1a 2+34b 2=1,又a 2=b 2+c 2,所以b 2=1,a 2=4,即椭圆C 的方程为x 24+y 2=1.(2)由题意可得直线l 的斜率存在,设l :y =kx +m ,联立⎩⎪⎨⎪⎧ y =kx +m ,x 24+y 2=1,得(4k 2+1)x 2+8kmx +4m 2-4=0, 判别式Δ=64k 2m 2-16(4k 2+1)(m 2-1)=0,得m 2=4k 2+1>0.设A (x 1,y 1),则x 1=-8km 24k 2+1=-8km 2m 2=-4k m ,y 1=kx 1+m =-4k 2m +m =1m ,即A ⎝ ⎛⎭⎪⎫-4k m ,1m . 易得B ⎝ ⎛⎭⎪⎫433,433k +m ,F (3,0), 则FA →=⎝ ⎛⎭⎪⎫-4k m -3,1m ,FB →=⎝ ⎛⎭⎪⎫33,433k +m , FA →·FB →=33⎝ ⎛⎭⎪⎫-4k m -3+1m ⎝ ⎛⎭⎪⎫433k +m =-43k 3m -1+43k 3m +1=0, 所以FA →⊥FB →,即△FAB 为直角三角形,得证.8.(2019·朝阳区模拟)过椭圆W :x 22+y 2=1的左焦点F 1作直线l 1交椭圆于A ,B 两点,其中A (0,1),另一条过F 1的直线l 2交椭圆于C ,D 两点(不与A ,B 重合),且D 点不与点(0,-1)重合.过F 1作x 轴的垂线分别交直线AD ,BC 于E ,G .(1)求B 点坐标和直线l 1的方程;(2)求证:|EF 1|=|F 1G |.【解析】(1)由题意可得直线l 1的方程为y =x +1.与椭圆方程联立,由⎩⎪⎨⎪⎧ y =x +1x 22+y 2=1可求B ⎝ ⎛⎭⎪⎫-43,-13. (2)证明:当l 2与x 轴垂直时,C ,D 两点与E ,G 两点重合,由椭圆的对称性,|EF 1|=|F 1G |. 当l 2不与x 轴垂直时,设C (x 1,y 1),D (x 2,y 2),l 2的方程为y =k (x +1)(k ≠1).由⎩⎪⎨⎪⎧ y =k x +1x 22+y 2=1消去y ,整理得(2k 2+1)x 2+4k 2x +2k 2-2=0. 则x 1+x 2=-4k 22k 2+1,x 1x 2=2k 2-22k 2+1. 由已知,x 2≠0,则直线AD 的方程为y -1=y 2-1x 2x ,令x =-1, 得点E 的纵坐标y E =x 2-y 2+1x 2. 把y 2=k (x 2+1)代入得y E =x 2+11-k x 2. 由已知,x 1≠-43, 则直线BC 的方程为y +13=y 1+13x 1+43⎝ ⎛⎭⎪⎫x +43, 令x =-1,得点G 的纵坐标y G =y 1-x 1-13⎝ ⎛⎭⎪⎫x 1+43.把y 1=k (x 1+1)代入得y G =x 1+1k -13x 1+4. y E +y G =x 2+11-k x 2+x 1+1k -13x 1+4 =1-k [x 2+13x 1+4-x 2x 1+1]x 2·3x 1+4 =1-k [2x 1x 2+3x 1+x 2+4]x 2·3x 1+4把x 1+x 2=-4k 22k 2+1,x 1x 2=2k 2-22k 2+1代入到2x 1x 2+3(x 1+x 2)+4中, 2x 1x 2+3(x 1+x 2)+4=2×2k 2-22k 2+1+3×⎝ ⎛⎭⎪⎫-4k 22k 2+1+4=0. 即y E +y G =0, 即|EF 1|=|F 1G |.。