2020高考数学圆锥曲线综合题
2020高考数学圆锥曲线试题(含答案)

2020高考虽然延期,但是每天练习一定要跟上,加油!圆锥曲线一. 选择题:1.(福建卷11)又曲线22221x y a b==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为BA.(1,3)B.(]1,3C.(3,+∞)D.[)3,+∞2.(海南卷11)已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( A )A. (41,-1) B. (41,1)C. (1,2)D. (1,-2)3.(湖北卷10)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④11c a <22c a . 其中正确式子的序号是BA. ①③B. ②③C. ①④D. ②④4.(湖南卷8)若双曲线22221x y a b -=(a >0,b >0)上横坐标为32a的点到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2)B.(2,+∞)C.(1,5)D. (5,+∞)5.(江西卷7)已知1F 、2F 是椭圆的两个焦点,满足120MF MF ⋅=的点M 总在椭圆内部,则椭圆离心率的取值范围是C A .(0,1) B .1(0,]2C.(0,2 D.,1)26.(辽宁卷10)已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( A ) AB .3 CD .927.(全国二9)设1a >,则双曲线22221(1)x y a a -=+的离心率e 的取值范围是( B )A. B. C .(25), D.(28.(山东卷(10)设椭圆C 1的离心率为135,焦点在X 轴上且长轴长为ABCD-26.若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为A(A )1342222=-y x (B)15132222=-y x(C)1432222=-y x (D)112132222=-y x9.(陕西卷8)双曲线22221x y a b-=(0a >,0b >)的左、右焦点分别是12F F ,,过1F 作倾斜角为30的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为( B )ABC D10.(四川卷12)已知抛物线2:8C y x =的焦点为F ,准线与x 轴的交点为K ,点A 在C 上且AK AF =,则AFK ∆的面积为( B )(A)4 (B)8 (C)16 (D)3211.(天津卷(7)设椭圆22221x y m n+=(0m >,0n >)的右焦点与抛物线28y x =的焦点相同,离心率为12,则此椭圆的方程为B(A )2211216x y += (B )2211612x y += (C )2214864x y += (D )2216448x y += 12.(浙江卷7)若双曲线12222=-by a x 的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是D(A )3 (B )5 (C )3 (D )5 13.(浙江卷10)如图,AB 是平面a 的斜线段,A 为斜足,若点P 在平面a 内运动,使得△ABP 的面积为定值,则动点P 的轨迹是B(A )圆 (B )椭圆 (C )一条直线 (D )两条平行直线14.(重庆卷(8)已知双曲线22221x y a b-=(a >0,b >0)的一条渐近线为y =kx (k >0),离心率e 5k ,则双曲线方程为C(A )22x a -224y a =1(B)222215x y a a -= (C)222214x y b b-=(D)222215x y b b-=二. 填空题:1.(海南卷14)过双曲线221916x y -=的右顶点为A ,右焦点为F 。
2024年新高考版数学专题1_9.5 圆锥曲线的综合问题(分层集训)

解析 (1)设动点P的坐标为(x,y),因为| PF | = 5 ,
d5
所以
(x 1)2 y2
=
5 ,即5[(x+1)2+y2]=|x+5|2,整理得 x2 + y2 =1.所以动点P的
| x5|
5
54
轨迹方程为 x2 + y2 =1.
54
(2)设M(x1,y1),N(x2,y2),由(1)可得点A的坐标为(0,-2),故直线AM:y=
AC
·BC
=1,
则点C的轨迹为 ( )
A.圆 B.椭圆 C.抛物线 D.直线
答案 A
3.(2023届贵州遵义新高考协作体入学质量监测,8)已知圆C的方程为(x-1)2
+y2=16,B(-1,0),A为圆C上任意一点,若点P为线段AB的垂直平分线与直线
AC的交点,则点P的轨迹方程为 ( )
A. x2 + y2 =1
2 2
+
y2 b2
=1(a>b>0)的离心率e=
2 ,四
2
个顶点组成的菱形的面积为8 2 ,O为坐标原点.
(1)求椭圆E的方程;
(2)过☉O:x2+y2= 8
上任意点P作☉O的切线l与椭圆E交于点M,N,求证:
PM
·
3
PN
为定值.
解析 (1)由题意得2ab=8 2 ,e= c = 2 ,a2=b2+c2,
2
3
6
,
0
,∴
PM
=
0,
2
3
6
,
PN
=
0,
2
6 3
,
∴
2023年高考数学(文科)一轮复习课件——圆锥曲线的综合问题 第一课时 定点问题

(2)过点 S-13,0的动直线 l 交椭圆 C 于 A,B 两点,试问:在 x 轴上是否存 在一个定点 T,使得无论直线 l 如何转动,以 AB 为直径的圆恒过点 T?若存 在,求出点 T 的坐标;若不存在,请说明理由. 解 当直线 l 不与 x 轴重合时,设直线 l 的方程为 x=my-31, A(x1,y1),B(x2,y2),T(t,0), 由xy22=+mxy2=-113,消去 x 并整理,得 (18m2+9)y2-12my-16=0,
索引
所以 y1+y2=-m22m+n9,y1y2=mn22-+99. 代入③式,得(27+m2)(n2-9)-2m(n+3)mn+(n+3)2(m2+9)=0. 解得 n=-3(舍去)或 n=23. 故直线 CD 的方程为 x=my+32, 即直线 CD 过定点32,0. 若 t=0,则直线 CD 的方程为 y=0,过点32,0. 综上,直线 CD 过定点32,0.
索引
(2)过点 P13,0的直线 l 交椭圆 C 于 A,B 两点,试探究以线段 AB 为直径的圆是 否过定点.若过,求出定点坐标;若不过,请说明理由. 解 当 AB⊥x 轴时,以线段 AB 为直径的圆的方程为x-132+y2=196. 当AB⊥y轴时,以线段AB为直径的圆的方程为x2+y2=1. 可得两圆交点为Q(-1,0). 由此可知,若以线段AB为直径的圆过定点,则该定点为Q(-1,0). 下证Q(-1,0)符合题意. 设直线l的斜率存在,且不为0, 其方程设为 y=kx-13,代入y22+x2=1,
FENCENGXUNLIAN GONGGUTISHENG
A级 基础巩固
1.已知抛物线C的顶点在原点,焦点在坐标轴上,点A(1,2)为抛物线C上一点. (1)求抛物线C的方程; 解 若抛物线的焦点在x轴上,设抛物线方程为y2=ax,代入点A(1,2),可得 a=4,所以抛物线方程为y2=4x. 若抛物线的焦点在y轴上,设抛物线方程为x2=my,代入点A(1,2), 可得 m=21,所以抛物线方程为 x2=21y. 综上所述,抛物线 C 的方程是 y2=4x 或 x2=12y.
2020年高考山东版高考理科数学 10.4 圆锥曲线的综合问题

(1)求C的方程; (2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的 中点为M.证明:直线OM的斜率与直线l的斜率的乘积为定值.
解析
(1)由题意有
a2 a
b2
= 2 2
, a42 + b22 =1,解得a2=8,b2=4.
所以C的方程为x 2 +y 2 =1.
84
(2)证明:设直线l:y=kx+b(k≠0,b≠0),A(x1,y1),B(x2,y2),M(xM,yM).将y=kx+b代
入x 2 +y 2 =1得(2k2+1)x2+4kbx+2b2-8=0.
84
故xM=x1 x2
2
= 2kb
2k 2 1
,yM=k·xM+b=2 k 2b1
.
于是直线OM的斜率kOM=xy MM =-2 1k ,即kOM·k=-12 .
消去y得(4k2+3)x2-8k2x+4k2-12=0,
得xM= 12 · 4k82k2
3
= 4k 2
4k 2
3
,yM=k(xM-1)=-4 k32k
3
,
同理可得xN= 4
4 3k
2
,yN=- 1 (xN-1)= 3k
k
4 3k
2
,
若M,N关于x轴对称后得到M',N',
则得到的直线M'N'与MN关于x轴对称,
是k>0,k≠3.
由(1)得OM的方程为y=- 9 x.
k
设点P的横坐标为xP.
由
y
9 k
2020高考数学二轮复习专题五解析几何第3讲圆锥曲线中的综合问题专题强化训练[浙江]
![2020高考数学二轮复习专题五解析几何第3讲圆锥曲线中的综合问题专题强化训练[浙江]](https://img.taocdn.com/s3/m/011b87248e9951e79b8927bf.png)
第3讲 圆锥曲线中的综合问题专题强化训练1.已知方程x 22-k +y 22k -1=1表示焦点在y 轴上的椭圆,则实数k 的取值范围是( )A.⎝ ⎛⎭⎪⎫12,2 B .(1,+∞)C .(1,2)D.⎝ ⎛⎭⎪⎫12,1 解析:选C.由题意可得,2k -1>2-k >0,即⎩⎪⎨⎪⎧2k -1>2-k ,2-k >0,解得1<k <2,故选C. 2.(2019·浙江高考冲刺卷)已知F 为抛物线4y 2=x 的焦点,点A ,B 都是抛物线上的点且位于x 轴的两侧,若OA →·OB →=15(O 为原点),则△ABO 和△AFO 的面积之和的最小值为( )A.18B.52C.54D.652 解析:选D.设直线AB 的方程为:x =ty +m ,A (x 1,y 1),B (x 2,y 2),直线AB 与x 轴的交点为M (m ,0),⎩⎪⎨⎪⎧4y 2=x x =ty +m ,可得4y 2-ty -m =0, 根据根与系数的关系有y 1·y 2=-m4,因为OA →·OB →=15,所以x 1·x 2+y 1·y 2=15,从而16(y 1·y 2)2+y 1·y 2-15=0, 因为点A ,B 位于x 轴的两侧, 所以y 1·y 2=-1,故m =4.不妨令点A 在x 轴上方,则y 1>0,如图所示.又F (116,0), 所以S △ABO +S △AFO =12×4×(y 1-y 2)+12×116y 1=6532y 1+2y 1≥265y 132×2y 1=652, 当且仅当6532y 1=2y 1,即y 1=86565时,取“=”号,所以△ABO 与△AFO 面积之和的最小值是652,故选D.3.(2019·绍兴市柯桥区高考数学二模)已知l 是经过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的焦点F 且与实轴垂直的直线,A ,B 是双曲线C 的两个顶点,若在l 上存在一点P ,使∠APB =60°,则双曲线的离心率的最大值为( )A.233B. 3 C .2 D .3 解析:选A.设双曲线的焦点F (c ,0),直线l :x =c , 可设点P (c ,n ),A (-a ,0),B (a ,0), 由两直线的夹角公式可得tan ∠APB =⎪⎪⎪⎪⎪⎪k PA-k PB1+k PA ·k PB=⎪⎪⎪⎪⎪⎪n c +a -n c -a 1+n 2c 2-a 2=2a |n |n 2+(c 2-a 2)=2a|n |+c 2-a 2|n |=tan 60°=3,由|n |+c 2-a 2|n |≥2|n |·c 2-a 2|n |=2c 2-a 2,可得3≤a c 2-a2,化简可得3c 2≤4a 2,即c ≤233a ,即有e =c a ≤233.当且仅当n =±c 2-a 2,即P (c ,±c 2-a 2),离心率取得最大值233.故选A.4.(2019·福州质量检测)已知抛物线C :y 2=4x 的焦点为F ,准线为l .若射线y =2(x -1)(x ≤1)与C ,l 分别交于P ,Q 两点,则|PQ ||PF |=( )A. 2 B .2 C. 5 D .5解析:选C.由题意知,抛物线C :y 2=4x 的焦点F (1,0),准线l :x =-1与x 轴的交点为F 1.过点P 作直线l 的垂线,垂足为P 1,由⎩⎪⎨⎪⎧x =-1y =2(x -1),x ≤1,得点Q 的坐标为(-1,-4),所以|FQ |=2 5.又|PF |=|PP 1|,所以|PQ ||PF |=|PQ ||PP 1|=|QF ||FF 1|=252=5,故选C.5.(2019·鄞州中学期中)已知椭圆C 1:x 2a 21+y 2b 21=1(a 1>b 1>0)与双曲线C 2:x 2a 22-y 2b 22=1(a 2>0,b 2>0)有相同的焦点F 1,F 2,点P 是两曲线的一个公共点,且PF 1⊥PF 2,e 1,e 2分别是两曲线C 1,C 2的离心率,则9e 21+e 22的最小值是( )A .4B .6C .8D .16解析:选C.设焦距为2c ,椭圆长轴长为2a 1,双曲线实轴长为2a 2,取椭圆与双曲线在一象限内的交点为P ,由椭圆和双曲线的定义分别有|PF 1|+|PF 2|=2a 1①,|PF 1|-|PF 2|=2a 2②,因为PF 1⊥PF 2,所以|PF 1|2+|PF 2|2=4c 2③,①2+②2,得|PF 1|2+|PF 2|2=2a 21+2a 22④,将④代入③得a 21+a 22=2c 2,则9e 21+e 22=9c 2a 21+c 2a 22=5+9a 222a 21+a 212a 22≥8,故9e 21+e 22的最小值为8.6.(2019·金华十校二模)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的实轴长为42,虚轴的一个端点与抛物线x 2=2py (p >0)的焦点重合,直线y =kx -1与抛物线相切且与双曲线的一条渐近线平行,则p =( )A .4B .3C .2D .1解析:选A.抛物线x 2=2py 的焦点为⎝ ⎛⎭⎪⎫0,p 2,所以可得b =p2,因为2a =42⇒a =22,所以双曲线的方程为x 28-4y 2p 2=1,可求得渐近线方程为y =±p 42x ,不妨设y =kx -1与y =p42x 平行,则有k =p 42.联立⎩⎪⎨⎪⎧y =p 42x -1x 2=2py⇒x 2-p 222x +2p =0,所以Δ=⎝ ⎛⎭⎪⎫-p 2222-8p =0,解得p =4.7.(2019·浙江“七彩阳光”联盟高三联考)已知椭圆的方程为x 29+y 24=1,过椭圆中心的直线交椭圆于A ,B 两点,F 2是椭圆右焦点,则△ABF 2的周长的最小值为________,△ABF 2的面积的最大值为________.解析:连接AF 1,BF 1,则由椭圆的中心对称性可得C △ABF 2=AF 2+BF 2+AB =AF 1+AF 2+AB =6+AB ≥6+4=10,S △ABF 2=S △AF 1F 2≤12·25·2=2 5.答案:10 2 58.(2019·东阳二中改编)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右顶点为A ,经过原点的直线l 交椭圆C 于P ,Q 两点,若|PQ |=a ,AP ⊥PQ ,则椭圆C 的离心率为________.解析:不妨设点P 在第一象限,O 为坐标原点,由对称性可得|OP |=|PQ |2=a2,因为AP ⊥PQ ,所以在Rt △POA 中,cos ∠POA =|OP ||OA |=12,故∠POA =60°,易得P ⎝ ⎛⎭⎪⎫a4,3a 4,代入椭圆方程得116+3a 216b 2=1,故a 2=5b 2=5(a 2-c 2),所以椭圆C 的离心率e =255. 答案:2559.已知中心在坐标原点的椭圆与双曲线有公共焦点,且左、右焦点分别为F 1,F 2,这两条曲线在第一象限的交点为P ,△PF 1F 2是以PF 1为底边的等腰三角形.若|PF 1|=10,椭圆与双曲线的离心率分别为e 1,e 2,则e 1e 2的取值范围是________.解析:设椭圆的长轴长为2a ,双曲线的实轴长为2m ,则2c =|PF 2|=2a -10,2m =10-2c ,所以a =c +5,m =5-c ,所以e 1e 2=c c +5×c 5-c =c 225-c 2=125c2-1,又由三角形的性质知2c +2c >10,由已知2c <10,c <5,所以52<c <5,1<25c 2<4,0<25c 2-1<3,所以e 1e 2=125c2-1>13.答案:⎝ ⎛⎭⎪⎫13,+∞ 10.(2019·杭州市高考数学二模)抛物线y 2=2px (p >0)的焦点为F ,点A ,B 在抛物线上,且∠AFB =120°,过弦AB 中点M 作准线l 的垂线,垂足为M 1,则|MM 1||AB |的最大值为________.解析:设|AF |=a ,|BF |=b ,连接AF 、BF , 由抛物线定义,得|AF |=|AQ |,|BF |=|BP |, 在梯形ABPQ 中,2|MM 1|=|AQ |+|BP |=a +b . 由余弦定理得,|AB |2=a 2+b 2-2ab cos 120°=a 2+b 2+ab , 配方得,|AB |2=(a +b )2-ab ,又因为ab ≤⎝ ⎛⎭⎪⎫a +b 22,所以(a +b )2-ab ≥(a +b )2-14(a +b )2=34(a +b )2,得到|AB |≥32(a +b ). 所以|MM 1||AB |≤12(a +b )32(a +b )=33,即|MM 1||AB |的最大值为33. 答案:3311.(2019·衢州市教学质量检测)已知椭圆G :x 2a 2+y 2b2=1(a >b >0)的长轴长为22,左焦点F (-1,0),若过点B (-2b ,0)的直线与椭圆交于M ,N 两点.(1)求椭圆G 的标准方程; (2)求证:∠MFB +∠NFB =π; (3)求△FMN 面积S 的最大值.解:(1)因为椭圆x 2a 2+y 2b2=1(a >b >0)的长轴长为22,焦距为2,即2a =22,2c =2,所以2b =2,所以椭圆的标准方程为x 22+y 2=1.(2)证明:∠MFB +∠NFB =π,即证:k MF +k NF =0, 设直线方程MN 为y =k (x +2),代入椭圆方程得: (1+2k 2)x 2+8k 2x +8k 2-2=0, 其中Δ>0,所以k 2<12.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2= -8k 21+2k 2,x 1x 2=8k 2-21+2k2, k MF +k NF =y 1x 1+1+y 2x 2+1=k (x 1+2)x 1+1+k (x 2+2)x 2+1=k [2+x 1+x 2+2(x 1+1)(x 2+1)]=0.故∠MFB +∠NFB =π.(3)S =12·FB |y 1-y 2|=12|k ||x 1-x 2|=128(1-2k 2)k2(1+2k 2)2.令t =1+2k 2, 则S =2-t 2+3t -22t2=-2⎝ ⎛⎭⎪⎫1t -342+18,当k 2=16(满足k 2<12)时,S 的最大值为24.12.(2019·浙江金华十校第二期调研)已知抛物线C :y =x 2,点P (0,2),A ,B 是抛物线上两个动点,点P 到直线AB 的距离为1.(1)若直线AB 的倾斜角为π3,求直线AB 的方程;(2)求|AB |的最小值.解:(1)设直线AB 的方程:y =3x +m ,则|m -2|1+()32=1,所以m =0或m =4,所以直线AB 的方程为y =3x 或y =3x +4. (2)设直线AB 的方程为y =kx +m ,则|m -2|1+k2=1,所以k 2+1=(m -2)2.由⎩⎪⎨⎪⎧y =kx +m y =x 2,得x 2-kx -m =0,所以x 1+x 2=k ,x 1x 2=-m , 所以|AB |2=()1+k 2[()x 1+x 22-4x 1x 2]=()1+k 2()k 2+4m =()m -22()m 2+3,记f (m )=()m -22(m 2+3),所以f ′(m )=2(m -2)(2m 2-2m +3),又k 2+1=()m -22≥1,所以m ≤1或m ≥3,当m ∈(]-∞,1时,f ′(m )<0,f (m )单调递减,当m ∈[)3,+∞时,f ′(m )>0,f (m )单调递增,f (m )min =f (1)=4,所以|AB |min =2.13.(2019·宁波市高考模拟)已知椭圆方程为x 24+y 2=1,圆C :(x -1)2+y 2=r 2.(1)求椭圆上动点P 与圆心C 距离的最小值;(2)如图,直线l 与椭圆相交于A 、B 两点,且与圆C 相切于点M ,若满足M 为线段AB 中点的直线l 有4条,求半径r 的取值范围.解:(1)设P (x ,y ),|PC |=(x -1)2+y 2=34x 2-2x +2=34(x -43)2+23, 由-2≤x ≤2,当x =43时,|PC |min =63.(2)当直线AB 斜率不存在且与圆C 相切时,M 在x 轴上,故满足条件的直线有2条; 当直线AB 斜率存在时,设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),由⎩⎪⎨⎪⎧x 214+y 21=1x224+y 22=1,整理得:y 1-y 2x 1-x 2=-14×x 1+x 2y 1+y 2,则k AB =-x 04y 0,k MC =y 0x 0-1,k MC ×k AB =-1,则k MC ×k AB =-x 04y 0×y 0x 0-1=-1,解得:x 0=43,由M 在椭圆内部,则x 204+y 20<1,解得:y 20<59,由:r 2=(x 0-1)2+y 20=19+y 20,所以19<r 2<23,解得:13<r <63.所以半径r 的取值范围为(13,63) .14.(2019·严州中学月考改编)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为35,P (m ,0)为C 的长轴上的一个动点,过P 点且斜率为45的直线l 交C 于A ,B 两点.当m =0时,PA →·PB →=-412.(1)求椭圆C 的方程;(2)证明:|PA |2+|PB |2为定值. 解:(1)因为离心率为35,所以b a =45.当m =0时,l 的方程为y =45x ,代入x 2a 2+y 2b 2=1并整理得x 2=a 22.设A (x 0,y 0),则B (-x 0,-y 0), PA →·PB →=-x 20-y 20=-4125x 20=-4125·a 22. 又因为PA →·PB →=-412,所以a 2=25,b 2=16,椭圆C 的方程为x 225+y 216=1.(2)证明:将l 的方程为x =54y +m ,代入x 225+y216=1,并整理得25y 2+20my +8(m 2-25)=0. 设A (x 1,y 1),B (x 2,y 2), 则|PA |2=(x 1-m )2+y 21=4116y 21,同理|PB |2=4116y 22.则|PA |2+|PB |2=4116(y 21+y 22)=4116[(y 1+y 2)2-2y 1y 2]=4116·⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-4m 52-16(m 2-25)25=41.所以|PA |2+|PB |2为定值.15.(2019·温州十五校联合体联考)如图,已知抛物线C 1:y 2=2px (p >0),直线l 与抛物线C 1相交于A 、B 两点,且当倾斜角为60°的直线l 经过抛物线C 1的焦点F 时,有|AB |=13.(1)求抛物线C 1的方程; (2)已知圆C 2:(x -1)2+y 2=116,是否存在倾斜角不为90°的直线l ,使得线段AB 被圆C 2截成三等分?若存在,求出直线l 的方程;若不存在,请说明理由.解:(1)当倾斜角为60°的直线l 经过抛物线C 1的焦点F 时,直线l 的方程为y =3(x-p2),联立方程组⎩⎪⎨⎪⎧y =3(x -p 2)y 2=2px ,即3x 2-5px +34p 2=0, 所以|AB |=5p 3+p =13,即p =18,所以抛物线C 1的方程是y 2=14x .(2)假设存在直线l ,使得线段AB 被圆C 2截成三等分,令直线l 交圆C 2于C ,D ,设直线l 的方程为x =my +b ,A (x 1,y 1),B (x 2,y 2),由题意知,线段AB 与线段CD 的中点重合且有|AB |=3|CD |,联立方程组⎩⎪⎨⎪⎧4y 2=x x =my +b ,即4y 2-my -b =0,所以y 1+y 2=m 4,y 1y 2=-b 4,x 1+x 2=m 24+2b ,所以线段AB 中点的坐标M 为(m 28+b ,m 8),即线段CD 的中点为(m 28+b ,m8),又圆C 2的圆心为C 2(1,0),所以k MC 2=m8m 28+b -1=-m ,所以m 2+8b -7=0,即b =78-m28,又因为|AB |=1+m 2·m 216+b =141+m 2·14-m 2,因为圆心C 2(1,0)到直线l 的距离d =|1-b |1+m 2,圆C 2的半径为14, 所以3|CD |=6116-(1-b )21+m 2=343-m 2(m 2<3), 所以m 4-22m 2+13=0,即m 2=11±63, 所以m =±11-63,b =33-24,以下内容为“高中数学该怎么有效学习?”首先要做到以下两点:1、先把教材上的知识点、理论看明白。
2020届高考数学(理科)总复习课时跟踪练:(六十二)圆锥曲线的综合问题

课时跟踪练(六十二)A 组 基础巩固1.(2019·石家庄模拟)已知P 为双曲线C :x 29-y 216=1上的点,点M 满足|QM →|=1,且OM →·PM →=0,则当|PM →|取得最小值时点P 到双曲线C 的渐近线的距离为( )A.95B.125C .4D .5解析:由OM →·PM →=0,得OM ⊥PM ,根据勾股定理,求|MP |的最小值可以转化为求|OP |的最小值,当|OP |取得最小值时,点P 的位置为双曲线的顶点(±3,0),而双曲线的渐近线为4x ±3y =0,所以所求的距离d =125,故选B. 答案:B2.已知P (x 0,y 0)是椭圆C :x 24+y 2=1上的一点,F 1,F 2是C的两个焦点,若PF 1→·PF 2→<0,则x 0的取值范围是( )A.⎝ ⎛⎭⎪⎫-263,263 B.⎝ ⎛⎭⎪⎫-233,233 C.⎝⎛⎭⎪⎫-33,33D.⎝⎛⎭⎪⎫-63,63解析:由题意可知F 1(-3,0),F 2(3,0),则PF 1→·PF 2→=(x 0+3)(x 0-3)+y 20=x 20+y 20-3<0.因为点P 在椭圆上,所以y 20=1-x 204.所以x 20+⎝⎛⎭⎪⎫1-x 204-3<0,解得-263<x 0<263,即x 0的取值范围是⎝⎭故选A. 答案:A3.若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线与抛物线y =x 2+2有公共点,则此双曲线的离心率的取值范围是( )A .[3,+∞)B .(3,+∞)C .(1,3]D .(1,3)解析:依题意可知双曲线渐近线方程为y =±ba x ,与抛物线方程联立消去y 得x 2±bax +2=0.因为渐近线与抛物线有交点, 所以Δ=b 2a 2-8≥0,求得b 2≥8a 2,所以c =a 2+b 2≥3a , 所以e =ca ≥3.答案:A4.(2019·昆明一中模拟)设O 为坐标原点,P 是以F 为焦点的抛物线y 2=2px (p >0)上任意一点,M 是线段PF 上的点,且|PM |=2|MF |,则直线OM 的斜率的最大值为( )A.22B.23C.33D .1解析:由题意可得F ⎝ ⎛⎭⎪⎫p 2,0,设P ⎝ ⎛⎭⎪⎫y 202p ,y 0(y 0>0),则OM →=OF →+FM →=OF →+13FP →=OF →+13(OP →-OF →)=13OP →+23OF →=⎝ ⎛⎭⎪⎫y 206p +p 3,y 03, 可得k =y 03y 206p +p 3=1y 02p +p y 0≤12 y 02p ·p y 0=22. 当且仅当y 02p =py 0时取得等号,故选A. 答案:A5.过抛物线y 2=x 的焦点F 的直线l 交抛物线于A ,B 两点,且直线l 的倾斜角θ≥π4,点A 在x 轴上方,则|AF |的取值范围是( )A.⎝⎛⎦⎥⎤14,1 B.⎝⎛⎭⎪⎫14,+∞ C.⎝ ⎛⎭⎪⎫12,+∞ D.⎝ ⎛⎦⎥⎤14,1+22解析:记点A 的横坐标是x 1,则有|AF |=x 1+14=⎝ ⎛⎭⎪⎫14+|AF |cos θ+14=12+|AF |cos θ, |AF |(1-cos θ)=12,|AF |=12(1-cos θ).由π4≤θ<π得-1<cos θ≤22,2-2≤2(1-cos θ)<4, 14<12(1-cos θ)≤12-2=1+22, 即|AF |的取值范围是⎝ ⎛⎦⎥⎤14,1+22.答案:D6.已知动点P (x ,y )在椭圆x 225+y 216=1上,若A 点坐标为(3,0),|AM →|=1,且PM →·AM →=0,则|PM →|的最小值是________.解析:因为PM →·AM →=0,所以AM →⊥PM →. 所以|PM →|2=|AP →|2-|AM →|2=|AP →|2-1, 因为椭圆右顶点到右焦点A 的距离最小, 故|AP →|min =2,所以|PM →|min = 3. 答案: 37.在平面直角坐标系xOy 中,P 为双曲线x 2-y 2=1右支上的一个动点,若点P 到直线x -y +1=0的距离大于c 恒成立,则实数c 的最大值为________.解析:由双曲线的性质知所求的c 的最大值就是双曲线的一条渐近线x -y =0与直线x -y +1=0的距离,此距离d =12=22.答案:228.(2019·河南六市一模)椭圆C :x 24+y 23=1的左、右顶点分别为A 1,A 2,点P 在C 上(P 不与A 1,A 2重合)且直线PA 2斜率的取值范围是[-2,-1],那么直线PA 1斜率的取值范围是________.解析:由椭圆C :x 24+y 23=1可知左顶点A 1(-2,0),右顶点A 2(2,0),设P (x 0,y 0)(x 0≠±2),则x 204+y 203=1,得y 2x 20-4=-34,因为kPA 1=y 0x 0+2,kPA 2=y 0x 0-2,所以kPA 1·kPA 2=y 20x 20-4=-34,又因为-2≤kPA 2≤-1,所以-2≤-34kPA 1≤-1,解得38≤kPA 1≤34,即直线PA 1斜率的取值范围为⎣⎢⎡⎦⎥⎤38,34.答案:⎣⎢⎡⎦⎥⎤38,349.(2019·临汾一中月考)已知椭圆C :x 2a 2+y 2=1(a >0),过椭圆C的右顶点和上顶点的直线与圆x 2+y 2=23相切.(1)求椭圆C 的方程;(2)设M 是椭圆C 的上顶点,过点M 分别作直线MA ,MB 交椭圆C 于A ,B 两点,设这两条直线的斜率分别为k 1,k 2,且k 1+k 2=2,证明:直线AB 过定点.(1)解:因为直线过(a ,0)和(0,1),所以直线的方程为x +ay -a =0,因为直线与圆x 2+y 2=23相切,所以|-a |1+a2=63,解得a 2=2,所以椭圆C 的方程为x 22+y 2=1.(2)证明:当直线AB 的斜率不存在时,设A (x 0,y 0),则B (x 0,-y 0),由k 1+k 2=2得y 0-1x 0+-y 0-1x 0=2,解得x 0=-1.当直线AB 的斜率存在时,设AB 的方程为y =kx +m (m ≠1),A (x 1,y 1),B (x 2,y 2),联立⎩⎨⎧x 22+y 2=1,y =kx +m ,⇒(1+2k 2)x 2+4kmx +2m 2-2=0,由根与系数关系得,x 1+x 2=-4km 1+2k 2,x 1·x 2=2m 2-21+2k 2, 由k 1+k 2=2⇒y 1-1x 1+y 2-1x 2=2⇒(kx 2+m -1)x 1+(kx 1+m -1)x 2x 1x 2=2,即(2-2k )x 1x 2=(m -1)(x 1+x 2)⇒(2-2k )(2m 2-2)=(m -1)(-4km ),即(1-k )(m 2-1)=-km (m -1),由m ≠1,得(1-k )(m +1)=-km ⇒k =m +1, 即y =kx +m =(m +1)x +m ⇒m (x +1)=y -x , 故直线AB 过定点(-1,-1). 综上,直线AB 过定点(-1,-1).10.(2019·蚌埠模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点P (0,1),离心率e =32. (1)求椭圆C 的方程;(2)设直线l 经过点Q (2,-1)且与C 相交于A ,B 两点(异于点P ),记直线PA 的斜率为k 1,直线PB 的斜率为k ,证明:k 1+k 2为定值.(1)解:因为椭圆C :x 2a 2+y 2b 2=1(a >b >0),经过点P (0,1),所以b=1.又e =32,所以ca =32,解得a =2.所以椭圆C 的方程为x 24+y 2=1.(2)证明:若直线AB 的斜率不存在,则直线l 的方程为x =2,此时直线与椭圆相切,不符合题意.设直线AB 的方程为y +1=k (x -2),即y =kx -2k -1,A (x 1,y 1),B (x 1,y 2),联立⎩⎨⎧y =kx -2k -1,x 24+y 2=1,得(1+4k 2)x 2-8k (2k +1)x +16k 2+16k =0,则x 1+x 2=8k (2k +1)1+4k 2,x 1x 2=16k 2+16k1+4k 2.k 1+k 2=y 1-1x 1+y 2-1x 2=x 2(kx 1-2k -2)+x 1(kx 2-2k -2)x 1x 2=2kx 1x 2-(2k +2)(x 1+x 2)x 1x 2=2k -(2k +2)(x 1+x 2)x 1x 2=2k -(2k +2)·8k (2k +1)16k (k +1)=2k -(2k +1)=-1.所以k 1+k 2为定值,且定值为-1.B 组 素养提升11.设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线与抛物线y 2=x 的一个交点的横坐标为x 0,若x 0>1,则双曲线C 的离心率e 的取值范围是( )A.⎝⎛⎭⎪⎫1,62B .(2,+∞)C .(1,2)D.⎝ ⎛⎭⎪⎫62,+∞ 解析:不妨联立y =ba x 与y 2=x ,消去y 得b 2a2x 2=x ,由x 0>1,知b 2a 2<1,即c 2-a 2a 2<1,故e 2<2,又e >1,所以1<e <2,故选C. 答案:C12. (2019·河南百校联盟考)已知直线l :x =ty +1经过抛物线y 2=2px (p >0)的焦点F 及圆x 2-mx +y 2=0的圆心,若直线l 自上而下顺次与上述两曲线交于点A ,B ,C ,D (如图所示),则|AB |+m |CD |的最小值是( )A .2B .4C .2 2D .4 2解析:由题意可得抛物线y 2=2px (p >0)的焦点及圆x 2-mx +y 2=0的圆心均为F (1,0),所以抛物线方程为y 2=4x ,圆的方程为x 2-2x +y 2=0,把x =ty +1代入抛物线方程,得y 2-4ty -4=0,设A (x 1,y 1),D (x 2,y 2),则y 1y 2=-4,根据抛物线的定义知|AF |=x 1+1,|DF |=x 2+1,故|AB |=x 1,|CD |=x 2,所以|AB |·|CD |=x 1x 2=y 214·y 224=1,所以|AB |+m |CD |=|AB |+2|CD |≥22|AB |·|CD |=22,当且仅当|AB |=2,|CD |=22时,|AB |+2|CD |取得最小值2 2.答案:C13.[一题多解](2018·浙江卷)已知点P (0,1),椭圆x 24+y 2=m (m >1)上两点A ,B 满足AP →=2PB →,则当m =________时,点B 横坐标的绝对值最大.解析:法一 如图,设A (x A ,y A ),B (x B ,y B ),由于椭圆具有对称性,不妨设点B 在第一象限,则x B >0,y B >0.因为P (0,1),AP →=2PB →, 所以(-x A ,1-y A )=2(x B ,y B -1). 所以-x A =2x B , 即x A =-2x B .设直线AB :y =kx +1(k >0). 将y =kx +1代入x 24+y 2=m ,得(1+4k 2)x 2+8kx +4-4m =0.(*) 所以x A +x B =-x B =-8k1+4k 2, 所以x B =8k 1+4k 2=81k ×4k ≤82× 1k ×4k =2,当1k =4k ,即k =12时,x B 取到最大值2. 此时方程(*)化为x 2+2x +2-2m =0, x A ·x B =-2x 2B ,即2-2m =-8, 解得m =5.当点B 在其他象限时,同理可解.法二 设直线AB :y =kx +1(k ≠0),A (x A ,y A ),B (x B ,y B ). 由P (0,1),AP →=2PB →,得x A =-2x B .由⎩⎨⎧y =kx +1,x 24+y 2=m ,得(1+4k 2)x 2+8kx +4-4m =0, 所以x A +x B =-x B =-8k 4k 2+1,x A x B =-2x 2B =4-4m 4k 2+1.消去x B ,得m =1+32k 24k 2+1.|x B |=8|k |4k 2+1≤84|k |+1|k |≤2, 当|k |=12时,|x B |max =2,此时m =5.答案:514.(2019·合肥一检)已知点F 为椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左焦点,且两焦点与短轴的一个顶点构成一个等边三角形,直线x 4+y2=1与椭圆E 有且仅有一个交点M .(1)求椭圆E 的方程;(2)设直线x 4+y2=1与y 轴交于P ,过点P 的直线l 与椭圆E 交于两不同点A ,B ,若λ|PM |2=|PA |·|PB |,求实数λ的取值范围.解:(1)由题意得a =2c ,b =3c , 则椭圆E 为x 24c 2+y 23c2=1.联立⎩⎪⎨⎪⎧x 24+y 23=c 2,x 4+y 2=1,得x 2-2x +4-3c 2=0. 因为直线x 4+y2=1与椭圆E 有且仅有一个交点M ,所以Δ=4-4(4-3c 2)=0⇒c 2=1, 所以椭圆E 的方程为x 24+y 23=1.(2)由(1)得M ⎝⎛⎭⎪⎫1,32, 因为直线x 4+y2=1与y 轴交于P (0,2),所以|PM |2=54, 当直线l 与x 轴垂直时,|PA |·|PB |=(2+3)(2-3)=1,所以由λ|PM |2=|PA |·|PB |⇒λ=45, 当直线l 与x 轴不垂直时,设直线l 的方程为y =kx +2,A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +2,3x 2+4y 2-12=0,⇒(3+4k 2)x 2+16kx +4=0, 依题意得x 1x 2=43+4k 2,且Δ=48(4k 2-1)>0,所以k 2>14, 所以|PA |·|PB |=(1+k 2)x 1x 2=(1+k 2)·43+4k 2=1+13+4k 2=54λ, 所以λ=45⎝ ⎛⎭⎪⎫1+13+4k 2,因为k 2>14,所以45<λ<1, 综上所述,λ的取值范围是⎣⎢⎡⎭⎪⎫45,1.。
高考复习—高考数学专项练习与试卷:高考大题专项(五) 圆锥曲线的综合问题

高考大题专项(五) 圆锥曲线的综合问题突破1 圆锥曲线中的最大(小)值、范围问题1.(2020河南郑州模拟)已知椭圆x 2a 2+y 2b2=1(a>b>0)上的点到右焦点F (c ,0)的最大距离是√2+1,且1,√2a ,4c 成等比数列. (1)求椭圆的方程;(2)过点F 且与x 轴不垂直的直线l 与椭圆交于A ,B 两点,线段AB 的垂直平分线交x 轴于点M (m ,0),求实数m 的取值范围.2.(2020湖南湘潭一模)已知F (√3,0)为椭圆C :x 2a 2+y 2b2=1(a>b>0)的一个焦点,点M (√3,12)在椭圆C 上.(1)求椭圆C 的方程;(2)若直线l 与椭圆C 分别相交于A ,B 两点,且k OA +k OB =-12(O 为坐标原点),求直线l 的斜率的取值范围.3.已知椭圆E 的中心在原点,焦点F 1,F 2在y 轴上,离心率等于2√23,P 是椭圆E 上的点.以线段PF 1为直径的圆经过F 2,且9PF 1⃗⃗⃗⃗⃗⃗⃗ ·PF 2⃗⃗⃗⃗⃗⃗⃗ =1. (1)求椭圆E 的方程;(2)作直线l 与椭圆E 交于两个不同的点M ,N.如果线段MN 被直线2x+1=0平分,求直线l 的倾斜角的取值范围.4.(2020宁夏银川模拟)如图,椭圆x 2a 2+y 2b2=1(a>b>0)的左、右焦点分别为F 1(-1,0),F 2(1,0),直线l :x=a 2交x 轴于点A ,且AF 1⃗⃗⃗⃗⃗⃗⃗ =2AF 2⃗⃗⃗⃗⃗⃗⃗ .(1)求椭圆的方程;(2)过点F 1,F 2分别作互相垂直的两条直线与椭圆分别交于D ,E ,M ,N 四点,试求四边形DMEN 面积的最大值和最小值.5.(2020山东济宁一模)已知椭圆C :x 2a 2+y 2b2=1(a>b>0)的离心率为√33,且椭圆C 过点(32,√22). (1)求椭圆C 的标准方程;(2)过椭圆C 的右焦点的直线l 与椭圆C 分别相交于A ,B 两点,且与圆O :x 2+y 2=2相交于E ,F 两点,求|AB|·|EF|2的取值范围.突破2 定点、定值问题1.(2019北京,理18)已知抛物线C :x 2=-2py 经过点(2,-1). (1)求抛物线C 的方程及其准线方程.(2)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y=-1分别交直线OM ,ON 于点A 和点B.求证:以AB 为直径的圆经过y 轴上的两个定点.2.(2020重庆模拟)已知椭圆C :x 2a 2+y 2b2=1(a>b>0)的左、右焦点分别为F 1,F 2.点M 在椭圆C 上运动,若△MF 1F 2的面积取得最大值4时,有且仅有2个不同的点M 使得△MF 1F 2为直角三角形. (1)求椭圆C 的方程;(2)过点P (0,1)的直线l 与椭圆C 分别相交于A ,B 两点,与x 轴交于点Q.设QA ⃗⃗⃗⃗⃗ =λPA ⃗⃗⃗⃗⃗ ,QB ⃗⃗⃗⃗⃗ =μPB ⃗⃗⃗⃗⃗ ,求证:λ+μ为定值,并求该定值.3.(2020甘肃白银联考)设椭圆C:x 2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,下顶点为A,O为坐标原点,点O到直线AF2的距离为√22,△AF1F2为等腰直角三角形.(1)求椭圆C的标准方程;(2)直线l与椭圆C分别相交于M,N两点,若直线AM与直线AN的斜率之和为2,证明:直线l恒过定点,并求出该定点的坐标.4.(2020湖南郴州教学质量监测)已知抛物线C:x2=2py(p>0)的焦点为F,过点F的直线分别交抛物线于A,B两点.(1)若以AB为直径的圆的方程为(x-2)2+(y-3)2=16,求抛物线C的标准方程;(2)过点A,B分别作抛物线的切线l1,l2,证明:l1,l2的交点在定直线上.突破3证明、探索性问题1.已知椭圆C:x 2a2+y2b2=1(a>b>0)的右焦点为F(1,0),离心率为12,直线l:y=k(x-4)(k≠0)与椭圆C交于不同两点M,N,直线FM,FN分别交y轴于A,B两点.(1)求椭圆C的方程;(2)求证:|FA|=|FB|.2.如图,已知椭圆C:x 2a2+y2b2=1(a>b>0)的离心率为13,左、右焦点分别为F1,F2,A为椭圆C上一点,AF1与y轴相交于点B,|AB|=|F2B|,|OB|=43.(1)求椭圆C的标准方程;(2)设椭圆C的左、右顶点分别为A1,A2,过点A1,A2分别作x轴的垂线l1,l2,椭圆C的一条切线l:y=kx+m(k≠0)与l1,l2分别交于M,N两点,求证:∠MF1N=∠MF2N.3.(2020云南曲靖模拟)已知椭圆C:x 2a2+y2b2=1(a>b>0)的离心率为12,F为左焦点,过点F作x轴的垂线交椭圆C于A,B两点,且|AB|=3.(1)求椭圆C的方程.(2)在圆x2+y2=3上是否存在一点P,使得在点P处的切线l与椭圆C相交于M,N两点,且满足OM⃗⃗⃗⃗⃗⃗ ⊥ON⃗⃗⃗⃗⃗⃗ ?若存在,求l的方程;若不存在,请说明理由.4.(2020江西新余模拟)已知F为椭圆C:x 2a2+y2b2=1(a>b>0)的右焦点,点P(2,√2)在椭圆C上,且PF⊥x轴.(1)求椭圆C的方程.(2)如图,过点F的直线l分别交椭圆C于A,B两点,交直线x=4于点M.判断直线PA,PM,PB的斜率是否构成等差数列?请说明理由.5.(2020湖南五市十校联考)已知动圆C过定点F(1,0),且与定直线x=-1相切.(1)求动圆圆心C的轨迹E的方程.(2)过点M(-2,0)的任意一条直线l与轨迹E分别相交于不同的两点P,Q,试探究在x轴上是否存在定点N(异于点M),使得∠QNM+∠PNM=π?若存在,求点N的坐标;若不存在,说明理由.6.已知圆C :(x-1)2+y 2=14,一动圆与直线x=-12相切且与圆C 外切. (1)求动圆圆心P 的轨迹T 的方程.(2)若经过定点Q (6,0)的直线l 与轨迹T 交于A ,B 两点,M 为线段AB 的中点,过M 作x 轴的平行线与轨迹T 相交于点N ,试问是否存在直线l ,使得NA ⊥NB ?若存在,求出直线l 的方程;若不存在,请说明理由.参考答案高考大题专项(五) 圆锥曲线的综合问题突破1 圆锥曲线中的 最大(小)值、范围问题1.解(1)由已知可得{a +c =√2+1,1×4c =2a 2,a 2=b 2+c 2,解得{a =√2,b =1,c =1,所以椭圆的方程为x 22+y 2=1.(2)由题意得F (1,0),设直线AB 的方程为y=k (x-1).与椭圆方程联立得{x 2+2y 2-2=0,y =k (x -1),消去y 可得(1+2k 2)x 2-4k 2x+2k 2-2=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4k21+2k2,y 1+y 2=k (x 1+x 2)-2k=-2k 1+2k2.可得线段AB 的中点为N2k21+2k2,-k 1+2k2.当k=0时,直线MN 为y 轴,此时m=0.当k ≠0时,直线MN 的方程为y+k1+2k 2=-1k (x -2k21+2k2), 化简得ky+x-k21+2k2=0.令y=0,得x=k21+2k2.所以m=k21+2k2=11k2+2∈(0,12).综上所述,实数m 的取值范围为[0,12).2.解(1)由题意知,椭圆的另一个焦点为(-√3,0),所以点M 到两焦点的距离之和为√(2√3)2+(12)2+12=4.所以a=2.又c=√3,所以b=1,所以椭圆C 的方程为x 24+y 2=1.(2)当直线l 的斜率不存在时,结合椭圆的对称性可知,k OA +k OB =0,不符合题意. 故设直线l 的方程为y=kx+m (k ≠0),A (x 1,y 1),B (x 2,y 2),联立{x 24+y2=1,y =kx +m ,可得(4k 2+1)x 2+8kmx+4(m 2-1)=0.则x 1+x 2=-8km 4k 2+1,x 1x 2=4(m 2-1)4k 2+1.而k OA +k OB =y1x 1+y2x 2=(kx 1+m )x 2+(kx 2+m )x 1x 1x 2=2k+m (x 1+x 2)x 1x 2=2k+-8km 24(m 2-1)=-2km 2-1.由k OA +k OB =-12,可得m 2=4k+1, 所以k ≥-14.又由Δ>0,得16(4k 2-m 2+1)>0,所以4k 2-4k>0,解得k<0或k>1,综上,直线l 的斜率的取值范围为[-14,0)∪(1,+∞). 3.解(1)依题意,设椭圆E 的方程为y 2a 2+x 2b2=1(a>b>0),半焦距为c.因为椭圆E 的离心率为2√23, 所以c=2√23a ,b 2=a 2-c 2=a 29.因为以线段PF 1为直径的圆经过点F 2,所以PF 2⊥F 1F 2.所以|PF 2|=b2a .因为9PF 1⃗⃗⃗⃗⃗⃗⃗ ·PF 2⃗⃗⃗⃗⃗⃗⃗ =1, 所以9|PF 2⃗⃗⃗⃗⃗⃗⃗ |2=9b 4a 2=1.由{b 2=a 29,9b 4a 2=1,得{a 2=9,b 2=1,所以椭圆E 的方程为y 29+x 2=1.(2)因为直线x=-12与x 轴垂直,且由已知得直线l 与直线x=-12相交, 所以直线l 不可能与x 轴垂直, 所以设直线l 的方程为y=kx+m. 由{y =kx +m ,9x 2+y 2=9,得(k 2+9)x 2+2kmx+m 2-9=0.因为直线l 与椭圆E 交于两个不同的点M ,N ,所以Δ=4k 2m 2-4(k 2+9)(m 2-9)>0,即m 2-k 2-9<0.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-2kmk 2+9.因为线段MN 被直线2x+1=0平分, 所以2×x 1+x 22+1=0, 即-2kmk 2+9+1=0.由{m 2-k 2-9<0,-2kmk 2+9+1=0,得(k 2+92k )2-(k 2+9)<0.因为k 2+9>0,所以k 2+94k2-1<0,所以k 2>3,解得k>√3或k<-√3.所以直线l 的倾斜角的取值范围为π3,π2∪π2,2π3. 4.解(1)由题意知,|F 1F 2|=2c=2,A (a 2,0),因为AF 1⃗⃗⃗⃗⃗⃗⃗ =2AF 2⃗⃗⃗⃗⃗⃗⃗ ,所以F 2为线段AF 1的中点,则a 2=3,b 2=2,所以椭圆方程为x 23+y 22=1. (2)当直线DE 与x 轴垂直时,|DE|=2b2a=√3,此时|MN|=2a=2√3,四边形DMEN 的面积S=|DE |·|MN |2=4. 同理当MN 与x 轴垂直时, 也有四边形DMEN 的面积S=|DE |·|MN |2=4. 当直线DE ,MN 与x 轴均不垂直时,设直线DE :y=k (x+1)(k ≠0),D (x 1,y 1),E (x 2,y 2),代入椭圆方程,消去y 可得(2+3k 2)x 2+6k 2x+3k 2-6=0,则x 1+x 2=-6k22+3k 2,x 1x 2=3k 2-62+3k2,所以|x 1-x 2|=4√3×√k 2+12+3k2,所以|DE|=√k 2+1|x 1-x 2|=4√3(k 2+1)2+3k2.同理|MN|=4√3[(-1k)2+1]2+3(-1k )2=4√3(1k 2+1)2+3k 2,所以四边形DMEN 的面积S=|DE |·|MN |2=12×4√3(k 2+1)2+3k 2×4√3(1k 2+1)2+3k 2=24(k 2+1k 2+2)6(k 2+1k2)+13, 令u=k 2+1k2,则S=4-413+6u .因为u=k 2+1k2≥2,当且仅当k=±1时,等号成立,此时S=9625,且S 是以u 为自变量的增函数,则9625≤S<4.综上可知,9625≤S ≤4,故四边形DMEN 面积的最大值为4,最小值为9625. 5.解(1)由题意得c a =√33,所以a 2=32b 2,所以椭圆的方程为x 232b2+y 2b2=1,将点(32,√22)代入方程得b 2=2,即a 2=3,所以椭圆C 的标准方程为x 23+y 22=1.(2)由(1)可知,椭圆的右焦点为(1,0),①若直线l 的斜率不存在,则直线l 的方程为x=1, 则A (1,2√33),B (1,-2√33),E (1,1),F (1,-1), 所以|AB|=4√33,|EF|2=4,|AB|·|EF|2=16√33.②若直线l 的斜率存在,则设直线l 的方程为y=k (x-1),A (x 1,y 1),B (x 2,y 2).联立{x 23+y 22=1,y =k (x -1),消去y (2+3k 2)x 2-6k 2x+3k 2-6=0,则x 1+x 2=6k 22+3k2,x 1x 2=3k 2-62+3k2,所以|AB|=√(1+k 2)(x 1-x 2)2=√(1+k 2)[(6k22+3k2)2-4×3k 2-62+3k2]=4√3(k 2+1)2+3k2.因为圆心O (0,0)到直线l 的距离d=√k +1,所以|EF|2=4(2-k2k 2+1)=4(k 2+2)k 2+1,所以|AB|·|EF|2=4√3(k 2+1)2+3k2·4(k 2+2)k 2+1=16√3(k 2+2)2+3k2=16√33·k 2+2k 2+23=16√33(1+43k 2+23).因为k 2∈[0,+∞), 所以|AB|·|EF|2∈16√33,16√3.综上,|AB|·|EF|2的取值范围为16√33,16√3.突破2 定点、定值问题1.(1)解由抛物线C :x 2=-2py 经过点(2,-1),得p=2.所以抛物线C 的方程为x 2=-4y ,其准线方程为y=1.(2)证明抛物线C 的焦点为F (0,-1).设直线l 的方程为y=kx-1(k ≠0).由{y =kx -1,x 2=-4y ,得x 2+4kx-4=0. 设M (x 1,y 1),N (x 2,y 2),则x 1x 2=-4. 直线OM 的方程为y=y1x 1x.令y=-1,得点A 的横坐标x A =-x1y 1.同理得点B 的横坐标x B =-x2y 2.设y 轴上一点D (0,n ),则DA ⃗⃗⃗⃗⃗ =-x 1y 1,-1-n ,DB ⃗⃗⃗⃗⃗⃗ =-x 2y2,-1-n ,DA ⃗⃗⃗⃗⃗ ·DB⃗⃗⃗⃗⃗⃗ =x 1x 2y 1y 2+(n+1)2=x 1x 2(-x 124)(-x 224)+(n+1)2=16x 1x 2+(n+1)2=-4+(n+1)2.令DA ⃗⃗⃗⃗⃗ ·DB⃗⃗⃗⃗⃗⃗ =0, 即-4+(n+1)2=0,得n=1或n=-3.综上,以AB 为直径的圆经过y 轴上的定点(0,1)和(0,-3).2.(1)解由题意知,当点M 在短轴端点时,△MF 1F 2为直角三角形且∠F 1MF 2=90°,S △MF 1F 2=4,所以b=c 且S=12·2c·b=bc=4,解得b=c=2,a 2=b 2+c 2=8, 所以椭圆C 的方程为x 28+y 24=1.(2)证明显然直线l 的斜率不为0,设直线l :x=t (y-1),联立{x 28+y 24=1,x =t (y -1),消去x ,得(t 2+2)y 2-2t 2y+t 2-8=0. 设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2t 2t 2+2,y 1y 2=t 2-8t 2+2.令y=0,则x=-t ,所以Q (-t ,0),因为QA ⃗⃗⃗⃗⃗ =λPA ⃗⃗⃗⃗⃗ ,所以y 1=λ(y 1-1), 所以λ=y1y 1-1. 因为QB ⃗⃗⃗⃗⃗ =λPB ⃗⃗⃗⃗⃗ ,所以y 2=μ(y 2-1), 所以μ=y2y 2-1.所以λ+μ=y 1y 1-1+y 2y 2-1=2y 1y 2-(y 1+y 2)y 1y 2-(y 1+y 2)+1=83.3.(1)解由题意可知,直线AF 2的方程为xc +y -b =1,即-bx+cy+bc=0,√b +c 2=bc a =√22.因为△AF 1F 2为等腰直角三角形,所以b=c , 又a 2=b 2+c 2,可得a=√2,b=1,c=1, 所以椭圆C 的标准方程为x 22+y 2=1. (2)证明由(1)知A (0,-1).当直线l 的斜率存在时,设直线l 的方程为y=kx+t (t ≠±1),代入x 22+y 2=1,得(1+2k 2)x 2+4ktx+2t 2-2=0,所以Δ=16k 2t 2-4(1+2k 2)(2t 2-2)>0,即t 2-2k 2<1.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-4kt 1+2k2,x 1x 2=2t 2-21+2k2.因为直线AM 与直线AN 的斜率之和为2,所以k AM +k AN =y 1+1x 1+y 2+1x 2=kx 1+t+1x 1+kx 2+t+1x 2=2k+(t+1)(x 1+x 2)x 1x 2=2k-(t+1)·4kt2t 2-2=2, 整理得t=1-k.所以直线l 的方程为y=kx+t=kx+1-k=k (x-1)+1,显然直线y=k (x-1)+1经过定点(1,1). 当直线l 的斜率不存在时,设直线l 的方程为x=m.因为直线AM 与直线AN 的斜率之和为2,设M (m ,n ),则N (m ,-n ),所以k AM +k AN =n+1m +-n+1m =2m =2,解得m=1,此时直线l 的方程为x=1,显然直线x=1也经过定点(1,1).综上,直线l 恒过点(1,1).4.(1)解设AB 中点为M ,A 到准线的距离为d 1,B 到准线的距离为d 2,M 到准线的距离为d ,则d=y M +p2.由抛物线的定义可知,d 1=|AF|,d 2=|BF|,所以d 1+d 2=|AB|=8, 由梯形中位线可得d=d 1+d 22=4,所以y M +p2=4. 又y M =3,所以3+p2=4,可得p=2, 所以抛物线C 的标准方程为x 2=4y. (2)证明设A (x 1,y 1),B (x 2,y 2),由x 2=2py ,得y=x 22p ,则y'=x p ,所以直线l 1的方程为y-y 1=x1p (x-x 1),直线l 2的方程为y-y 2=x2λ(x-x 2),联立得x=x 1+x 22,y=x 1x22p ,即直线l 1,l 2的交点坐标为(x 1+x 22,x 1x 22p ).因为AB 过焦点F (0,p2),由题可知直线AB 的斜率存在,故可设直线AB 方程为y-p2=kx ,代入抛物线x 2=2py 中,得x 2-2pkx-p 2=0,所以x 1x 2=-p2,y=x 1x 22p =-p 22p =-p2,所以l 1,l 2的交点在定直线y=-p2上.突破3 证明、探索性问题1.(1)解由题意可得{c =1,ca=12,a 2=b 2+c 2,解得{a =2,b =√3,所以椭圆C 的方程为x 24+y 23=1.(2)证明设M (x 1,y 1),N (x 2,y 2)(x 1≠1且x 2≠1).联立{x 24+y 23=1,y =k (x -4)消去y ,得(4k 2+3)x 2-32k 2x+64k 2-12=0.依题意Δ=(-32k 2)-4(4k 2+3)·(64k 2-12)>0,即0<k2<14.则x 1+x 2=32k 24k 2+3,x 1x 2=64k 2-124k 2+3.因为k MF +k NF =y 1x 1-1+y 2x 2-1=k (x 1-4)x 1-1+k (x 2-4)x 2-1=k [2x 1x 2-5(x 1+x 2)+8](x 1-1)(x 2-1)=k [2·(64k 2-124k 2+3)-5·(32k24k 2+3)+8](x 1-1)(x 2-1)=0.所以直线MF 的倾斜角与直线NF 的倾斜角互补,即∠OFA=∠OFB. 又OF ⊥AB ,所以|FA|=|FB|.2.(1)解连接AF 2,由题意得|AB|=|F 2B|=|F 1B|,所以BO 为△F 1AF 2的中位线.又BO ⊥F 1F 2,所以AF 2⊥F 1F 2,且|AF 2|=2|BO|=b2a=83.又离心率e=c a=13,a 2=b 2+c 2,得a 2=9,b 2=8,故所求椭圆C 的标准方程为x 29+y 28=1.(2)证明由题可知,l 1的方程为x=-3,l 2的方程为x=3.直线l 的方程分别与直线l 1,l 2的方程联立得M (-3,-3k+m ),N (3,3k+m ),所以F 1M ⃗⃗⃗⃗⃗⃗⃗⃗ =(-2,-3k+m ),F 1N ⃗⃗⃗⃗⃗⃗⃗ =(4,3k+m ), 所以F 1M ⃗⃗⃗⃗⃗⃗⃗⃗ ·F 1N ⃗⃗⃗⃗⃗⃗⃗ =-8+m 2-9k 2.联立{x 29+y 28=1,y =kx +m ,得(9k 2+8)x 2+18kmx+9m 2-72=0.因为直线l 与椭圆C 相切,所以Δ=(18km )2-4(9k 2+8)(9m 2-72)=0,化简得m 2=9k 2+8.所以F 1M ⃗⃗⃗⃗⃗⃗⃗⃗ ·F 1N ⃗⃗⃗⃗⃗⃗⃗ =-8+9k 2+8-9k 2=0,所以F 1M ⃗⃗⃗⃗⃗⃗⃗⃗ ⊥F 1N ⃗⃗⃗⃗⃗⃗⃗ ,故∠MF 1N=π2.同理F 2M ⃗⃗⃗⃗⃗⃗⃗⃗ =(-4,-3k+m ),F 2N ⃗⃗⃗⃗⃗⃗⃗ =(2,3k+m ),F 2M ⃗⃗⃗⃗⃗⃗⃗⃗ ·F 2N ⃗⃗⃗⃗⃗⃗⃗ =0,所以F 2M ⃗⃗⃗⃗⃗⃗⃗⃗ ⊥F 2N ⃗⃗⃗⃗⃗⃗⃗ ,∠MF 2N=π2.故∠MF 1N=∠MF 2N.3.解(1)∵e=√1-b2a 2=12,∴3a 2=4b 2.又|AB|=2b2a=3,∴a=2,b=√3.∴椭圆C 的方程为x 2+y 2=1.(2)不存在.理由如下,假设存在点P ,使得OM ⃗⃗⃗⃗⃗⃗ ⊥ON ⃗⃗⃗⃗⃗⃗ . 当直线l 的斜率不存在时, l :x=√3或x=-√3,与椭圆C :x 24+y 23=1相交于M ,N 两点,此时M (√3,√32),N √3,-√32或M -√3,√32,N -√3,-√32, ∴OM ⃗⃗⃗⃗⃗⃗ ·ON⃗⃗⃗⃗⃗⃗ =3-34=94≠0, ∴当直线l 的斜率不存在时,不满足OM ⃗⃗⃗⃗⃗⃗ ⊥ON ⃗⃗⃗⃗⃗⃗ . 当直线l 的斜率存在时,设y=kx+m ,联立{y =kx +m ,x 24+y 23=1,得(3+4k 2)x 2+8kmx+4m 2-12=0.∵直线l 与椭圆C 相交于M ,N 两点, ∴Δ>0,化简得4k 2>m 2-3. 设M (x 1,y 1),N (x 2,y 2),∴x 1+x 2=-8km3+4k2,x 1x 2=4m 2-123+4k2,y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2=3m 2-12k 23+4k2.∵OM ⃗⃗⃗⃗⃗⃗ ·ON ⃗⃗⃗⃗⃗⃗ =0, ∴4m 2-123+4k2+3m 2-12k 23+4k2=0,∵7m 2-12k 2-12=0,又直线l 与圆x 2+y 2=3相切, ∴√3=√1+k ∴m 2=3+3k 2,∴21+21k 2-12k 2-12=0,解得k 2=-1,显然不成立,∴在圆上不存在这样的点P ,使OM ⃗⃗⃗⃗⃗⃗ ⊥ON⃗⃗⃗⃗⃗⃗ 成立. 4.解(1)因为点P (2,√2)在椭圆C 上,且PF ⊥x 轴,所以c=2.设椭圆C 的左焦点为E ,则|EF|=2c=4,|PF|=√2.在Rt △EFP 中,|PE|2=|PF|2+|EF|2=18,所以|PE|=3√2. 所以2a=|PE|+|PF|=4√2,a=2√2. b 2=a 2-c 2=4, 故椭圆C 的方程为x 2+y 2=1.(2)直线PA ,PM ,PB 的斜率构成等差数列,理由如下,由题意可设直线AB 的方程为y=k (x-2),令x=4得y=2k ,点M 的坐标为(4,2k ).联立{x 28+y 24=1,y =k (x -2),得(2k 2+1)x 2-8k 2x+8(k 2-1)=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=8k22k 2+1,x 1x 2=8(k 2-1)2k 2+1.①设直线PA ,PB ,PM 的斜率分别为k 1,k 2,k 3,从而k 1=y 1-√2x 1-2,k 2=y 2-√2x 2-2,k 3=2k -√24-2=k-√22. 因为直线AB 的方程为y=k (x-2), 所以y 1=k (x 1-2),y 2=k (x 2-2),所以k 1+k 2=y 1-√2x 1-2+y 2-√2x 2-2=y 1x 1-2+y 2x 2-2−√2(1x 1-2+1x 2-2)=2k-√2·x 1+x 2-4x 1x 2-2(x 1+x 2)+4. ② 将①代入②,得k 1+k 2=2k-√2·8k22k 2+1-48(k 2-1)2k 2+1-16k22k 2+1+4=2k-√2.又k 3=k-√22,所以k 1+k 2=2k 3,故直线PA ,PM ,PB 的斜率成等差数列.5.解(1)(方法1)由题意知,动圆圆心C 到定点F (1,0)的距离与其到定直线x=-1的距离相等.由抛物线的定义,可得动圆圆心C 的轨迹是以F (1,0)为焦点,x=-1为准线的抛物线,其中p=2.所以动圆圆心C 的轨迹E 的方程为y 2=4x.(方法2)设动圆圆心C (x ,y ),由题意知√(x -1)2+y 2=|x+1|,化简得y 2=4x ,即动圆圆心C 的轨迹E 的方程为y 2=4x. (2)存在.假设存在点N (x 0,0),满足题设条件.由∠QNM+∠PNM=π可知,直线PN 与QN 的斜率互为相反数,即k PN +k QN =0. ①由题意知直线PQ 的斜率必存在且不为0,设直线PQ 的方程为x=my-2. 联立{y 2=4x ,x =my -2,得y 2-4my+8=0.由Δ=(-4m )2-4×8>0,得m>√2或m<-√2. 设P (x 1,y 1),Q (x 2,y 2),则y 1+y 2=4m ,y 1y 2=8.由①式得k PN +k QN =y 1x 1-x 0+y2x 2-x 0=y 1(x 2-x 0)+y 2(x 1-x 0)(x 1-x 0)(x 2-x 0)=0,所以y 1(x 2-x 0)+y 2(x 1-x 0)=0, 即y 1x 2+y 2x 1-x 0(y 1+y 2)=0.消去x 1,x 2,得14y 1y 22+14y 2y 12-x 0(y 1+y 2)=0,14y 1y 2(y 1+y 2)-x 0(y 1+y 2)=0, 因为y 1+y 2≠0,所以x 0=14y 1y 2=2,所以存在点N (2,0),使得∠QNM+∠PNM=π.6.解(1)设P (x ,y ),分析可知动圆的圆心不能在y 轴的左侧,故x ≥0,因为动圆与直线x=-12相切,且与圆C 外切,所以|PC|-(x +12)=12, 所以|PC|=x+1, 所以√(x -1)2+y 2=x+1,化简可得y 2=4x.(2)存在.设A (x 1,y 1),B (x 2,y 2),由题意可知,当直线l 与y 轴垂直时,显然不符合题意,故可设直线l 的方程为x=my+6,联立{x =my +6,y 2=4x消去x ,可得y 2-4my-24=0, 显然Δ=16m 2+96>0, 则{y 1+y 2=4m ,y 1y 2=-24,① 所以x 1+x 2=(my 1+6)+(my 2+6)=4m 2+12, ② 因为x 1x 2=y 124·y 224,所以x 1x 2=36,③ 假设存在N (x 0,y 0),使得NA⃗⃗⃗⃗⃗⃗ ·NB ⃗⃗⃗⃗⃗⃗ =0,由题意可知y 0=y 1+y 22,所以y 0=2m , ④ 由点N 在抛物线上可知x 0=y 024,即x 0=m 2,⑤又NA ⃗⃗⃗⃗⃗⃗ =(x 1-x 0,y 1-y 0),NB ⃗⃗⃗⃗⃗⃗ =(x 2-x 0,y 2-y 0),若NA ⃗⃗⃗⃗⃗⃗ ·NB ⃗⃗⃗⃗⃗⃗ =0,则x 1x 2-x 0(x 1+x 2)+x 02+y 1y 2-y 0(y 1+y 2)+y 02=0,将①②③④⑤代入上式化简可得3m 4+16m 2-12=0,即(m 2+6)(3m 2-2)=0, 所以m 2=23,故m=±√63,所以存在直线3x+√6y-18=0或3x-√6y-18=0,使得NA ⊥NB.。
2020年高考数学全国1卷圆锥曲线

9 ⋅ 9y21
9y22
(x1 + 3)2 = (x2 − 3)2
因为 C, D 在椭圆 E 上,则
9y21 = 9 − x21 , 9y22 = 9 − x22
代入 (2) 式,得
9 ⋅ (9 − x21) 9 − x22 (x1 + 3)2 = (x2 − 3)2
化简得
4x1x2 − 15(x1 + x2) + 36 = 0
3
3
( ) 情形二 当直线 CD 的斜率不存在时,设为 x = m ,则此时 x1 = x2 = m, y1 = − y2 ,代入 (1) 式求得 m = 2 ,过点 2 , 0
3Hale Waihona Puke ( ) 综上,直线 CD 过定点 2 , 0 . Processing math: 100%
3y2
x1 + 3 = x2 − 3
情形一 当直线 CD 斜率存在时,设直线 CD 的方程为 y = kx + m ,联立
{y = kx + m x2 + 9y2 = 9
⟹
(1 + 9k2)x2 + 18kmx
+ 9m2 − 9
=
0
18km
9m2 − 9
则 x1 + x2 = − 1 + 9k2 , x1x2 = 1 + 9k2 ,将 (1) 式两边平方得
2020年高考数学全国 1卷圆锥曲线
x2
→→
已知 A, B 分别为椭圆 E: a2 + y2 = 1(a > 0) 的左、右顶点,G 为 E 的上顶点,AG ⋅ GB = 8 ,P 为直线 x = 6 上的动点,PA 与 E 的另一交点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
难点25 圆锥曲线综合题圆锥曲线的综合问题包括:解析法的应用,与圆锥曲线有关的定值问题、最值问题、参数问题、应用题和探索性问题,圆锥曲线知识的纵向联系,圆锥曲线知识和三角、复数等代数知识的横向联系,解答这部分试题,需要较强的代数运算能力和图形认识能力,要能准确地进行数与形的语言转换和运算,推理转换,并在运算过程中注意思维的严密性,以保证结果的完整.●难点磁场(★★★★)若椭圆2222by a x +=1(a >b >0)与直线l :x +y =1在第一象限内有两个不同的交点,求a 、b 所满足的条件,并画出点P (a ,b )的存在区域.●案例探究[例1]已知圆k 过定点A (a ,0)(a >0),圆心k 在抛物线C :y 2=2ax 上运动,MN 为圆k 在y 轴上截得的弦.(1)试问MN 的长是否随圆心k 的运动而变化?(2)当|OA |是|OM |与|ON |的等差中项时,抛物线C 的准线与圆k 有怎样的位置关系? 命题意图:本题考查圆锥曲线科内综合的知识及学生综合、灵活处理问题的能力,属 ★★★★★级题目.知识依托:弦长公式,韦达定理,等差中项,绝对值不等式,一元二次不等式等知识. 错解分析:在判断d 与R 的关系时,x 0的范围是学生容易忽略的.技巧与方法:对第(2)问,需将目标转化为判断d =x 0+2a 与R =a x +20的大小. 解:(1)设圆心k (x 0,y 0),且y 02=2ax 0,圆k 的半径R =|AK |=2202020)(a x y a x +=+- ∴|MN |=2202202022x a x x R -+=-=2a (定值) ∴弦MN 的长不随圆心k 的运动而变化.(2)设M (0,y 1)、N (0,y 2)在圆k :(x -x 0)2+(y -y 0)2=x 02+a 2中, 令x =0,得y 2-2y 0y +y 02-a 2=0 ∴y 1y 2=y 02-a 2∵|OA |是|OM |与|ON |的等差中项. ∴|OM |+|ON |=|y 1|+|y 2|=2|OA |=2a . 又|MN |=|y 1-y 2|=2a ∴|y 1|+|y 2|=|y 1-y 2|∴y 1y 2≤0,因此y 02-a 2≤0,即2ax 0-a 2≤0. ∴0≤x 0≤2a . 圆心k 到抛物线准线距离d =x 0+2a ≤a ,而圆k 半径R =220a x +≥a . 且上两式不能同时取等号,故圆k 必与准线相交.[例2]如图,已知椭圆122-+m y m x =1(2≤m ≤5),过其左焦点且斜率为1的直线与椭圆及其准线的交点从左到右的顺序为A 、B 、C 、D ,设f (m )=||AB |-|CD ||(1)求f (m )的解析式; (2)求f (m )的最值.命题意图:本题主要考查利用解析几何的知识建立函数关系式,并求其最值,体现了圆锥曲线与代数间的科间综合.属★★★★★级题目.知识依托:直线与圆锥曲线的交点,韦达定理,根的判别式,利用单调性求函数的最值. 错解分析:在第(1)问中,要注意验证当2≤m ≤5时,直线与椭圆恒有交点.技巧与方法:第(1)问中,若注意到x A ,x D 为一对相反数,则可迅速将||AB |-|CD ||化简.第(2)问,利用函数的单调性求最值是常用方法.解:(1)设椭圆的半长轴、半短轴及半焦距依次为a 、b 、c ,则a 2=m ,b 2=m -1,c 2=a 2-b 2=1 ∴椭圆的焦点为F 1(-1,0),F 2(1,0).故直线的方程为y =x +1,又椭圆的准线方程为x =±ca 2,即x =±m .∴A (-m ,-m +1),D (m ,m +1)考虑方程组⎪⎩⎪⎨⎧=-++=11122m y m x x y ,消去y 得:(m -1)x 2+m (x +1)2=m (m -1) 整理得:(2m -1)x 2+2mx +2m -m 2=0 Δ=4m 2-4(2m -1)(2m -m 2)=8m (m -1)2∵2≤m ≤5,∴Δ>0恒成立,x B +x C =122--m m. 又∵A 、B 、C 、D 都在直线y =x +1上∴|AB |=|x B -x A |=2=(x B -x A )·2,|CD |=2(x D -x C ) ∴||AB |-|CD ||=2|x B -x A +x D -x C |=2|(x B +x C )-(x A +x D )| 又∵x A =-m ,x D =m ,∴x A +x D =0 ∴||AB |-|CD ||=|x B +x C |·2=|mm 212--|·2=m m222 (2≤m ≤5)故f (m )=mm222,m ∈[2,5]. (2)由f (m )=mm222,可知f (m )=m1222-又2-21≤2-m1≤2-51∴f (m )∈[324,9210]故f (m )的最大值为324,此时m =2;f (m )的最小值为9210,此时m =5.[例3]舰A 在舰B 的正东6千米处,舰C 在舰B 的北偏西30°且与B 相距4千米,它们准备捕海洋动物,某时刻A 发现动物信号,4秒后B 、C 同时发现这种信号,A 发射麻醉炮弹.设舰与动物均为静止的,动物信号的传播速度为1千米/秒,炮弹的速度是3320g 千米/秒,其中g 为重力加速度,若不计空气阻力与舰高,问舰A 发射炮弹的方位角和仰角应是多少?命题意图:考查圆锥曲线在实际问题中的应用,及将实际问题转化成数学问题的能力,属★★★★★级题目.知识依托:线段垂直平分线的性质,双曲线的定义,两点间的距离公式,斜抛运动的曲线方程.错解分析:答好本题,除要准确地把握好点P 的位置(既在线段BC 的垂直平分线上,又在以A 、B 为焦点的抛物线上),还应对方位角的概念掌握清楚.技巧与方法:通过建立恰当的直角坐标系,将实际问题转化成解析几何问题来求解.对空间物体的定位,一般可利用声音传播的时间差来建立方程.解:取AB 所在直线为x 轴,以AB 的中点为原点,建立如图所示的直角坐标系.由题意可知,A 、B 、C 舰的坐标为(3,0)、(-3,0)、(-5,23).由于B 、C 同时发现动物信号,记动物所在位置为P ,则|PB |=|PC |.于是P 在线段BC 的中垂线上,易求得其方程为3x -3y +73=0.又由A 、B 两舰发现动物信号的时间差为4秒,知|PB |-|P A |=4,故知P 在双曲线5422y x -=1的右支上. 直线与双曲线的交点为(8,53),此即为动物P 的位置,利用两点间距离公式,可得|P A |=10.据已知两点的斜率公式,得k P A =3,所以直线P A 的倾斜角为60°,于是舰A 发射炮弹的方位角应是北偏东30°.设发射炮弹的仰角是θ,初速度v 0=3320g ,则θθcos 10sin 200⋅=⋅v g v ,∴sin2θ=23102=v g ,∴仰角θ=30°. ●锦囊妙计解决圆锥曲线综合题,关键是熟练掌握每一种圆锥曲线的定义、标准方程、图形与几何性质,注意挖掘知识的内在联系及其规律,通过对知识的重新组合,以达到巩固知识、提高能力的目的.(1)对于求曲线方程中参数的取值范围问题,需构造参数满足的不等式,通过求不等式(组)求得参数的取值范围;或建立关于参数的目标函数,转化为函数的值域.(2)对于圆锥曲线的最值问题,解法常有两种:当题目的条件和结论能明显体现几何特征及意义,可考虑利用数形结合法解;当题目的条件和结论能体现一种明确的函数关系,则可先建立目标函数,再求这个函数的最值.●歼灭难点训练 一、选择题1.(★★★★)已知A 、B 、C 三点在曲线y =x 上,其横坐标依次为1,m ,4(1<m <4),当△ABC 的面积最大时,m 等于( )A.3B.49 C.25 D.23 2.(★★★★★)设u ,v ∈R ,且|u |≤2,v >0,则(u -v )2+(vu 922--)2的最小值为( ) A.4B.2C.8D.22二、填空题3.(★★★★★)A 是椭圆长轴的一个端点,O 是椭圆的中心,若椭圆上存在一点P ,使 ∠OP A =2π,则椭圆离心率的范围是_________. 4.(★★★★)一辆卡车高3米,宽1.6米,欲通过抛物线形隧道,拱口宽恰好是抛物线的通径长,若拱口宽为a 米,则能使卡车通过的a 的最小整数值是_________.5.(★★★★★)已知抛物线y =x 2-1上一定点B (-1,0)和两个动点P 、Q ,当P 在抛物线上运动时,BP ⊥PQ ,则Q 点的横坐标的取值范围是_________.三、解答题6.(★★★★★)已知直线y =kx -1与双曲线x 2-y 2=1的左支交于A 、B 两点,若另一条直线l 经过点P (-2,0)及线段AB 的中点Q ,求直线l 在y 轴上的截距b 的取值范围.7.(★★★★★)已知抛物线C :y 2=4x .(1)若椭圆左焦点及相应的准线与抛物线C 的焦点F 及准线l 分别重合,试求椭圆短轴端点B 与焦点F 连线中点P 的轨迹方程;(2)若M (m ,0)是x 轴上的一定点,Q 是(1)所求轨迹上任一点,试问|MQ |有无最小值?若有,求出其值;若没有,说明理由.8.(★★★★★)如图,为半圆,AB 为半圆直径,O 为半圆圆心,且OD ⊥AB ,Q 为线段OD 的中点,已知|AB |=4,曲线C 过Q 点,动点P 在曲线C 上运动且保持|P A |+|PB |的值不变.(1)建立适当的平面直角坐标系,求曲线C 的方程;(2)过D 点的直线l 与曲线C 相交于不同的两点M 、N ,且M 在D 、N 之间,设DNDM=λ,求λ的取值范围.[学法指导]怎样学好圆锥曲线圆锥曲线将几何与代数进行了完美结合.借助纯代数的解决手段研究曲线的概念和性质及直线与圆锥曲线的位置关系,从数学家笛卡尔开创了坐标系那天就已经开始.高考中它依然是重点,主客观题必不可少,易、中、难题皆有.为此需要我们做到: 1.重点掌握椭圆、双曲线、抛物线的定义和性质.这些都是圆锥曲线的基石,高考中的题目都涉及到这些内容.2.重视求曲线的方程或曲线的轨迹,此处作为高考解答题的命题对象难度较大.所以要掌握住一般方法:定义法、直接法、待定系数法、相关点法、参数法等.3.加强直线与圆锥曲线的位置关系问题的复习.此处一直为高考的热点.这类问题常涉及到圆锥曲线的性质和直线的基本知识点、线段的中点、弦长、垂直问题,因此分析问题时利用数形结合思想和设而不求法与弦长公式及韦达定理联系去解决.这样加强了对数学各种能力的考查.4.重视对数学思想、方法进行归纳提炼,达到优化解题思维、简化解题过程. (1)方程思想解析几何的题目大部分都以方程形式给定直线和圆锥曲线,因此把直线与圆锥曲线相交的弦长问题利用韦达定理进行整体处理,就简化解题运算量.(2)用好函数思想方法对于圆锥曲线上的一些动点,在变化过程中会引入一些相互联系、相互制约的量,从而使一些线的长度及a ,b ,c ,e 之间构成函数关系,函数思想在处理这类问题时就很有效.(3)掌握坐标法坐标法是解决有关圆锥曲线问题的基本方法.近几年都考查了坐标法,因此要加强坐标法的训练.参考答案难点磁场解:由方程组⎪⎩⎪⎨⎧=+=+112222b y ax y x 消去y ,整理得(a 2+b 2)x 2-2a 2x +a 2(1-b 2)=0①则椭圆与直线l 在第一象限内有两个不同的交点的充要条件是方程①在区间(0,1)内有两相异实根,令f (x )=(a 2+b 2)x 2-2a 2x +a 2(1-b 2),则有⎪⎪⎩⎪⎪⎨⎧>><<<<>+⇒⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧>><+<>-+-=>-=>-+-=∆010101 0100)1()1(0)1()0(0)1)((442222222222222222b a a b b a b a b a a b a a b f b a f b b a a a 同时满足上述四个条件的点P (a ,b )的存在区域为下图所示的阴影部分:歼灭难点训练一、1.解析:由题意知A (1,1),B (m ,m ),C (4,2). 直线AC 所在方程为x -3y +2=0, 点B 到该直线的距离为d =10|23|+-m m .|41)23(|21|23|2110|23|1021||212--=+-=+-⨯⨯=⋅=∆m m m m m d AB S ABC ∵m ∈(1,4),∴当23=m 时,S △ABC 有最大值,此时m =49.答案:B2.解析:考虑式子的几何意义,转化为求圆x 2+y 2=2上的点与双曲线xy =9上的点的距离的最小值.答案:C二、3.解析:设椭圆方程为2222b y a x +=1(a >b >0),以OA 为直径的圆:x 2-ax +y 2=0,两式联立消y 得222ab a -x 2-ax +b 2=0.即e 2x 2-ax +b 2=0,该方程有一解x 2,一解为a ,由韦达定理x 2=2e a -a ,0<x 2<a ,即0<2ea-a <a 22⇒<e <1. 答案:22<e <1 4.解析:由题意可设抛物线方程为x 2=-ay ,当x =2a 时,y =-4a ;当x =0.8时,y =-a64.0.由题意知a a 64.04-≥3,即a 2-12a -2.56≥0.解得a 的最小整数为13. 答案:135.解析:设P (t ,t 2-1),Q (s ,s 2-1)∵BP ⊥PQ ,∴ts t s t t ----⋅+-)1()1(11222=-1, 即t 2+(s -1)t -s +1=0∵t ∈R ,∴必须有Δ=(s -1)2+4(s -1)≥0.即s 2+2s -3≥0, 解得s ≤-3或s ≥1.答案:(-∞,-3]∪[1,+∞) 三、6.解:设A (x 1,y 1),B (x 2,y 2).由⎩⎨⎧=--=1122y x kx y ,得(1-k 2)x 2+2kx -2=0, 又∵直线AB 与双曲线左支交于A 、B 两点,故有⎪⎪⎪⎩⎪⎪⎪⎨⎧>--=<--=+>-+=∆≠-0120120)1(8)2(01221221222k x x k k x x k k k解得-2<k <-1.222),22,1(22)1,2(,222,0).2(221221211120111,12),,(22222200200221000-<+>--∈-+∴--∈-+==+-+=∴-+=+--=+--=-=+-=+=b b k k k k k b x x k k y l k k k k k x y l k kx y k k x x x y x Q 或即又则令的方程为的斜率为则设7.解:由抛物线y 2=4x ,得焦点F (1,0),准线l :x =-1.(1)设P (x ,y ),则B (2x -1,2y ),椭圆中心O ′,则|FO ′|∶|BF |=e ,又设点B 到l 的距离为d ,则|BF |∶d =e ,∴|FO ′|∶|BF |=|BF |∶d ,即(2x -2)2+(2y )2=2x (2x -2),化简得P 点轨迹方程为y 2=x -1(x >1).(2)设Q (x ,y ),则|MQ |=22)(y m x +-)1(45)]21([1)(22>-+---+-=x m m x x m x(ⅰ)当m -21≤1,即m ≤23时,函数t =[x -(m -21)2]+m -45在(1,+∞)上递增,故t 无最小值,亦即|MQ |无最小值.(ⅱ)当m -21>1,即m >23时,函数t =[x 2-(m -21)2]+m -45在x =m -21处有最小值m-45,∴|MQ |min =45-m .8.解:(1)以AB 、OD 所在直线分别为x 轴、y 轴,O 为原点,建立平面直角坐标系, ∵|P A |+|PB |=|QA |+|QB |=2521222=+>|AB |=4. ∴曲线C 为以原点为中心,A 、B 为焦点的椭圆.设其长半轴为a ,短半轴为b ,半焦距为c ,则2a =25,∴a =5,c =2,b =1.∴曲线C 的方程为52x +y 2=1.(2)设直线l 的方程为y =kx +2, 代入52x +y 2=1,得(1+5k 2)x 2+20kx +15=0.Δ=(20k )2-4×15(1+5k 2)>0,得k 2>53.由图可知21x x DN DM ==λ由韦达定理得⎪⎪⎩⎪⎪⎨⎧+=⋅+-=+22122151155120k x x k k x x将x 1=λx 2代入得 ⎪⎪⎩⎪⎪⎨⎧+=λ+=λ+2222222225115)51(400)1(k x k k x 两式相除得)15(380)51(15400)1(2222k k k +=+=λλ+ 316)51(3804,320515,3510,532222<+<<+<∴<<∴>kk k k 即 331,0,316)1(42<λ<∴>=λ<λλ+<∴解得DN DM① ,21DNDM x x ==λ M 在D 、N 中间,∴λ<1②又∵当k 不存在时,显然λ=31DN DM (此时直线l 与y 轴重合).。