小升初:行程问题(学生版)
小升初典型应用题精练——行程问题(学生版)

领航小升初专题四行程问题一、知识点1路程、时间、速度是行程问题的三个基本量,它们之间的关系如下:路程=时间X速度,时间=路程十速度,速度=路程十时间。
2、在行程问题中有一类“流水行船”问题,在利用路程、时间、速度三者之间的关系解答这类问题时,应注意各种速度的含义及相互关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,静水速度=(顺流速度+逆流速度)十2,水流速度=(顺流速度-逆流速度)十2。
此处的静水速度、顺流速度、逆流速度分别指船在静水中、船顺流、船逆流的速度。
3、相遇问题和追及问题。
在这两个问题中,路程、时间、速度的关系表现为:相遇问题:= t度和X相遇吋间,速J度和=总路程一相遇吋间T相遇时间=总路程一速度和f追击问题:[追及时间=追及路程逋度差,追及路程二速度差X追及吋间,I速度差=追及路程+追及时间*在实际问题中,总是已知路程、时间、速度中的两个,求另一个。
二、习题精练1、一个车队以4米/秒的速度缓缓通过一座长200米的大桥,共用115秒。
已知每辆车长5米,两车间隔10米。
问:这个车队共有多少辆车?2、骑自行车从甲地到乙地,以10千米/时的速度行进,下午1点到;以15千米/时的速度行进,上午11点到。
如果希望中午12点到,那么应以怎样的速度行进?3、戈删比赛前讨论了两个比赛方案。
第一个方案是在比赛中分别以 2.5米/秒和3.5米/秒的速度各划行赛程的一半;第二个方案是在比赛中分别以 2.5米/秒和3.5米/秒的速度各划行比赛时间的一半。
这两个方案哪个好?4、小明去爬山,上山时每小时行2.5千米,下山时每小时行4千米,往返共用 3.9时。
问:小明往返一趟共行了多少千米?5、一只蚂蚁沿等边三角形的三条边爬行,如果它在三条边上每分钟分别爬行50,20,40厘米,那么蚂蚁爬行一周平均每分钟爬行多少厘米?6、两个码头相距418千米,汽艇顺流而下行完全程需11时,逆流而上行完全程需19时。
六年级小升初 行程问题

六年级小升初 行程问题(一) 姓名教学目的:能灵活运用基本数量关系,相遇路程=相遇时间×( ),追击路程=追击时间×( )。
能根据题意借助直观图,用数形结合的思想找到等量关系,并且学会用多种方法解题。
经典例题一:甲乙两车分别从A 、B 两地同时相向而行,速度比为5:3,甲车行了全程的73后又行了66千米,正好与乙车相遇,A 、B 两地相遇多少千米?练习:1、甲、乙、丙三人的步行速度分别为每分钟70米、60米、50米,甲从B 地,乙和丙从A 地三人同时出发,相向而行,途中甲遇到乙后10分钟又遇到丙,问:A 、B 两地间的距离是多少米?2、甲、乙两辆汽车同时分别从A 、B 两站相对开出,第一次相遇时离A 站90千米,然后各自按原来的速度继续行驶,分别到达对方出发站后立即原路返回,第二次相遇时离A 站的距离是两站距离的65%,求两站的距离。
经典例题二小刚和小明进行200米短跑比赛,两人各自的速度保持不变,当小刚跑了150米时,小明跑了120米,当小刚到达终点时,小明距离终点还有多少米?练习奇思和妙想进行100米短跑比赛,二人各自的速度保持不变,当奇思跑到终点时,妙想离终点还有25米,如果要奇思和妙想同时到达终点,那么奇思应退后多少米起跑?经典例题三:主人追她的小狗,小狗步子快,跑3步主人则跑2步,但主人的步子大主人的1步是小狗的2步,小狗跑10步后,主人开始追,当主人追上小狗时,小狗一共跑了多少步?练习:猎狗发现前方20米处有一只奔跑的野兔,立即追赶上去,猎狗步子大,它跑5步的路程,野兔要跑9步,但野兔动作快,猎狗跑3步,野兔能跑4步,问猎狗跑出多少米能追上野兔?经典例题四某边防站甲、乙两哨所相距15千米,一天,两个哨所的巡逻队同时从各自哨所出发,相向而行,他们的速度分别为每小时4.5千米和5.5千米,乙队出发时,他们带的一只军犬同时向甲哨所方向跑去,遇到甲队后立即转身往回跑,遇到乙队又立即转身向甲哨所方向跑去,--------,这只军犬就这样不停的以每小时20千米的速度在甲、乙两队之间奔跑,直到两队会和为止,这只军犬共跑了多少千米?课后巩固复习题1、1000米赛跑,甲到达终点时,乙离终点50米,乙到达终点时,丙离终点100千米,那么甲到达终点时,丙离终点多少米?2、一只野兔跑出85步后猎犬才开始追它,兔子跑8步的路程猎犬只需3步,猎犬跑4步的时间野兔跑9步,问:猎犬至少要跑多少步才能追上兔子?3、从A地到B地是一段上坡路,淘气上午从A地到B地速度是12千米每小时,下午返回时的速度是18千米每小时,则淘气往返的平均速度是多少千米每小时?。
小升初数学专项题行程问题

小升初数学专项题行程问题- 行程问题是小学数学中的一个经典题型,也是中学数学中的常见题型。
它常常涉及到时间、速度、距离等概念,考察学生对这些概念的理解和运用能力。
下面是一个关于行程问题的例子:例题:小明骑自行车从A地到B地,全程120公里。
第一天他骑了3小时,剩余距离的3/4。
第二天他骑了4小时,剩余距离的1/3。
问小明第一天的平均速度和第二天的平均速度分别是多少?解析:首先,我们需要确定小明第一天和第二天所剩余的距离分别是多少。
设小明第一天所剩余的距离为x,那么根据题意,我们可以得到以下等式:3/4 * 120 = x解得 x = 90同理,设小明第二天所剩余的距离为y,那么根据题意,我们可以得到以下等式:1/3 * 120 = y解得 y = 40然后,我们可以利用速度=距离/时间的公式来计算小明第一天和第二天的平均速度。
第一天的平均速度 = 90 / 3 = 30公里/小时第二天的平均速度 = 40 / 4 = 10公里/小时所以,小明第一天的平均速度是30公里/小时,第二天的平均速度是10公里/小时。
通过这个例题,我们可以看到解决行程问题的关键在于确定所剩余的距离,并利用速度=距离/时间的公式来计算平均速度。
除了这个例题,行程问题还有很多其他的变形。
例如,给定两个地点之间的距离和速度,求到达目的地所需的时间;或者给定两个地点之间的距离和时间,求平均速度等等。
这些问题都要求学生能够熟练地应用相关的公式和概念来解决。
行程问题不仅在小学数学中经常出现,而且在高中数学和大学数学中也有所涉及。
因此,通过解决这类问题,可以帮助学生建立起对时间、速度、距离等概念的深入理解,为以后更复杂的数学问题打下坚实的基础。
行程问题小升初奥数综合教案及练习

行程问题(一)教学目标:1. 理解行程问题的基本概念和基本公式。
2. 掌握行程问题的解题方法和技巧。
3. 培养学生的逻辑思维能力和解决问题的能力。
教学内容:1. 行程问题的基本概念:行程、速度、时间、路程。
2. 行程问题的基本公式:路程=速度×时间,时间=路程÷速度,速度=路程÷时间。
3. 行程问题的解题方法和技巧。
教学步骤:1. 引入行程问题的概念,让学生了解行程问题的基本元素:行程、速度、时间、路程。
2. 讲解行程问题的基本公式,让学生理解路程、时间、速度之间的关系。
3. 通过例题讲解行程问题的解题方法和技巧,让学生学会如何解决行程问题。
4. 练习题:让学生运用所学的知识和技巧解决实际问题。
教学评价:1. 课堂讲解:评价学生对行程问题基本概念和公式的理解程度。
2. 练习题解答:评价学生对行程问题解题方法和技巧的掌握程度。
行程问题(二)教学目标:1. 理解行程问题的基本概念和基本公式。
2. 掌握行程问题的解题方法和技巧。
3. 培养学生的逻辑思维能力和解决问题的能力。
教学内容:1. 行程问题的基本概念:行程、速度、时间、路程。
2. 行程问题的基本公式:路程=速度×时间,时间=路程÷速度,速度=路程÷时间。
3. 行程问题的解题方法和技巧。
教学步骤:1. 引入行程问题的概念,让学生了解行程问题的基本元素:行程、速度、时间、路程。
2. 讲解行程问题的基本公式,让学生理解路程、时间、速度之间的关系。
3. 通过例题讲解行程问题的解题方法和技巧,让学生学会如何解决行程问题。
4. 练习题:让学生运用所学的知识和技巧解决实际问题。
教学评价:1. 课堂讲解:评价学生对行程问题基本概念和公式的理解程度。
2. 练习题解答:评价学生对行程问题解题方法和技巧的掌握程度。
行程问题(三)教学目标:1. 理解行程问题的基本概念和基本公式。
2. 掌握行程问题的解题方法和技巧。
小升初分班训练专题4 行程、工程等应用题(学生版)

专题4 行程、工程等应用题①行程问题1.甲、乙、丙三人每分分别行60米、50米和40米,甲从B地、乙和丙从A地同时出发相向而行,途中甲遇到乙后15分又遇到丙.求A,B两地的距离.2.有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇. 那么,东、西两村之间的距离是多少米?3.从花城到太阳城的公路长12公里.在该路的2千米处有个铁道路口,是每关闭3分钟又开放3分钟的.还有在第4千米及第6 千米有交通灯,每亮2分钟红灯后就亮3分钟绿灯.小糊涂驾驶电动车从花城到太阳城,出发时道口刚刚关闭,而那两处交通灯也都刚刚切换成红灯.已知电动车速度是常数,小糊涂既不刹车也不加速,那么在不违反交通规则的情况下,他到达太阳城最快需要多少分钟?4.A、B 两地相距950 米.甲、乙两人同时由A地出发往返锻炼半小时.甲步行,每分钟走40 米;乙跑步,每分钟行150 米.则甲、乙二人第几次迎面相遇时距 B 地最近?5.A、B 两地相距1000 米,甲从A地、乙从B 地同时出发,在A、B 两地间往返锻炼.乙跑步每分钟行150米,甲步行每分钟行60米.在30分钟内,甲、乙两人第几次相遇时距 B 地最近(从后面追上也算作相遇)?最近距离是多少?6.一条电车线路的起点站和终点站分别是甲站和乙站,每隔5分钟有一辆电车从甲站发出开往乙站,全程要走15分钟.有一个人从乙站出发沿电车线路骑车前往甲站.他出发的时候,恰好有一辆电车到达乙站.在路上他又遇到了10辆迎面开来的电车.到达甲站时,恰好又有一辆电车从甲站开出.问他从乙站到甲站用了多少分钟?7.小明和小红两人在长100米的直线跑道上来回跑步,做体能训练,小明的速度为6米/秒,小红的速度为4米/秒.他们同时从跑道两端出发,连续跑了12分钟.在这段时间内,他们迎面相遇了多少次?8.如图,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.9.甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A 地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.10.摩托车驾驶员以每小时30千米的速度行驶了90千米到达某地,返回时每小时行驶45千米,求摩托车驾驶员往返全程的平均速度.11.有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡、平路及下坡的路程相等。
小升初复习行程问题练习(含答案)

行程问题练习知识点梳理一、基础公式①路程=速度×时间②时间=路程÷速度③速度=路程÷时间二、常见题型①一般相遇:路程和=时间×速度和②中点相遇:四步曲(1)找出快走者多走的路程:中点路程×2 (2)算出速度差:快者速度-慢者速度 (3)时间:(1)的路程÷(2)的速度=时间(4)套用公式:路程和=时间×速度和③往返相遇:两者相对行驶,第三人在中间往返。
同时出发、同时停止就是相遇时间。
④环形相遇:背向行驶,相遇几次就共走了几个全长。
三、解题思路①画行程图理解题意。
②分析题型。
③套用公式。
例题1红红和聪聪分别从相距 1026 米的两地同时出发,相向而行。
红红家的小狗也跟来了,而且跑在了红红的前面。
当小狗和聪聪相遇后,立即返回跑向红红,遇到红红后,又立即返回跑向聪聪,这样跑来跑去,一直到两人相遇。
这只小狗一共跑了__________米。
(已知红红每分钟走54 米,聪聪每分钟走60 米,小狗每分钟跑70米)例题2一辆客车从 A 地出发开往 B 地,同时一辆货车从 B 地出发开往 A 地。
3 小时后两车在离 A 地 180 千米的 C 地相遇。
相遇后两车继续向前行驶,2 小时后,客车到达 B 地。
此刻,货车还要行驶多少小时才能到达A地?例题3星期天,小英从家里出发去少年宫学画画。
她刚走不久,妈妈发现小英忘了带画笔,于是就去追小英。
如图象表示两人行走的时间和路程。
①妈妈每分钟走__________米;②照这样的速度,妈妈出发后__________分钟可以追上小英。
例题4某日上午,甲、乙两车先后从 A 地出发沿一条公路匀速前往 B 地。
甲车 7 点出发,如图是甲行驶路程 s(千米)随行驶时间 t(小时)变化的图像。
乙车 8 点出发,若要在 9 点至 10 点之间(含 9 点和 10 点)追上甲车,则乙车的速度 v (单位:千米/时)的范围是__________。
(小升初)专题13 行程问题与追及问题-六年级一轮复习(知识点精讲+达标检测)(学生版)

专题13 行程问题与追及问题知识梳理1.行程问题我们把研究速度、路程和时间三者之间关系的问题,称为行程问题。
行程问题常用的数量关系式:路程 = 速度×时间速度 = 路程÷时间时间 = 路程÷速度2.相遇问题。
两个人或物体分别从两地同时相向出发,按一定的速度,经过一定的时间相遇。
相遇问题的基本关系式是:路程和= 速度和×相遇时间相遇时间 = 路程和÷速度和速度和 = 路程和÷相遇时间[提示]基本的相遇问题具备三个基本条件:①两人或两物,②同时出发,③相向而行。
这三个条件是可以交化的,如同时出发变为一先一后出发,相向而行变为背向而行(相离)等。
在解题时可以借助线段图分析,使复杂的条件明朗化,便于解决问题。
3.追及问题。
两个物体向同一个方向运动,出发地点不同(或同一地点不同时间向同一方向运动),慢的在前,快的在后,随着时间的推移,快者离慢者越来越近,最后追上慢者。
我们把这种情况及与其相关的变化问题称为追及问题。
实质上,从出发到追上的时间内,快者比慢者多走的路程就是两人之间的路程差(追及路程),也就是出发时两人之间的距离,它与两人的速度差和追及时间有下面的关系式:路程差 = 速度差 × 追及时间追及时间 = 路程差 ÷ 速度差速度差 = 路程差 ÷ 追及时间[提示]追及问题变化不多,但它常常与其他情况的相遇问题组合在一起,整合成较复杂的行程问题。
在分析思考中,可画线段图帮助理解,寻找解题的突破口。
例题精讲【例1】龟、兔赛跑,龟每分钟爬25米,兔每分钟跑325米,全程1500米。
兔自以为能得第一,在途中睡了一觉,结果龟到终点时,兔还差200米。
兔睡了多少分钟?【点拨分析】这是一道行程问题,其数量关系是“速度×时间=路程”。
要求三者中的一个条件,就必须去寻找另外两个条件。
已知龟的路程是1500米,这度是每分钟25米,那么龟爬的时间是1500÷25=60(分)。
(完整版)小升初行程问题

行程问题考点一:一般行程问题公式,速度X时间=路程路程:时间=速度路程:速度=时间考点二:相遇问题公式,速度和X相遇时间=相遇路程相遇路程:相遇时间=速度和相遇路程:速度和=相遇时间考点三:追及问题公式,速度差X追及时间=追及距离追及距离:追及时间=速度差追及距离:速度差=追及时间考点四:火车过桥公式:火车速度X过桥时间=车长+桥长考点五:流水行船公式,顺水速度=船速+水速逆水速度=船速-水速船速=(顺水速度+逆水速度):2水速=(顺水速度-逆水速度):2顺水速度=逆水速度+水速X2逆水速度=顺水速-水速X2考点六:环形行程问题公式,封闭环形上的相遇问题,利用关系式:环形周长:速度和=相遇时间封闭环形上的追及问题,利用关系:环形周长:速度差=追及时间【例1】甲乙二人同时从两地出发,相向而行。
走完全程,甲需要60分钟,乙需要40分钟。
出发后5分钟,甲因忘带东西而返回出发点,取东西又耽误了5分钟。
甲再次出发,多长时间后两人相遇?【例2】两列火车从甲、乙两地相向而行,慢车从甲地到乙地需要8小时,比快车从乙地到甲地多用3的时间。
如果两车同时开出,那么相遇时快车比慢车多行40千米。
求甲、乙两地的距离。
【例3】一艘轮船顺流航行120千米,逆流航行80千米共用了16小时,逆流航行120千米也用了16小时。
求水流速度。
【例4】已知某铁路长1000米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用了120秒,整列火车完全在桥上的时间为80秒,求火车的速度和长度。
【例5】甲乙二人在操场的400米跑到上练习竞走,两人同时出发,出发时甲在乙的后面,出发后6分钟甲第一次追上乙,22分钟时甲第二次追上乙。
假设两人的速度都保持不变,问:出发时甲在乙身后多少米?【例6】甲乙两车分别从A、B两地同时出发,在A、B之间不断往返行驶。
已知甲车速度是每小时15千米,乙车的速度是每小时35千米,并且甲、乙两车第三次相遇的地方与第四次相遇的地点恰好相距100千米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级(小升初)总复习行程问题教学目标:1、 能够利用以前学习的知识理清变速变道问题的关键点;2、 能够利用线段图、算术、方程方法解决变速变道等综合行程题;3、 变速变道问题的关键是如何处理“变”;4、 掌握寻找等量关系的方法来构建方程,利用方程解行程题.知识精讲:比例的知识是小学数学最后一个重要内容,从某种意义上讲仿佛扮演着一个小学“压轴知识点”的角色。
从一个工具性的知识点而言,比例在解很多应用题时有着“得天独厚”的优势,往往体现在方法的灵活性和思维的巧妙性上,使得一道看似很难的题目变得简单明了。
比例的技巧不仅可用于解行程问题,对于工程问题、分数百分数应用题也有广泛的应用。
我们常常会应用比例的工具分析2个物体在某一段相同路线上的运动情况,我们将甲、乙的速度、时间、路程分别用,,v v t t s s 乙乙乙甲甲甲,;;来表示,大体可分为以下两种情况: 1. 当2个物体运行速度在所讨论的路线上保持不变时,经过同一段时间后,他们走过的路程之比就等于他们的速度之比。
s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,这里因为时间相同,即t t t ==乙甲,所以由s st t v v ==甲乙乙甲乙甲, 得到s s t v v ==甲乙乙甲,s v s v =甲甲乙乙,甲乙在同一段时间t 内的路程之比等于速度比2. 当2个物体运行速度在所讨论的路线上保持不变时,走过相同的路程时,2个物体所用的时间之比等于他们速度的反比。
s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,这里因为路程相同,即s s s ==乙甲,由s v t s v t =⨯=⨯乙乙乙甲甲甲, 得s v t v t =⨯=⨯乙乙甲甲,v t v t =甲乙乙甲,甲乙在同一段路程s 上的时间之比等于速度比的反比。
行程问题常用的解题方法有 ⑴公式法即根据常用的行程问题的公式进行求解,这种方法看似简单,其实也有很多技巧,使用公式不仅包括公式的原形,也包括公式的各种变形形式;有时条件不是直接给出的,这就需要对公式非常熟悉,可以推知需要的条件; ⑵图示法在一些复杂的行程问题中,为了明确过程,常用示意图作为辅助工具.示意图包括线段图和折线图.图示法即画出行程的大概过程,重点在折返、相遇、追及的地点.另外在多次相遇、追及问题中,画图分析往往也是最有效的解题方法; ⑶比例法行程问题中有很多比例关系,在只知道和差、比例时,用比例法可求得具体数值.更重要的是,在一些较复杂的题目中,有些条件(如路程、速度、时间等)往往是不确定的,在没有具体数值的情况下,只能用比例解题;在非匀速即分段变速的行程问题中,公式不能直接适用.这时通常把不匀速的运动分为匀速的几段,在每一段中用匀速问题的方法去分析,然后再把结果结合起来;⑸方程法在关系复杂、条件分散的题目中,直接用公式或比例都很难求解时,设条件关系最多的未知量为未知数,抓住重要的等量关系列方程常常可以顺利求解.例题精讲:模块一、时间相同速度比等于路程比【例1】甲、乙二人分别从A、B 两地同时出发,相向而行,甲、乙的速度之比是4 : 3,二人相遇后继续行进,甲到达B 地和乙到达A地后都立即沿原路返回,已知二人第二次相遇的地点距第一次相遇的地点30千米,则A、 B 两地相距多少千米?【例2】B地在A,C两地之间.甲从B地到A地去送信,甲出发10分后,乙从B地出发到C地去送另一封信,乙出发后10分,丙发现甲、乙刚好把两封信拿颠倒了,于是他从B地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B地至少要用多少时间。
【例3】 (“圆明杯”数学邀请赛) 甲、乙两人同时从A、B两点出发,甲每分钟行80米,乙每分钟行60米,出发一段时间后,两人在距中点的C处相遇;如果甲出发后在途中某地停留了7分钟,两人将在距中点的D处相遇,且中点距C、D距离相等,问A、B两点相距多少米?【例4】甲、乙两车分别从A、 B 两地同时出发,相向而行.出发时,甲、乙的速度之比是 5 : 4,相遇后甲的速度减少20%,乙的速度增加20%.这样当甲到达 B 地时,乙离A地还有10 千米.那么A、B 两地相距多少千米?【例5】早晨,小张骑车从甲地出发去乙地.下午 1 点,小王开车也从甲地出发,前往乙地.下午 2 点时两人之间的距离是15 千米.下午 3 点时,两人之间的距离还是l5 千米.下午 4 点时小王到达乙地,晚上7 点小张到达乙地.小张是早晨几点出发?【例6】从甲地到乙地,需先走一段下坡路,再走一段平路,最后再走一段上坡路。
其中下坡路与上坡路的距离相等。
陈明开车从甲地到乙地共用了3 小时,其中第一小时比第二小时多走15 千米,第二小时比第三小时多走25 千米。
如果汽车走上坡路比走平路每小时慢30 千米,走下坡路比走平路每小时快15 千米。
那么甲乙两地相距多少千米?模块二、路程相同速度比等于时间的反比【例7】甲、乙两人同时从A地出发到B地,经过3小时,甲先到B地,乙还需要1小时到达B地,此时甲、乙共行了35千米.求A,B两地间的距离.【例8】在一圆形跑道上,甲从A 点、乙从B 点同时出发反向而行,6 分后两人相遇,再过4 分甲到达 B 点,又过8 分两人再次相遇.甲、乙环行一周各需要多少分?【例9】上午8 点整,甲从A地出发匀速去 B 地,8 点20 分甲与从 B 地出发匀速去A地的乙相遇;相遇后甲将速度提高到原来的3 倍,乙速度不变;8 点30 分,甲、乙两人同时到达各自的目的地.那么,乙从 B 地出发时是8 点几分.【例10】小芳从家到学校有两条一样长的路,一条是平路,另一条是一半上坡路,一半下坡路.小芳上学走这两条路所用的时间一样多.已知下坡的速度是平路的1.6 倍,那么上坡的速度是平路速度的多少倍?时,出【例11】一辆汽车从甲地开往乙地,每分钟行750米,预计50分钟到达.但汽车行驶到路程的35了故障,用5分钟修理完毕,如果仍需在预定时间内到达乙地,汽车行驶余下的路程时,每分钟必须比原来快多少米?【例12】(2008“我爱数学夏令营”数学竞赛)一列火车出发1小时后因故停车0.5小时,然后以原速的34前进,最终到达目的地晚1.5小时.若出发1小时后又前进90公里因故停车0.5小时,然后同样前进,则到达目的地仅晚1小时,那么整个路程为________公里.以原速的34【例13】王叔叔开车从北京到上海,从开始出发,车速即比原计划的速度提高了1/9,结果提前一个半小时到达;返回时,按原计划的速度行驶280 千米后,将车速提高1/6,于是提前1 小时40 分到达北京.北京、上海两市间的路程是多少千米?【例14】一辆汽车从甲地开往乙地,如果车速提高20%可以提前1小时到达.如果按原速行驶一段距离后,再将速度提高30% ,也可以提前1小时到达,那么按原速行驶了全部路程的几分之几?【例15】一辆车从甲地开往乙地.如果车速提高20%,可以比原定时间提前1小时到达;如果以原速行驶120千米后,再将车速提高25%,则可以提前40分钟到达.那么甲、乙两地相距多少千米?【例16】甲火车4分钟行进的路程等于乙火车5分钟行进的路程.乙火车上午8:00从B站开往A站,开出若干分钟后,甲火车从A站出发开往B站.上午9:00两列火车相遇,相遇的地点离A、B两站的距离的比是15:16.甲火车从A站发车的时间是几点几分?模块三、比例综合题【例17】小狗和小猴参加的100米预赛.结果,当小狗跑到终点时,小猴才跑到90米处,决赛时,自作聪明的小猴突然提出:小狗天生跑得快,我们站在同一起跑线上不公平,我提议把小狗的起跑线往后挪10米.小狗同意了,小猴乐滋滋的想:“这样我和小狗就同时到达终点了!”亲爱的小朋友,你说小猴会如愿以偿吗?【例18】甲、乙两人同时从A地出发到 B 地,经过 3 小时,甲先到 B 地,乙还需要 1 小时到达 B 地,此时甲、乙共行了35 千米.求A, B 两地间的距离.【例19】A、B、C三辆汽车以相同的速度同时从甲市开往乙市.开车后1小时A车出了事故,B和C车继续前进.B、C两车行至距离甲市200千米时B车照常前进.A车停了半小时后以原速度的45出了事故,C车照常前进.B车停了半小时后也以原速度的4继续前进.结果到达乙市的时间C5车比B车早1小时,B车比A车早1小时,甲、乙两市的距离为千米.【分析】【例20】甲、乙二人步行远足旅游,甲出发后1小时,乙从同地同路同向出发,步行2小时到达甲于45分钟前曾到过的地方.此后乙每小时多行500米,经过3小时追上速度保持不变的甲.甲每小时行多少米?[分析]【例21】甲、乙两人分别骑车从A地同时同向出发,甲骑自行车,乙骑三轮车.12分钟后丙也骑车从A 地出发去追甲.丙追上甲后立即按原速沿原路返回,掉头行了3千米时又遇到乙.已知乙的速度是每小时7.5千米,丙的速度是乙的2倍.那么甲的速度是多少?【例22】甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山,他们两人的下山速度都是各自上山速度的 1.5 倍,而且甲比乙速度快。
两人出发后1 小时,甲与乙在离山顶600 米处相遇,当乙到达山顶时,甲恰好到半山腰。
那么甲回到出发点共用多少小时?【例23】一条东西向的铁路桥上有一条小狗,站在桥中心以西5米处.一列火车以每小时84千米的速度从西边开过来,车头距西桥头三个桥长的距离.若小狗向西迎着火车跑,恰好能在火车距西桥头3米时逃离铁路桥;若小狗以同样的速度向东跑,小狗会在距东桥头0.5米处被火车追上.问铁路桥长多少米,小狗的速度为每小时多少千米?【分析】【例24】如图,8点10分,有甲、乙两人以相同的速度分别从相距60米的A、B两地顺时针方向沿长方形A B C D的边走向D点,甲8点20分到D后,丙、丁两人立即以相同速度从D点出发,丙由D向A走去,8点24分与乙在E点相遇,丁由D向C走去,8点30分在F点被乙追上,则连接三角形BEF的面积为平方米.DCBA乙甲FECBA D【分析】【例25】如图,长方形的长A D与宽A B的比为5:3,E、F为A B边上的三等分点,某时刻,甲从A点出发沿长方形逆时针运动,与此同时,乙、丙分别从E、F出发沿长方形顺时针运动.甲、乙、丙三人的速度比为4:3:5.他们出发后12分钟,三人所在位置的点的连线第一次构成长方形中最大的三角形,那么再过多少分钟,三人所在位置的点的连线第二次构成最大三角形?DC[分析]课后作业练习1.甲、乙两车分别从A、B 两地出发,在A、B 之间不断往返行驶,已知甲车的速度是乙车的速度的37,并且甲、乙两车第2007 次相遇(这里特指面对面的相遇)的地点与第2008 次相遇的地点恰好相距120 千米,那么,A、B 两地之间的距离等于多少千米?练习2.甲、乙两人分别从A、B两地同时出发,相向而行,出发时他们的速度之比是3:2,他们第一次相遇后甲的速度提高了20%,乙的速度提高了30%,这样,当甲到达B地时,乙离A地还有14千米,那么A、B两地的距离是多少千米?【分析】练习3.小明和小刚进行100米短跑比赛(假定二人的速度均保持不变).当小刚跑了90米时,小明距离终点还有25米,那么,当小刚到达终点时,小明距离终点还有多少米?【分析】练习4.客车和货车同时从甲、乙两地的中点向反向行驶,3小时后客车到达甲地,货车离乙地还有22千米,已知货车与客车的速度比为5:6,甲、乙两地相距多少千米?的地方与乙相遇.已知甲每小练习5.甲、乙两人从A,B两地同时出发,相向而行.甲走到全程的511.求A,B之间的路程.时走4.5千米,乙每小时走全程的13。