小升初数学冲刺---较复杂的行程问题

合集下载

小升初数学冲刺名校-----行程问题作业(含答案)

小升初数学冲刺名校-----行程问题作业(含答案)

行程问题作业(含答案)1.甲、乙两地相距480千米,一辆货车从甲地开往乙地,当行了全程的16时,一辆客车从乙地开往甲地,经过5小时两车相遇,已知客车和货车的速度比是7:9,客车每小时行多少米?480*(1-1/6)=400(千米)400÷5=80(千米/小时)……客车和货车的速度和80÷(1+7/9)=45(千米/小时)……客车45*7/9=35(千米/小时)……货车2.甲、乙两地相距690千米,一列快车和一列慢车同时从两地相对开出,3小时相遇。

已知两车的速度比是12:11,两列火车每小时各行多少千米?速度和690/3=230km/h速度共12+11=23份;每份230/23=10km/h 所以快车速度10*12=120km/h慢车速度10*11=110km/h3.甲、乙两车同时从A、B两地相对开出,当甲行了全程的13时,乙车行了16千米;当甲车到达B地时,乙车行了全程的45。

A、B 两地相距多少千米?当甲车行了全程的1/3时,乙车行了16千米,当甲到达B地时,即甲走了3倍的1/3,此时乙车走了16千米的3倍,即48千米。

同时这也是全程的4/5。

因此全程是 48/(4/5)=60千米综合算式:16*3/(4/5)=60千米4.客车从甲地,货车从乙地同时相对开出5小时后,客车距乙地还有全程的16,货车距甲地还有142千米。

已知客车比货车每小时多行12千米,甲、乙两地间的路程是多少千米?12*5=60(千米)……5小时中,客车比货车多行60千米。

再用(142-60)÷1/6=492(千米)答:甲乙两地间的路程是492千米。

5.乐乐放学回家需走10分钟,晶晶放学回家需走14分钟。

已知晶晶回家的路程比乐乐的路程多16,乐乐每分钟比晶晶多走12米,那么晶晶回家的路程是多少米?解:设晶每分钟走x米,乐每分钟走(x+12)米14x=10*(x+12)*(1+1/6)化简得12x=10x+1202x=120x=60 x+12=72所以晶晶每分钟走60米,走了14分钟,(乐乐每分钟走72米,走了10分钟,共720米)路程为60*14=840米12÷【1/10÷(1+1/6)-1/14】=12÷【3/35-1/14】=12÷1/70=840米6.甲、乙两辆汽车同时从A、B两站相对开出,第一次相遇离A站有90千米,然后各自按原速继续行驶,分别到达对方出发站后立即沿原路返回,第二次相遇时离A站的距离占AB两站间全长的65%,AB两站间的路程长多少千米?90*3/(1-65%+1)=200千米注:第二次相遇走了3个全程,1个全程甲走90,3个走了90*3=270,走了全程的1-65%+17.甲、乙两车同时从A、B两地出发,相对而行,甲每小时行45千米,乙每小时行55千米,如果甲每小时增加15千米,乙每小时增加5千米,则相遇时间可提前41小时,A、B两地的路程是多少千米?1/4÷【1/(45+55)-1/(45+15+55+5)】=1/4÷【1/100-1/120】=1/4÷1/600=150千米解设原来的相遇时间是x小时(45+55)x=(45+55+15+5)×(x-1/4)100x=120x-3020x=30x=1.5A、B两地的路程是:(45+55)×1.5=150千米算式:(15+5+45+55)×1/4=30千米原来相遇时间:30÷(15+5)=1.5小时A、B两地的路程是:(45+55)×1.5=150千米。

小升初较难必考数学题

小升初较难必考数学题

小升初较难必考数学题一、工程问题1. 一项工程,甲队单独做需要10天完成,乙队单独做需要15天完成。

两队合作3天后,剩下的工程由乙队单独完成,还需要多少天?解析:- 把这项工程的工作量看作单位“1”。

- 根据工作效率 = 工作量÷工作时间,甲队的工作效率为1÷10=(1)/(10),乙队的工作效率为1÷15=(1)/(15)。

- 两队合作3天的工作量为((1)/(10)+(1)/(15))×3。

- 先计算括号内的值:(1)/(10)+(1)/(15)=(3 + 2)/(30)=(1)/(6)。

- 再乘以3得到(1)/(6)×3=(1)/(2)。

- 剩下的工作量为1-(1)/(2)=(1)/(2)。

- 乙队单独完成剩下工程需要的时间为(1)/(2)÷(1)/(15)=(1)/(2)×15 = 7.5(天)2. 修一条路,甲、乙两队合作8天完成。

如果甲队单独修12天可以完成。

实际上先由乙队修了若干天后,再由甲队继续修,全部完成时共用了15天。

求甲、乙两队各修了多少天?解析:- 设乙队的工作效率为x。

- 因为甲、乙两队合作的工作效率为(1)/(8),甲队单独的工作效率为(1)/(12),则x=(1)/(8)-(1)/(12)=(3 - 2)/(24)=(1)/(24)。

- 设甲队修了y天,则乙队修了(15 - y)天。

- 根据工作量 = 工作效率×工作时间,可得到方程(1)/(12)y+(1)/(24)(15 - y)=1。

- 去括号得(1)/(12)y+(15)/(24)-(1)/(24)y = 1。

- 移项合并同类项得((1)/(12)-(1)/(24))y=1-(15)/(24)。

- 即(1)/(24)y=(9)/(24),解得y = 9。

- 所以甲队修了9天,乙队修了15 - 9=6天。

二、行程问题1. 甲、乙两车分别从A、B两地同时相向而行,速度比是5:3。

小升初数学行程问题必考题型

小升初数学行程问题必考题型

小升初数学行程问题必考题型摘要:一、小升初数学行程问题概述1.行程问题的基本概念2.行程问题的常见题型二、小升初数学行程问题必考题型及解析1.火车过桥问题a.基本公式b.例题解析2.相遇问题a.基本公式b.例题解析3.追及问题a.基本公式b.例题解析4.环形运动问题a.基本公式b.例题解析5.流水行船问题a.基本公式b.例题解析正文:小升初数学行程问题必考题型一、小升初数学行程问题概述行程问题一直是小升初数学考试中的重点和难点,主要涉及物体在运动过程中的速度、时间和路程等关系。

解决行程问题的关键是理解并熟练运用速度、时间和路程之间的关系。

二、小升初数学行程问题必考题型及解析1.火车过桥问题火车过桥问题是一种典型的行程问题,需要考虑火车的长度、速度和桥的长度等因素。

基本公式为:路程=速度×时间。

例题解析:一列长240 米的火车以每秒30 米的速度过一座桥,从车头上桥到车尾离桥用了1 分钟,求这座桥有多长?解答:火车速度乘以时间得到的是火车走的路程,即30×60=1800 米。

因为火车的长度为240 米,所以桥的长度为1800-240=1560 米。

2.相遇问题相遇问题是指两个物体在运动过程中,在某一点相遇的问题。

基本公式为:路程和=速度和×时间。

例题解析:甲、乙两辆汽车同时分别从A,B 两站相对开出,第一次相遇时离A 站有90 千米,然后各自按原速继续行驶,分别到达对方出发站后立即沿原路返回。

第二次相遇时离A 站的距离占A,B 两站间全长的65%。

求A,B 两站间的路程长。

解答:第一次相遇时,甲乙合行了一个AB 两地之间的距离,且甲行了90 千米;第二次相遇时,甲乙合行了三个AB 两地之间的距离,则甲行了90×3=270 千米。

又知第一二次相遇时距离A 站的距离占全程的65%,则全程为270÷65%=415 千米。

3.追及问题追及问题是指一个物体在运动过程中,另一个物体在某一时刻开始追赶它,求追及的时间和距离。

小升初--行程问题--专项讲解及试题

小升初--行程问题--专项讲解及试题

行程问题一【知识点导航】行程问题从运动形式上分可以分为五大类:二【典例解析】1. 直线上的相遇与追及只要涉及到速度和、路程和的问题就应该用第一个公式,即使题目的背景是追及;而只要涉及到速度差、路程差的问题就应该用第二个公式,即使题目的背景是相遇。

【例1】甲、乙两辆汽车同时从东西两地相向开出,甲每小时行56千米,乙每小时行48千米,两车在离两地中点32千米处相遇。

问:东西两地间的距离是多少千米?(某重点中学2007年小升初考题)【解析】本题表面上看是一个典型的相遇问题,其实里面暗藏了路程差的关系,就在条件"两车在离两地中点32千米处相遇"这句话中。

【变式】大客车和小轿车同地、同方向开出,大客车每小时行60千米,小轿车每小时行84千米,大客车出发2小时后小轿车才出发,几小时后小轿车追上大客车?【例2】两名游泳运动员在长为30米的游泳池里来回游泳,甲的速度是每秒游1米,乙的速度是每秒游0.6米,他们同时分别从游泳池的两端出发,来回共游了5分钟。

如果不计转向的时间,那么在这段时间内两人共相遇多少次?(某重点中学2006年小升初考题)【解析】相遇次数与两人的路程和有关.如下图所示【变式】甲、乙两车同时从A、B两站相对开出,第一次相遇离A站有90千米,然后各自按原速继续行驶,分别到达对方出发站后立即沿原路返回。

第二次相遇时离A站的距离占AB两站全长的65%。

求AB两站的距离。

2.火车过人、过桥与错车问题在火车问题中,速度和时间并没有什么需要特殊处理的地方,特殊的地方是路程。

因为此时的路程不仅与火车前进的距离有关,还与火车长、隧道长、桥长这些物体长度相关。

就拿火车过桥来说,如果题目考察的是火车过桥的整个过程,那么就应该从"车头上桥"开始到"车尾下桥"结束,对应的路程就等于"车长桥长";如果题目考察的是火车停留在桥上的过程,那就应该从"车尾上桥"到"车头下桥"结束。

小升初数学冲刺举一反三例题及解析:行程问题通用版3

小升初数学冲刺举一反三例题及解析:行程问题通用版3

小升初数学冲刺专题:行程问题(三)专题简析:很多稍复杂的应用题,运用算术方法解答有一定困难,列方程解答就比较容易。

列方程解答行程问题的优点是可以使未知道的数直接参加运算,列方程时能充分利用我们熟悉的数量关系。

因此,对于一些较复杂的行程问题,我们可以用题中已知的条件和所设的未知数,根据自己最熟悉的等量关系列出方程,方便解题。

例1A、B两地相距259千米,甲车从A地开往B地,每小时行38千米;半小时后,乙车从B地开往A地,每小时行42千米。

乙车开出几小时后和甲车相遇?分析我们可以设乙车开出后X小时和甲车相遇。

相遇时,甲车共行了38×(X+0.5)千米,乙车共行了42X千米,用两车行的路程和是259千米来列出方程,最后求出解。

解:设乙车开出X小时和甲车相遇。

38×(X+0.5)+42X=259解得X=3即:乙车开出3小时后和甲车相遇。

练习一1,甲、乙两地相距658千米,客车从甲地开出,每小时行58千米。

1小时后,货车从乙地开出,每小时行62千米。

货车开出几小时后与客车相遇?2,小军和小明分别从相距1860米的两处相向出发,小军出发5分钟后小明才出发。

已知小军每分钟行120米,小明骑车每分钟行300米。

求小军出发几分钟后与小明相遇?3,甲、乙两地相距446千米,快、慢两车同时从甲、乙两地相对开出,快车每小时行68千米,慢车每小时行35千米。

中途慢车因修车停留半小时,求共经过几小时两车在途中相遇。

例2一辆汽车从甲地开往乙地,平均每小时行20千米。

到乙地后又以每小时30千米的速度返回甲地,往返一次共用7.5小时。

求甲、乙两地间的路程。

分析如果设汽车从甲地开往乙地时用了X小时,则返回时用了(7.5-X)小时,由于往、返的路程是一样的,我们可以通过这个等量关系列出方程,求出X值,就可以计算出甲、乙两地间的路程。

解:设去时用X小时,则返回时用(7.5-X)小时。

20X=30(7.5-X)解得X=4.520×4.5=90(千米)即:甲、乙两地间的路程是90千米。

小升初奥数难点之行程问题

小升初奥数难点之行程问题

小升初奥数难点之行程问题在小学竞赛阶段,很多孩子谈行程色变。

为何行程问题难住了我们?原因是过程过于复杂和动态。

解决问题的总方针就是动中找静。

化动态为静态,化复杂为简单,化抽象为具体,化陌生情境为熟悉情境是我们解决行程问题的不二法门。

很多竞赛资料上处理行程问题的时候都是以画线段图为主来解题的。

对于完全依赖线段图的做法我是不赞成的。

孩子年级小对于动态的东西本难以理解,如多次相遇问题两次以内还好,当次数多于3的时候画图都画不清楚的。

我认为解决行程问题就需要2大理念,一是整体的思想,二是抓住运动过程中的不变的静止的量。

一般的辅导资料解题就是过于纠结于局部,使得孩子们做题缺乏大局观,往往被繁杂的细节转昏了头。

接下来我谈谈如何解决行程问题。

任何复杂的问题都是一些列简单的问题组成的,难题做不出实际上就是对于基础知识点没吃透。

行程问题最基本的关系就是速度时间=路程;路程速度=时间;路程时间=速度。

这3个关系很简单,可是它蕴含的内含并不简单。

解决难题需要我们对简单模型的深刻认识而不是简单的套公式。

将行程大方向分类就是相遇问题和追及问题。

当然简单的一人行程问题可以看为相遇问题。

可以认为1个人从A到B,另外一人从B到A速度为0,当然就是在B相遇。

我们先从简单的相遇问题谈起。

例:甲乙两人同时从AB两地分别出发相向而行6分钟相遇。

甲的速度是60米每分钟,乙是50米每分钟。

求AB的路程?这个题很容易(50+60) 6=660米。

很多孩子上来就套相遇路程=速度和乘以相遇时间。

这个题不是最关键的,关键是题目后面的思考和内涵。

开始我谈了把一人行程变为2人的一分为二的方法,这里为什么不能合二为一呢?实际上可以把两人看为1人以110米的速度出发6分钟到达终点来思考。

相遇问题实际上可以把2人看为1人,把两人的速度和看为对应那人的速度。

接下来我说下第二层思考。

就是这个过程的整体是AB的路程,局部是甲走的路程与乙走的路程。

为何我这里强调整体呢?很多行程问题的不变量就是两地路程。

小升初数学讲义之——行程问题

小升初数学讲义之——行程问题

小升初——行程问题行程问题(一)行程问题是小学、初中的重难点,行程问题关系复杂,而多数小学生的分析能力还未能达到理想的水平。

体会相遇、追及问题的特点,并灵活运用列方程、比例等方法解行程问题,训练假设法、守恒等数学思维。

行程问题的三个基本量是距离、速度和时间。

其互逆关系可用乘、除法计算,方法简单,但应注意行驶方向的变化,按所行方向的不同可分为三种:(1)相遇问题;(2)相离问题;(3)追及问题。

行程问题的主要数量关系是:距离=速度×时间。

它大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度和×时间。

(3)同向而行:速度慢的在前,快的在后。

追及时间=追及距离÷速度差在环形跑道上,速度快的在前,慢的在后。

追及距离=速度差×时间。

解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。

1.一辆客车和一辆货车同时分别从A、B两城相对开出,客车每小时行9 5千米,货车每小时行8 5千米,相遇时客车比货车多行了3 0千米,求A、B两城相距多少千米?2.甲、乙二人在同一条公路上,他们相距100米,二人同时出发,朝各自的方向前进,甲的速度为每分钟100米,乙的速度为每分钟80米,问:经过多长时间两人相距200米?3.ABCD是一个边长为6米的正方形模拟跑道,甲玩具车从A出发顺时针行进,速度是每秒5厘米,乙玩具车从CD的中点出发逆时针行进,结果两车第二次相遇恰好是在B点,求乙车每秒走多少厘米?4.小明去学校,去时速度为15千米/小时,返回时速度为10千米/小时,那么平均速度为多少?5.已知甲车速度为每小时90千米,乙车速度为每小时60千米,甲乙两车分别从A,B两地同时出发相向而行,在途经C地时乙车比甲车早到10分钟;第二天甲乙分别从B,A两地出发同时返回原来出发地,在途经C地时甲车比乙车早到1个半小时,那么AB距离时多少?6.甲、乙、丙三人步行的速度分别是:每分钟甲走90米,乙走75米,丙走60米。

广州小升初-复杂的行程问题

广州小升初-复杂的行程问题
【复杂的行程】
1、多次相遇问题; 2、环形行程问题; 3、运用比例、方程等解复杂的题。
典型例题解析
1 典型的相遇问题
【例 1】(★★)甲、乙两人沿 400 米环形跑道练习跑步,两人同时从跑道的同一 地点向相反方向跑去。相遇后甲比原来速度增加 2 米/秒,乙比原来速度减少 2 米/秒,结果都用 24 秒同时回到原地。求甲原来的速度?
家庭作业
1、大货车和小小轿 车出发后 4 小时后追上了大货车.如果小轿车每小时多行 5 千米,那么出发后 3 小 时就追上了大货车.问:小轿车实际上每小时行多少千米?
2、小强骑自行车从家到学校去,平常只用 20 分钟。由于途中有 2 千米正在修路, 只好推车步行,步行速度只有骑车的 1/3,结果用了 36 分钟才到学校。小强家到 学校有多少千米?
相遇问题:速度和×相遇时间=相遇路程;
课 堂 教 追及问题:速度差×追及时间=路程差;
公式需牢记 做题有信心!
教学

流水问题:关键是抓住水速对追及和相遇的时间不产生影响;
过内
程 容 顺水速度=船速+水速 逆水速度=船速-水速
静水速度=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2 (也就是顺水速度、逆水速度、船速、水速 4 个量中只要有 2 个就可求另外 2 个) 其他问题:利用相应知识解决,比如和差分倍和盈亏;
5、一列长 225 米的慢车以每秒 17 米的速度行驶,一列长 140 米的快车以每秒 22 米的速度在后面追赶,求快车从追上到追过慢车需要多长时间?
6、一列长 150 米的列车以每秒 22 米的速度行驶,有一个扳道工人以每秒 3 米的 速度迎面走来,那么,火车从工人身旁驶过需要多少时间?
7、一列火车穿越一条长 2000 米的隧道用了 88 秒,以同样的速度通过一条长 1250 米的大桥用了 58 秒。求这列火车的车速和车身长度各是多少?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小升初数学冲刺---较复杂的行程问题
基础达标
1.一辆客车和一辆货车同时从两地相对开出,客车每小时行60千米,货车每小时行52千米,经过3.5小时两车相遇。

求两地之间的距离。

2.两列火车相对行驶,在两地间的中点相遇,甲车每小时行76千米,相遇是行了5小时。

乙车每小时行95千米,他比甲车迟出发了几小时?
3.甲、乙二人在一个长400米的环形跑道上从同一点,同时反向而行,甲每分钟走45米,乙每分钟走35米。

多少分钟后两人第一次相遇?
4.同一条公路上依次排列着A、B、C、D四个车站,B、C两站相距32千米,从B站开出一辆客车,开向A站,每小时行48千米,同时从C站开出一辆货车开向D站,每小时行45千米。

经过2小时后,两车相距多少千米?
5.兄妹两人由家到学校,妹妹步行每分钟走45米,哥哥骑车每分钟行195米。

妹妹走20分钟后,哥哥骑车离家,几分钟后追上妹妹?
6.客、货车两车分别从甲、乙两地同时出发相向而行,如果两车都按原定速度行驶,那么4小时相遇;现在两车都比原计划每小时少走15千米,结果5小时相遇。

甲乙两地相距多少千米?
能力达标
1.甲、乙两车同时从两地相向而行,甲每小时行83千米,乙每小时95千米,两车在距中点24千米处相遇。

求两地间的距离。

2.甲、乙两人骑自行车同时从东、西两地相向而行,经过8小时相遇。

如果甲每小时少行1千米,乙每小时多行3千米,这样经过7小时就能相遇。

东、西两地相距是多少千米?
3.甲、乙两车同时从A、B两地相对开出,40分钟后相遇。

相遇后以原速继续前进,乙车又经过5分钟到达A,B两地之间的中点。

甲车行完全程共需要多少分钟?
4.甲、乙两人骑自行车同时从A、B两地相向而行。

第一次两车在距B地7千米处相遇。

相遇后,两车继续向前行驶,当两车到达目的地后立即返回,返回时在距离A地4千米处相遇。

A,B两地相距多少千米?
5.甲、乙、丙三个小分队都从A地到B地进行野外训练,上午6时,甲、乙两个小队一起从A地出发,甲队每小时行5千米,乙队每小时行4千米,丙队上午8时才从A地出发,傍晚6时甲、丙两队同时到达B地。

那么丙队追上乙队的时间是上午几时?
6.王明从A城步行到B城,同时刘洋从B城骑车到A城,1.2小时后两人相遇。

相遇后继续前进,刘洋到A城立即返回,在第一次相遇后45分钟又追上了王明,两人再继续前进,当刘洋到达B城后立即返回。

两人第二次相遇后多长时间第三次相遇?
趣题荟萃
1.快、慢两车同时从同一地点出发,沿同一公路追赶前面的一个骑车人。

两车分别用了6分钟、10分钟追上骑车人。

已知快车每分钟行400米,慢车每分钟行320米。

骑车人每分钟行多少米?
2.两辆汽车同时从东、西两站相对开出,第一次在离东站45千米的地方相遇,之后两车继续以原来的速度前进,各自到站后都立即返回,又在距中点东侧9千米处相遇。

两站相距多少千米?
3.甲、乙二人同时从某地出发驾车行驶,甲每天行100千米,乙第一天行70千米,以后每天比前一天多行3千米。

乙出发后第几天追上甲?。

相关文档
最新文档