2019小升初数学专项训练比例百分数篇(教师版)12页
小升初数学专项训练

超越自我巩固提高针对训练查漏补缺目录第一讲小升初专项训练计算篇 (2)第二讲小升初专项训练几何篇(1) (8)第三讲小升初专项训练几何篇(2) (16)第四讲小升初专项训练行程篇(1) (23)第五讲小升初专项训练行程篇(2) (29)第六讲小升初专项训练找规律篇 (36)第七讲小升初专项训练工程篇 (43)第八讲小升初专项训练期中篇 (50)第九讲小升初专项训练比例百分数篇 (52)第十讲小升初专项训练数论篇(1) (58)第十一讲小升初专项训练数论篇(2) (64)第十二讲小升初专项训练方程篇 (70)第十三讲小升初专项训练计数方法与原理 (76)第十四讲小升初专项训练综合练习 (80)第十五讲小升初专项训练逻辑推理篇 (86)第十六讲小升初专项训练期末测试 (93)第一讲小升初专项训练计算篇一、小升初考试热点及命题方向计算是小学数学的基础,近两年的试卷又以考察分数的计算和巧算为明显趋势(分值大体在6分~15分),学员应针对两方面强化练习:一分数小数的混合计算;二分数的化简和简便运算;二、2012年考点预测2012年的小升初考试将继续考查分数和小数的四则运算,命题的热点在分数的拆分技巧以及换元法的运用,另外还应注意新的题型不断出现.例如通过观察、归纳、总结,找出规律并计算的题型,这类题型为往往用到了等差数列的各类公式,希望同学们熟记。
三、考试常用公式以下是总结的大家需要了解和掌握的常识,曾经在重要考试中用到过。
1.基本公式:()21321+=++n n n Λ 2、()()612121222++=+++n n n n Λ[讲解练习]:20193221⨯++⨯+⨯Λ3、()()412121222333+=++=+++n n n n ΛΛ4、131171001⨯⨯⨯=⨯=abc abc abcabc6006610016131177877=⨯=⨯⨯⨯=⨯⇒如:[讲解练习]:2007×× 5、()()b a b a b a -+=-22[讲解练习]:82-72+62-52+42-32+22-12____. 6、742851.071&&= 428571.072&&= …… (成达杯考过2次,迎春杯考过1次) [讲解练习]:71化成小数后,小数点后面第2007位上的数字为____。
小升初特训-百分数的实际应用(专项突破)-小学数学六年级下册北师大版(含答案)

小升初特训-百分数的实际应用(专项突破)-小学数学六年级下册北师大版一.选择题(共8小题)1.某种花生油的价格,10月比9月上涨了10%,11月又比10月回落了10%.11月的价格比9月()A.上涨了1%B.回落了1%C.上涨了0.01%D.回落了0.01%2.一种矿泉水,如果买4瓶就赠送1瓶,矿泉水实际价格相当于原价的()A.20%B.80%C.25%D.75%3.从北京到上海乘坐动车大约需要用8时,乘坐高铁大约需要5时就能到达.乘坐高铁的时间比乘坐动车的时间节省了()A.160%B.62.5%C.60%D.37.5%4.某校女教师的人数占教师总人数的60%,调走了3名女教师,调进了3名男教师,这时男教师占教师总数的44%,原来女教师比男教师多()A.10人B.15人C.30人D.45人5.一件大衣,如果卖92元,可以赚15%,如果卖100元可以赚()A.20%B.15%C.25%D.30%6.某学校进行体能测试,六年级共有240人,分两天进行,每天测试120人,第一天有100人合格,要使合格率不低于85%,第二天至少要有()人合格.A.204B.104C.100D.117.某商场购进一批服装,每件进价200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是()A.350元B.400元C.450元D.500元8.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是()A.多少都可能B.一样多C.多了D.少了二.填空题(共6小题)9.原价90元的领带降价20%后是元,原价元的衬衫降价20%后是120元.10.湖滨新区环湖大道,甲车5小时行完,乙车4小时行完,那么乙车的速度比甲车快%.11.五(1)班昨天的出勤率是96%,昨天48人到校,人有事请假.12.某药店经营的抗病毒药品,在市场紧缺的情况下私自提价100%,物价部门查处后,要求提价的幅度只能是原价的10%,则该药品现在需降价%.13.一杯纯牛奶,喝了一半以后加满水,又喝了一半后再加满水,这时牛奶占整瓶溶液的%.14.甲用1000元人民币购买了一手股票,随即他将这手股票转卖给了乙,获利10%,而后来乙又将这手股票转给了甲,但乙损失了10%,最后甲按乙卖给甲的价格的90%将这手股票卖给了乙.甲在上述股票交易中(选填“盈利”或“亏本”)元.三.应用题(共6小题)15.九都乡今年桔子大丰收,产量达到5.2万吨,比去年增产了三成,九都乡去年桔子的产量是多少万吨?16.李叔叔在体育用品商城买了一套打“八折”的特价运动服,结账时发现比原价便宜了64元,这套运动服原价多少元?17.乘坐飞机的每位旅客,携带行李超过20千克的部分,每千克要按飞机票原价的1.5%购买行李票.张芳从南京到北京,票价打六折后是600元.南京到北京的飞机票原价是多少元?张芳带了40千克的行李,应付行李费多少元?18.天猫商城在“十一”期间进行促销活动,原价600元的电饭煲,现在只卖480元,电饭煲的价格降低了百分之几?19.玩具厂原计划生产电动玩具8000件,实际比计划多生产40%。
六年级下学期数学小升初比和比例专项练习及答案(历年真题)

六年级下学期数学小升初比和比例专项练习一.选择题(共20题,共40分)1.班级数一定,每班人数和总人数()。
A.成反比例B.成正比例C.不成比例D.不成正比例2.如果A×2=B÷3,那么A∶B=()。
A.2∶3B.6∶1C.1∶63.在下面各比中,能与∶组成比例的是()。
A.4∶3B.3∶4C.∶34.下面第()组的两个比不能组成比例。
A.7∶8和14∶16B.0.6∶0.2和3∶1C.19∶110 和10∶95.把9、3、21再配上一个数使这四个数组成一个比例式,这个数可能是()。
A.27B.63C.61D.726.()能与:组成比例。
A.3:4B.4:C.3:D.:7.能和2,4,6组成比例的数是()。
A.2B.3C.58.把一个面积是72cm2的长方形按1∶2缩小,缩小后的长方形的面积是()。
A.18cm2B.36cm2C.72cm2D.144cm29.与∶能组成比例的是()。
A.∶B.2∶5C.5∶2D.∶10.分数值一定,分子和分母()。
A.成正比例B.成反比例C.不成比例D.不成正比例11.如果y=(x、y都不为0),那么x和y()。
A.成正比例B.成反比例C.不成比例D.无法确定12.一条路的长度一定,已经修好的部分和剩下的部分()。
A.成正比例B.成反比例C.不成比例13.平行四边形的面积一定,平行四边形的底和高()。
A.成正比例B.成反比例C.不成比例14.在下面各比中,能与6:8 组成比例的比是()。
A.4:3B.3:4C.5 :315.下列各题中,哪两种量不成比例()。
A.长方形的面积一定,长和宽B.征订《小学生周报》,征订的数量和总价C.收入一定,支出和结余16.下面成正比例的量是()。
A.差一定,被减数和减数B.单价一定,总价和数量C.互为倒数的两个数17.下面题中的两个关联的量()。
小红从家到学校已走的路程和剩下的路程。
A.成正比例B.成反比例C.不成比例18.比例尺是()。
第九讲比例百分数小升初名校真题专项测试-----比例百分数

第九讲比例百分数小升初名校真题专项测试-----比例百分数测试时间:15分钟姓名_________ 测试成绩_________1、有甲、乙两堆煤,如果从甲堆运12吨给乙堆,那么两堆煤就一样重。
如果从乙堆运12吨给甲堆,那么甲堆煤就是乙堆煤的2倍。
这两堆煤共重()吨。
(06年三帆中学入学测试题)【解】从甲堆运12吨给乙堆两堆煤就一样重说明甲堆比乙堆原来重12×2=24吨,这样乙堆运12吨给甲堆,说明现在甲乙相差就是24+24=48吨,而甲堆煤就是乙堆煤的2倍,说明相差1份,所以现在甲重48×2=96吨,总共重量为48×3=144吨。
2、有两桶水:一桶8升,一桶13升,往两个桶中加进同样多的水后,两桶中水量之比是5:7,那麽往每个桶中加进去的水量是升。
(06年实验中学入学测试题)【解】此题的关键是抓住不变量:差不变。
这样原来两桶水差13-8=5升,往两个桶中加进同样多的水后,后来还是差5升,所以后来一桶为5÷(7-5)×5=12.5,所以加入水量为4.5升。
3、将75%的酒精溶液32克稀释成浓度为40%的稀酒精,需加入水多少克?【解】稀释时加入的水溶液浓度为0%(如果需要加入干物质,浓度为100%),标注数值的方法见下图所以32÷8×7=284、甲、乙两种商品,成本共2200元,甲商品按20%的利润定价,乙商品按15%的利润定价,后来都按定价的90%打折出售,结果仍获利131元,甲商品的成本是________元. (06年清华附中入学测试题)设方程:设甲成本为X元,则乙为2200-X元。
根据条件我们可以求出列出方程:90%×[(1+20%)X+(1+15%)(2200-X)]-2200=131解得X=1200。
5、100千克刚采下的鲜蘑菇含水量为99%,稍微晾晒后,含水量下降到98%,那么这100千克的蘑菇现在还有多少千克呢?(05年101中学入学题)【解】转化成浓度问题相当于蒸发问题,所以水不变,列方程得:100×(1-99%)=(1-98%)X,解得X=50。
小升初数学练习卷(百分数部分)-最新教育文档

2019年小升初数学练习卷(百分数部分)在每一个孩子成长的过程中,有三个节点是孩子们必须要跨越的,即小升初、中考和高考;而较让家长们操心的,恐怕就是小升初了。
查字典数学网小升初频道为大家提供2019年小升初数学练习卷,希望对大家有帮助!2019年小升初数学练习卷(百分数部分)一、课下练习1、5是4的( )%,4和5的( )%2、5比4多( )%,4比5少( )%3、24的75%是( ),( )的60%是30。
4、六年级原有40名同学,开学后转来2名同学,六年级现在的人数比原来增加了( )%5、下面百分率可能大于100%的是( )A、成活率B、发芽率C、出勤率D、增长率6、一个数的80%是16,这个数的15%是( )7、0.6=( )∶( )= ( )15 =( )%8、125%=()/()=( )4=( )(填小数)9、( ):16=1/()=0.125=( )%10、甲数是乙数的5倍,甲数比乙数多( )%,乙数比甲数少( )%。
11、希望小学校舍建设用去35万元,比计划少用5万元,节约了( )%12、甲数比乙数多20%,甲数和乙数的比是( : )※ 13、甲比乙多2/7,乙比甲少( )(填分数)※ 14、乙比甲多40%,甲比乙少( )%。
※ 15、减数和差的比是3:5,减数是被减数的( )%16、甲乙两数的比是3∶4,甲数是乙数的( )%。
17、一堆煤共50千克,吃了30千克,吃了( )A、40%B、50%C、60%D、70%18、小华和小明各集邮票45张,小华的邮票给小明5张,这时,小华的邮票是小明的( )%二、解决问题1、王爷爷把5000元存入银行,存期3年,年利率4.41%。
①到期支取时,王爷爷要缴纳多少元的利息税?②最后王爷爷能拿到多少钱?2、一件衣服降价20%后,售价为80元。
这件衣服原价多少元?3、一种电冰箱的价格打七八析后,比原价便宜了330元,这种电冰箱原价多少元?4、一种电脑降价了,第一次比原价7600元降低了10%,第二次又降低了10%,电脑现价多少元?5、一堆煤运走了25吨,刚好是总吨数的5/12。
小升初数学专题百分数 比例

第四讲 百分数 比 比例百分数的应用第一部分 知识点梳理常见类型题:1.求常见的百分率问题 如:达标率、及格率、成活率、发芽率、出勤率等。
解题方法:a 率=a 的数量÷总量×100%2.求A 的B%是多少 解题方法:A ×B%3.已知一个数的B%是A ,求这个数 解题方法:这个数=A ÷B%4.求一个数比另一个数多(或少)百分之几解题方法:(1)求甲比乙多百分之几? (甲-乙)÷乙×100% (2)求乙比甲少百分之几 ? (甲-乙)÷甲×100%5.已知一个数比另一个数多或少百分之几(已知数),和其中一个数,求另一个数 解题方法:(1)A 增加B%是多少?A ×(1+B%) (2)A 减少B%后是多少?A ×(1-B%) (3)某数增加B%后是A ,求这个数是多少?A ÷(1+B%) (4)某数减少B%后是A ,求这个数是多少?A ÷(1-B%)6.折扣和成数:几折(几成)就是十分之几也就是百分之几十主要公式: 现价=原价×折扣 原价=现价÷折扣 折扣=现价÷原价×100% 7.纳税问题纳税的意义:根据国家税法的有关规定,按照一定比率把集体或个人收入的一部分缴纳给国家。
主要公式:(1)应纳税额=收入额÷纳税率 (2)收入额=应纳税额×纳税率 (3)纳税率=收入额应纳税额×100%8.银行储蓄问题 有关概念:(1)本金:存入银行的钱叫本金。
(2)利息:取款时银行多支付的钱叫利息(缴纳利息税时,称之为税后利息)。
(3)利率:利息与本金的比值叫做利率(4)利息税:对储蓄存款利息所征收的个人所得税。
(5)存款形式:分为定期与活期,定期又包括整存整取和另存整取的形式。
主要公式:(1)利息=本金×利率×时间(2)本息的计算公式:本息=本金+利息=本金+本金×利率×时间 =本金×(1+利率×时间) 9.列方程解稍复杂的百分数实际问题主要题型:(1)以总量为等量关系建立方程。
小学数学-有答案-学而思教育小升初专项训练9:比例百分数篇

学而思教育小升初专项训练9:比例百分数篇一、解答题(共25小题,满分0分)1. 甲、乙两种商品,成本共2200元,甲商品按20%的利润定价,乙商品按15%的利润定价,后来都按定价的90%打折出售,结果仍获利131元,甲商品的成本是多少元?2. 100千克刚采下的鲜蘑菇含水量为99%,稍微晾晒后,含水量下降到98%,这100千克的蘑菇现在还有________千克。
3. 有两桶水:一桶8升,一桶13升,往两个桶中加进同样多的水后,两桶中水量之比是5:7,那麽往每个桶中加进去的水量是多少升?4. 有甲、乙两堆煤,如果从甲堆运12吨给乙堆,那么两堆煤就一样重。
如果从乙堆运12吨给甲堆,那么甲堆煤就是乙堆煤的2倍。
这两堆煤共重多少吨?5. 一堆围棋子黑白两种颜色,拿走15枚白棋子后,黑子与白子的个数之比为2:1;再拿走45枚黑棋子后,黑子与白子的个数比为1:5,求开始时黑棋子、白棋子各有多少枚?6. 某班有学生48人,女生占全班的37.5%,后来又转来女生若干人,这时人数恰好是占全班人数的40%,问转来几名女生?7. 把一个正方形的一边减少20%,另一边增加2米,得到一个长方形。
它与原来的正方形面积相等。
问正方形的面积是多少?8. 学校男生人数占45%,会游泳的学生占54%.男生中会游泳的占72%,问在全体学生中不会游泳的女生占百分之几?9. 某校四年级原有2个班,现在要重新编为3个班,将原一班的13与原二班的14组成新一班,将原一班的14与原二班的13组成新二班,余下的30人组成新三班。
如果新一班的人数比新二班的人数多10%,那么原一班有多少人?10. 一个长方形长与宽的比是14:5,如果长减少13厘米,宽增加13厘米,则面积增加182平方厘米,那么原长方形面积是多少平方厘米?11. 有正方形和长方形两种不同的纸板,正方形纸板总数与长方形纸板总数之比为2:5.现在将这些纸板全部用来拼成横式和竖式两种无盖纸盒,其中竖式盒由一块正方形纸板做底面,四块长方形纸板做侧面(图1),横式盒由一块长方形纸板做底面,两块长方形和两块正方形纸板做侧面(图2),那么做成的竖式纸盒与横式纸盒个数之比是多少?12. 某学校入学考试,参加的男生与女生人数之比是4:3.结果录取91人,其中男生与女生人数之比是8:5.未被录取的学生中,男生与女生人数之比是3:4.问报考的共有多少人?13. 幼儿园大班和中班共有32名男生,18名女生。
六年级数学小升初毕业考试总复习——比和比例专项训练(附答案)

六年级小升初毕业考试总复习——比和比例专项训练一、比1.比的意义:两个数的比表示两个数要除。
2.比、分数、除法之间的联系:用字母表示三者之间的联系:a:b=a ÷b=ba(b ≠0) 3.比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
4.按比分配:方法(一)先求出每份是多少,再用每份量乘各部分量所占的份数,求出各部分量。
方法(二)先求出总份数,再求出各部分量占总量的几分之几,最后求出各部分量。
考试真题:1.(朝阳区2019年小学毕业考试试卷)按要求完成。
A.张师傅要完成100个零件的加工任务,他已经完成了全部任务的41,他已经加工了多少个零件?B.一种零件的加工图纸的比例尺是4:1, 这个零件在图纸上的长度是100毫米,实际这个零件的长度是多少毫米?C.学校把养护100棵花苗的任务按照1:4分配给五年级和六年级同学,在这个任务中,五年级同学要养护多少棵花苗?D.学校合唱队有100名队员,其中男队员占41,学校合唱队有男队员多少名? ①在解决上面四个实际问题时,不能用“100×41”来解决的是( )。
②请你把上面不能..用“100×41”解决的问题解答出来。
2.(朝阳区2019年小学毕业考试试卷)按照这种截取的方法,第四天截取的长度与原来木棍的长度的最简单整数比是多少?请你用喜欢的方式展示你的思考过程。
3.(大兴区2019年小学毕业考试)按要求画一画。
(下面每个小方格的边长都代表1厘米)①画一个周长是20厘米的长方形,且长与宽的比是3:2. ②画出这个长方形的所有对称轴。
4.(东城区2019年小学数学毕业考试试卷)( )÷16=()21=0.875=( )%=7:( ).5.(东城区2019年小学数学毕业考试试卷)下图中平行四边形的面积是20cm 2,甲和丙面积的比是( )。
《庄子·天下篇》中写道: “一尺之棰, 日取其半, 万世不竭” 这句话意思是:一根一尺的木棍,如果第一天截取它长度的一半,以后每天截取它前一天剩下长度的一半,那么将永远也截取不完。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
名校真题比例百分数篇时间:15分钟满分5分姓名_________ 测试成绩_________1 (12年清华附中考题)甲、乙两种商品,成本共2200元,甲商品按20%的利润定价,乙商品按15%的利润定价,后都按定价的90%打折出售,结果仍获利131元,甲商品的成本是________元.2 (13年101中学考题)100千克刚采下的鲜蘑菇含水量为99%,稍微晾晒后,含水量下降到98%,那么这100千克的蘑菇现在还有多少千克呢?3(12年实验中学考题)有两桶水:一桶8升,一桶13升,往两个桶中加进同样多的水后,两桶中水量之比是5:7,那麽往每个桶中加进去的水量是升。
4 (12年三帆中学考题)有甲、乙两堆煤,如果从甲堆运12吨给乙堆,那么两堆煤就一样重。
如果从乙堆运12吨给甲堆,那么甲堆煤就是乙堆煤的2倍。
这两堆煤共重()吨。
5 (12年人大附中考题)一堆围棋子黑白两种颜色,拿走15枚白棋子后,黑子与白子的个数之比为21;再拿走45枚黑棋子后,黑子与白子的个数比为15,开始时黑棋子,求白棋子各有多少枚?【附答案】1 【解】:设方程:设甲成本为元,则乙为2200-元。
根据条件我们可以求出列出方程:90%×[(1+20%)+(1+15%)(2200-)]-2200=131。
解得=1200。
2 【解】:转化成浓度问题相当于蒸发问题,所以水不变,列方程得:100×(1-99%)=(1-98%),解得=50。
方法二:做蒸发的题目,要改变思考角度,本题就应该考虑成“98%的干蘑菇加水后得到99%的湿蘑菇”,这样求出加入多少水份即为蒸发掉的水份,就又转变成“混合配比”的问题了。
但要注意,10千克的标注应该是含水量为99%的重量。
将100千克按1∶1分配,如下图:所以蒸发了100×1/2=50升水。
3 【解】此题的关键是抓住不变量:差不变。
这样原两桶水差13-8=5升,往两个桶中加进同样多的水后,后还是差5升,所以后一桶为5÷(7-5)×5=12.5,所以加入水量为4.5升。
4 【解】从甲堆运12吨给乙堆两堆煤就一样重说明甲堆比乙堆原重12×2=24吨,这样乙堆运12吨给甲堆,说明现在甲乙相差就是24+24=48吨,而甲堆煤就是乙堆煤的2倍,说明相差1份,所以现在甲重48×2=96吨,总共重量为48×3=144吨。
5 【解】第二次拿走45枚黑棋,黑子与白子的个数之比由21(=10:5)变为15,而其中白棋的数目是不变的,这样我们就知道白棋由原的10份变成现在的1份,减少了9份。
这样原黑棋=45÷9×10=50,白棋=45÷9×5+15=40。
第九讲 小升初专项训练 比例百分数篇一、小升初考试热点及命题方向分数百分数是小学六年级重点学习的知识点,也是小升初重点考察的知识点,这一部分主要考察三大块,分百应用题;比和比例;经济浓度问题;三块的地位是均等的,在考试中都有可能出现,希望同学们全面复习,而不要厚此薄彼。
二、2007年考点预测07年的出题方式依然是大题中必然出现一道或者两道和本章内容相关的题目,占的分值权重较大,只要认真复习,掌握解题规律,则可以顺利的拿下这部分分值。
分数百分数应用题分数、百分数应用题是小学数学的重要内容,也是小学数学重点和难点之一.一方面它是在整数应用题基础上的继续和深化;另一方面,它有其本身的特点和解题规律.因此,在这类问题中,数量之间以及“量”、“率”之间的相依关系与整数应用题比较,就显得较为复杂,这就给正确地选择解题方法,正确解答带一定困难.为了学好分数、百分数应用题的解法必须做好以下几方面工作.①具备整数应用题的解题能力.解答整数应用题的基础知识,如概念、性质、法则、公式等仍广泛用于分数、百分数应用题.②在理解、掌握分数的意义和性质的前提下灵活运用.③学会画线段示意图.线段示意图能直观地揭示“量”与“百分率”之间的对应关系,发现量与百分率之间的隐蔽条件.它可以帮助我们在复杂的条件与问题中理清思路,正确地进行分析、综合、判断和推理.④学会多角度、多侧面思考问题的方法.分数百分数应用题的条件与问题之间的关系变化多端,单靠统一的思路模式有时很难找到正确解题方法.因此,在解题过程中,要善于掌握对应、假设、转化等多种解题方法,在寻找正确的解题方法同时,不断地开拓解题思路.比和比例这一讲主要涉及比例的意义和性质,按比例分配,正反比例等几个知识。
在应用题的各种类型中,有一类与数量之间的(正、反)比例关系有关.在解答这类应用题时,我们需要对题中各个量之间的关系作出正确的判断.成正比或反比的量中都有两种相关联的量.一种量(记作x)变化时另一种量(记作y)也随着变化.与这两个量联系着,有一个不变的量(记为k)。
在判断变量x与y是否成正、反比例时,我:们要紧紧抓住这个不变量k.如成正比例;如果k是y与x的积,即在x变化时,y与x的积不变:xy=k,那么y与x成反比例.如果这两个关系式都不成立,那么y与x不成(正和反)比例.经济浓度问题这一节的内容与生活实际联系很紧密,在浓度问题中要理解好溶剂、溶质、溶液、浓度这几个量之间的关系。
而经济问题中,则要恰当处理好成本、售价、利润、利润率这几个量的关系。
1 分数百分数应用题【例1】(★★)某班有学生48人,女生占全班的37.5%,后又转女生若干人,这时人数恰好是占全班人数的40%,问转几名女生?【解】这是一道变换单位“1”的分数应用题,需抓住男生人数这个不变量,如果按浓度问题做,就简单多了。
浓度差之比1∶24 重量之比 24∶1 48÷24×1=2人方法二:男生原有48×(1-37.5%)=30,了女生后男生的人数书不变的,所以后全班的总人数就是30÷(1-40%)=50,所以增加的2人就是转的女生人数。
【例2】(★★)把一个正方形的一边减少 20%,另一边增加2米,得到一个长方形.它与原的正方形面积相等.问正方形的面积是多少?【解】设正方形的边长是“1”.因为长方形与原的正方形面积相等,一边减少了 20%,另一边将增加所以正方形的边长是2÷25%=8(米).正方形的面积是8×8= 64(平方米).【例3】(★★★)学校男生人数占45%,会游泳的学生占54%。
男生中会游泳的占72%,问在全体学生中不会游泳的女生占百分之几?【解1】在全体学生中,不会游泳的女生占33.4%.在全体学生中,会游泳的男生占45%×72%=32.4%.在会游泳的学生中,男生占32.4%÷54%×100%= 60%在全体学生中,不会游泳的女生占(100%-45%)-54%×(1-60%)=33.4%.【解2】画一个图非常清楚。
【例4】某校四年级原有2个班,现在要重新编为3个班,将原一班的1/3与原二班的1/4组成新一班,将原一班的1/4与原二班的1/3组成新二班,余下的30人组成新三班。
如果新一班的人数比新二班的人数多10%,那么原一班有多少人?【解】:原一班的1/3与原二班的1/4 + 原一班的1/4与原二班的1/3=7/12总人数,余下1-7/12=5/12,是30人,所以总人数=30/(5/12)=72人;72-30=42人,新一班与新二班的人数和为42人,新一班的人数比新二班的人数多10%,新一班人数:新二班人数=11:10,即原一班的(1/3-1/4)=1/12比原二班的1/12多2人,原一班比原二班共多12×2=24人,所以,原一班有24+(72-24)/2=48人。
答:原一班有48人。
2 比和比例【例5】(★★★)一个长方形长与宽的比是14:5,如果长减少13厘米,宽增加13厘米,则面积增加182平方厘米,那么原长方形面积是多少平方厘米?画出图便于解题:【解1】:BC的长:182÷13=14(厘米),BD的长:14+13=27(厘米),从图中看出AB长就是原长方形的宽,AD与AB的比是14∶5,AB与BD的比是5∶(14-5)=5∶9,原长方形面积是42×15=630(平方厘米)。
答:原长方形面积是630平方厘米。
【解2】:设原长方形长为14x,宽为5x.由图分析得方程(14x-13)×13-5x×13=182,9x=27,x=3。
则原长方形面积(14×3)×(5×3)=630(平方厘米)。
【拓展】已知长方形的周长为346米,若边长分别增加2米,则面积增加多少平方米?设两边长分别为a、b,这样增加的面积我们可以分为一个2×2的正方形,一个2×a的长方形,一个2×b的长方形,所以增加的面积就是2×(a+b)+2×2=350平方米。
【例6】(★★★)有正方形和长方形两种不同的纸板,正方形纸板总数与长方形纸板总数之比为2∶5。
现在将这些纸板全部用拼成横式和竖式两种无盖纸盒,其中竖式盒由一块正方形纸板做底面,四块长方形纸板做侧面(左下图),横式盒由一块长方形纸板做底面,两块长方形和两块正方形纸板做侧面(右下图),那么做成的竖式纸盒与横式纸盒个数之比是多少?【解】4∶3。
设竖式纸盒有a个,横式纸盒有b个,则共用长方形纸板(4a+3b)块,正方形纸板(a+2b)块。
根据题意有:(a+2b)∶(4a+3b)=2∶5,即5(a+2b)=2(4a+3b),解得a∶b=4∶3。
【例7】(★★★)某学校入学考试,参加的男生与女生人数之比是4∶3.结果录取91人,其中男生与女生人数之比是8∶5.未被录取的学生中,男生与女生人数之比是3∶4.问报考的共有多少人?【解1】报考人数是119人,录取学生中男生:91×858=56人,女:91-56=35(人). 先将未录取的人数之比3:4变成4:4×34,又有56×34=42(人)未录取男生 4 × 3= 12(人),女生 16(人)。
报考人数是 (56+ 12)+ (35 + 16)= 119(人)。
【解2】(56+3x):(35+4x )=4:3 得:=4 未录取男生 4 × 3= 12(人),女生 16(人)。
报考人数是 (56+ 12)+ (35 + 16)= 119(人)。
【例8】(★★★)幼儿园大班和中班共有32名男生,18名女生。
已知大班男生数与女生数的比为53,中班中男生数与女生数的比为21,那么大班有女生多少名? 【解】[方法一]:鸡兔同笼[思 路]:由于男女生有比例关系,而且知道总数,所以我们可以用鸡兔同笼。