中职数学不等式性质4
中职生数学基础模块上册课件《不等式的基本性质》

04
不等式的解集是指满足不等式条件的所有数值 或表达式的集合。
不等式的性质
01
不等式的基本性质:不等式两边同时加(或减) 同一个数,不等式仍成立。
02
不等式的传递性:如果a>b,b>c,那么a>c。
03
不等式的可逆性:如果a>b,那么b<a。
04
不等式的同向性:如果a>b,c>d,那么 a+c>b+d。
学习目标
A
B
C
D
掌握不等式的基本性质
理解不等式的基本概念
掌握不等式的基本解法
提高数学思维能力和逻 辑推理能力
不等式的概念与性质
不等式的定义
01
不等式是一种数学表达式,表示两个数值之间 的关系。
02
不等式通常由一个不等号(如“>”、“<”、 “≥”、“≤”)连接两个数值或表达式。
03
不等式的基本性质包括:对称性、传递性、可 加性、可乘性等。
本、工期等 物理问题:计 算速度、加速
度、质量等
经济问题:计算 利润、成本、收
益等
生活问题:计算 时间、距离、费
用等
课堂练习与巩固
基础练习
判断不等式的 基本性质
解不等式
比较两个不等 式的大小
求不等式的解 集
进阶练习
证明不等式的 基本性质
求解不等式方 程
利用不等式性 质求解实际问
题
拓展练习:不 等式的变形与
04
不等式的应用:实际问题中的不等 式求解、不等式在数学中的作用
THANK YOU
YOUR LOGO
反证法
01
反证法的定义:通 过证明一个命题的 否定形式为假,从 而得出原命题为真 的证明方法。
中职数学不等式

2.1不等式的性质一、知识要点:性质1(传递性)如果a>b,b>c,则a>c.性质2(加法法则) 不等式的两边都加上(或减去)同一个数,不等号的方向不变.如果a>b,则a+c>b+c.不等式中任何一项,变号后可以从一边移到另一边.例1(1)在-6<2 的两边都加上9,得;(2)在4>-3 的两边都减去6,得;(3)如果a<b,那么a-3 b-3;(4)如果x>3,那么x+2 5;(5)如果x+7>9,那么两边都,得x>2.性质3(乘法法则) 如果不等式两边都乘同一个正数,则不等号的方向不变,如果都乘同一个负数,则不等号的方向改变.如果a>b,c>0,那么a c>b c;如果a>b,c<0,那么a c<b c.练习2(1)在-3<-2的两边都乘以2,得;(2)在1>-2的两边都乘以-3,得;(3)如果a>b,那么-3 a-3 b;(4)如果a<0,那么 3 a 5 a;(5)如果 3 x>-9,那么x-3;(6)如果-3 x>9,那么x-3.练习3 判断下列不等式是否成立,并说明理由.(1)若a<b,则a c<b c. ( )(2)若a c>b c,则a>b. ( )(3)若a>b,则a c2>b c2. ( )(4)若a c2>b c2,则a>b. ( )(5)若a>b,则a(c2+1)>b(c2+1) . ( )2.2区间的概念一、知识要点:设a,b 是实数,且a<b.满足a≤x≤b 的实数x 的全体,叫做闭区间,记作 [a,b],如图.a,b 叫做区间的端点.在数轴上表示一个区间时,若区间包括端点,则端点用实心点表示;若区间不包括端点,则端点用空心点表示.全体实数也可用区间表示为(-∞,+∞),符号“+∞”读作“正无穷大”,“-∞”读作“负无穷大”.例1 用区间记法表示下列不等式的解集:(1) 9≤x≤10; (2) x≤0.4.练习1 用区间记法表示下列不等式的解集,并在数轴上表示这些区间:(1) -2≤x≤3; (2) -3<x≤4;(3) -2≤x<3; (4) -3<x<4;(5) x>3; (6) x≤4.例2 用集合的性质描述法表示下列区间:(1) (-4,0); (2) (-8,7].练习2 用集合的性质描述法表示下列区间,并在数轴上表示这些区间:(1) [-1,2); (2) [3,1].例3 在数轴上表示集合{x|x<-2或x≥1}.练习3已知数轴上的三个区间:(-∞,-3),(-3,4),(4,+∞).当x 在每个区间上取值时,试确定代数式x+3的值的符号.填制表格:2.3 一元二次不等式1.一元二次不等式的概念.只含有一个未知数,未知数的最高次项的次数是2,且系数不为0的整式不等式叫做一元二次不等式.它的一般形式是ax2+bx+c>0 或ax2+bx+c<0(a≠0).a x2+b x+c>0或a x2+b x+c<0 (a≠0)中,当b2-4 a c>0时进行求解:(1) 两边同除以a,得到二次项系数为1的不等式;(2) 分解因式变为(x+x1)(x+x2)>0或(x+x1)(x+x2)<0的形式.练习1 判断下列不等式是否是一元二次不等式:(1) x2-3x+5≤0; (2) x2-9≥0;(3) 3x2-2 x>0; (4) x2+5<0;(5) x2-2 x≤3; (6) 3 x+5>0;(7) (x-2)2≤4; (8) x2<4.2.解一元二次不等式.例1 解下列不等式:(1) x2-x-12>0; (2) x2-x-12<0.练习2 解一元二次不等式:(1) (x+1)(x-2)<0; 2) (x+2)(x-3)>0;(3)x2-2x-3>0;(4)x2-2x-3<0.(5) x2+8x+15>0 (6)-x2-3x+4>0例2 解下列不等式:(1) x2-4 x+4>0; (2) x2-4 x+4<0.例3 解不等式:(1) x2-2 x+3>0; (2) x2-2 x+3<0.练习1 解下列不等式:(1) x2-2x+3≤0; (2) x2+4x+5>0;解一元二次不等式的步骤:S1 求出方程ax2+bx+c=0的判别式∆=b2-4ac的值.S2 (1)∆>0,则二次方程ax2+bx+c=0(a>0)有两个不等的根x1,x2(设x1<x2),则ax2+bx+c=a(x-x)(x-x2) .1不等式a(x-x1)(x-x2)>0的解集是(-∞,x1)∪(x2,+∞);不等式a(x-x1)(x-x2)<0的解集是(x1,x2) .(2)∆=0,通过配方得a( x+b2a)2+4ac-b24a=a( x+b2a)2.由此可知,ax2+bx+c>0的解集是(-∞,-b2a)∪(-b2a,+∞);ax2+bx+c<0的解集是∅.(3)∆<0,通过配方得a(x+b2a)2+4ac-b24a(4ac-b24a>0).由此可知,ax2+bx+c>0的解集是R;ax2+bx+c<0的解集是∅.练习2 解下列不等式:(1) 4 x2+4 x-3 <0;(2) 3 x≥5-2 x2;(3) 9 x2-5 x-4≤0;(4)x2-4 x+5>0.五、基础知识训练:(一)选择题:1.(97高职-1)不等式x2+2x+1>0的解集是( )A.ΦB.RC.{x|x= -1}D.{x|x ≠-1,x∈R}2. 不等式(x 2-4x-5)(x 2+8)<0的解集是( )A.{x|-1<x <5}B.{x|x <-1或x >5}C.{x|0<x <5}D.{x|-1<x <0}3. 不等式ax 2+2x+c >0(a ≠0)的解集是空集的充要条件是( )A.a <0且b 2-4ac >0B.a <0且b 2-4ac <0C.a <0且b 2-4ac ≥0D.a <0且b 2-4ac ≤04. 下列不等式中,解集是空集的不等式是( )A.4x 2-20x+25>0B.2x 2-34x+6≤0C.3x 2-3x+1>0D.2x 2-2x+1<05. 若x 2-mx+1<0,则实系数m 的取值范围为( )A.m >2或m <-2B.-2<m <2C.m ≠±2D.m ∈R 6. 若ax 2+5x+c >0的解集是}2131{<<x x,则a+c 的值为( ) A.7 B.5 C.-5 D.-7 (二)填空题:7. 已知不等式x 2+bx+c >0的解集为{x|x <3-或x >2},则b= ,c= .8. 已知(m+3)x 2+(2m-1)x+2(m-1)<0对任意x ∈R 都成立,则实系数m 的取值范围为 . (三)解答题:9. 设集合A={x|x 2-2x-8≥0, x ∈R},B={x|1-|x-a|>0, x,a ∈R},A ∩B=Φ,求a的取值范围.2.4 含有绝对值的不等式1. | a |= ⎩⎪⎨⎪⎧ (a >0)(a =0) (a <0)一、|a |的几何意义数 a 的绝对值|a |,在数轴上等于对应实数a 的点到原点的距离. 例如,|-3|=3,|3|=3.二、|x |>a 与|x |<a 的几何意义 问题1(1)解方程|x |=3,并说明|x |=3的几何意义是什么?(2)试叙述|x |>3,|x |<3的几何意义,你能写出其解集吗? 结论:|x |>a 的几何意义是到原点的距离大于a 的点,其解集是{x |x >a 或x <-a }. |x |<a 的几何意义是到原点的距离小于a 的点,其解集是{x |-a <x <a }. 三、解含有绝对值的不等式 练习1 解下列不等式(1)|x |<5; (2)|x |-3>0; (3)3|x |>12.例1 解不等式|2x -3|<5例2 解不等式|2 x -3|≥5.四、含有绝对值的不等式的解法总结|a x +b |<c (c >0) 的解法是先化不等式组 -c <a x +b <c ,再由不等式的性质求出原不等式的解集.|a x +b |>c (c >0)的解法是先化不等式组a x +b >c 或a x +b <-c ,再由不等式的性质求出原不等式的解集.练习2 解下列不等式(1)|x +5|≤7 ; (2)|5 x -3|>2五、基础知识训练: (一)选择题:1. 不等式|x-2|>1的解集是( )A.(1,3)B.(3,+∞)C.(-∞,1)D.(-∞,1)∪(3,+∞)2. 不等式|2-3x|>5的解集是( )A.(-1,37)B.(37,+∞) C.(-1,+∞) D.(-∞,-1)∪(37,+∞) 3. 不等式|2-3x|≤21的解集是( )A.{x|21<x <65}B. {x|x <21或x >65}C. {x|x ≤21或x ≥65}D. {x|21≤x ≤65}4. 已知A={x 2+x ≥5},B={x x -3<2},则A ∪B 等于( )A.{x|x ≤7或x >1}B.{x| -7≤x <1}C.{x|x ∈R}D.{x|x ≤7或x ≥3}5. 已知A={x 2-x <3},B={x 1-x >1},则A ∩B 等于( ) A.{x|x <0或x >2} B.{x| -1<x <5} C.{x|-1<x <0} D.{x|-1<x <0或2<x <5} (二)填空题:6. 若不等式|x-a|<b 的解集为{x|-3<x <9},则ba2log = . 7. 若{x||a-2x|>b,b >0}={x|x <-5或x >4},则a 2+b= .8. 若x ∈Z,则不等式382<-x 的解集是 .不等式作业一、选择题(1)不等式123>-x 的解集为( ) A.()+∞⎪⎭⎫ ⎝⎛-∞-,131, B.⎪⎭⎫ ⎝⎛-1,31 C.()+∞⎪⎭⎫ ⎝⎛∞-,131, D.⎪⎭⎫⎝⎛1,31(2)、设集合(,1),(0,),A B =-∞=+∞则A B =_______A .R B.(),1O C.(),0-∞ D.()1,+∞(3)、不等式21≤≤x 用区间表示为: ( )A (1,2)B (1,2]C [1,2)D [1,2](4)、不等式22--x x <0的解集是 ( )A .(-2,1)B .(-∞,-2)∪(1,+∞)C .(-1,2)D .(-∞,-1)∪(2,+∞)(5)、()2,5A =,[)3,6B =,则A B =( ).A 、()2,5B 、[)3,6C 、()3,5D 、[)3,5(6)、设()(]0,,2,3,A B =+∞=-则A B =_______A.()2,-+∞ B.()2,0- C.(]0,3 D.()0,3(7)、已知全集U={0,1,2,3},A={1,2},则C U A=( )A 、{0}B 、{3}C 、{0,3}D 、{0,1,3}(8)、不等式2232x x --≥0的解集为 ( )A. (12,-⎤-∞⎦∪[)2,+∞ B. 12,2⎡⎤-⎣⎦C. (12,⎤-∞⎦∪[)2,-+∞ D. 12,2⎡⎤-⎣⎦(9)、已知全集U R =,(]1,2A =,则C U A=( )A. ()(),12,-∞+∞B. ()[),12,-∞+∞C. (](),12,-∞+∞D. (][),12,-∞+∞(10)、一元二次方程042=+-mx x 有实数解的条件是m ∈( )A.]()[∞+-∞-,44,B.()4,4-C.()()+∞-∞-,44,D.[]4,4-二.填空题⑴ 不等式352>-x 的解集为(2)设(][]1,3,3,6,A B =-=,则A B .(3)24x >的解集(4).已知全集U={0,1,2,3},A={1,2},则C U A=( )A 、{0}B 、{3}C 、{0,3}D 、{0,1,3}(5)不等式组⎩⎨⎧<->-0201x x 的解集为 ; (6)不等式∣2x -1∣<3的解集是 ;(7)集合{}2x x ≥-用区间表示为 .(8)设全集(),3,R A ==+∞,则CA = .(9) 当x 时,代数式x x 42-有意义(10)不等式()()021>+-x x 的解集为2.解下列各不等式⑴ 22>0x x - ⑵ 052≤+-x x⑶ 02322>++x x ⑷ 2212x -≤(5)4130x +->。
高教版中职数学基础模块上册《不等式的基本性质》课件

)
A.a>b
B.a=b
C.a<b
√
D.a≥b
C
[数轴上的数自左向右越来越大,故选C.]
2.已知a>0,则5a和4a的大小关系是(
)
A.5a>4a
√
B.5a<4a
C.5a=4a
D.无法确定
A
[∵5a-4a=a,a>0,∴5a>4a,故选A.]
3.已知a<b,则下列不等式成立的是(
∵
+3
−
+3 − +3
=
+3
3−3
3 −
=
=
+3
+3
又∵a>b>1,∴b(b+3)>0,b-a<0,
3 −
∴
+3
+3
<0,∴
+3
+3
− <0,∴ < .
+3
,
当堂达标训练
一、选择题
1.在数轴上,点A对应的实数是a,点B对应的实数是b,若点A在点
[解析]
∵m-n=(x+1)(x+2)-(x-3)(x+6)=(x2+3x+2)-(x2+3x
-18)=20>0,∴m>n.
题型分类透析
题型1:作差比较法的应用
例1 已知x≥1,设m=x3,n=x2+x-1,试比较m,n的大小.
[解析] ∵m-n=x3-(x2+x-1)=x3-x2-x+1=x2(x-1)-(x-1)=(x-
[解析]
∵m-n=(4a2-2a+3)-(3a2-4a)=a2+2a+3=(a+1)2+2,
(a+1)2≥0,
∴(a+1)2+2≥2,∴(a+1)2+2>0,∴m-n>0,∴m>n.
中职数学不等式

注意事项
在解一元二次不等式时,需要注意 判别式的符号,以及不等式的方向 和开口方向。
一元二次不等式的应用
解决实际问题
一元二次不等式可以用来解决一些实际问题,如最大值、最 小值问题,以及一些优化问题。
在其他数学领域中的应用
分式不等式的应用
解决实际问题
分式不等式在解决实际问题中有着广泛的应用,如工程问题、经济问题、物理问题等。通过建立分式不等式模型 ,可以解决各种优化问题。
数学竞赛
在数学竞赛中,分式不等式是常见的题型之一。通过解决分式不等式,可以考察学生的数学思维和解题技巧。
分式不等式的解集表示法
区间表示
分式不等式的解集通常用区间表示,如 (-∞, a) 或 [a, b) 等。这种表示方法可以直观地展示不等式的 解集范围。
数轴表示
通过在数轴上标出分式不等式的解集范围,可以更加直观地理解解集的取值情况。
05
绝对值不等式
Chapter
绝对值不等式的定义与解法
绝对值不等式的定义
绝对值不等式是数学中一种常见的不等式类型,主要研究的是绝对值函数的性质和图像 。
绝对值不等式的解法
解绝对值不等式需要先理解绝对值的定义,然后根据不同情况去掉绝对值符号,转化为 普通的不等式进行求解。
区间表示法
总结词
区间表示法是用圆括号、方括号或花括号将数轴上 的一串数括起来,表示这些数的大小范围。
详细描述
区间表示法是数学中表示数的大小范围的一种方法 。例如,[2, 5]表示2到5之间的所有实数,包括2和 5;(2, 5)表示2到5之间的所有实数,但不包括2和 5;{2, 3, 4}表示只有2、3、4这三个数的集合。
中职数学基础模块(上册)基础练习-第二章不等式

第二章 不等式第二章 第一课时 不等式的基本性质【知识回顾·一定要看】1.不等式的性质(1)对称性:a >b ⇔b <a ; (2)传递性:a >b ,b >c ⇒a >c ; (3)不等式加等量:a >b ⇔a +c > b +c ;(4)不等式乘正量:a >b ,c >0⇒ac >bc ,不等式乘负量:a >b ,c <0⇒ac <bc ; (5)同向不等式相加:a >b ,c >d ⇒a +c >b +d ; 3.知识点三、比较两代数式大小的方法作差法:任意两个代数式a 、b ,可以作差a b 后比较a b 与0的关系,进一步比较a 与b 的大小. 一、选择题.1.若,a b c d ,则下列不等式一定成立的是( ) A.22a b B.22ac bc C.a c b dD.ac bd2.已知05x ,11y ,则2x y 的取值范围是( ) A.223x y B.223x y C.227x yD.227x y3.设实数a ,b ,c 满足0a b ,0c ,则下列不等式成立的是( ) A.11a bB.22ac bcC.c a c b D.c c a b4.已知a ,b ,c ,d 为实数,a b 且c d ,则下列不等式一定成立的是( ) A.ac bdB.a c b dC.a d b cD.1a b5.(1)已知12,24a b ,求23a b 与a b 的取值范围.6.比较下列各组中两个代数式的大小:(1)256x x 与2259x x ;(2)2(3)x 与(2)(4)x x ;第二章 第二课时 区间一、选择题.1.已知集合{|(3)(2)0}A x x x , 13B x x ,则A B =( ) A. 1,2B. 1,3C. 2,3D. 0,32.已知集合 2{20},320A x x B x x x ,则A B ( ) A. 1,2 B. 1, C. 2,D. 2,3.已知集合 22R 9,R 20A x x B x x x ,则 R A B ( ) A.[3,1)(2,3] B.[3,2)(1,3] C.(,3)(2,) D.(,1)(3,)二、填空题.4.已知集合(1,2),[1,)A B ,则集合A B . 5.设集合 ,1,0,3A B ,则A B .6.已知 ,0A , ,B a ,且A B R ,则实数a 的取值范围为 . 三、解答题.7.已知集合 4,35A x x , 3,22B . (1)若10x ,求A B ,A B ; (2)若A B A ,求实数x 的取值范围.8.已知非空集合2230A x x x ,非空集合(0,]B m (1)若4m ,求A B (用区间表示); (2)若A B A ,求m 的范围.第二章 第三课时 一元二次不等式【知识回顾·一定要看】1.一元一次不等式解法任何一个一元一次不等式经过不等式的同解变形后,都可以化为ax >b (a ≠0)的形式.当a >0时,解集为x |x >b a ;当a <0时,解集为x |x <b a .若关于x 的不等式ax >b 的解集是R ,则实数a ,b 满足的条件是 . 2.一元二次不等式及其解法(1)我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为 不等式.(2)使某个一元二次不等式成立的x 的值叫做这个一元二次不等式的解,一元二次不等式所有的解组成的集合叫做一元二次不等式的 .(3)若一元二次不等式经过同解变形后,化为一元二次不等式ax 2+bx +c >0(或ax 2+bx +c <0)(其中a >0)的形式,其对应的方程ax 2+bx +c =0有两个不相等的实根x 1,x 2,且x 1<x 2(此时Δ=b 2-4ac >0),则可根据“大于号取 ,小于号取 ”求解集. (4)一元二次不等式的解:有两相异实根 (x 1<x 2)有两相等实根1=x 2=-b2无实根一、选择题.1.设集合 2{2},340S xx T x x x ∣∣,则 R S T ( ) A. 2,1 B. 4,1 C. 4,2 D. 2,42.不等式 20x x 的解集是( ) A. ,02, B. 0,2 C. ,20,D. 2,03.不等式2320x x 的解为( ) A.3x 或1xB.1x 或3xC.13xD.31x4.不等式210x 的解集是( )A.{1}xx ∣ B.{1}x x ∣ C. 1x x 或 1xD.{|11}x x5.已知不等式240x ax 的解集为R ,则a 的取值范围是( ) A. 4,4B. 4,4C. ,44, D. ,44,6.不等式 120x x 的解集是( ) A. 1,0,2B. ,01,C.10,2D.10,27.若关于x 的不等式20x ax b 的解集是 |2x x 或 3x ,则a b ( ) A.7B.6C.5D.18.已知集合 2|3210,|A x x x B x x a ,若A B ,则实数a 的取值范围为( ) A. 1 ,B.1,3C.[1 ,)D.1,3二、填空题.9.不等式22240x x 的解集为 . 10.不等式223x x 的解集是 .11.已知集合 2|60A x x x ,2280B x x x >,则A B = . 12.设,b c R ,不等式20x bx c 的解集是(,1)(3,) ,则b c . 三、解答题. 13.解下列不等式; (1)2230x x ;(2) 2132x x ;14.已知不等式 2560ax x . (1)当 1a 时,解不等式; (2)当 1a 时,解不等式.15.若不等式2(1)22ax a x a 对一切实数x 恒成立,求实数a 的取值范围.16.已知不等式2230x x 的解集是A ,不等式2450x x 的解集是B . (1)求A B ;(2)若关于x 的不等式20x ax b 的解集是A B ,求a ,b 的值.第二章 第四课时 含绝对值的不等式【知识回顾·一定要看】绝对值不等式 1.绝对值的代数意义正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.a a a a a a2.绝对值的几何意义一个数的绝对值,是数轴上表示它的点到__________的距离. 3.绝对值不等式:(0) x a a 的解集是{|} x a x a ,如图1; (0) x a a 的解集是{|} 或x x a x a ,如图2;(0)ax b c c ___________________________ (0)ax b c c ___________________________一、选择题.1.已知集合2230,32A x x x B x x ,则A B ( ) A.(3,5)B.(1,3)C.(1,1)D.,1(),)1(2.已知R 是实数集,集合 220A x x x , 12B x x ,则()R A B ( ) A. 1,2B. 1,3C. 2,3D. 1,23.设集合 ||1|1A x x ,集合 2|1B x x ,则( ) A.A BB.B AC.A BD.A B4.全集U R ,且{||1|2}A x x ,2{|680}B x x x ,则()U A B ( ) A.{|14}x x B.{|23}x x C.{|23}x xD.{|14}x x5.已知集合24,{|13}M xx x N x x ∣,则 M N R ( ) A.M B.NC.R N D.R M6.已知集合 31,A x x x Z , 2560,B x x x x Z ,则A B ( ) A. 2,3B. 3C. 23x xD. 2,3,47.设集合 2|450P x x x ,=0Q x x a ,则能使P Q 成立的a 的取值范围是( ) A. 5,B. 5,C. 1,5D. 1,8.不等式2211x 的解集为( ) A. 11x x B. 22x x C. 02x x D. 20x x二、填空题.9.不等式211x 的解集为 . 10.不等式33x 的解集为 .11.已知集合 |11M x x ∣,21N x x ,M N . 12.若集合 2560A x x x ,集合 213B x x ,则集合A B . 三、解答题.13.求下列绝对值不等式的解集: (1)|12|3x ; (2)2|1|0x .14.已知集合 22|240A x x ax a , ||25|3B x x ,当a =3时,求A B .15.已知2}0{8|2A x x x >,{|||5|}B x x a ,且A B R ,求a 的取值范围.。
中职数学 第二章 不等式

第四节 分式不等式和绝对值不等式
1. ︱x︱>a或︱x︱<a(a>0)型不等式
根据绝对值的几何意义,不等式︱x︱>1表示的是数轴 上到原点的距离大于1的所有点的集合,在数轴上表示如图29(a)所示;︱x︱<1表示的是数轴上到原点的距离小于1 的所有点的集合,在数轴上表示如图2-9(b)所示.
图 2-9
第三节 一元二次不等式及解法
学习提示
如果一元二次不等式中的二次项系数是负数,即a< 0,则可以根据不等式的性质,将不等式两边同乘以-1, 使其二次项系数化为正数,然后再求解.
第三节 一元二次不等式及解法
(ⅱ)当方程 ax2+bx+c=0的判别式 Δ=b2-4ac<0时,方程没有 实数根,此时函数 y=ax2+bx+c(a>0)的图 像与x轴没有交点,如图2-8 (b)所示,则不等式 ax2+bx+c>0的解集为实数 集R,不等式ax2+bx+c<0 的解集为Ø.
第一节 不等式的概念与性质
思考与讨论
已知实数a、b,且a>b>0,试比较a2b与ab2的大小.
第一节 不等式的概念与性质
课堂练习
第一节 不等式的概念与性质
三、 不等式的基本性质
在初中我们已经学习了不等式的三条基本性质,本小节将进一 步阐述并证明不等式的基本性质.
性质1 如果a>b,且b>c,则a>c. 证明 a>b=a-b>0, b>c=b-c>0, 因此,根据两正数之和为正数得 (a-b)+(b-c)>0, 即 a-c>0, 所以a>c. 性质1所描述的不等式的性质称为不等式的传递性.
例如,求不等式 x2-x-2>0与x2-x-2<0 的解集.
首先,解方程x2-x-2=0得x1=-1,x2=2.
中职数学第二章不等式知识点

第二章不等式㈠不等式的性质用作差法比较大小性质1:如果a>b,那么b<a;反之也成立性质2:如果a>b,b >c,那么a>c性质3:如果a>b,那么a+c>b+c推论:如果a>b,c>d则a+c>b+d性质4:如果a>b,c>0,那么ac>bc;如果a>b,c<0,那么ac<bc推论1:如果a>b >0,c>d>0,那么ac>bd推论2:如果a>b >0,那么a n>b n (n∈N+ , n>1),那么(n∈N+ , n>1)性质5:如果a>b >0㈡区间开区间:(a,b)表示a<x<b 闭区间:[a,b] 表示a≤x≤b半闭区间:[a,b)表示a≤x<b 半开区间:(a,b] 表示a <x≤b(-∞,+∞)表示实数集R,(a,+∞)表示x>a,(-∞,b]表示x≤b(-∞,b]∪(a,+∞)表示x≤b或x> a一元二次不等式的解题步骤:1.化标准式2.判断∆∆〉时求两个根,小的写左边大的写右边3.根据∆情况到上表中找到解集:如果0注:标准形式为分子,分母都是一元一次式,左边为一个分式,不等号右边为0㈤绝对值不等式解法当0a>时,{}/x a x x a x a>⇒<->或{}/x a x x a x a≥⇒≤-≥或{}/x a x a x a<⇒-<<{}/x a x a x a≤⇒-≤≤当0a<时,x a x R>⇒∈x a x R≥⇒∈x a<⇒∅x a≤⇒∅当0a=时,{}0/0x x x>⇒≠0x R≥⇒x<⇒∅{}00x≤⇒如果绝对值符号中是代数式,也看成是一个整体,替换成解集中的x即可例:1 354435433 x x x+<⇒-<+<⇒-<<-22247332473x x x x+-≤⇒-≤+-≤。
中职数学不等式的性质逐字稿

中职数学不等式的性质逐字稿基本性质:①对称性;②传递性;③加法单调性,即同向不等式可加性;④乘法单调性;⑤同向正值不等式可乘性;⑥正值不等式可乘方;⑦正值不等式可开方;⑧倒数法则。
扩展资料不等式8个基本性质如果x>y,那么y<x;如果y<x,那么x>y;如果x>y,y>z;那么x>z;如果x>y,而z为任意实数或整式,那么x+z>y+z,即不等式两边同时加或减去同一个整式,不等号方向不变;如果x>y,z>0,那么xz>yz,即不等式两边同时乘以(或除以)同一个大于0的整式,不等号方向不变;如果x>y,z<0,那么xz<yz,即不等式两边同时乘(或除以)同一个小于0的整式,不等号方向改变;如果x>y,m>n,那么x+m>y+n;如果x>y>0,m>n>0,那么xm>yn;如果x>y>0,那么x的n次幂>y的n次幂(n为正数),x的n次幂<y的n次幂(n为负数)。
不等式定理口诀解不等式的途径,利用函数的性质。
对指无理不等式,化为有理不等式。
高次向着低次代,步步转化要等价。
数形之间互转化,帮助解答作用大。
证不等式的方法,实数性质威力大。
求差与0比大小,作商和1争高下。
直接困难分析好,思路清晰综合法。
非负常用基本式,正面难则反证法。
还有重要不等式,以及数学归纳法。
图形函数来帮助,画图、建模、构造法。
基本不等式两大技巧“1”的'妙用。
题目中如果出现了两个式子之和为常数,要求这两个式子的倒数之和的最小值,通常用所求这个式子乘以1,然后把1用前面的常数表示出来,并将两个式子展开即可计算。
如果题目已知两个式子倒数之和为常数,求两个式子之和的最小值,方法同上。
调整系数。
有时候求解两个式子之积的最大值时,需要这两个式子之和为常数,但是很多时候并不是常数,这时候需要对其中某些系数进行调整,以便使其和为常数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四教时
教材:极值定理
目的:要求学生在掌握平均不等式的基础上进而掌握极值定理,并学会初步
应用。
过程:
一、复习:算术平均数与几何平均数定义,平均不等式 二、若+∈R y x ,,设2
),(2
2y x y x Q +=
2),(y x y x A += xy y x G =),(
y
x y x H 1+=
12),( 求证:),(),(),(),(y x H y x G y x A y x Q ≥≥≥
加权平均;算术平均;几何平均;调和平均
证:∵2
442)2(22222222y
x y x y x xy y x y x +=+++≤++=+ ∴
2
22
2y
x y x +≥
+即:),(),(y x A y x Q ≥(俗称幂平均不等式) 由平均不等式),(),(y x G y x A ≥
),(222),(y x G xy xy
xy
y x xy y x H ==≤+=
即:),(),(y x H y x G ≥ 综上所述:),(),(),(),(y x H y x G y x A y x Q ≥≥≥
例一、若+∈=+R b a b a ,,1 求证2
25
)1()1(22≥+++b b a a
证:由幂平均不等式:2
)11()1()1(2
22b b a a b b a a +++≥+++ 2
252)23(2)3(2)1(22
2=
+≥++=++++=
b a
a b b b a a b a 三、极值定理
已知y x ,都是正数,求证:
1︒ 如果积xy 是定值p ,那么当y x =时和y x +有最小值p 2
2︒ 如果和y x +是定值s ,那么当y x =时积xy 有最大值24
1
s
证:∵+∈R y x , ∴ xy y
x ≥+2 1︒当xy p = (定值)时,p y
x ≥+2
∴y x +p 2≥ ∵上式当y x =时取“=” ∴当y x =时有=+min )(y x p 2 2︒当s y x =+ (定值)时,2s xy ≤
∴24
1
s xy ≤ ∵上式当y x =时取“=” ∴当y x =时有2
max 4
1)(s xy =
注意强调:1︒最值的含义(“≥”取最小值,“≤”取最大值) 2︒用极值定理求最值的三个必要条件:
一“正”、二“定”、三“相等”
四、例题
1.证明下列各题:
⑴ 210log lg ≥+x x )1(>x 证:∵1>x ∴0lg >x 010log >x
于是210lg lg 210log lg =≥+x x x x ⑵若上题改成10<<x ,结果将如何? 解:∵10<<x 0lg <x 010log <x
于是2)10log ()lg (≥-+-x x 从而210log lg -≤+x x
⑶若1=+b a 则4
1
≤ab
解:若+
∈R b a ,则显然有4
1
0≤
<ab 若b a ,异号或一个为0则0≤ab ∴4
1≤
ab 2.①求函数)1(2x x y -=的最大值)10(<<x ②求函数)1(2x x y -=的最大值)10(<<x 解:①∵10<<x ∴01>-x ∴当
x x -=12即3
2
=x 时 27
4)3122(4)1(2243=
-++⋅≤-⋅⋅=x
x
x x x x y 即32=x 时274max =y ②∵10<<x ∴1102<-<x
∴)1)(1(22
1
)1(2222222x x x x x y --⋅⋅=
-= 27
4)3)1()1(2(213222=-+-+≤x x x ∴当33,1222=
-=x x x 时274max 2=y 9
3
2max =y
3.若1->x ,则x 为何值时11
++
x x 有最小值,最小值为几? 解:∵1->x ∴01>+x
01
1
>+x ∴11++
x x =11211
1)1(21111=-=-+⋅+≥-+++x x x x 当且仅当111+=
+x x 即0=x 时1)1
1
(min =++
x x 五、小结:1.四大平均值之间的关系及其证明 2.极值定理及三要素
六、作业:P12 练习3、4 习题6.2 4、5、6
补充:下列函数中x 取何值时,函数取得最大值或最小值,最值是多少?
1︒ )32(x x y -= 31=x 时3
1max =y 2︒x
x y 451
41-+
-= 2,1min -==y x 3︒0<x 时 x x y 321-
-= 61,2
6min +=-=y x。