2012年全国初中数学竞赛试题及答案

合集下载

-2012全国初中数学竞赛试题及答案(安徽赛区)

-2012全国初中数学竞赛试题及答案(安徽赛区)

中国教育学会中学数学教学专业委员会 2012年全国初中数学竞赛试题【安徽赛区】一、选择题(共5小题,每小题7分,共35分. 每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分) 1、如果2a =-11123a+++的值为【 】(A)(B(C )2 (D)解:B ∵213+=+a ∴1231-=+a ,12312+=++a,123121-=++a因此原式=22、 在平面直角坐标系xOy 中,满足不等式y x y x 2222+≤+的整数点坐标(x ,y )的个数为【 】 (A )10 (B )9 (C )7 (D )5 解:B 解法一:y x y x 2222+≤+化为()()21122≤-+-y x因为x 、y 均为整数,因此()()01122=-+-y x 或()()11122=-+-y x 或()()21122=-+-y x分别解得⎩⎨⎧==11y x 或⎩⎨⎧==10y x ⎩⎨⎧==12y x ⎩⎨⎧==01y x ⎩⎨⎧==21y x 或⎩⎨⎧==20y x ⎩⎨⎧==22y x ⎩⎨⎧==00y x ⎩⎨⎧==02y x 所以共有9个整点 解法二:y x y x 2222+≤+化为()()21122≤-+-y x 它表示以点(1,1)为圆心,2为半径的圆内,画图可知,这个圆内有9个(0,2)、(0,1)(0,0),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2)3、如图,四边形ABCD 中,AC ,BD 是对角线,△ABC 是等边三角形.30ADC ∠=︒,AD = 3,BD = 5,则CD 的长为【 】(A )23 (B )4 (C )52 (D )4.5解:图,以CD 为边作等边△CDE ,连接AE . 由于AC = BC ,CD = CE ,BCD BCA ACD DCE ACD ACE ∠=∠+∠=∠+∠=∠.所以 △BCD ≌△ACE , BD = AE .又因为30ADC ∠=︒,所以90ADE ∠=︒.在Rt △ADE 中,53AE AD ==,,于是4=,所以CD = DE = 4.4、如果关于x 的方程20x px q p q --=(,是正整数)的正根小于3,那么这样的方程的个数是【 】 (A ) 5 (B ) 6 (C ) 7 (D ) 8解:C ∵p 、q 是正整数∴042>+=∆q p ,021<-=⋅q x x ∴正根为3242<++q p p解得p q 39-<∴⎩⎨⎧==11q p ,⎩⎨⎧==21q p ,⎩⎨⎧==31q p ,⎩⎨⎧==41q p ,⎩⎨⎧==51q p ,⎩⎨⎧==12q p ,⎩⎨⎧==22q p 5、黑板上写有1,12,13,…,1100共100个数字.每次操作先从黑板上的数中选取2个数a b ,,然后删去a b ,,并在黑板上写上数a b ab ++,则经过99次操作后,黑板上剩下的数是【 】 (A )2012 (B )101 (C )100 (D )99 解:C 1)1)(1(-++=++b a ab b a ∵计算结果与顺序无关∴顺次计算得:21)121)(11(=-++,31)131)(12(=-++,41)141)(13(=-++,…… 1001)11001)(199(=-++二、填空题(共5小题,每小题7分,共35分) 6、如果a ,b ,c 是正数,且满足9a b c ++=,111109a b b c c a ++=+++,那么a b c b c c a a b+++++的值为 .解:7在910111=+++++a c c b b a 两边乘以9=++c b a 得103=++++++ac bc b a b a c 即7=+++++ac bc b a b a c 7、如图,⊙O 的半径为20,A 是⊙O 上一点.以OA 为对角线作矩形OBAC ,且12OC =.延长BC ,与⊙O 分别交于D E ,两点,则CE BD -的值等于 285 .解:如图,设DE 的中点为M ,连接OM ,则OM DE ⊥.因为16OB ==,所以161248205OB OC OM BC ⋅⨯===,366455CM BM ===,. CE BD EM CM DM BM -=---()()643655BM CM =-=-285=. 8、设n 为整数,且1≤n ≤2012. 若22(3)(3)n n n n -+++能被5整除,则所有n 的个数为 . 解:1600()()()953332422222++=-+=+++-n n n n n n n n因此9|54+n ,所以)5(mod 14≡n ,因此25k ,15±±=或k n 240252012⋯⋯=÷所以共有2012-402=1600个数9、如果正数x ,y ,z 可以是一个三角形的三边长,那么称x y z (,,)是三角形数.若a b c (,,)和111a b c(,,)均为三角形数,且a ≤b ≤c ,则ac的取值范围是 . 解:1253≤<-ca依题意得:⎪⎩⎪⎨⎧>+>+a c b cb a 111,所以ac b ->,代入(2)得ca c cb a 11111+-<+<,两边乘以a 得c a a c a +-<1即ac ac a c -<-化简得0322<+-c ac a ,两边除以2c 得 0132<+-⎪⎭⎫⎝⎛c a c a 所以253253+<<-c a 另一方面:a ≤b ≤c ,所以1≤c a 综合得1253≤<-c a 10、已知n 是偶数,且1≤n ≤100.若有唯一的正整数对a b (,)使得22a b n =+成立,则这样的n 的个数为 .解:依题意得()()b a b a b a n -+=-=22 由于n 是偶数,a+b 、a-b 同奇偶,所以n 是4的倍数当1≤n ≤100时,4的倍数共有25个 但是224⨯=,6412224⨯=⨯=,8416232⨯=⨯=,10420240⨯=⨯=,8612424248⨯=⨯=⨯=,14428256⨯=⨯=,10630260⨯=⨯=,16432264⨯=⨯= 12618436272⨯=⨯=⨯=,10820440280⨯=⨯=⨯=,22444288⨯=⨯= 12816624448296⨯=⨯=⨯=⨯=这些不符合要求,因此这样的n 有25-12=13个 三、解答题(共4题,每题20分,共80分)11、如图,在平面直角坐标系xOy 中,8AO =,AB AC =,4sin 5ABC ∠=.CD 与y 轴交于点E ,且COE ADE S S =△△.已知经过B ,C ,E 三点的图象是一条抛物线,求这条抛物线对应的二次函数的解析式.解:因为sin ∠ABC =45AO AB =,8AO =,所以AB = 10.由勾股定理,得6BO ==.易知ABO ACO △≌△, 因此 CO = BO = 6.于是(08)A -,,(60)B ,,(60)C -,.设点D 的坐标为()m n ,.由C O E A D E S S =△△,得C D B A O B S S =△△.所以1122BC n AO BO ⋅=⋅,1112()8622n ⨯-=⨯⨯.解得 4n =-. 因此D 为AB 的中点,点 D 的坐标为(34)-,.因此CD ,AO 分别为AB ,BC 的两条中线,点E 为△ABC 的重心,所以点E 的坐标为8(0)3-,. 设经过B ,C ,E 三点的抛物线对应的二次函数的解析式为(6)(6)y a x x =-+.将点E 的坐标代入,解得a =272. 故经过B ,C ,E 三点的抛物线对应的二次函数的解析式为228273y x =-. 12、如图,⊙O 的内接四边形ABCD 中,AC ,BD 是它的对角线,AC 的中点I 是△ABD 的内心. 求证: (1)OI 是△IBD 的外接圆的切线;(2)AB +AD =2BD.(1)如图,根据三角形内心的性质和同弧上圆周角的性质知CID IAD IDA ∠=∠+∠,CDI CDB BDI BAC IDA IAD IDA ∠=∠+∠=∠+∠=∠+∠.所以CID CDI ∠=∠, CI = CD . 同理,CI = CB .故点C 是△IBD 的外心.连接OA ,OC ,因为I 是AC 的中点,且OA = OC ,所以OI ⊥AC ,即OI ⊥CI .故OI 是△IBD 外接圆的切线.(2)如图,过点I 作IE ⊥AD 于点E ,设OC 与BD 交于点F .由 BCCD =,知OC ⊥BD . 因为∠CBF =∠IAE ,BC = CI = AI ,所以Rt BCF Rt AIE △≌△.所以BF = AE . 又因为I 是△ABD 的内心,所以22AB AD BD AE BD BD BF BD +-=+-==.故2AB AD BD +=. 13、给定一个正整数n ,凸n 边形中最多有多少个内角等于150︒?并说明理由. 解:14、将2,3,…,n (n ≥2)任意分成两组,如果总可以在其中一组中找到数a b c ,,(可以相同)使得b a c =,求n 的最小值.解:当1621n =-时,把23n , , ,分成如下两个数组:{}88162322121+- , , , , , 和{}84521- , , , . 在数组{}88162322121+- , , , , , 中,由于38821632221<>-(,),所以其中不存在数a b c ,,,使得ba c =.在数组{}84521- , , , 中,由于48421>-, 所以其中不存在数a b c ,,,使得ba c =. 所以,162n ≥. 下面证明当162n =时,满足题设条件.不妨设2在第一组,若224=也在第一组,则结论已经成立.故不妨设224=在第二组. 同理可设4842=在第一组,8216(2)2=在第二组.此时考虑数8.如果8在第一组,我们取8282a b c ===,,,此时ba c =;如果8在第二组,我们取16482a b c ===,,,此时b a c =.综上,162n =满足题设条件. 所以,n 的最小值为162.注:也可以通过考虑2,4,16,256,65536的分组情况得到n 最小值为65536.。

2012年全国初中数学联赛试题(含答案)

2012年全国初中数学联赛试题(含答案)

2012年全国初中数学联合竞赛试题第一试一、选择题:(本题满分42分,每小题7分)1.已知1a =,b =2c =,那么,,a b c 的大小关系是 ( C )A. a b c <<B. a c b <<C. b a c <<D.b c a <<2.方程222334x xy y ++=的整数解(,)x y 的组数为 ( B ) A .3. B .4. C .5. D .6.3.已知正方形ABCD 的边长为1,E 为BC 边的延长线上一点,CE =1,连接AE ,与CD 交于点F ,连接BF 并延长与线段DE 交于点G ,则BG 的长为 ( D )A .3 B .3C .3D .34.已知实数,a b 满足221a b +=,则44a ab b ++的最小值为 ( B ) A .18-. B .0. C .1. D .98.5.若方程22320x px p +--=的两个不相等的实数根12,x x 满足232311224()x x x x +=-+,则实数p 的所有可能的值之和为 ( B )A .0.B .34-. C .1-. D .54-. 6.由1,2,3,4这四个数字组成四位数abcd (数字可重复使用),要求满足a c b d +=+.这样的四位数共有 ( C )A .36个.B .40个.C .44个.D .48个. 二、填空题:(本题满分28分,每小题7分)1.已知互不相等的实数,,a b c 满足111a b c t b c a+=+=+=,则t =1±.2.使得521m⨯+是完全平方数的整数m 的个数为 1 .3.在△ABC 中,已知AB =AC ,∠A =40°,P 为AB 上一点,∠ACP =20°,则BCAP=. 4.已知实数,,a b c 满足1abc =-,4a b c ++=,22243131319a b c a a b b c c ++=------,则222a b c ++=332.第二试 (A )一、(本题满分20分)已知直角三角形的边长均为整数,周长为30,求它的外接圆的面积. 解 设直角三角形的三边长分别为,,a b c (a b c ≤<),则30a b c ++=. 显然,三角形的外接圆的直径即为斜边长c ,下面先求c 的值. 由a b c ≤<及30a b c ++=得303a b c c =++<,所以10c >. 由a b c +>及30a b c ++=得302a b c c =++>,所以15c <. 又因为c 为整数,所以1114c ≤≤.根据勾股定理可得222a b c +=,把30c a b =--代入,化简得30()4500ab a b -++=,所以22(30)(30)450235a b --==⨯⨯,因为,a b 均为整数且a b ≤,所以只可能是22305,3023,a b ⎧-=⎪⎨-=⨯⎪⎩解得5,12.a b =⎧⎨=⎩ 所以,直角三角形的斜边长13c =,三角形的外接圆的面积为1694π. 二.(本题满分25分)如图,P A 为⊙O 的切线,PBC 为⊙O 的割线,AD ⊥OP 于点D .证明:2AD BD CD =⋅.证明:连接OA ,OB ,OC .∵OA ⊥AP ,AD ⊥OP ,∴由射影定理可得2PA PD PO =⋅,2AD PD OD =⋅.又由切割线定理可得2PA PB PC =⋅,∴P B P C PD PO ⋅=⋅,∴D 、B 、C 、O 四点共圆, ∴∠PDB =∠PCO =∠OBC =∠ODC ,∠PBD =∠COD ,∴△PBD ∽△COD ,∴PD BD CD OD=,∴2AD PD OD BD CD =⋅=⋅. 三.(本题满分25分)已知抛物线216y x bx c =-++的顶点为P ,与x 轴的正半轴交于A 1(,0)x 、B 2(,0)x (12x x <)两点,与y 轴交于点C ,P A 是△ABC 的外接圆的切线.设M 3(0,)2-,若AM //BC ,求抛物线的解析式.解 易求得点P 23(3,)2b bc +,点C (0,)c .设△ABC 的外接圆的圆心为D ,则点P 和点D 都在线段AB 的垂直平分线上,设点D 的坐标为(3,)b m .显然,12,x x 是一元二次方程2106x b x c -++=的两根,所以13x b c =,23x b =+AB 的中点E 的坐标为(3,0)b ,所以AE.因为P A 为⊙D 的切线,所以P A ⊥AD ,又AE ⊥PD ,所以由射影定理可得2AE PE DE =⋅,即223)()||2b c m =+⋅,又易知0m <,所以可得6m =-. 又由DA =DC 得22DA DC =,即2222(30)()m b m c +=-+-,把6m =-代入后可解得6c =-(另一解0c =舍去).又因为AM //BC ,所以OA OMOB OC =3||2|6|-=-. 把6c =-代入解得52b =(另一解52b =-舍去). 因此,抛物线的解析式为215662y x x =-+-.第二试 (B )一.(本题满分20分)已知直角三角形的边长均为整数,周长为60,求它的外接圆的面积. 解 设直角三角形的三边长分别为,,a b c (a b c ≤<),则60a b c ++=. 显然,三角形的外接圆的直径即为斜边长c ,下面先求c 的值.由a b c ≤<及60a b c ++=得603a b c c =++<,所以20c >. 由a b c +>及60a b c ++=得602a b c c =++>,所以30c <. 又因为c 为整数,所以2129c ≤≤.根据勾股定理可得222a b c +=,把60c a b =--代入,化简得60()18000ab a b -++=,所以322(60)(60)1800235a b --==⨯⨯,因为,a b 均为整数且a b ≤,所以只可能是326025,6035,a b ⎧-=⨯⎪⎨-=⨯⎪⎩或2226025,6023,a b ⎧-=⨯⎪⎨-=⨯⎪⎩ 解得20,15,a b =⎧⎨=⎩或10,24.a b =⎧⎨=⎩当20,15a b ==时,25c =,三角形的外接圆的面积为6254π; 当10,24a b ==时,26c =,三角形的外接圆的面积为169π.二.(本题满分25分)如图,P A 为⊙O 的切线,PBC 为⊙O 的割线,AD ⊥OP 于点D ,△ADC 的外接圆与BC 的另一个交点为E .证明:∠BAE =∠ACB .证明:连接OA ,OB ,OC ,BD . ∵OA ⊥AP ,AD ⊥OP ,∴由射影定理可得2PA PD PO =⋅,2AD PD OD =⋅.又由切割线定理可得2PA PB PC =⋅,∴P B P C PD PO ⋅=⋅,∴D 、B 、C 、O 四点共圆, ∴∠PDB =∠PCO =∠OBC =∠ODC ,∠PBD =∠COD ,∴△PBD ∽△COD , ∴PD BDCD OD =, ∴2BD CD PD OD AD ⋅=⋅=,∴BD AD AD CD=. 又∠BDA =∠BDP +90°=∠ODC +90°=∠ADC ,∴△BDA ∽△ADC , ∴∠BAD =∠ACD ,∴AB 是△ADC 的外接圆的切线,∴∠BAE =∠ACB . 三.(本题满分25分)题目和解答与(A )卷第三题相同.第二试 (C )一.(本题满分20分)题目和解答与(B )卷第一题相同. 二.(本题满分25分)题目和解答与(B )卷第二题相同. 三.(本题满分25分)已知抛物线216y x bx c =-++的顶点为P ,与x 轴的正半轴交于A 1(,0)x 、B 2(,0)x (12x x <)两点,与y 轴交于点C ,P A 是△ABC 的外接圆的切线.将抛物线向左平移1)个单位,得到的新抛物线与原抛物线交于点Q ,且∠QBO =∠OBC .求抛物线的解析式.解 抛物线的方程即2213(3)62b y x bc =--++,所以点P 23(3,)2b b c +,点C (0,)c . 设△ABC 的外接圆的圆心为D ,则点P 和点D 都在线段AB 的垂直平分线上,设点D 的坐标为(3,)b m .显然,12,x x 是一元二次方程2106x b x c -++=的两根,所以13x b =,23x b =+AB 的中点E 的坐标为(3,0)b ,所以AE .因为P A 为⊙D 的切线,所以P A ⊥AD ,又AE ⊥PD ,所以由射影定理可得2AE PE DE =⋅,即223)()||2b c m =+⋅,又易知0m <,所以可得6m =-.又由DA =DC 得22DA DC =,即2222(30)()m b m c +=-+-,把6m =-代入后可解得6c =-(另一解0c =舍去).将抛物线2213(3)662b y x b =--+-向左平移1)个单位后,得到的新抛物线为2213(324)662by x b=--++-.易求得两抛物线的交点为Q23(312102)2bb+-+.由∠QBO=∠OBC可得tan∠QBO=tan∠OBC.作QN⊥AB,垂足为N,则N(312b+-,又233(x b b=+=,所以tan∠QBO=QNBN2310212b+=12=22111)]22==⋅.又tan∠OBC=OCOB1(2b==⋅,所以111)](22b⋅=⋅-.解得4b=(另一解45)03b=<,舍去).因此,抛物线的解析式为21466y x x=-+-.。

2012年全国初中数学联合竞赛试题及详细解答(含一试二试)

2012年全国初中数学联合竞赛试题及详细解答(含一试二试)

2012年全国初中数学联合竞赛试题参考答案第一试一、选择题:(本题满分42分,每小题7分)1.已知1a =,b =2c =,那么,,a b c 的大小关系是 ( )A. a b c <<B. a c b <<C. b a c <<D.b c a <<2.方程222334x xy y ++=的整数解(,)x y 的组数为 ( ) A .3. B .4. C .5. D .6.3.已知正方形ABCD 的边长为1,E 为BC 边的延长线上一点,CE =1,连接AE ,与CD 交于点F ,连接BF 并延长与线段DE 交于点G ,则BG 的长为 ( )A .3 B .3 C .3 D .34.已知实数,a b 满足221a b +=,则44a ab b ++的最小值为 ( ) A .18-. B .0. C .1. D .98. 5.若方程22320x px p +--=的两个不相等的实数根12,x x 满足232311224()x x x x +=-+,则实数p的所有可能的值之和为 ( )A .0.B .34-. C .1-. D .54-. 6.由1,2,3,4这四个数字组成四位数abcd (数字可重复使用),要求满足a c b d +=+.这样的四位数共有 ( )A .36个.B .40个.C .44个.D .48个. 二、填空题:(本题满分28分,每小题7分)1.已知互不相等的实数,,a b c 满足111a b c t b c a+=+=+=,则t = . 2.使得521m⨯+是完全平方数的整数m 的个数为 .3.在△ABC 中,已知AB =AC ,∠A =40°,P 为AB 上一点,∠ACP =20°,则BCAP= . 4.已知实数,,a b c 满足1abc =-,4a b c ++=,22243131319a b c a a b b c c ++=------,则222a b c ++= .第二试 (A )一、(本题满分20分)已知直角三角形的边长均为整数,周长为30,求它的外接圆的面积.二.(本题满分25分)如图,PA 为⊙O 的切线,PBC 为⊙O 的割线,A D ⊥OP 于点D .证明:2AD BD CD =⋅.三.(本题满分25分)已知抛物线216y x bx c =-++的顶点为P ,与x 轴的正半轴交于A 1(,0)x 、B 2(,0)x (12x x <)两点,与y 轴交于点C ,PA 是△ABC 的外接圆的切线.设M 3(0,)2-,若AM//BC ,求抛物线的解析式.第二试 (B )一.(本题满分20分)已知直角三角形的边长均为整数,周长为60,求它的外接圆的面积. 二.(本题满分25分)如图,PA 为⊙O 的切线,PBC 为⊙O 的割线,A D ⊥OP 于点D ,△ADC 的外接圆与BC 的另一个交点为E.证明:∠BAE =∠ACB.三.(本题满分25分)题目和解答与(A )卷第三题相同.第二试 (C )一.(本题满分20分)题目和解答与(B )卷第一题相同. 二.(本题满分25分)题目和解答与(B )卷第二题相同. 三.(本题满分25分)已知抛物线216y x bx c =-++的顶点为P ,与x 轴的正半轴交于A 1(,0)x 、B 2(,0)x (12x x <)两点,与y 轴交于点C ,PA 是△ABC 的外接圆的切线.将抛物线向左平移1)-个单位,得到的新抛物线与原抛物线交于点Q ,且∠QBO =∠OBC.求抛物线的解析式.2012年全国初中数学联合竞赛试题参考答案第一试一、选择题:(本题满分42分,每小题7分) 1.已知21a =-,32b =-,62c =-,那么,,a b c 的大小关系是 ( C )A. a b c <<B. a c b <<C. b a c <<D.b c a <<2.方程222334x xy y ++=的整数解(,)x y 的组数为 ( B ) A .3. B .4. C .5. D .6.3.已知正方形ABCD 的边长为1,E 为BC 边的延长线上一点,CE =1,连接AE ,与CD 交于点F ,连接BF 并延长与线段DE 交于点G ,则BG 的长为 ( D )A .6 B .5 C .26 D .254.已知实数,a b 满足221a b +=,则44a ab b ++的最小值为 ( B ) A .18-. B .0. C .1. D .98.5.若方程22320x px p +--=的两个不相等的实数根12,x x 满足232311224()x x x x +=-+,则实数p的所有可能的值之和为 ( B )A .0.B .34-. C .1-. D .54-.6.由1,2,3,4这四个数字组成四位数abcd (数字可重复使用),要求满足a c b d +=+.这样的四位数共有 ( C )A .36个.B .40个.C .44个.D .48个. 解:根据使用的不同数字的个数分类考虑:(1)只用1个数字,组成的四位数可以是1111,2222,3333,4444,共有4个.(2)使用2个不同的数字,使用的数字有6种可能(1、2,1、3,1、4,2、3,2、4,3、4). 如果使用的数字是1、2,组成的四位数可以是1122,1221,2112,2211,共有4个; 同样地,如果使用的数字是另外5种情况,组成的四位数也各有4个. 因此,这样的四位数共有6×4=24个.(3)使用3个不同的数字,只能是1、2、2、3或2、3、3、4,组成的四位数可以是1232,2123,2321,3212,2343,3234,3432,4323,共有8个.(4)使用4个不同的数字1,2,3,4,组成的四位数可以是1243,1342,2134,2431,3124,3421,4213,4312,共有8个.因此,满足要求的四位数共有4+24+8+8=44个. 故选C .二、填空题:(本题满分28分,每小题7分)1.已知互不相等的实数,,a b c 满足111a b c t b c a+=+=+=,则t =1±.2.使得521m⨯+是完全平方数的整数m 的个数为 1 .3.在△ABC 中,已知AB =AC ,∠A =40°,P 为AB 上一点,∠ACP =20°,则BCAP=3.4.已知实数,,a b c 满足1abc =-,4a b c ++=,22243131319a b c a a b b c c ++=------,则222a b c ++=332.第二试 (A )一、(本题满分20分)已知直角三角形的边长均为整数,周长为30,求它的外接圆的面积. 解 设直角三角形的三边长分别为,,a b c (a b c ≤<),则30a b c ++=. 显然,三角形的外接圆的直径即为斜边长c ,下面先求c 的值. 由a b c ≤<及30a b c ++=得303a b c c =++<,所以10c >.由a b c +>及30a b c ++=得302a b c c =++>,所以15c <. 又因为c 为整数,所以1114c ≤≤.根据勾股定理可得222a b c +=,把30c a b =--代入,化简得30()4500ab a b -++=,所以22(30)(30)450235a b --==⨯⨯,因为,a b 均为整数且a b ≤,所以只可能是22305,3023,a b ⎧-=⎪⎨-=⨯⎪⎩解得5,12.a b =⎧⎨=⎩所以,直角三角形的斜边长13c =,三角形的外接圆的面积为1694π. 二.(本题满分25分)如图,PA 为⊙O 的切线,PBC 为⊙O 的割线,A D ⊥OP 于点D .证明:2AD BD CD =⋅.证明:连接OA ,OB ,OC.∵OA ⊥AP ,A D ⊥OP ,∴由射影定理可得2PA PD PO =⋅,2AD PD OD =⋅.又由切割线定理可得2PA PB PC =⋅,∴PB PC PD PO ⋅=⋅,∴D 、B 、C 、O 四点共圆, ∴∠PDB =∠PCO =∠OBC =∠ODC ,∠PBD =∠COD ,∴△PB D ∽△COD ,∴PD BD CD OD=,∴2AD PD OD BD CD =⋅=⋅. 三.(本题满分25分)已知抛物线216y x bx c =-++的顶点为P ,与x 轴的正半轴交于A 1(,0)x 、B 2(,0)x (12x x <)两点,与y 轴交于点C ,PA 是△ABC 的外接圆的切线.设M 3(0,)2-,若AM//BC ,求抛物线的解析式.解 易求得点P 23(3,)2b bc +,点C (0,)c .设△ABC 的外接圆的圆心为D ,则点P 和点D 都在线段AB 的垂直平分线上,设点D 的坐标为(3,)b m . 显然,12,x x 是一元二次方程2106x bx c -++=的两根,所以13x b =,23x b =AB 的中点E 的坐标为(3,0)b ,所以AE因为PA 为⊙D 的切线,所以PA ⊥AD ,又A E ⊥PD ,所以由射影定理可得2AE PE DE =⋅,即223()||2b c m =+⋅,又易知0m <,所以可得6m =-.又由DA =DC 得22DA DC =,即2222(30)()m b m c +=-+-,把6m =-代入后可解得6c =-(另一解0c =舍去).又因为AM//BC ,所以OA OMOB OC =3||2|6|-=-. 把6c =-代入解得52b =(另一解52b =-舍去). 因此,抛物线的解析式为215662y x x =-+-.第二试 (B )一.(本题满分20分)已知直角三角形的边长均为整数,周长为60,求它的外接圆的面积. 解 设直角三角形的三边长分别为,,a b c (a b c ≤<),则60a b c ++=. 显然,三角形的外接圆的直径即为斜边长c ,下面先求c 的值.由a b c ≤<及60a b c ++=得603a b c c =++<,所以20c >. 由a b c +>及60a b c ++=得602a b c c =++>,所以30c <. 又因为c 为整数,所以2129c ≤≤.根据勾股定理可得222a b c +=,把60c a b =--代入,化简得60()18000ab a b -++=,所以322(60)(60)1800235a b --==⨯⨯,因为,a b 均为整数且a b ≤,所以只可能是326025,6035,a b ⎧-=⨯⎪⎨-=⨯⎪⎩或2226025,6023,a b ⎧-=⨯⎪⎨-=⨯⎪⎩ 解得20,15,a b =⎧⎨=⎩或10,24.a b =⎧⎨=⎩当20,15a b ==时,25c =,三角形的外接圆的面积为6254π; 当10,24a b ==时,26c =,三角形的外接圆的面积为169π.二.(本题满分25分)如图,PA 为⊙O 的切线,PBC 为⊙O 的割线,A D ⊥OP 于点D ,△ADC 的外接圆与BC 的另一个交点为E.证明:∠BAE =∠ACB.证明:连接OA ,OB ,OC ,BD.∵OA ⊥AP ,A D ⊥OP ,∴由射影定理可得2PA PD PO =⋅,2AD PD OD =⋅.又由切割线定理可得2PA PB PC =⋅,∴PB PC PD PO ⋅=⋅,∴D 、B 、C 、O 四点共圆, ∴∠PDB =∠PCO =∠OBC =∠ODC ,∠PBD =∠COD ,∴△PB D ∽△COD , ∴PD BDCD OD =, ∴2BD CD PD OD AD ⋅=⋅=,∴BD AD AD CD=.又∠BDA =∠BDP +90°=∠ODC +90°=∠ADC ,∴△BDA ∽△ADC , ∴∠BAD =∠ACD ,∴AB 是△ADC 的外接圆的切线,∴∠BAE =∠ACB. 三.(本题满分25分)题目和解答与(A )卷第三题相同.第二试 (C )一.(本题满分20分)题目和解答与(B )卷第一题相同. 二.(本题满分25分)题目和解答与(B )卷第二题相同. 三.(本题满分25分)已知抛物线216y x bx c =-++的顶点为P ,与x 轴的正半轴交于A 1(,0)x 、B 2(,0)x (12x x <)两点,与y 轴交于点C ,PA 是△ABC 的外接圆的切线.将抛物线向左平移1)-个单位,得到的新抛物线与原抛物线交于点Q ,且∠QBO =∠OBC.求抛物线的解析式.解 抛物线的方程即2213(3)62b y x b c =--++,所以点P 23(3,)2b bc +,点C (0,)c . 设△ABC 的外接圆的圆心为D ,则点P 和点D 都在线段AB 的垂直平分线上,设点D 的坐标为(3,)b m . 显然,12,x x 是一元二次方程2106x bx c -++=的两根,所以13x b =,23x b =AB 的中点E 的坐标为(3,0)b ,所以AE因为PA 为⊙D 的切线,所以PA ⊥AD ,又A E ⊥PD ,所以由射影定理可得2AE PE DE =⋅,即223()||2b c m =+⋅,又易知0m <,所以可得6m =-.又由DA =DC 得22DA DC =,即2222(30)()m b m c +=-+-,把6m =-代入后可解得6c =-(另一解0c =舍去).将抛物线2213(3)662b y x b =--+-向左平移1)个单位后,得到的新抛物线为2213(324)662b y x b =--++-.易求得两抛物线的交点为Q 23(312102)2b b +-+. 由∠QBO =∠OBC 可得tan ∠QBO =tan ∠OBC.作QN ⊥AB ,垂足为N ,则N (312b +-,又233(x b b ==,所以tan ∠QBO =QN BN2310212b +=212=22111)]22==⋅. 又tan ∠OBC =OCOB 1(2b ==⋅,所以111)](22b ⋅=⋅. 解得4b =(另一解45)03b =<,舍去). 因此,抛物线的解析式为21466y x x =-+-.------------------------------------------------------------------------怎样才能学好数学一、把握好课堂的每一分钟如今的小学数学教师,都比较重视课堂教学的效益,所以,老师最期盼的事情就是:学生能够专心听讲,眼睛时刻盯在老师身上,或者盯在黑板上。

2012年全国初中数学联赛试题详解

2012年全国初中数学联赛试题详解

2012年全国初中数学联合竞赛试题参考答案第一试一、选择题:(本题满分42分,每小题7分) 1.已知1a =,b =2c =,那么,,a b c 的大小关系是 ( C )A. a b c <<B. a c b <<C. b a c <<D.b c a <<解答:1a ===b ==,2c ===1显然:b a c <<2.方程222334x xy y ++=的整数解(,)x y 的组数为 ( B ) A .3. B .4. C .5. D .6. 解答:222222223232()234x xy y x xy y y x y y ++=+++=++=由0、1、2、3、4、5、6的平分别是0、1、4、9、16、25、36知唯有16+2⨯9=34故5555544444x y x y x y x y x y y y y y y +=-+=+=+=-⎧⎧⎧⎧+=±=±⎨⎨⎨⎨===-=-⎩⎩⎩⎩、,由、、、得 4444=9=1=9=1y y y y x x x x ===-=-⎧⎧⎧⎧⎨⎨⎨⎨--⎩⎩⎩⎩、、、共4组解。

3.已知正方形ABCD 的边长为1,E 为BC 边的延长线上一点,CE =1,连接AE ,与CD 交于点F ,连接BF 并延长与线段DE 交于点G ,则BG 的长为 ( D )A.3 B.3 C.3 D.3EBD解答:如图,做G H ⊥BE 于H ,易证Rt △AB E ∽Rt △GHB ,设GH=a ,则HE=a ,BH=2-a , 由GH BH a 2-a 2==a=AB BE 123得解得,故BG=3。

4.已知实数,a b 满足221a b +=,则44a ab b ++的最小值为 ( B )A .18-. B .0. C .1. D .98. 解答:44222222219=2=21=2()48a ab b a b a b ab a b ab ab +++-+-++--+2() 考查以ab 整体为自变量的函数的图像为抛物线219y=2()48ab --+其对称轴为14ab = 由22222020a b ab a b ab +-≥++≥和知1122ab -≤≤ 又1111()4242-->-,故当12ab =-时,函数取最小值0。

2012年全国初中数学联赛试卷

2012年全国初中数学联赛试卷

2012年全国初中数学联赛试卷一、选择题:(本题满分42分,每小题7分)223.(7分)已知正方形ABCD的边长为1,E为BC边的延长线上一点,CE=1,连接AE,与CD交于点F,连接.C D.2244..5.(7分)若方程x2+2px﹣3p﹣2=0的两个不相等的实数根x1,x2满足,则实数p的所C.6.(7分)由1,2,3,4这四个数字组成四位数(数字可重复使用),要求满足a+c=b+d.这样的四位数共有二、填空题:(本题满分28分,每小题7分)7.(7分)已知互不相等的实数a,b,c满足,则t=_________.8.(7分)使得5×2m+1是完全平方数的整数m的个数为_________.9.(7分)在△ABC中,已知AB=AC,∠A=40°,P为AB上一点,∠ACP=20°,则=_________.10.(7分)已知实数a,b,c满足abc=﹣1,a+b+c=4,,则a2+b2+c2= _________.三、解答题(共3小题)11.(20分)已知直角三角形的边长均为整数,周长为60,求它的外接圆的面积.12.(25分)如图,PA为⊙O的切线,PBC为⊙O的割线,AD⊥OP于点D,△ADC的外接圆与BC的另一个交点为E.证明:∠BAE=∠ACB.13.(25分)已知抛物线的顶点为P,与x轴的正半轴交于A(x1,0)、B(x2,0)(x1<x2)两点,与y轴交于点C,PA是△ABC的外接圆的切线.设M(0,),若AM∥BC,求抛物线的解析式.2012年全国初中数学联赛试卷参考答案与试题解析一、选择题:(本题满分42分,每小题7分)﹣b=﹣﹣=,=+,=+1=<<,<<,22,3.(7分)已知正方形ABCD的边长为1,E为BC边的延长线上一点,CE=1,连接AE,与CD交于点F,连接.C D.DE=DE=.,=.2244..≤,﹣+≤时,时,﹣(﹣)+×+﹣,,或a=﹣5.(7分)若方程x2+2px﹣3p﹣2=0的两个不相等的实数根x1,x2满足,则实数p的所C.然后利用得到有关+﹣=[+﹣(+)得=4﹣(),﹣(﹣.6.(7分)由1,2,3,4这四个数字组成四位数(数字可重复使用),要求满足a+c=b+d.这样的四位数共有二、填空题:(本题满分28分,每小题7分)7.(7分)已知互不相等的实数a,b,c满足,则t=±1.=t,b+=t=t,=t,得:=t=t,时,﹣时,a+8.(7分)使得5×2m+1是完全平方数的整数m的个数为1.或9.(7分)在△ABC中,已知AB=AC,∠A=40°,P为AB上一点,∠ACP=20°,则=.BCBAE=PAsin60=AP==故答案为:10.(7分)已知实数a,b,c满足abc=﹣1,a+b+c=4,,则a2+b2+c2=.,同理可得:,=+,+=,=,即整理得:,=故答案为:三、解答题(共3小题)11.(20分)已知直角三角形的边长均为整数,周长为60,求它的外接圆的面积.∴只可能是或或,三角形的外接圆的面积为12.(25分)如图,PA为⊙O的切线,PBC为⊙O的割线,AD⊥OP于点D,△ADC的外接圆与BC的另一个交点为E.证明:∠BAE=∠ACB.13.(25分)已知抛物线的顶点为P,与x轴的正半轴交于A(x1,0)、B(x2,0)(x1<x2)两点,与y轴交于点C,PA是△ABC的外接圆的切线.设M(0,),若AM∥BC,求抛物线的解析式.中,,的横坐标为:﹣=3b,纵坐标为:b的坐标为是一元二次方程,.,即,.代入,解得(另一解舍去)∴抛物线的解析式为。

2012年全国初中数学联合竞赛试题及解答

2012年全国初中数学联合竞赛试题及解答
2 2
又 c a ( 6 2) ( 2 1) 6 ( 2 1) ,而 ( 6) ( 2 1) 3 2 2 0 .所 以 6
2 1 ,故 c a .因此 b a c .
2.方程 x 2 xy 3 y 34 的整数解 ( x, y ) 的组数为(
因为 2 | ab | a b 1 ,所以
2 2
因此 a ab b 的最小值为 0,当 a
4 4
2 2 2 2 或a 时取得. ,b ,b 2 2 2 2
5.若方程 x 2 px 3 p 2 0 的两个不相等的实数根 x1 , x2 满足 x1 x1 4 ( x2 x2 ) ,
2
验证可知: b 因此, t 1 . 方法二:由 a
1 a 1 1 a 1 时 t 1; b 时 t 1 . ,c ,c 1 a a 1 a a
1 1 bc . b 可得 bc b c a b ca a b 同理可得: ca , ab . bc ca
1
) D.
6 3
B.
5 3
C.
2 6 3
2 5 3
易知 BG:GH=2:1,所以 BG =
2 2 5 BH 3 3
A F
D G
H
B
2 2 4
C
4
P
E

4.已知实数 a, b 满足 a b 1 ,则 a ab b 的最小值为 ( A. 【答】B.
1 . 8
B.0.
C.1.
D.
m 2
m 2
设 n 2k 1 (其中 k 是正整数) ,则 5 2 4k (k 1) ,即 5 2

2012年全国初中数学竞赛试题

2012年全国初中数学竞赛试题

2012年全国初中数学竞赛试题考试时间 2012年3月18日 9:30-11:30 满分150分答题时注意:1.用圆珠笔或钢笔作答; 2.解答书写时不要超过装订线; 3.草稿纸不上交.一、选择题(共5小题,每小题7分,共35分. 每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.如果实数a ,b ,ca b b c +++可以化简为( )A .2c -aB . 2a -2bC . –aD .a2.在平面直角坐标系xOy 中,满足不等式2222x y x y +≤+的整数点坐标(x ,y )的个数为( )A .10B .9C . 7D .53.如图,四边形ABCD 中,AC ,BD 是对角线,△ABC 是等边三角形.∠ADC =30°,AD =3,BD =5,则CD的长为( )A .B .4C .D .4.5(第1题图)BADC4.小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱数将是你的n 倍”;小玲对小倩说:“你若给我n 元,我的钱数将是你的2倍”,其中n 为正整数,则n 的可能值的个数是( )A .1B .2C .3D .45.黑板上写有1111,,,,23100⋅⋅⋅共有100个数字.每次操作先从黑板上的数中选取2个数a ,b ,然后删去a ,b ,并在黑板上写上数a+b+ab ,则经过99次操作后,黑板上剩下的数是( )A .2012B .101C .100D .99二、填空题(共5小题,每小题7分,共35分)6.按如图的程序进行操作,规定:程序运行从“输入一个值x ”到“结果是否>487?”为一次操作.如果操作进行四次才停止,那么x 的取值范围是____________.7.如图,⊙O 的半径为20,A 是⊙O 上一点.以OA 为对角线作矩形OBAC ,且OC =12.延长BC ,与⊙O 分别交于D ,E 两点,则CE -BD 的值等于___________.8.如果关于x 的方程22393042x kx k k ++-+=的两个实数根分别为x 1,x 2,那么2011120122x x 的值为_______________.9.2位八年级同学和m 位九年级同学一起参加象棋比赛,比赛为单循环,即所有参赛者彼此恰好比赛一场.记分规则是:每场比赛胜者得3分,负者得0分,平局各得1分.比赛结束后,所有同学的得分总和为130分,而且平局数不超过比赛局数的一半,则m 的值为_____________.10.如图,四边形ABCD 内接于⊙O ,AB 是直径,AD =DC .分别延长BA ,CD ,交点为E .作BF ⊥EC ,并与EC 的延长线交于点F .若AE =AO ,BC =6,则CF 的长为___________.(第6题图)AB OCED(第7题图)三、解答题(共4题,每题20分,共80分)11.如图,在平面直角坐标系xOy 中,AO =8,AB =AC ,sin ∠ ABC =45.CD 与y 轴交于点E ,且C O E A D E S S ∆∆=.已知经过B ,C ,E 三点的图像是一条抛物线,求这条抛物线对应的二次函数的解析式.12.如图,⊙O 的内接四边形ABCD 中,AC ,BD 是它的对角线,AC 的中点I 是△ABD 的内心. 求证:(1)OI 是△IBD 的外接圆的切线;(2)AB +AD =2BD .13.已知整数a ,b 满足:a -b 是素数,且ab 是完全平方数.当a ≥2012时,求a 的最小值.14.将2,3,…,n (n ≥2)任意分成两组,如果总可以在其中一组中找到数a ,b ,c (可以相同)使得ba c =,求n 的最小值.IABDOC2012年全国初中数学竞赛试卷答案(考试时间:120分钟 总分:150分)一、选择题(每小题7分,共35分)1.如果实数a ,b ,c a b b c ++可以化简为( C )A .2c a -B .22a b -C .a -D .a解:由实数a ,b ,c 在数轴上的位置可知0b a c <<<,且b c >,所以()()()a b b c a a b c a b c a +++=-+++--+=-2.在平面直角坐标系xOy 中,满足不等式2222x y x y +≤+的整数点坐标()x y ,的个数为( B ) A .10 B .9 C .7 D .5解:由题设2222x y x y +≤+,得220(1)(1)2x y ≤-+-≤.因为x ,y 均为整数,所以有22(1)0(1)0x y ⎧-=⎪⎨-=⎪⎩,22(1)0(1)1x y ⎧-=⎪⎨-=⎪⎩,22(1)1(1)0x y ⎧-=⎪⎨-=⎪⎩,22(1)1(1)1x y ⎧-=⎪⎨-=⎪⎩ 解得11x y =⎧⎨=⎩,12x y =⎧⎨=⎩,10x y =⎧⎨=⎩,01x y =⎧⎨=⎩,21x y =⎧⎨=⎩,00x y =⎧⎨=⎩,02x y =⎧⎨=⎩,20x y =⎧⎨=⎩,22x y =⎧⎨=⎩以上共计9对()x y ,3.如图,四边形ABCD 中,AC ,BD 是对角线,△ABC 是等边三角形.30ADC ∠=︒,AD = 3,BD = 5,则CD 的长为( B )A .23B .4C .52D .4.5 解:如图,以CD 为边作等边△CDE ,连接AE .由于AC = BC ,CD = CE ,BCD BCA ACD DCE ACD ACE ∠=∠+∠=∠+∠=∠.所以 △BCD ≌△ACE , BD = AE . 又因为30ADC ∠=︒,所以90ADE ∠=︒. 在Rt △ADE 中,53AE AD ==,,于是DE 4=,所以CD = DE = 4.4.小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱数将是你的n 倍”;小玲对小倩说:“你若给我n 元,我的钱数将是你的2倍”,其中n 为正整数,则n 的可能值的个数是( D )A .1B .2C .3D .4解:设小倩所有的钱数为x 元、小玲所有的钱数为y 元,x y ,均为非负整数.由题设可得 2(2)2()x n y y n x n +=-⎧⎨+=-⎩.消去x 得,(27)4y n y -=+,(27)1515212727y n y y -+==+--. 因为1527y -为正整数,所以27y -的值分别为1,3,5,15.y 的值只能为4,5,6,11.从而n 的值分别为8,3,2,1. 所以 x 的值分别为14,7,6,7.5.黑板上写有111123100, , ,, 共100个数字.每次操作先从黑板上的数中选取2个数a b ,,然后删去a b ,,并在黑板上写上数a b ab ++,则经过99次操作后,黑板上剩下的数是( C )A .2012B .101C .100D .99解:因为1(1)(1)a b ab a b +++=++,所以每次操作前和操作后,黑板上的每个数加1后的乘积不变.设经过99次操作后黑板上剩下的数为x ,则1111(11)(1)(1)(1)23100x +=+++⋅⋅+ , 解得,1101x +=,100x =.二、填空题(每小题7分,共35分)6.按如图的程序进行操作,规定:程序运行从“输入一个值x ”到“结果是否>487?”为一次操作.如果操作进行四次才停止,那么x 的取值范围是 719x <≤ .解:前四次操作的结果分别为32x -,3(32)298x x --=-,3(98)22726x x --=-,3(2726)28180x x --=-.由已知得,27264878180487x x -≤⎧⎨->⎩.解得719x <≤.容易验证,当719x <≤,32487x -≤,98487x -≤,故x 的取值范围是719x <≤.7.如图,⊙O 的半径为20,A 是⊙O 上一点.以OA 为对角线作矩形OBAC ,且12OC =.延长BC ,与⊙O 分别交于D E ,两点,则CE BD -的值等于 285 .解:如图,设DE 的中点为M ,连接OM ,则OM DE ⊥.因为16OB ==,所以161248205OB OC OM BC ⋅⨯===,366455CM BM ===,.z CE BD EM CM DM BM -=---()()643655BM CM =-=-285=. 8.如果关于x 的方程22393042x kx k k ++-+=的两个实数根分别为1x ,2x ,那么2012220111x x 的值为 32-.解:根据题意,关于x 的方程有22394(3)042k k k ∆=--+≥,由此得2(3)0k -≤.又2(3)0k -≥,所以2(3)0k -= ,3k =.此时方程为29304x x ++=,解得1232x x ==-.故20111201222123x x x ==-9.2位八年级同学和m 位九年级同学一起参加象棋比赛,比赛为单循环,即所有参赛者彼此恰好比赛一场.记分规则是:每场比赛胜者得3分,负者得0分;平局各得1分.比赛结束后,所有同学的得分总和为130分,而且平局数不超过比赛局数的一半,则m 的值为 8 .解:设平局数为a ,胜(负)局数为b ,由题设知 23130a b +=.由此得043b ≤≤.又(1)(2)2m m a b +++=,所以22(1)(2)a b m m +=++.于是0130(1)(2)43b m m ≤=-++≤,87(1)(2)130m m ≤++≤. 由此得8m =或9m =. 当8m =时,40b =,5a =; 当9m =时,20b =,35a =,5522a b a +>=.不合题设.故8m =. 10.如图,四边形ABCD 内接于⊙O ,AB 是直径,AD DC =.分别延长BA ,CD ,交点为E .作BF E C ⊥,并与EC 的延长线交于点F .若AE AO =,6BC =,则CF 的长为 223 .解:如图,连接AC ,BD ,OD .由AB 是⊙O 的直径知90BCA BDA ∠=∠=︒.依题设90BFC ∠=︒,四边形ABCD 是⊙O 的内接四边形, 所以BCF BAD ∠=∠.所以Rt BCF Rt BAD △∽△,因此BC BACF AD=.因为OD 是⊙O 的半径,AD CD =, 所以OD 垂直平分AC ,OD BC ∥,于是2DE OEDC OB==. 因此223DE CD AD CE AD ===,. 由AED CEB △∽△,知DE EC AE BE ⋅=⋅.因为322BA AE BE BA ==,,所以 32322BA AD AD BA ⋅=⋅,BA =.故AD CF BC BA =⋅==. 三、解答题(每题20分,共80分)11.如图,在平面直角坐标系xOy 中,8AO =,AB AC =,4sin 5ABC ∠=.CD 与y 轴交于点E ,且COE ADE S S =△△.已知经过B ,C ,E 三点的图象是一条抛物线,求这条抛物线对应的二次函数的解析式.解:因为sin ∠ABC =45AO AB =,8AO =,所以AB = 10.由勾股定理,得6BO ==.易知ABO ACO △≌△, 因此 CO = BO = 6.于是(08)A -,,(60)B ,,(60)C -,. 设点D 的坐标为()m n ,. 由COE ADE S S =△△,得CDB AOB S S =△△. 所以1122BC n AO BO ⋅=⋅,1112()8622n ⨯-=⨯⨯. 解得 4n =-.因此D 为AB 的中点,点 D 的坐标为(34)-,. 因此CD ,AO 分别为AB ,BC 的两条中线,点E 为△A BC 的重心,所以点E 的坐标为8(0)3-,. 设经过B ,C ,E 三点的抛物线对应的二次函数的解析式为(6)(6)y a x x =-+. 将点E 的坐标代入,解得a =272. 故经过B ,C ,E 三点的抛物线对应的二次函数的解析式为228273y x =-.12.如图,⊙O 的内接四边形ABCD 中,AC ,BD 是它的对角线,AC 的中点I 是△ABD 的内心.求证:(1)OI 是△IBD 的外接圆的切线;(2)2AB AD BD +=. 解:(1)如图,根据三角形内心的性质和同弧上圆周角的性质知CID IAD IDA ∠=∠+∠,CDI CDB BDI BAC IDA IAD IDA ∠=∠+∠=∠+∠=∠+∠.所以CID CDI ∠=∠, CI = CD . 同理,CI = CB . 故点C 是△IBD 的外心.连接OA ,OC ,因为I 是AC 的中点,且OA = OC , 所以OI ⊥AC ,即OI ⊥CI .故OI 是△IBD 外接圆的切线. (2)如图,过点I 作IE ⊥AD 于点E ,设OC 与BD 交于点F .由 BCCD =,知OC ⊥BD . 因为∠CBF =∠IAE ,BC = CI = AI ,所以Rt BCF Rt AIE △≌△.所以BF = AE . 又因为I 是△ABD 的内心,所以22AB AD BD AE BD BD BF BD +-=+-==. 故2AB AD BD +=.13.已知整数a ,b 满足:a b -是素数,且ab 是完全平方数.当2012a ≥时,求a 的最小值.解:设a b m -=(m 是素数),2ab n =(n 是正整数).因为 22()4()a b ab a b +-=-,所以 222(2)4a m n m --=,2(22)(22)a m n a m n m -+--=.因为22a m n -+与22a m n --都是正整数,且2222a m n a m n -+>--(m 为素数), 所以 222a m n m -+=,221a m n --=.解得2(1)4m a +=, 214m n -=.于是214m b a m -=-=().又2012a ≥,即2(1)20124m +≥. 又因为m 是素数,解得89m ≥. 此时,2(891)4a +≥=2025.当2025a =时,89m =,1936b =,1980n =. 因此,a 的最小值为2025.14.将23n , , ,(2n ≥)任意分成两组,如果总可以在其中一组中找到数a b c ,,(可以相同)使得b ac =,求n 的最小值.解:当1621n =-时,把23n , , ,分成如下两个数组:{}88162322121+- , , , , , 和{}84521- , , , .在数组{}88162322121+- , , , , , 中,由于38821632221<>-(,),所以其中不存在数a b c ,,,使得ba c =. 在数组{}84521- , , , 中,由于48421>-, 所以其中不存在数a b c ,,,使得ba c =. 所以,162n ≥. 下面证明当162n =时,满足题设条件.不妨设2在第一组,若224=也在第一组,则结论已经成立.故不妨设224=在第二组. 同理可设4842=在第一组,8216(2)2=在第二组.此时考虑数8.如果8在第一组,我们取8282a b c ===,,,此时ba c =;如果8在第二组,我们取16482abc ===,,,此时ba c =. 综上,162n =满足题设条件. 所以,n 的最小值为162.注:也可以通过考虑2,4,16,256,65536的分组情况得到n 最小值为65536.。

【数学竞赛】2012年全国初中数学联赛试题答案

【数学竞赛】2012年全国初中数学联赛试题答案

【数学竞赛】2012年全国初中数学联合竞赛试题参考答案第一试一、选择题:(本题满分42分,每小题7分)1.已知1a =-,b =2c =,那么,,a b c 的大小关系是 ( C )A. a b c <<B. a c b <<C. b a c <<D.b c a <<2.方程222334x xy y ++=的整数解(,)x y 的组数为 ( B ) A .3. B .4. C .5. D .6.3.已知正方形ABCD 的边长为1,E 为BC 边的延长线上一点,CE =1,连接AE ,与CD 交于点F ,连接BF 并延长与线段DE 交于点G ,则BG 的长为 ( D )A B C D 4.已知实数,a b 满足221a b +=,则44a ab b ++的最小值为 ( B ) A .18-. B .0. C .1. D .98. 5.若方程22320x px p +--=的两个不相等的实数根12,x x 满足232311224()x x x x +=-+,则实数p的所有可能的值之和为 ( B )A .0.B .34-. C .1-. D .54-. 6.由1,2,3,4这四个数字组成四位数abcd (数字可重复使用),要求满足a c b d +=+.这样的四位数共有 ( C )A .36个.B .40个.C .44个.D .48个. 二、填空题:(本题满分28分,每小题7分)1.已知互不相等的实数,,a b c 满足111a b c t b c a+=+=+=,则t =1±.2.使得521m⨯+是完全平方数的整数m 的个数为 1 .3.在△ABC 中,已知AB =AC ,∠A =40°,P 为AB 上一点,∠ACP =20°,则BCAP=.4.已知实数,,a b c 满足1abc =-,4a b c ++=,22243131319a b c a a b b c c ++=------,则222a b c ++=332.第二试 (A )一、(本题满分20分)已知直角三角形的边长均为整数,周长为30,求它的外接圆的面积. 解 设直角三角形的三边长分别为,,a b c (a b c ≤<),则30a b c ++=.显然,三角形的外接圆的直径即为斜边长c ,下面先求c 的值. 由a b c ≤<及30a b c ++=得303a b c c =++<,所以10c >. 由a b c +>及30a b c ++=得302a b c c =++>,所以15c <. 又因为c 为整数,所以1114c ≤≤.根据勾股定理可得222a b c +=,把30c a b =--代入,化简得30()4500ab a b -++=,所以22(30)(30)450235a b --==⨯⨯,因为,a b 均为整数且a b ≤,所以只可能是22305,3023,a b ⎧-=⎪⎨-=⨯⎪⎩解得5,12.a b =⎧⎨=⎩所以,直角三角形的斜边长13c =,三角形的外接圆的面积为1694π. 二.(本题满分25分)如图,PA 为⊙O 的切线,PBC 为⊙O 的割线,A D ⊥OP 于点D .证明:2AD BD CD =⋅.证明:连接OA ,OB ,OC.∵OA ⊥AP ,A D ⊥OP ,∴由射影定理可得2PA PD PO =⋅,2AD PD OD =⋅.又由切割线定理可得2PA P B PC =⋅,∴PB PC PD PO ⋅=⋅,∴D 、B 、C 、O 四点共圆, ∴∠PDB =∠PCO =∠OBC =∠ODC ,∠PBD =∠COD ,∴△PB D ∽△COD ,∴PD BD CD OD=,∴2AD PD OD BD CD =⋅=⋅. 三.(本题满分25分)已知抛物线216y x bx c =-++的顶点为P ,与x 轴的正半轴交于A 1(,0)x 、B 2(,0)x (12x x <)两点,与y 轴交于点C ,PA 是△ABC 的外接圆的切线.设M 3(0,)2-,若AM//BC ,求抛物线的解析式.解 易求得点P 23(3,)2b bc +,点C (0,)c .设△ABC 的外接圆的圆心为D ,则点P 和点D 都在线段AB 的垂直平分线上,设点D 的坐标为(3,)b m . 显然,12,x x 是一元二次方程2106x bx c -++=的两根,所以13x b =,23x b =AB 的中点E 的坐标为(3,0)b ,所以AE因为PA 为⊙D 的切线,所以PA ⊥AD ,又A E ⊥PD ,所以由射影定理可得2AE PE DE =⋅,即。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学竞赛试题中国教育学会中学数学教学专业委员会2012年全国初中数学竞赛试题题号一二三总分1~56~1011121314得分评卷人复查人答题时注意:1.用圆珠笔或钢笔作答;2.解答书写时不要超过装订线;3.草稿纸不上交.一、选择题(共5小题,每小题7分,共35分.每道小题均给出了代号为A,B,C,D的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1(甲).如果实数,,在数轴上的位置如图所示,那么代数式可以化简为().A.B.C.D.1(乙).如果,那么的值为().A. B. C.2 D.2(甲).如果正比例函数与反比例函数的图象有两个交点,其中一个交点的坐标为,那么另一个交点的坐标为().A. B. C. D.2(乙).在平面直角坐标系中,满足不等式的整数点坐标的个数为().A.10 B.9 C.7 D.53(甲).如果为给定的实数,且,那么这四个数据的平均数与中位数之差的绝对值是().A.1 B. C. D.3(乙).如图,四边形中,、是对角线,是等边三角形.,,,则的长为().A. B.4 C. D.4.54(甲).小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱数将是你的倍”;小玲对小倩说:“你若给我元,我的钱数将是你的2倍”,其中为正整数,则的可能值的个数是().A.1 B.2 C.3 D.44(乙).如果关于的方程是正整数)的正根小于3,那么这样的方程的个数是().A.5 B.6 C.7 D.85(甲).一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,3,4,5,6.掷两次骰子,设其朝上的面上的两个数字之和除以4的余数分别是0,1,2,3的概率为,则中最大的是().A. B. C. D.5(乙).黑板上写有共100个数字.每次操作先从黑板上的数中选取2个数,然后删去,并在黑板上写上数,则经过99次操作后,黑板上剩下的数是().A.2012 B.101 C.100 D.99二、填空题(共5小题,每小题7分,共35分)6(甲).按如图的程序进行操作,规定:程序运行从“输入一个值x”到“结果是否”为一次操作.如果操作进行四次才停止,那么的取值范围是.6(乙).如果,,是正数,且满足,,那么的值为.7(甲).如图,正方形的边长为2,、分别是、的中点,与、分别交于点、,则的面积是.7(乙).如图,的半径为20,是上一点。

以为对角线作矩形,且.延长,与分别交于两点,则的值等于.8(甲).如果关于的方程的两个实数根分别为,,那么的值为.8(乙).设为整数,且.若能被5整除,则所有的个数为.9(甲).2位八年级同学和位九年级同学一起参加象棋比赛,比赛为单循环,即所有参赛者彼此恰好比赛一场.记分规则是:每场比赛胜者得3分,负者得0分;平局各得1分.比赛结束后,所有同学的得分总和为130分,而且平局数不超过比赛局数的一半,则的值为.9(乙).如果正数,,可以是一个三角形的三边长,那么称是三角形数.若和均为三角形数,且,则的取值范围是.10(甲).如图,四边形内接于,是直径,.分别延长,,交点为.作,并与的延长线交于点.若,,则的长为.10(乙).已知是偶数,且.若有唯一的正整数对使得成立,则这样的的个数为.三、解答题(共4题,每题20分,共80分)11(甲).已知二次函数,当时,恒有;关于的方程的两个实数根的倒数和小于.求的取值范围.11(乙).如图,在平面直角坐标系中,,,.与轴交于点,且.已知经过,,三点的图象是一条抛物线,求这条抛物线对应的二次函数的解析式.12(甲).如图,的直径为,过点,且与内切于点.为上的点,与交于点,且.点在上,且,BE的延长线与交于点,求证:.12(乙).如图,的内接四边形中,,是它的对角线,的中点是的内心.求证:(1)是的外接圆的切线;(2).13(甲).已知整数,满足:是素数,且是完全平方数.当时,求的最小值.13(乙).凸边形中最多有多少个内角等于?并说明理由.14(甲).求所有正整数,使得存在正整数,满足,且.14(乙).将任意分成两组,如果总可以在其中一组中找到数(可以相同)使得,求的最小值.中国教育学会中学数学教学专业委员会2012年全国初中数学竞赛试题参考答案一、选择题1(甲).C解:由实数,,在数轴上的位置可知,且,所以.1(乙).B解:.2(甲).D解:由题设知,,,所以.解方程组得所以另一个交点的坐标为.注:利用正比例函数与反比例函数的图象及其对称性,可知两个交点关于原点对称,因此另一个交点的坐标为.2(乙).B解:由题设,得.因为均为整数,所以有解得以上共计9对.3(甲).D解:由题设知,,所以这四个数据的平均数为,中位数为,于是.3(乙).B解:如图,以为边作等边,连接.由于,,,所以,.又因为,所以.在中,于是,所以.4(甲).D解:设小倩所有的钱数为元、小玲所有的钱数为元,均为非负整数.由题设可得消去得,.因为为正整数,所以的值分别为1,3,5,15,所以的值只能为4,5,6,11.从而的值分别为8,3,2,1;的值分别为14,7,6,7.4(乙).C解:由一元二次方程根与系数关系知,两根的乘积为,故方程的根为一正一负.由二次函数的图象知,当时,,所以,即.由于都是正整数,所以,;或,,此时都有.于是共有7组符合题意.5(甲).D解:掷两次骰子,其朝上的面上的两个数字构成的有序数对共有36个,其和除以4的余数分别是0,1,2,3的有序数对有9个,8个,9个,10个,所以,因此最大.5(乙).C解:因为,所以每次操作前和操作后,黑板上的每个数加1后的乘积不变.设经过99次操作后黑板上剩下的数为,则,解得,.二、填空题6(甲).解:前四次操作的结果分别为,,,由已知得解得.容易验证,当时,,故的取值范围是.6(乙).7解:由已知可得.7(甲).8解:连接,记正方形的边长为2.由题设易知,所以,由此得,所以.在中,因为,所以,于是.由题设可知,所以,.于是,,.又,所以.因为,所以.7(乙).解:如图,设的中点为,连接,则.因为,所以,.8(甲).解:根据题意,关于的方程有,由此得.又,所以,从而.此时方程为,解得.故.8(乙).1610解:因为==.当被5除余数是1或4时,或能被5整除,则能被5整除;当被5除余数是2或3时,能被5整除,则能被5整除;当被5除余数是0时,不能被5整除.所以符合题设要求的所有的个数为.9(甲).8解:设平局数为,胜(负)局数为,由题设知,由此得.又,所以.于是,,由此得,或.当时,;当时,,,不合题设.9(乙).解:由题设得所以,即.整理得,由二次函数的图象及其性质,得. 又因为,所以.10(甲).解:如图,连接,,.由是的直径知.依题设,四边形是的内接四边形,所以,所以,因此.因为是的半径,,所以垂直平分,,于是.因此.由,知.因为,所以,,故.10(乙).12解:由已知有,且为偶数,所以同为偶数,于是是4的倍数.设,则.(Ⅰ)若,可得,与是正整数矛盾.(Ⅱ)若至少有两个不同的素因数,则至少有两个正整数对满足;若恰是一个素数的幂,且这个幂指数不小于3,则至少有两个正整数对满足.(Ⅲ)若是素数,或恰是一个素数的幂,且这个幂指数为2,则有唯一的正整数对满足.因为有唯一正整数对,所以m的可能值为2,3,4,5,7,9,11,13,17,19,23,25,共有12个.三、解答题11(甲).解:因为当时,恒有,所以,即,所以.…………(5分)当时,;当时,,即,且,解得.…………(10分)设方程的两个实数根分别为,由一元二次方程根与系数的关系得.因为,所以,解得,或.因此.…………(20分)11(乙).解:因为,,所以由勾股定理,得.易知,因此.于是,,.设点的坐标为,由,得.所以,,解得.因此为的中点,点的坐标为.…………(10分)因此,分别为,的两条中线,点为的重心,所以点的坐标为.设经过,,三点的抛物线对应的二次函数的解析式为.将点的坐标代入,解得. 故经过,,三点的抛物线对应的二次函数的解析式为.…………(20分)12(甲).证明:连接,因为为的直径,所以.又因为,所以是等腰三角形.…………(5分)设与交于点,连接,则.又因为,所以.…………(15分)又因为分别是等腰△,等腰△的顶角,所以.…………(20分)12(乙).证明:(1)如图,根据三角形内心的性质和同弧上圆周角的性质知所以.同理,.故点是的外心.连接,,因为是的中点,且,所以,即.故是外接圆的切线.…………(10分)(2)如图,过点作于点,设与交于点.由,知.因为,,所以,所以.又因为是的内心,所以.故.…………(20分)13(甲).解:设(是素数),(是正整数).因为,所以,…………(5分)因为与都是正整数,且(为素数),所以,.解得, .于是.…………(10分)又,即.又因为是素数,解得.此时, .当时,,,.因此,的最小值为2025.…………(20分)13(乙).解:假设凸边形中有个内角等于,则不等于的内角有个.(1)若,由,得,正十二边形的12个内角都等于;…………(5分)(2)若,且,由,可得,即.当时,存在凸边形,其中的11个内角等于,其余个内角都等于,.…………(10分)(3)若,且.当时,设另一个角等于.存在凸边形,其中的个内角等于,另一个内角.由可得;由可得,且.…………(15分)(4)若,且,由(3)可知.当时,存在凸边形,其中个内角等于,另两个内角都等于.综上,当时,的最大值为12;当时,的最大值为11;当时,的最大值为;当时,的最大值为.…………(20分)14(甲).解:由于都是正整数,且,所以,,…,.于是.…………(10分)当时,令,则.…………(15分)。

相关文档
最新文档