2017_2018学年高考数学第05周解三角形周末培优试题文新人教A版
2017-2018学年高中数学 第一章 解三角形阶段质量检测B卷(含解析)新人教A版必修5

第一章 解三角形(B 卷 能力素养提升) (时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在锐角△ABC 中,角A ,B 所对的边长分别为a ,b .若2a sin B =3b ,则角A 等于( ) A.π3 B.π4C.π6D. π12解析:选A 由正弦定理得2sin A sin B =3sin 角△ABC ,所以A =π3.2.在△ABC 中,角A ,B ,C C =3a sin ( ) A.π6 D.5π6c sin C =3a sin B ,由正弦定理可知a 2+b 2-c20<C <π,所以C =π6.c =150,则△ABC 的形状是( )解析:选D 由正弦定理可得sin C =c sin B b =32.∵b <c ,∴C =60°或120°.从而A =90°或A =B =30°.4.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若3a =2b ,则 2sin 2B -sin 2Asin 2A 的值为( )A.19B.13C .1D.72解析:选D 由正弦定理可得2sin 2B -sin 2A sin 2A =2⎝ ⎛⎭⎪⎫sinB sin A 2-1=2⎝ ⎛⎭⎪⎫b a 2-1,因为3a =2b ,所以b a =32,所以2sin 2B -sin 2A sin 2A =2×⎝ ⎛⎭⎪⎫322-1=72. 5.△ABC 的三边分别为a ,b ,c ,且a =1,B =45°,S △ABC =2,则△ABC 的外接圆的直径为( )A .4 3B .5C .5 2D .6 2解析:选C ∵S △ABC =12ac sin B ,∴c =4 2.由余弦定理b 2=a 2+c 2-2ac cos B =25,∴b =5.由正弦定理2R =bsin B=52(R 为△ABC 外接圆的半径).6.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c 若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为( )A.π6B.π3=a 2+c 2-b 22ac,又因为(a 2+c 2-b 2)tan B =3ac ,所以B =π3或2π3. a 2=52ac ,则cos B 的值为( )D.14解析:选D 因为sin A =3,由正弦定理得c =3a ,又因为b 2-a 2=52ac ,所以b 2=172a 2,由余弦定理可知cos B =a 2+c 2-b22ac=a 2+9a 2-172a 26a2=14. 8.已知等腰三角形ABC 的面积为32,顶角A 的正弦值是底角B 正弦值的 3 倍,则该三角形一腰的长为( )A. 2B. 3 C .2 D. 6解析:选A 依题意b =c ,sin A =3sin B . 由正弦定理a sin A =bsin B ,∴a =3b .∴三角形底边上的高h = b 2-⎝ ⎛⎭⎪⎫12a 2=12b .又三角形的面积为32,∴32=12×3b ×b 2, ∴b = 2.9.在锐角△ABC 中,AB =3,AC =4,其面积S △ABC =33,则BC =( ) A .5 B.13或37 C.37 D.13解析:选D 因为S △ABC =12·AB ·AC ·sin A =33,所以sin A =32,又因为△ABC 是锐角三角形,所以A =π3,在△ABC 中,由余弦定理可得BC 2=AC 2+AB 2-2AB ·AC ·cos A =9+16-2×3×4×12=13,∴BC =13.10.如图所示为起重机装置示意图,支杆BC =10 m ,吊杆AC =15 m ,吊索AB =519 m ,起吊的货物与岸的距离AD 为( )A .30 m B.1532m C .15 3 mD .45 m解析:选B 在△ABC 中,AC =15 m ,AB =519 m ,BC =10 m ,由余弦定理得cos ∠ACB =AC 2+BC 2-AB 22×AC ×BC=152+102-1922×15×10=-12.∴sin ∠ACB =32. 又∠ACB +∠ACD =180°. ∴sin ∠ACD =sin ∠ACB =32. 在Rt △ADC 中,AD =AC ·sin∠ACD =15×32=1532m. 11.在△ABC 中,若3b =23a sin B ,且cos B =cos C ,则△ABC 的形状是( )A .等腰三角形B .等边三角形C .等腰直角三角形D .直角三角形解析:选A 由已知3b =23a sin B 可得bsin B=a32,根据正弦定理 知sin A =32, ∴A =60°或120°.又cos B =cos C ,∴B =C . ∴A =B =C =60°或A =120°,B =C =30°, 所以选A 项.12.某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为α的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为( )A .2sin α-2cos α+2B .sin α-3cos α+3C .3sin α-3cos α+1 α=2sin α再由余弦定=2-2cos α,故正方形的面积为2α+2.分,把正确答案填在题中的横线上) ________.设BC 中点为D ,连结AD , 则AD ⊥BC .在Rt △ABD 中, cos B =BD BA =12a 2a =14.设AB 中点为点E ,连结CE , 则在△BEC 中,BE =BC =a ,由余弦定理CE 2=CB 2+BE 2-2CB ·BE ·c os B =a 2+a 2-2a 2·14=2a 2-12a 2=32a 2,∴CE =62a . 答案:62a 14.在△ABC 中,a 比c 长4,b 比c 长2,且最大角的余弦值是-12,则△ABC 面积等于________.解析:由题意得:a =c +4,b =c +2,则A 为最大角,cos A =b 2+c 2-a 22bc=c +2+c 2-c +2c +c=c 2+4c +4+c 2-c 2-8c -162c c +=c 2-4c -122c 2+4c =-12,即c 2-4c -12=-c 2-2c .即c 2-c -6=0. 解得c =3,或c =-2(舍).∴a =7,b =5,A =120°.∴S △ABC =12bc sin A =12×5×3×32=15 34.答案:15 3415.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若a =2,c =23,C =π3,则b =________.解析:由正弦定理a sin A =c sin C 得sin A =12,因为a <c ,所以A =π6,B =π2,则b =c 2+a2=4.答案:416.某人在C 点测得塔AB 在南偏西80°,对塔顶A 的仰角为45°,沿南偏东40°方向前进10 m 到O ,测得塔顶A 的仰角为30°,则塔高为________.解析:画出示意图,如图所示,CO =10,∠OCD =40°, ∠BCD =80°,∠ACB =45°,∠AOB =30°,AB ⊥平面BCO .令AB =x ,则BC =x ,BO =3x .在△BCO 中,由余弦定理得(3x )2=x 2+100-2x ×10×cos(80°+40°),整理得x 2-5x -50=0.解得x =10,或x =-5(舍去).所以塔高为10 m. 答案:10 m三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)在△ABC 中,内角A ,B ,C 所对的边分别为 a ,b ,c .已知4sin 2A -B2+4sin A sin B =2+ 2.(1)求角C 的大小;(2)已知 b =4, △ABC 的面积为6,求边长 c解:(1)由已知得2[1-cos(A -B )]+4sin A 化简得-2cos A cos B +2sin A sin B =2, 故cos(A +B )=-22. 所以A +B =3π4,从而C =π4.3 2.,得c =10.A ,B ,C 的对边分别是a ,b ,c 且满足4a cos B .B 及正弦定理得 4sin A cos B -sin B cosC =sin C cos B ,∴4sin A cos B =sin(B +C ),即4sin A cos B =sin A , ∵sin A ≠0,∴cos B =14.(2)∵ac =12,b =32及余弦定理b 2=a 2+c 2-2ac cos B , 得a 2+c 2=24,由a 2+c 2=24及ac =12解得a =c =2 3.19.(本小题满分12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知b 2+c2=a 2+bc .(1)求角A 的大小; (2)如果cos B =63,b =2,求△ABC 的面积. 解:(1)因为b 2+c 2=a 2+bc ,所以cos A =b 2+c 2-a 22bc =12,又因为A ∈(0,π),所以A =π3.(2)因为cos B =63,B ∈(0,π), 所以sin B =1-cos 2B =33. 由正弦定理a sin A =b sin B ,得a =b sin Asin B=3.因为b 2+c 2=a 2+bc ,所以c 2-2c -5=0,解得c =1±6, 因为c >0,所以c =6+1.故△ABC 的面积S =12bc sin A =32+32.20.(本小题满分12分)在锐角△ABC 中, a ,b ,c 分别为角A ,B ,C 所对的边,且 3a =2c sin A .(1)确定角C 的大小;(2)若c =3,求△ABC 周长的取值范围.解:(1)已知a ,b ,c 分别为角A ,B ,C 所对的边, 由 3a =2c sin A ,得 3sin A =2sin C sin A , 又sin A ≠0,则sin C =32, ∴C =π3或C =2π3,∵△ABC 为锐角三角形,∴C =2π3舍去,∴C =π3.(2)∵c =3,sin C =32,∴由正弦定理得:a sin A =b sin B =c sin C =332=2,即a =2sin A ,b =2sin B ,又A +B =π-C =2π3,即B =2π3-A ,∴a +b +c =2(sin A +sin B )+ 3 =2⎣⎢⎡⎦⎥⎤sin A +sin ⎝⎛⎭⎪⎫2π3-A + 3=2⎝ ⎛⎭⎪⎫sin A +sin 2π3cos A -cos 2π3sin A + 3 =3sin A +3cos A + 3=23⎝ ⎛⎭⎪⎫sin A cos π6+cos A sin π6+3=23·sin ⎝ ⎛⎭⎪⎫A +π6+3, ∵△ABC 是锐角三角形,∴π6<A <π2, ∴32<sin ⎝⎛⎭⎪⎫A +π6≤1, 则△ABC 周长的取值范围是(321.(本小题满分12分)A ,B a ,b ,c .若mcos A ,sin A ,⎛cos A ,=3,求b +c 的值.A =12,∴cos A =-2.又A ∈(0,π),∴A =2π3.(2)S △ABC =12bc ·sin A =12bc ·sin 2π3=3,∴bc =4.又由余弦定理得a 2=b 2+c 2-2bc ·cos2π3=b 2+c 2+bc , ∴16=(b +c )2,故b +c =4.22.(本小题满分12分)如图所示,某海岛上一观察哨A 上午11时测得一轮船在海岛北偏东60°的C 处,12时20分时测得该轮船在海岛北偏西60°的B 处,12时40分该轮船到达位于海岛正西方且距海岛5千米的E 港口,如果轮船始终匀速直线航行,则船速是多少?(结果保留根号)解:轮船从点C 到点B 用时80分钟,从点B 到点E 用时20分钟,而船始终匀速航行, 由此可见,BC =4EB .设EB =x ,则BC =4x ,由已知得∠BAE =30°, 在△AEC 中,由正弦定理得EC sin ∠EAC =AEsin C ,即sin C =AE sin ∠EAC EC =5sin 150°5x =12x, 在△ABC 中,由正弦定理得BCsin ∠BAC =ABsin C ,即AB =BC sin C sin 120°=4x ×12x sin 120°=43=433.在△ABE 中,由余弦定理得BE 2=AE 2+AB 2-2AE ·AB cos 30°=25+163-2×5×433×32=313,所以BE =313(千米). 故轮船的速度为v =313÷2060=93(千米/时).。
2017_2018学年高考数学大题精做03三角函数与解三角形的综合问题含解析文新人教A版

精做03 三角函数与解三角形的综合问题1.在△ΑΒC 中,角A 、B 、C 所对的边分别为a 、b 、.已知3cos()16cos cos --=B C B C .(1)求cos A ;(2)若3=a ,△ΑΒC 的面积为22,求、. 【答案】(1)13;(2)2,3==b c 或3,2==b c .由面积公式得1sin 222=bc A ,则6=bc ①. 由余弦定理得2222291cos 2123+-+-===b c a b c A bc ,则2213+=b c ②. 联立①②,可得2,3==b c 或3,2==b c .2.设△ΑΒC 的内角C B A ,,所对的边分别为c b a ,,,且12cos =+bcC b a . (1)求角A 的大小;(2)若1=a ,求△ΑΒC 的周长的取值范围. 【答案】(1)π3;(2)(23],.【解析】(1)由已知得1cos 2a C c b +=,即1sin cos sin sin 2A C CB +=, 又sin sin()sin cos cos sin B AC A C A C =+=+,1sin cos sin 2C A C =∴. 1sin 0cos 2C A ≠=∵,∴.又(0π)A ∈∵,,π3A =∴. (2)由正弦定理得sin 22sin sin sin 33a Bb Bc C A ===,,π1sin 162B ⎛⎫⎛⎤+∈ ⎪ ⎥⎝⎭⎝⎦∴,.故△ΑΒC 的周长的取值范围是(23],.3.在ABC △中,角,,A B C 所对的边分别为,,a b c ,且满足sin cos c A a C =. (1)求角C 的大小;(2π3cos()4A B -+的最大值,并求取得最大值时角,A B 的大小. 【答案】(1)π4;(2)最大值为2,此时π5π,.312A B ==【解析】(1)由正弦定理得sin sin sin cos .C A A C = 因为0π,A <<所以sin 0.A >从而sin cos .C C =又cos 0,C ≠所以tan 1,C =则π4C =. (2)由(1)知3π.4B A =- 于是π3sin cos()3sin cos(π)4A B A A -+=--π3sin cos 2sin().6A A A =+=+3π0,4A <<ππ11π,6612A ∴<+< 从而当ππ,62A +=即π3A =时,π2sin()6A +取最大值2.综上所述,π3sin cos()4A B -+的最大值为2,此时π5π,.312A B ==4.已知c b a ,,分别是△ΑΒC 的三个内角C B A ,,所对的边,且满足A c C a b cos cos )2(⋅=⋅-.(1)求角C 的大小;(2)设)sin(22sin342B C Ay -+-=,求y 的最大值并判断当y 取得最大值时△ΑΒC 的形状. 【答案】(1)3π;(2)最大值为322-,此时△ΑΒC 为直角三角形..(2))sin(22sin342B C Ay -+-= 23(1cos )2sin()3π=--+-A AA A A cos 3sin )cos 1(32-+--= 32cos 3sin -+=A A2sin 233()π=+-A ,由2(0,)3π∈A 得,当6π=A 时,y 取得最大值322-,此时△ΑΒC 为直角三角形. 5.在ABC △中,,,分别是角A ,B ,C 的对边,且()3cos cos tan tan 11A C A C ⋅⋅⋅-=. (1)求5πsin 26B ⎛⎫-⎪⎝⎭的值; (2)若332a c +=,3b =,求ABC △的面积. 【答案】(1)746- ;(2)152.(2)由余弦定理得()22222cos 22cos b a c ac B a c ac ac B =+-⋅=+--⋅,∵332a c +=,3b =, ∴27132243ac ac =--⨯,即4532ac =,6,函数()f x的图象关于直线=πx对称.(1)求函数()f x的最小正周期;(2)在△ΑΒC中,角,,A B C的对边分别为,,a b c,求△ΑΒC面积的最大值.【答案】(1(2【解析】(1(2)()15sin ,236f x x π⎛⎫=- ⎪⎝⎭311sin ,5264f A A π⎛⎫⎛⎫∴=-= ⎪ ⎪⎝⎭⎝⎭即1sin 62A π⎛⎫-= ⎪⎝⎭,50,,666A A πππ<<π∴-<-<,,663A A ∴-== 221,12a b c bc bc bc bc =∴=+-≥-=,即1,bc ≤当且仅当b c 时等号成立.133sin 244ABC S bc A bc ∴==≤△, △∴ABC 面积的最大值为34.7.在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c ,已知21sin sin sin 24B C B C -+=. (1)求角A 的大小;(2)若7a =,ABC △的面积为32,求b c +的值. 【答案】(1)2π3A =;(2)3. 【解析】(1)由已知得()1cos 1sin sin 24B C B C --+=,所以b +c =3.8.在△ΑΒC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且a 2+b 22=c 2.(1)求C ; (2)设cos A cos B 322cos()cos()2cos A B ααα++=tan α的值. 【答案】(1)3π4;(2)1或4. 【解析】(1)因为a 2+b 22=c 2,所以由余弦定理有cos C =222222a b c ab ab +--==, 故3π4C =.因为3π4C =, 所以A +B =π4,所以sin(A +B )=2. 因为cos(A +B )=cos A cos B −sin A sin B ,即325-sin A sin B =22, 则sin A sin B =32225210-=. 代入①得tan 2α−5tan α+4=0,解得tan α=1或tan α=4. 9.设()2sin cos cos 4π⎛⎫=-+⎪⎝⎭f x x x x . (1)求()f x 的单调区间;(2)在锐角△ABC 中,角,,A B C 的对边分别为,,a b c ,若0,12A f a ⎛⎫== ⎪⎝⎭,求△ABC 面积的最大值. 【答案】(1)(),44ππ⎡⎤-+π+π∈⎢⎥⎣⎦k k k Z (2)234+.【解析】(1)由题意知()1cos2sin2222π⎛⎫++⎪⎝⎭=-xxf xsin21sin21sin2222x xx-=-=-.由222,22ππ-+π≤≤+π∈k x k k Z,可得,44ππ-+π≤≤+π∈k x k k Z;由3222,22ππ+π≤≤+π∈k x k k Z,可得3,44ππ+π≤≤+π∈k x k k Z.所以函数()f x的单调递增区间是(),44ππ⎡⎤-+π+π∈⎢⎥⎣⎦k k k Z;所以△ABC23+10.在△ΑΒC中,内角A B C,,的对边分别为a b c,,,已知()()3sin cos3sin cosB BC C--=4cos cosB C.(1)求角A的大小;(2)若sin sin B p C =,且△ΑΒC 是锐角三角形,求实数p 的取值范围. 【答案】(1)3π;(2)1(,2)2.∴实数p 的取值范围是1(,2)2.11.在△ΑΒC 中,角,,A B C 所对的边分别为,,a b c ,且满足cos cos a B b A =.(1)判断△ΑΒC 的形状; (2)求sin cos 6π⎛⎫++⎪⎝⎭B A 的取值范围. 【答案】(1)等腰三角形;(2)1,12⎛⎤⎥⎝⎦. 【解析】(1)由cos cos a B b A =及正弦定理,得sin cos sin cos A B B A =,即()sin 0A B -=.在△ΑΒC 中,有-π<-<πA B , 所以0A B -=,即A B =. 所以△ΑΒC 是等腰三角形. (2)由(1)知A B =, 则3113sin cos sin cos sin sin cos sin 622223⎛⎫ππ⎛⎫⎛⎫++=+-=+=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B A A A A A A A ,因为A B =, 所以02π<<A ,则5336πππ<+<A , 所以1sin 123π⎛⎫<+≤ ⎪⎝⎭A , 于是sin cos 6π⎛⎫++ ⎪⎝⎭B A 的取值范围是1,12⎛⎤ ⎥⎝⎦. 12.已知函数()3sin 2cos2f x x x ωω=-的图象关于直线π3x =对称,其中ω∈15()22-,. (1)求函数f (x )的解析式;(2)在ABC △中,a ,b ,c 分别为三个内角A ,B ,C 的对边,锐角B 满足π25()212B f +=,b =2,求ABC △面积的最大值.【答案】(1)f (x )=2sin π(2)6x -;(2)5.(2)由(1)知π25()2sin 2123B f B +==,所以sin B =53, 因为B 为锐角,所以0<B <π2, 所以2cos 3B =, 因为222cos 2a c b B ac+-=,所以222223a c b ac +-=, 所以2242223ac a c ac =+-≥-,所以ac ≤3,当且仅当a =c =3时,ac 取到最大值3, 所以ABC △面积的最大值为12ac sin B =12×3×53=52.13.(2017·天津卷文)在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知sin 4sin a A b B =,2225()ac a b c =--.(1)求cos A 的值;(2)求sin(2)B A -的值.【答案】(1)55-;(2)255-.于是4sin 22sin cos 5B B B ==,23cos 212sin 5B B =-=, 故4532525sin(2)sin 2cos cos 2sin (55B A B A B A -=-=⨯-=. 【名师点睛】(1)利用正弦定理进行“边转角”可寻求角的关系,利用“角转边”可寻求边的关系,利用余弦定理借助三边关系可求角,利用两角和差的三角公式及二倍角公式可求三角函数值.(2)利用正、余弦定理解三角形是高考的高频考点,常与三角形内角和定理、三角形面积公式等相结合,利用正、余弦定理进行解题.14.(2016·浙江卷文)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a cos B .(1)证明:A =2B ;(2)若cos B =23,求cos C 的值. 【答案】(1)证明详见解析;(2)22cos 27C =.故1cos 9A =-,45sin 9A = 22cos cos()cos cos sin sin 27C AB A B A B =-+=-+=. 【思路点睛】(1)用正弦定理将边转化为角,进而用两角和的正弦公式转化为含有Α,Β的式子,根据角的范围可证2ΑΒ=;(2)先用同角三角函数的基本关系及二倍角公式可得cos 2Β,进而可得cos Α和sin Α,再用两角和的余弦公式可得cos C .15.(2016·天津卷文)在ABC △中,内角C B A ,,所对的边分别为a ,b ,c ,已知sin 23sin a B b A =.(1)求B ;(2)若1cos 3A =,求sin C 的值.【答案】(1)π6B =;(2. 【解析】(1)在ABC △中,由B b A a sin sin =,可得A b B a sin sin =, 又由A b B a sin 32sin =,得B a A b B B a sin 3sin 3cos sin 2==, 所以23cos =B ,得π6B =; (2)由31cos =A ,可得322sin =A , 则sin sin[()]sin()C A B A B =π-+=+πsin()6A =+6162cos 21sin 23+=+=A A . 【名师点睛】三角函数是以角为自变量的函数,因此解三角函数题,首先从角进行分析,善于用已知角表示所求角,即注重角的变换.角的变换涉及诱导公式、同角三角函数基本关系、两角和与差的公式、二倍角公式、配角公式等,选用恰当的公式是解决三角问题的关键,明确角的范围,对开方时正负取舍是解题正确的保证.。
2017-2018学年高中数学人教A版浙江专版必修5讲义:模块复习精要 复习课(一)解三角形 Word版含答案

复习课(一)解三角形对应学生用书P56利用正、余弦定理解三角形对于解三角形的考查,命题多利用正、余弦定理,三角形内角和定理来求边和角,其中以求边或角的取值范围为主,以解三角形与三角函数的结合为命题热点,试题多以大题的形式出现,难度中等.[考点精要]解三角形的常见类型及方法(1)已知三边:先由余弦定理求出两个角,再由A+B+C=π,求第三个角.(2)已知两边及其中一边的对角:先用正弦定理求出另一边的对角,再由A+B+C=π,求第三个角,最后利用正弦定理或余弦定理求第三边.(3)已知两边及夹角:先用余弦定理求出第三边,然后再利用正弦定理或余弦定理求另两角.(4)已知两角及一边:先利用内角和求出第三个角,再利用正弦定理求另两边.[典例]设锐角△ABC的内角A,B,C的对边分别为a,b,c,且有a=2b sin A.(1)求B的大小;(2)若a=33,c=5,求b.[解](1)由a=2b sin A,,根据正弦定理得sin A=2sin B sin A,所以sin B=12由于△ABC是锐角三角形,所以B=π6.(2)根据余弦定理,得b2=a2+c2-2ac cos B=27+25-45=7,所以b =7. [类题通法]利用正、余弦定理来研究三角形问题时,一般要综合应用三角形的性质及三角函数关系式,正弦定理可以用来将边的比和对应角正弦值的比互化,而余弦定理多用来将余弦值转化为边的关系.[题组训练]1.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2-b 2=3bc ,sin C =23sin B ,则A =( )A .30°B .60°C .120°D .150°解析:选A 由正弦定理可知c =23b ,则cos A =b 2+c 2-a 22bc =-3bc +c 22bc =-3bc +23bc 2bc =32,所以A =30°,故选A.2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知A =π6,a =1,b =3,则B =________.解析:依题意得,由正弦定理知:1sinπ6=3sin B ,sin B =32,又0<B <π,b >a ,可得B=π3或2π3. 答案:π3或2π33.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c . (1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C ); (2)若a ,b ,c 成等比数列,求cos B 的最小值. 解:(1)证明:∵a ,b ,c 成等差数列,∴a +c =2b . 由正弦定理得sin A +sin C =2sin B . ∵sin B =sin [π-(A +C )]=sin(A +C ), ∴sin A +sin C =2sin(A +C ). (2)∵a ,b ,c 成等比数列,∴b 2=ac . 由余弦定理得cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac ≥2ac -ac 2ac =12,当且仅当a =c 时等号成立. ∴cos B 的最小值为12.判断三角形的形状是一种常见的题型,就是利用条件寻找边的关系或角的关系,题型多为选择题、解答题,难度中等.[考点精要] 三角形中的常用结论(1)A +B =π-C ,A +B 2=π2-C2.(2)在三角形中大边对大角,反之亦然.(3)任意两边之和大于第三边,任意两边之差小于第三边.[典例] 在△ABC 中,a ,b ,c 分别表示三个内角A ,B ,C 的对边,如果(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ),试判断该三角形的形状.[解] ∵(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ),∴a 2[sin(A -B )-sin(A +B )]=b 2[-sin(A +B )-sin(A -B )],∴2a 2cos A sin B =2b 2sin A cos B .由正弦定理得2sin 2A cos A sin B =2sin 2B sin A cos B , 即sin 2A ·sin A sin B =sin 2B ·sin A sin B .∵0<A <π,0<B <π,∴sin 2A =sin 2B ,∴2A =2B 或2A =π-2B ,即A =B 或A +B =π2.∴△ABC 是等腰三角形或直角三角形. [类题通法]根据所给条件判断三角形的形状的途径(1)化边为角.(2)化角为边,转化的手段主要有: ①通过正弦定理实现边角转化; ②通过余弦定理实现边角转化;③通过三角变换找出角之间的关系;④通过对三角函数值符号的判断以及正、余弦函数的有界性来确定三角形的形状.[题组训练]1.在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c .若c -a cos B =(2a -b )cos A ,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形解析:选D ∵c -a cos B =(2a -b )cos A ,C =π-(A +B ),∴由正弦定理得sin C -sin A cos B =2sin A cos A -sin B cos A ,∴sin A cos B +cos A sin B -sin A cos B =2sin A cos A -sin B cos A ,∴cos A (sin B -sin A )=0,∴cos A =0或sin B =sin A ,∴A =π2或B =A 或B =π-A (舍去).故△ABC 为直角三角形或等腰三角形.2.在△ABC 中,已知3b =23a sin B ,且A ,B ,C 成等差数列,则△ABC 的形状为( ) A .直角三角形 B .等腰三角形 C .等边三角形D .等腰直角三角形解析:选C ∵A ,B ,C 成等差数列,∴A +C =2B ,即3B =π,解得B =π3.∵3b =23a sinB ,∴根据正弦定理得3sin B =23sin A sin B .∵sin B ≠0,∴3=23sin A ,即sin A =32,即A =π3或2π3,当A =2π3时,A +B =π不满足条件.∴A =π3,C =π3.故A =B =C ,即△ABC的形状为等边三角形.3.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知向量m =⎝⎛⎭⎫cos 3A 2,sin 3A2,n =⎝⎛⎭⎫cos A 2,sin A2,且满足|m +n |= 3. (1)求角A 的大小;(2)若b +c =3a ,试判断△ABC 的形状.解:(1)因为|m +n |=3,所以|m +n |2=3,即m 2+n 2+2m ·n =3.又因为m 2=n 2=1,所以m ·n =12,所以cos 3A 2cos A 2+sin 3A 2sin A 2=12,所以cos A =12,又0<A <π,所以A =π3.(2)因为b +c =3a ,所以sin B +sin C =3sin A =32.所以sin B +sin ⎝⎛⎭⎫2π3-B =32, 化简得sin ⎝⎛⎭⎫B +π6=32. 因为0<B <2π3,0<B +π6<5π6,所以B +π6=π3或2π3,所以B =π6,C =π2或B =π2,C =π6,所以△ABC 为直角三角形.试题以解答题为主,难度一般.[考点精要](1)仰角与俯角是相对水平线而言的,而方位角是相对于正北方向而言的. (2)利用方位角或方向角和目标与观测点的距离即可唯一确定一点的位置.[典例] 如图,渔船甲位于岛屿A 的南偏西60°方向的B 处,且与岛屿A 相距12海里,渔船乙以10海里/小时的速度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度; (2)求sin α的值.[解] (1)依题意,∠BAC =120°,AB =12海里,AC =10×2=20(海里),∠BCA =α. 在△ABC 中,由余弦定理,得BC 2=AB 2+AC 2-2AB ×AC ×cos ∠BAC =122+202-2×12×20×cos 120°=784.解得BC =28海里.∴渔船甲的速度为BC2=14(海里/小时).(2)在△ABC 中,AB =12海里,∠BAC =120°,BC =28海里,∠BCA =α,由正弦定理,得AB sin α=BCsin 120°. 即sin α=AB sin 120°BC=12×3228=3314.故sin α的值为3314.[类题通法]应用解三角形知识解决实际问题的步骤(1)读题.分析题意,准确理解题意,分清已知与所求,尤其要理解题中的有关名词、术语,如坡度、仰角、俯角、方位角等;(2)图解.根据题意画出示意图,并将已知条件在图形中标出;(3)建模.将所求解的问题归结到一个或几个三角形中,通过合理运用正弦定理、余弦定理等有关知识正确求解;(4)验证.检验解出的结果是否具有实际意义,对结果进行取舍,得出正确答案.[题组训练]1.要测量底部不能到达的电视塔AB的高度,如图,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角是30°,并测得水平面上的∠BCD=120°,CD=40 m,则电视塔的高度为()A.10 2 m B.20 mC.20 3 m D.40 m解析:选D设电视塔的高度为x m,则BC=x,BD=3x.在△BCD中,根据余弦定理得3x2=x2+402-2×40x×cos 120°,即x2-20x-800=0,解得x=40或x=-20(舍去).故电视塔的高度为40 m.2.北京国庆阅兵式上举行升旗仪式,如图,在坡度为15°的观礼台上,某一列座位与旗杆在同一个垂直于地面的平面上,在该列的第一排和最后一排测得旗杆顶端的仰角分别为60°和30°,且第一排和最后一排的距离为10 6 m,则旗杆的高度为________m.解析:设旗杆高为h m,最后一排为点A,第一排为点B,旗杆顶端为点C,则BC=hsin 60°=233h.在△ABC 中,AB =106,∠CAB =45°,∠ABC =105°, 所以∠ACB =30°,由正弦定理,得106sin 30°=233h sin 45°,故h =30(m).答案:303.某高速公路旁边B 处有一栋楼房,某人在距地面100米的32楼阳台A 处,用望远镜观测路上的车辆,上午11时测得一客车位于楼房北偏东15°方向上,且俯角为30°的C 处,10秒后测得该客车位于楼房北偏西75°方向上,且俯角为45°的D 处.(假设客车匀速行驶)(1)如果此高速路段限速80千米/小时,试问该客车是否超速?(2)又经过一段时间后,客车到达楼房的正西方向E 处,问此时客车距离楼房多远? 解:(1)在Rt △ABC 中,∠BAC =60°,AB =100米,则BC =1003米. 在Rt △ABD 中,∠BAD =45°,AB =100米,则BD =100米. 在△BCD 中,∠DBC =75°+15°=90°, 则DC =BD 2+BC 2=200米,所以客车的速度v =CD10=20米/秒=72千米/小时,所以该客车没有超速.(2)在Rt △BCD 中,∠BCD =30°, 又因为∠DBE =15°,所以∠CBE =105°, 所以∠CEB =45°.在△BCE 中,由正弦定理可知EB sin 30°=BCsin 45°,所以EB =BC sin 30°sin 45°=506米,即此时客车距楼房506米.1.在△ABC 中,若a =7,b =3,c =8,则其面积等于( )A .12 B.212C .28D .6 3解析:选D 由余弦定理得cos A =b 2+c 2-a 22bc =32+82-722×3×8=12,所以sin A =32,则S △ABC=12bc sin A =12×3×8×32=6 3. 2.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若3a =2b ,则2sin 2B -sin 2A sin 2A 的值为( )A.19B.13 C .1D.72解析:选D 由正弦定理可得2sin 2B -sin 2A sin 2A =2b 2-a 2a 2=2·⎝⎛⎭⎫32a 2-a 2a 2=72. 3.在△ABC 中,已知AB =2,BC =5,△ABC 的面积为4,若∠ABC =θ,则cos θ等于( )A.35 B .-35C .±35D .±45解析:选C ∵S △ABC =12AB ·BC sin ∠ABC =12×2×5×sin θ=4.∴sin θ=45.又θ∈(0,π),∴cos θ=±1-sin 2θ=±35.4.某人从出发点A 向正东走x m 后到B ,向左转150°再向前走3 m 到C ,测得△ABC 的面积为334m 2,则此人这时离开出发点的距离为( )A .3 m B. 2 m C .2 3 mD. 3 m解析:选D 在△ABC 中,S =12AB ×BC sin B ,∴334=12×x ×3×sin 30°,∴x = 3. 由余弦定理,得AC =AB 2+BC 2-2AB ×BC ×cos B =3+9-9=3(m). 5.在△ABC 中,A =60°,AB =2,且△ABC 的面积S △ABC =32,则边BC 的边长为( )A. 3 B .3 C.7D .7解析:选A ∵S △ABC =12AB ·AC sin A =32,∴AC =1,由余弦定理可得BC 2=AB 2+AC 2-2AB ·AC cos A =4+1-2×2×1×cos 60°=3,即BC = 3.6.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,a =80,b =100,A =30°,则此三角形( )A .一定是锐角三角形B .可能是直角三角形,也可能是锐角三角形C .一定是钝角三角形D .一定是直角三角形解析:选C 由正弦定理a sin A =b sin B 得80sin A =100sin B ,所以sin B =58.因为a <b ,所以B有两种可能:锐角或钝角.若B 为锐角时, cos C =-cos (A +B )=sin A sin B -cos A cos B =12×58-32×398<0,所以C 为钝角,即△ABC 为钝角三角形;若B 为钝角时,则△ABC 是钝角三角形,所以此三角形一定为钝角三角形.故选C.7.在△ABC 中,a =b +2,b =c +2,又知最大角的正弦等于32,则三边长为________. 解析:由题意知a 边最大,sin A =32,∴A =120°, ∴a 2=b 2+c 2-2bc cos A .∴a 2=(a -2)2+(a -4)2+(a -2)(a -4). ∴a 2-9a +14=0,解得a =2(舍去)或a =7. ∴b =a -2=5,c =b -2=3. 答案:a =7,b =5,c =38.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知8b =5c ,C =2B ,则cos C =________.解析:因为C =2B ,所以sin C =sin 2B =2sin B ·cos B ,所以cos B =sin C 2sin B =c 2b =12×85=45, 所以cos C =2cos 2B -1=2×⎝⎛⎭⎫452-1=725.答案:7259.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知a =23,C =45°,1+tan Atan B =2cb ,则边c 的值为________.解析:由1+tan A tan B =2c b ,得1+sin A cos Bcos A sin B=sin A cos B +cos A sin B cos A sin B =sin (A +B )cos A sin B =sin Ccos A sin B=c b cos A =2c b ,所以cos A =12,故A =60°.由正弦定理得23sin 60°=c sin 45°,所以c =2 2. 答案:2 210.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A =23,sin B =5cos C .(1)求tan C 的值;(2)若a =2,求△ABC 的面积. 解:(1)因为0<A <π,cos A =23,所以sin A =1-cos 2A =53, 又5cos C =sin B =sin(A +C )=sin A cos C +cos A sin C =53cos C +23sin C , 所以253cos C =23sin C ,tan C = 5.(2)由tan C =5得sin C =56,cos C =16, 于是sin B =5cos C =56. 由a =2及正弦定理a sin A =c sin C 得c =3,所以△ABC 的面积S △ABC =12ac sin B =12×2×3×56=52.11.如图,在△ABC 中,∠B =π3,AB =8,点D 在BC 边上,且CD =2,cos∠ADC =17.(1)求sin ∠BAD ; (2)求BD ,AC 的长.解:(1)在△ADC 中,因为cos ∠ADC =17, 所以sin ∠ADC =437. 所以sin ∠BAD =sin(∠ADC -∠B )=sin ∠ADC cos B -cos ∠ADC sin B =437×12-17×32=3314. (2)在△ABD 中,由正弦定理得BD =AB ·sin ∠BAD sin ∠ADB =8×3314437=3. 在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos B =82+52-2×8×5×12=49. 所以AC =7.12.在△ABC 中,A ,B ,C 的对边分别为a ,b ,c 且a cos C ,b cos B ,c cos A 成等差数列.(1)求B 的值;(2)求2sin 2 A +cos(A -C )的范围.解:(1)∵a cos C ,b cos B ,c cos A 成等差数列,∴a cos C +c cos A =2b cos B .由正弦定理,得sin A cos C +sin C cos A =2sin B cos B ,即sin(A +C )=sin B =2sin B cos B .又在△ABC 中,sin B ≠0,∴cos B =12. ∵0<B <π,∴B =π3. (2)∵B =π3,∴A +C =2π3, ∴2sin 2A +cos(A -C )=1-cos 2A +cos ⎝⎛⎭⎫2A -2π3=1-cos 2A -12cos 2A +32sin 2A =1+32sin 2A -32cos 2A =1+3sin ⎝⎛⎭⎫2A -π3. ∵0<A <2π3,-π3<2A -π3<π, ∴-32<sin ⎝⎛⎭⎫2A -π3≤1. ∴2sin 2A +cos(A -C )的范围是⎝⎛⎦⎤-12,1+3.。
高中数学人教A版必修五解三角形导学案加课后作业及参考答案

1.1.1 正弦定理(一)【学习要求】1.掌握正弦定理的内容. 2.了解正弦定理的证明方法. 3.能初步运用正弦定理解三角形.【学法指导】1.学习本节内容时,要善于运用平面几何知识以及平面向量知识证明正弦定理. 2.应熟练掌握利用正弦定理进行三角形中的边角关系的相互转化.【知识要点】1.在△ABC 中,A +B +C = ,A 2+B 2+C2= .2.在Rt △ABC 中,C =π2,则a c = ,bc= .3.一般地,把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的 .已知三角形的几个元素求其他元素的过程叫做 .4.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即 ,这个比值是__________【问题探究】探究点一 正弦定理的提出和证明问题 在直角三角形和等边三角形中,容易验证a sin A =b sin B =csin C 成立,这一结论对更一般锐角三角形和钝角三角形还成立吗?探究1 在锐角△ABC 中,根据右图证明:a sin A =b sin B =csin C.探究2 在钝角△ABC 中(不妨设A 为钝角),根据右图证明:a sin A =b sin B =csin C.小结 综上可知,对于任意三角形,均有a sin A =b sin B =csin C ,此即正弦定理.探究点二 正弦定理的几何解释问题 如图所示,在Rt △ABC 中,斜边c 等于Rt △ABC 外接圆的直径2R ,故有a sin A =b sin B =csin C =2R ,这一关系对任意三角形也成立吗?探究1 如图所示,锐角三角形ABC 和它的外接圆O ,外接圆半径为R ,等式a sin A =b sin B =csin C =2R 成立吗?探究2 如图所示,钝角三角形ABC ,A 为钝角,圆O 是它的外接圆,半径为R ,等式a sin A =b sin B =csin C =2R 还成立吗?小结 综上所述,对于任意△ABC ,a sin A =b sin B =csin C=2R 恒成立.【典型例题】例1 在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,若A ∶B ∶C =1∶2∶3,则a ∶b ∶c 等于( ) A .1∶2∶3 B .2∶3∶4 C .3∶4∶5 D .1∶3∶2跟踪训练1 在△ABC 中,已知(b +c )∶(c +a )∶(a +b )=4∶5∶6,则sin A ∶sin B ∶sin C 等于 ( ) A .6∶5∶4 B .7∶5∶3 C .3∶5∶7 D .4∶5∶6例2 在△ABC 中,求证:a -c cos B b -c cos A =sin Bsin A.小结 正弦定理的变形公式使三角形的边与边的关系和角与角的关系之间的相互转化的功能更加强大,更加灵活.跟踪训练2 在单位圆上有三点A ,B ,C ,设△ABC 三边长分别为a ,b ,c ,则a sin A +b 2sin B +2c sin C=例3 在△ABC 中,已知a =22,A =30°,B =45°,解三角形.小结 已知两角与任一边,利用正弦定理解三角形,有以下两种情况:(1)若所给边是已知角的对边时,可由正弦定理求另一边,再由三角形内角和定理求出第三个角,最后由正弦定理求第三边;(2)若所给边不是已知角的对边时,先由三角形内角和定理求第三个角,再由正弦定理求另外两边. 跟踪训练3 在△ABC 中,a =5,B =45°,C =105°,解三角形.【当堂检测】1.在△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 所对的边,若∠A =105°,∠B =45°,b =22,则c 等于( ) A .1B .2C. 2D. 32.在△ABC 中,已知∠A =150°,a =3,则其外接圆的半径R 的值为 ( ) A .3 B. 3 C .2 D .不确定 3.在△ABC 中,sin A =sin C ,则△ABC 是 ( ) A .直角三角形 B .等腰三角形 C .锐角三角形D .钝角三角形4.在△ABC 中,∠A =60°,a =43,b =42,则∠B 等于【课堂小结】1.利用正弦定理可以解决两类有关三角形的问题: (1)已知两角和任一边,求其它两边和一角.(2)已知两边和其中一边的对角,求另一边和两角.2.利用正弦定理可以实现三角形中边角关系的相互转化:一方面可以化边为角,转化为三角函数问题来解决;另一方面,也可以化角为边,转化为代数问题来解决.【课后作业】一、基础过关1.在△ABC 中,下列等式中总能成立的是( )A .a sin A =b sin BB .b sinC =c sin A C .ab sin C =bc sin BD .a sin C =c sin A2.在△ABC 中,若A =30°,B =60°,b =3,则a 等于( )A .3B .1C .2D .123.在△ABC中,sin 2A =sin 2B +sin 2C ,则△ABC为( )A .直角三角形B .等腰直角三角形C .等边三角形D .等腰三角形4.在△ABC 中,若3a =2b sin A ,则B 为 ( )A .π3B .π6C .π3或23πD .π6或56π5.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =2,b =2,sin B +cos B =2,则角A 的大小 ( ) A .π2B .π3C .π4D .π66.在△ABC 中,已知a ∶b ∶c =3∶4∶5,则2sin A -sin Bsin C =________.7.在△ABC 中,若b =5,B =π4,sin A =13,则a =______.8.已知在△ABC 中,c =10,A =45°,C =30°,求a 、b 和B .二、能力提升9.在△ABC 中,sin A =34,a =10,则边长c 的取值范围是( )A .⎝⎛⎭⎫152,+∞ B .(10,+∞) C .(0,10) D .⎝⎛⎦⎤0,403 10.在△ABC 中,若tan A =13,C =150°,BC =1,则AB =________.11.在△ABC 中,已知a 、b 、c 分别为内角A 、B 、C 的对边,若b =2a ,B =A +60°,求A 的值.12.在△ABC 中,A ,B ,C 的对边分别是a ,b ,c ,求证:a 2sin 2B +b 2sin 2A =2ab sin C .三、探究与拓展13.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,如果c =3a ,B =30°,求角C 的大小.1.1.1 正弦定理(二)【学习要求】1.熟记正弦定理的有关变形公式.2.探究三角形面积公式的表现形式,能结合正弦定理解与面积有关的斜三角形问题. 3.能根据条件,判断三角形解的个数.【学法指导】1.已知两边及其中一边对角解三角形,其解不一定唯一,应注意运用大边对大角的理论判断解的情况. 2.判断三角形形状时,不要在等式两边轻易地除以含有边角的因式,造成漏解.【知识要点】1.正弦定理:a sin A =b sin B =csin C =2R 的常见变形:(1)sin A ∶sin B ∶sin C = ;(2)a sin A =b sin B =csin C =a +b +c sin A +sin B +sin C= ;(3)a = ,b = ,c = ; (4)sin A = ,sin B = ,sin C = .2.三角形面积公式:S = = =3.在△ABC 中,若sin A >sin B ,则角A 与角B 的大小关系为( )A .A >B B .A <BC .A ≥B 4.在△ABC 中,a =10,b =8,C =30°,则△ABC 的面积S =【问题探究】探究点一 已知两边及其中一边的对角,判断三角形解的个数问题 我们应用正弦定理解三角形时,已知三角形的两边及其中一边的对角往往得出不同情形的解,有时一解,有时两解,有时又无解,这究竟是怎么回事?探究1 在△ABC 中,已知a ,b 和A ,若A 为直角,讨论三角形解的情况.(请完成下表)探究2 在△ABC 中,已知a ,b 和A ,若A为钝角,讨论三角形解的情况.(请完成下表)探究3 在△ABC 中,已知a ,b 和A ,若A 为锐角,讨论三角形解的情况.(请完成下表)探究点二 三角形的面积公式问题 我们已经知道S △ABC =12ah a =12bh b =12ch c (其中h a ,h b ,h c 分别为a ,b ,c 边上的高).学习了正弦定理后,你还能得到哪些计算三角形面积的公式?探究1 当△ABC 为锐角三角形时,证明:S △ABC =12ab sin C =12bc sin A =12ac sin B .探究2 当△ABC 为钝角三角形时,证明:S △ABC =12ab sin C =12bc sin A =12ac sin B .【典型例题】例1 已知一三角形中a =23,b =6,A =30°,判断三角形是否有解,若有解,解该三角形.小结 已知三角形两边和其中一边的对角,解三角形时,首先求出另一边的对角的正弦值,根据该正弦值求角时,需对角的情况加以讨论.跟踪训练1在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,已知A =60°,a =3,b =1,则c 等于 ( )A .1B .2 C.3-1 D. 3例2 在△ABC 中,若∠A =120°,AB =5,BC =7,求△ABC 的面积. 小结 题目条件或结论中若涉及三角形的面积,要根据题意灵活选用三角形的面积公式. 跟踪训练2 在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =例3 在△ABC 中,已知a 2tan B =b 2tan A ,试判断△ABC 的形状.小结 条件是边角混合关系式,应用正弦定理化边为角,再由角的关系判断三角形的形状.跟踪训练3 已知方程x 2-(b cos A )x +a cos B =0的两根之积等于两根之和,且a 、b 为△ABC 的两边,A 、B 为两内角,试判断这个三角形的形状.【当堂检测】1.已知△ABC 的面积为3且b =2,c =2,则∠A 等于( )A .30°B .30°或150°C .60°D .60°或120° 2.在△ABC 中,AC =6,BC =2,B =60°,则C = 3.在△ABC 中,b =1,c =3,C =2π3,则a =4.不解三角形,判断下列三角形解的个数. (1)a =5,b =4,A =120°; (2)a =9,b =10,A =60°; (3)c =50,b =72,C =135°.【课堂小结】1.已知两边和其中一边的对角,求第三边和其它两个角,这时三角形解的情况比较复杂,可能无解,也可能一解或两解.例如:已知a 、b 和A ,用正弦定理求B 时的各种情况.2.判断三角形的形状,最终目的是判断三角形是否是特殊三角形,当所给条件含有边和角时,应利用正弦定理将条件统一为“边”之间的关系式或“角”之间的关系式.【课后作业】一、基础过关1.在△ABC 中,若a cos A =b cos B =ccos C,则△ABC 是( )A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形 2.在△ABC 中,A =60°,a =3,b =2,则B 等于( )A .45°或135°B .60°C .45°D .135° 3.下列判断中正确的是( )A .当a =4,b =5,A =30°时,三角形有一解B .当a =5,b =4,A =60°时,三角形有两解C .当a =3,b =2,B =120°时,三角形有一解D .当a =322,b =6,A =60°时,三角形有一解4.在△ABC 中,a =2,A =30°,C =45°,则△ABC 的面积S △ABC 等于( )A .3+1B .3-1C .3+2D .3-25.已知△ABC 中,AB =3,AC =1,且B =30°,则△ABC 的面积等于 ( ) A .32B .34C .32或 3D .34或326.若△ABC 的面积为3,BC =2,C =60°,则边AB 的长度为________. 7.在△ABC 中,已知23a sin B =3b ,且cos B =cos C ,试判断△ABC 的形状.8.在△ABC 中,a ,b ,c 分别是三个内角A ,B ,C 的对边,若a =2,C =π4,cos B 2=255,求△ABC 的面积S . 二、能力提升9.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a ,则ba 等于 ( )A .2 3B .2 2C . 3D . 210.在△ABC 中,若acos A 2=b cos B 2=c cosC 2,则△ABC 的形状是________. 11.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +csin A +sin B +sin C =______,c =______.12.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且c =10,又知cos A cos B =b a =43,求a 、b 及△ABC 内切圆的半径.三、探究与拓展13.已知△ABC 的面积为1,tan B =12,tan C =-2,求△ABC 的各边长以及△ABC 外接圆的面积.1.1.2 余弦定理(一)【学习要求】1.理解余弦定理的证明.2.初步运用余弦定理及其变形形式解三角形【学法指导】1.教材给出了用向量法证明余弦定理的方法,体现了向量在解决三角形度量问题中的重要作用.2.利用向量作为工具推导余弦定理时,向量知识可能被遗忘,要注意复习,要准确运用向量的减法法则和向量夹角的概念.3.余弦定理可以看作是勾股定理的推广,勾股定理可以看作是余弦定理的特例.【知识要点】1.余弦定理三角形中任何一边的 等于其他两边的 的和减去这两边与它们的 的余弦的积的 .即a 2=_________,b 2= ,c 2= .2.余弦定理的推论cos A = ;cos B = ;cos C = 3.在△ABC 中,(1)若a 2+b 2-c 2=0,则C = ; (2)若c 2=a 2+b 2-ab ,则C = ;(3)若c 2=a 2+b 2+2ab ,则C = .4.在△ABC 中,已知a =1,b =2,C =60°,则c 等于( )A .3B .3C .5D .5【问题探究】我们知道已知两边和一边的对角,或者已知两角和一角的对边能用正弦定理解三角形,如果已知两边和夹角怎样解三角形求第三边和其他两角呢?或者已知三边怎么解三角形求三个角呢?这是余弦定理所能解决的问题,这一节我们就来学习余弦定理及其应用.探究点一 利用向量法证明余弦定理问题 如果已知一个三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.如何利用已知的两边和夹角计算出三角形的另一边呢?探究 如图所示,设CB →=a ,CA →=b ,AB →=c ,由AB →=CB →-CA →知c =a -b .根据这一关系,试用向量的数量积证明余弦定理.探究点二 利用坐标法证明余弦定理问题 我们可以把三角形放在平面直角坐标系中来研究,写出各个顶点的坐标,能否利用平面内两点间的距离公式来推导余弦定理?探究 如图,以A 为原点,边AB 所在直线为x 轴建立直角坐标系,则A (0,0),B (c,0),C (b cos A ,b sin A ),试根据两点间的距离公式证明余弦定理.【典型例题】例1 在△ABC 中,已知a =2,b =22,C =15°,求A .小结 解三角形主要是利用正弦定理和余弦定理,本例中的条件是已知两边及其夹角,而不是两边及一边的对角,所以本例的解法应先从余弦定理入手.跟踪训练1 在△ABC 中,边a ,b 的长是方程x 2-5x +2=0的两个根,C =60°,求边c .例2 已知三角形ABC 的三边长为a =3,b =4,c =37,求△ABC 的最大内角. 小结 已知三边求三角时,余弦值是正值时,角是锐角,余弦值是负值时,角是钝角. 跟踪训练2 在△ABC 中,sin A ∶sin B ∶sin C =2∶4∶5,判断三角形的形状.例3 在△ABC 中,a cos A =b cos B ,试确定△ABC 的形状.小结 边角混合关系式要根据正、余弦定理统一转化为角的关系式或边的关系式,本题可采用正弦定理转化为角的关系式或采用余弦定理转化为边的关系式.跟踪训练3 在△ABC 中,a cos A +b cos B =c cos C ,试判断三角形的形状.【当堂检测】1.一个三角形的两边长分别为5和3,它们夹角的余弦值是-35,则三角形的另一边长为 ( )A .52B .213C .16D .4 2.在△ABC 中,a =7,b =43,c =13,则△ABC 的最小角为 ( )A .π3B .π6C .π4D .π123.在△ABC 中,已知A =60°,最大边长和最小边长恰好是方程x 2-7x +11=0的两根,则第三边的长为______. 4.在△ABC 中,已知CB =7,AC =8,AB =9,试求AC 边上的中线长.【课堂小结】1.利用余弦定理可以解决两类有关三角形的问题: (1)已知两边和夹角,解三角形. (2)已知三边求三角形的任意一角.2.判断三角形的形状,当所给的条件是边角混合关系时,基本解题思想:用正弦定理或余弦定理将所给条件统一为角之间的关系或边之间的关系.若统一为角之间的关系,再利用三角恒等变形化简找到角之间的关系;若统一为边之间的关系,再利用代数方法进行恒等变形、化简,找到边之间的关系.【课后作业】一、基础过关1.已知a 、b 、c 为△ABC 的三边长,若满足(a +b -c )(a +b +c )=ab ,则∠C 的大小为( ) A .60°B .90°C .120°D .150°2.在△ABC 中,已知sin A ∶sin B ∶sin C =3∶5∶7,则这个三角形的最小外角为 ( ) A .30°B .60°C .90°D .120° 3.在△ABC 中,已知b 2=ac 且c =2a ,则cos B 等于( ) A .14B .34C .24D .234.若△ABC 的内角A 、B 、C 所对的边a 、b 、c 满足(a +b )2-c 2=4,且∠C =60°,则ab 的值为 ( ) A .43B .8-43C .1D .235.已知△ABC 的三边长分别是2m +3,m 2+2m ,m 2+3m +3(m >0),则最大内角的度数是________. 6.在△ABC 中,已知a =2,b =4,C =60°,则A =________.7.在△ABC 中,BC =a ,AC =b ,且a ,b 是方程x 2-23x +2=0的两根,2cos(A +B )=1. (1)求角C 的度数; (2)求AB 的长; (3)求△ABC 的面积.b ac8.设2a +1,a ,a -1为钝角三角形的三边,求a 的取值范围.二、能力提升9.在△ABC 中,sin 2A ≤sin 2B +sin 2C -sin B sin C ,则A 的取值范围是( )A .⎝⎛⎦⎤0,π6B .⎣⎡⎭⎫π6,πC .⎝⎛⎦⎤0,π3 D .⎣⎡⎭⎫π3,π 10.如果将直角三角形的三边增加同样的长度,则新三角形的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .由增加的长度确定 11.如图,CD =16,AC =5,∠BDC =30°,∠BCA =120°,则AB =________.12.在△ABC 中,已知a -b =4,a +c =2b ,且最大角为120°,求三边长.三、探究与拓展13.△ABC 的面积是30,内角A ,B ,C 所对边长分别为a ,b ,c ,cos A =1213.(1)求AB →·AC →;(2)若c -b =1,求a 的值.1.1.2 余弦定理(二)【学习要求】1.熟练掌握余弦定理及其变形形式. 2.会用余弦定理解三角形.3.能利用正、余弦定理解决三角形的有关问题.【学法指导】1.正、余弦定理都反映了任意三角形边角之间的具体关系,它们不是孤立的,而是相互密切联系的,处理三角形中的问题时,要注意两个定理的综合运用.2.已知三角形的两边和一边的对角解三角形时,一般用正弦定理求解,这时需讨论解的个数,也可用余弦定理求解,这时需转化成未知边的一元二次方程来求解.【知识要点】1.余弦定理及其变形形式:a 2= ⇔cos A = ;b 2= ⇔cos B = ;c 2= ⇔cos C = .2.正弦定理的公式表达形式:_____= = =2R (其中R 是△ABC 外接圆的半径).3.已知锐角三角形的三边长分别为2,3,x ,则x 的取值范围是 4.在△ABC 中,A =60°,AB =5,BC =7,则△ABC 的面积为【问题探究】探究点一 已知两边及其中一边的对角,利用余弦定理解三角形问题 在△ABC 中,已知两边及其中一边的对角,解三角形.一般情况下,先利用正弦定理求出另一边所对的角,再求其他的边或角,要注意进行讨论三角形解的个数.对于这一类问题能否利用余弦定理来解三角形? 探究 在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若A =π3,a =3,b =1,则c 等于 ( )A .1B .2C .3-1D . 3 探究点二 利用正、余弦定理证明三角形中的恒等式 问题 如何利用正、余弦定理证明三角形中的恒等式?证明时可以考虑两种途径:一是把角的关系通过正、余弦定理转化为边的关系,正弦借助正弦定理转化,余弦借助余弦定理转化;二是把边的关系转化为角的关系,一般是通过正弦定理.探究 在△ABC 中,有(1)a =b cos C +c cos B ;(2)b =c cos A +a cos C ; (3)c =a cos B +b cos A ;这三个关系式也称为射影定理,请给出证明. 探究点三 利用正、余弦定理解决三角形的有关问题问题 利用正、余弦定理可以解决一些三角形问题:如面积、角、边等,你能根据已知条件选择合适的解决方法吗?探究 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知sin A +sin C =p sin B (p ∈R),且ac =14b 2.(1)当p =54,b =1时,求a ,c 的值;(2)若角B 为锐角,求p 的取值范围.【典型例题】例1 在△ABC 中,a ,b ,c 分别为A ,B ,C 所对的三边,已知(a +b -c )(a -b +c )=bc ,求A .跟踪训练1 已知△ABC 的三边a 、b 、c ,且△ABC 的面积S =c 2-a 2-b 243,求C .例2 在△ABC 中,若B =30°,AB =23,AC =2,求△ABC 的面积.小结 本例是已知两边及其中一边的对角,解三角形,一般情况下,利用正弦定理求出另一边所对的角,再求其他的边或角,要注意进行讨论.如果采用余弦定理来解,只需解一个一元二次方程,即可求出边来,比较两种方法,采用余弦定理较简单.跟踪训练2 已知a ,b ,c 是△ABC 中A ,B ,C 的对边,S 是△ABC 的面积.若a =4,b =5,S =53,求c 的长度.例3 在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,4sin 2 B +C 2-cos 2A =72. (1)求A 的度数.(2)若a =3,b +c =3,求b 和c 的值.小结 本题解题关键是通过三角恒等变换借助于A +B +C =180°,求出A ,并利用余弦定理列出关于b 、c 的方程组.跟踪训练3 在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且a =2,cos B =35.(1)若b =4,求sin A 的值;(2)若△ABC 的面积为4,求b 、c 的值.【当堂检测】1.在△ABC 中,已知面积S =14(a 2+b 2-c 2),则角C 的度数为 ( )A .135°B .45°C .60°D .120°2.在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,若c =2,b =2a ,且cos C =14,则a 等于 ( )A .2B .12C .1D .133.在△ABC 中,cos B =12,b 2-ac =0,则△ABC 的形状为 三角形.4.在△ABC 中,∠B =120°,AC =7,AB =5,则△ABC 的面积为 .【课堂小结】1.在余弦定理中,每一个等式均含有四个量,利用方程的观点,可以知三求一.2.余弦定理为求三角形中的有关量(如面积、中线、外接圆等)提供了有力的工具,在一定意义上,比正弦定理应用更加广泛.3.利用余弦定理求三角形的边长时容易出现增解,原因是余弦定理中涉及的是边长的平方,通常转化为一元二次方程求正实数.因此解题时需特别注意三角形三边长度所应满足的基本条件.【课后作业】1.在△ABC 中,若b 2=a 2+c 2+ac ,则B 等于( )A .60°B .45°或135°C .120°D .30° 2.若三条线段的长分别为5,6,7,则用这三条线段( )A .能组成直角三角形B .能组成锐角三角形C .能组成钝角三角形D .不能组成三角形 3.在△ABC 中,sin A ∶sin B ∶sin C =3∶2∶3,则cos C 的值为 ( )A .13B .-23C .14D .-144.在△ABC 中,已知b =3,c =33,A =30°,则角C 等于 ( )A .30°B .120°C .60°D .150°5.在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,若a =2b cos C ,则此三角形一定是 ( ) A .等腰直角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形6.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若a 2+c 2-b 2=3ac ,则角B 的值为________. 7.已知△ABC 的内角B =60°,且AB =1,BC =4,则边BC 上的中线AD 的长为________. 8.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,a sin A +c sin C -2a sin C =b sin B . (1)求B ;(2)若A =75°,b =2,求a ,c .二、能力提升9.在钝角△ABC 中,a =1,b =2,则最大边c 的取值范围是( )A .1<c <3B .2<c <3C .5<c <3D .22<c <3 10.在△ABC 中,AB =3,AC =2,BC =10,则AB →·CA →=________. 11.在△ABC 中,B =45°,AC =10,cos C =255.(1)求边BC 的长;(2)记AB 的中点为D ,求中线CD 的长.12.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知cos 2C =-14.(1)求sin C 的值;(2)当a =2,2sin A =sin C 时,求b 及c 的长. 三、探究与拓展13.某人要制作一个三角形,要求它的三条高的长度分别为113,111,15,则此人能否做出这样的三角形?若能,是什么形状;若不能,请说明理由.习题课 正弦定理与余弦定理 【学习要求】1.进一步熟练掌握正、余弦定理在解决各类三角形中的应用.2.提高对正、余弦定理应用范围的认识.3.初步应用正、余弦定理解决一些和三角、向量有关的综合问题.【学法指导】解三角形的问题可以分为以下四类:(1)已知三角形的两边和其中一边的对角,解三角形.此种情况的基本解法是先由正弦定理求出另一条边所对的角,用三角形的内角和定理求出第三个角,再用正弦定理求出第三边,注意判断解的个数. (2)已知三角形的两角和任一边,解三角形.此种情况的基本解法是若所给边是已知角的对边时,可由正弦定理求另一边,再由三角形内角和定理求出第三个角,再由正弦定理求第三边.若所给边不是已知角的对边时,先由三角形内角和定理求第三个角,再由正弦定理求另外两边.(3)已知两边和它们的夹角,解三角形.此种情况的基本解法是先用余弦定理求第三边,再用正弦定理或余弦定理求另一角,最后用三角形内角和定理求第三个角.(4)已知三角形的三边,解三角形.此种情况的基本解法是先用余弦定理求出一个角,再用正弦定理或余弦定理求出另一个角,最后用三角形内角和定理,求出第三个角.要解三角形,必须已知三角形的一边的长.若已知条件中一条边的长也不给出,三角形可以是任意的,因此无法求解.【知识要点】1.在△ABC 中,边a 、b 、c 所对的角分别为A 、B 、C ,则有 (1)A +B +C = ,A +B2= .(2)sin(A +B )= ,cos(A +B )= ,tan(A +B )= . (3)sinA +B 2= ,cos A +B2= 2.正弦定理及其变形 (1)a sin A =b sin B =csin C= .(2)a = ,b = ,c = . (3)sin A = ,sin B = ,sin C = . (4)sin A ∶sin B ∶sin C = .3.余弦定理及其推论 (1)a 2= . (2)cos A = .(3)在△ABC 中,c 2=a 2+b 2⇔C 为 ;c 2>a 2+b 2⇔C 为____;c 2<a 2+b 2⇔C 为 . 4.三角形常用面积公式(1)S = (h a 表示a 边上的高);(2)S = = = ; (3)S =12r (a +b +c )(r 为三角形内切圆半径).【基础自测】1.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2-b 2=3bc ,sin C =23sin B ,则A 等于 ( )A .30°B .60°C .120°D .150°2.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若c ·cos B =b ·cos C ,且cos A =23,则sin B 等于 ( )A .±66B .66C .±306 D .3063.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若cos B =14,sin C sin A =2,且S △ABC =154,则b 等于 ( )A .4B .3C .2D .14.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,a =3,b =2,且1+2cos(B +C )=0,则BC 边上的高为 ( )A .3-1B .3+1C .3-12 D .3+12【题型解法】题型一 利用正、余弦定理证明三角恒等式例1 在△ABC 中,求证:tan A tan B =a 2+c 2-b 2b 2+c 2-a 2.小结 证明三角恒等式关键是消除等号两端三角函数式的差异.形式上一般有左⇒右;右⇒左或左⇒中⇐右三种.跟踪训练1 在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,求证:cos B cos C =c -b cos Ab -c cos A .题型二 利用正、余弦定理判断三角形的形状例2 在△ABC 中,若B =60°,2b =a +c ,试判断△ABC 的形状.小结 本题中边的大小没有明确给出,而是通过一个关系式来确定的,可以考虑利用正弦定理将边的关系转化为角的关系,也可以利用余弦定理将边、角关系转化为边的关系来判断.跟踪训练2 在△ABC 中,已知(a +b +c )(b +c -a )=3bc ,且sin A =2sin B cos C ,试确定△ABC 的形状. 题型三 利用正、余弦定理解关于三角形的综合问题例3 在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,cos B =35,且AB →·BC →=-21.(1)求△ABC 的面积; (2)若a =7,求角C .小结 这是一道向量与正、余弦定理的综合题,解题的关键是化去向量的“伪装”,找到三角形的边角关系.跟踪训练3 在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,已知b 2=ac 且cos B =34.(1)求1tan A +1tan C 的值;(2)设BA →·BC →=32,求a +c 的值.【当堂检测】1.在△ABC 中,若2cos B sin A =sin C ,则△ABC 的形状一定是 ( ) A .等腰直角三角形 B .直角三角形 C .等腰三角形 D .等边三角形 2.下列判断中正确的是 ( ) A .△ABC 中,a =7,b =14,A =30°,有两解 B .△ABC 中,a =30,b =25,A =150°,有一解 C .△ABC 中,a =6,b =9,A =45°,有两解 D .△ABC 中,b =9,c =10,B =60°,无解 3.在△ABC 中,求证:a 2+b 2+c 2=2(bc cos A +ca cos B +ab cos C ).4.如图所示,在四边形ABCD 中,AC 平分∠DAB ,∠ABC =60°,AC =7,AD =6,S △ACD =1532.求AB 的长.【课堂小结】1.判断三角形的形状是看该三角形是否为某些特殊的三角形(如锐角、直角、钝角、等腰、等边三角形等).2.对于给出条件是边角关系混合在一起的问题,一般地,应运用正弦定理和余弦定理,要么把它统一为边的关系,要么把它统一为角的关系.再利用三角形的有关知识,三角恒等变形方法、代数恒等变形方法等进行转化、化简,从而得出结论.3.解决正弦定理与余弦定理的综合应用问题,应注意根据具体情况引入未知数,运用方程思想来解决问题;平面向量与解三角形的交汇问题,应注意准确运用向量知识转化为解三角形问题,再利用正、余弦定理求解.【课后作业】一、基础过关1.在△ABC 中,若a =18,b =24,A =44°,则此三角形解的情况为( )A .无解B .两解C .一解D .解的个数不确定2.在△ABC 中,BC =1,B =π3,当△ABC 的面积等于3时,sin C 等于( )A .23913B .1313C .2393D .213133.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若c =2,b =6,B =120°,则a 等于 ( ) A . 6B .2C . 3D . 24.若△ABC 的内角A 、B 、C 满足6sin A =4sin B =3sin C ,则cos B 等于( )A .154B .34C .31516D .11165.在△ABC 中,AB =2,AC =6,BC =1+3,AD 为边BC 上的高,则AD 的长是________.6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2,b =2,sin B +cos B =2,则角A 的大小为________.7.在△ABC 中,求证:a 2-b 2c 2=sin (A -B )sin C.8.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C . (1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.二、能力提升9.在△ABC 中,若a 2=bc ,则角A 是( )A .锐角B .钝角C .直角D .60° 10.在△ABC 中,已知a 4+b 4+c 4=2c 2(a 2+b 2),则角C 为( )A .30°B .60°C .45°或135°D .120°11.已知△ABC 的面积为23,BC =5,A =60°,则△ABC 的周长是________.12.已知△ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,已知m =(sin C ,sin B cos A ),n =(b,2c ),且m ·n =0.(1)求A 的大小;(2)若a =23,c =2,求△ABC 的面积S 的大小.三、探究与拓展13.在锐角△ABC 中,角A 、B 、C 的对边分别为a 、b 、c .若b a +a b =6cos C ,求tan C tan A +tan Ctan B的值.1.2 应用举例(一)【学习要求】1.利用正、余弦定理解决生产实践中的有关距离的测量问题. 2.利用正、余弦定理解决生产实践中的有关高度的测量问题. 3.利用正、余弦定理解决生产实践中的有关角度的测量问题.【学法指导】1.在我们将所求距离或方向的问题转化为一个求三角形的边和角的问题时,我们选择的三角形往往条件不够,这时需要我们寻找其他的三角形作为我们解这个三角形的支持,为我们解这个三角形提供必要的条件.2.在测量某物体高度的问题中,很多被测量的物体是一个立体的图形,而在测量过程中,我们测量的角度也不一定在同一垂面内,因此还需要我们有一定的空间想象能力,关键是画出图形,把已知量和未知量归结到三角形中来求解.【知识要点】1.基线的定义:在测量上,我们根据测量需要适当确定的线段叫做.一般来说,基线越长,测量的精确度.2.方位角:指从正北方向线按顺时针方向旋转到目标方向线所成的水平角.如图中的A点的方位角为α.3.仰角和俯角:与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平线方时叫仰角,目标视线在水平线方时叫俯角.(如图所示)4.如图,在河岸AC测量河的宽度BC,测量下列四组数据,较适宜的是()A.a,c,αB.b,c,αC.c,a,βD.b,α,β【问题探究】1.“遥不可及的月亮离我们地球究竟有多远呢?”.在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?2.现实生活中,人们经常遇到测量不可到达点之间的距离、底部不可到达建筑物的高度,以及在航海中航向的确定.这些问题究竟怎样解决?恰当利用我们所学过的正弦定理、余弦定理就可以解决上述问题,这节课我们就来探究上述问题.探究点一测量不可达距离的方法问题测量不可达距离有哪些基本类型?每种类型的解决方案是怎样的?探究表中是测量距离的基本类型及方案,请你根据所给图形,填写相应的结论:类别两点间不可达或不可视两点间可视但点不可达两点都不可达图形方法用余弦定理用正弦定理在△ACD中用正弦定理求AC 在△BCD中用正弦定理求BC 在△ABC中用余弦定理求AB结论AB=AB=①AC=②BC=③AB=探究点二测量底部不可到达的建筑物的高度问题底部不可到达的高度测量有哪些基本类型?每种类型如何测量?探究下表是测量高度的基本类型及方案,请你根据所给图形,填写相应结论:类别点B与点C、D共线点B与点C、D不共线图形方法先用正弦定理求出AC或AD,再解直角三角形求出AB在△BCD中先用正弦定理求出BC,在△ABC中∠ACB可知,即而求出AB结论AB=AB=【典型例题】例1为了测量两山顶M、N间的距离,飞机沿水平方向在A、B两点进行测量,A、B、M、N在同一铅垂平面内.飞机已经测量的数据有A点到M、N点的俯角α1、β1;B点到M、N点的俯角α2、β2;A、B的距离d(如图所示).甲乙两位同学各自给出了计算MN的两种方案,请你补充完整.甲方案:第一步:计算AM.由正弦定理AM=;第二步:计算AN.由正弦定理AN=;第三步:计算MN.由余弦定理MN=.乙方案:第一步:计算BM.由正弦定理BM=;第二步:计算BN.由正弦定理BN=;第三步:计算MN.由余弦定理MN=.小结测量两个不可到达的点之间的距离问题.首先把求不可到达的两点A,B之间的距离转化为应用余弦定理求三角的边长问题,然后在相关三角形中计算其他边.跟踪训练1在相距2千米的A、B两点处测量目标点C,若∠CAB=75°,∠CBA=60°,则A、C两点之间的距离为千米.例2如图所示,在山顶铁塔上B处测得地面上一点A的俯角为α,在塔底C处测得A处的俯角为β.已知。
2017-2018学年高中数学 周测试题1 新人教A版

周测试题1高考频度:★★★★★ 难易程度:★★★☆☆学霸推荐1.关于“斜二测”直观图的画法,如下说法不正确的是A .原图形中平行于x 轴的线段,其对应线段平行于'x 轴,长度不变B .原图形中平行于y 轴的线段,其对应线段平行于'yC .画与直角坐标系xOy 对应的'''x O y 时,'''x O y 必须是45°D .在画直观图时,由于选轴的不同,所得的直观图可能不同 2. 观察图中的四个几何体,其中判断正确的是A .(1)是棱台B .(2)是圆台C .(3)是棱锥D .(4)不是棱柱3.下图中直观图所表示的平面图形是A .正三角形B .锐角三角形C .钝角三角形D .直角三角形4.若轴截面为正方形的圆柱的侧面积是S ,则圆柱的体积为A BC D5.某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是''''的边长为1,它是水平放置的一个平面图形的直观图,则原图形的周长是6.如图所示,正方形O A B CA.6 B.8C.2+D.2+7.已知平面α截球O所得截面圆的半径为1,球心O到平面α,则此球的体积为A B.C. D.8.某三棱锥的三视图如图所示,则该三棱锥的表面积是A.28+65B.30+65C.56+ 125 D.60+1259.古代数学名著《张丘建算经》中有如下问题:“今有仓,东西袤一丈二尺,南北广七尺,南壁高九尺,北壁高八尺,问受粟几何?”题目的意思是:“有一粮仓的三视图如图所示(单位:尺),问能储存多少粟米?”已知1斛米的体积约为1.62立方尺,估算粮仓可以储存的粟米约有(取整数)A.410斛B.420斛C.430斛D.441斛10.已知圆台的上、下底面面积分别是π、4π,侧面积是6π,则这个圆台的体积是AB.CD11A.3πB.4πCD.6π12.某几何体的三视图如图所示,则该几何体的体积为3A .168π+B .88π+C .1616π+D .816π+1332,则此正四棱锥的侧棱长为 .14.如图,在长方体1111ABCD A B C D -中,14cm,2cm,3cm AB AD AA ===,则在长方体表面上连接1AC 两点的所有曲线长度的最小值为__________.15.圆柱形容器内盛有高度为8 cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是 cm .16.画出下图中两个几何体的三视图.17.用斜二测画法画出下图中水平放置的三角形的直观图.18.已知四棱台的正视图和侧视图是两个全等的等腰梯形,且梯形的高为4 cm,俯视图如图所示,其中的两个四边形分别是边长为2 cm和6 cm的正方形.试根据三视图用斜二测画法画出此四棱台的直观图.53.【答案】D【解析】因为在直观图中三角形的边A C ''平行于y '轴,B C ''平行于x '轴,所以在平面图形中三角形的边A Cy B C x ∥轴,∥轴,则原平面图形是直角三角形.故选D. 4.【答案】D【解析】由已知得轴截面为正方形的圆柱的侧面积为S ,设圆柱的高与底面直径都是2r ,则2π2r r S ⋅=,即r =,故圆柱的体积为22ππ2r h =⨯=.故选D . 5.【答案】D【解析】A ,B ,C 中的图形都可能是该几何体的俯视图,D 中图形不可能是该几何体的俯视图,因为它的正视图上面部分应为如下图所示的矩形.6.【答案】B【解析】将直观图还原得原平面图形,如图所示,易知=OB 1OA =,则3AB=,故周长为13138=+++.77.【答案】B【解析】设球O 的半径为R,则R ==34π3V R ==球. 8.【答案】B【解析】根据三棱锥的三视图可得此几何体的直观图如下图所示:此三棱锥为一个底面为直角三角形,高为4的三棱锥,因此表面积为111234454231()()302222S =⨯+⨯+⨯=⨯⨯⨯+++⨯+故选B. 9.【答案】D【解析】本题主要考查三视图、几何体的体积,考查考生的空间想象能力.解题的关键是由三视图准确还原出直观图.粮仓的形状为一个如图所示的直四棱柱,其体积为V =982+×7×12=714(立方尺),又7141.62≈441,所以可以储存粟米约为441斛.10.【答案】D【解析】本题主要考查了圆台的表面积公式和体积公式.由圆台的上、下底面面积分别是π、4π,可得上、下底面半径分别为121,2r r ==.设母线长为l ,则侧面积为()12π6πS r r l =+=,可得2l =,所以圆台的高h ==121()3V S S h =+=,所以选D. 11.【答案】A【解析】由已知得所给四面体为正四面体,正四面体扩展为正方体,二者有相同的外接球.由四面体各棱,得正方体的棱长为1,则球的半径为2,从而球的表面积为24π3π2⨯=,故选A. 12.【答案】A【解析】将三视图还原为几何体,再利用体积公式求解.原几何体为组合体,上面是长方体,下面是圆柱的一半(如图所示),故选A.13.【答案】5【解析】由132,323V Sh S ====,得3h =.易知正四棱锥的底面对角线长为85=.15.【答案】49【解析】设球的半径为r ,则由3=V V V +球水柱可得32243ππ8π63r r r r ⨯+⨯=⨯,解得4r =. 16.【解析】画出图①的三视图如图(甲)所示,画出图②的三视图如图(乙)所示.(甲) (乙)17.【解析】步骤是:④连接'O 、'A 、'B 并擦去辅助线,如图(3)所示,则三角形'''O A B 即是水平放置的三角形OAB 的 直观图.(1) (2) (3)18.【解析】由题意可知此四棱台的上、下底面分别是边长为2 cm 和6 cm 的正方形,且高为4 cm,各个侧面都是全等的等腰梯形,可用斜二测画法得到它的直观图.(1)画轴.以下底面(正方形ABCD )的中心为坐标原点,画x 轴、y 轴、z 轴,三轴相交于O ,且使∠xOy = 45°,∠xOz = 90°;(2)画下底面.以O 为中点,在x 轴上取线段EF ,使得EF =AB =6 cm ,在y 轴上取线段GH ,使得GH =12AB =3 cm,再过点G ,H 分别作∥AB EF ,∥CD EF ,且使得AB 的中点为G ,CD 的中点为H ,这样就得到了四棱台的下底面ABCD 的直观图;(3)画上底面.在z 轴上截取线段OO 1=4 cm,过O 1点作O 1x'∥Ox 、O 1y'∥Oy ,建立坐标系x'O 1y',在x'O 1y'中重复(2)的步骤,画出边长为2cm 的上底面的直观图A 1B 1C 1D 1;(4)再连接AA 1,BB 1,CC 1,DD 1,得到的图形就是所求的四棱台的直观图(图2).。
2017-2018学年高中数学人教A版必修五习题:第1章 解三角形 1-2 第1课时 含答案 精品

第一章 1.2第1课时A级基础巩固一、选择题1.已知A、B两地的距离为10 km,B、C两地的距离为20 km,现测得∠ABC=120°,则A、C两地的距离为导学号68370125(D)A.10 km B. 3 kmC.10 5 km D.107 km[解析]在△ABC中,AB=10,BC=20,∠ABC=120°,则由余弦定理,得AC2=AB2+BC2-2AB·BC cos∠ABC=100+400-2×10×20cos120°=100+400-2×10×20×(-12)=700,∴AC=107,即A、C两地的距离为107 km.2.如图,在河岸AC测量河的宽度BC,测量下列四组数据,较适宜的是导学号68370126(D)A.γ,c,αB.b,c,αC.c,α,βD.b,α,γ[解析]本题中a、c、β这三个量不易直接测量,故选D.3.一船向正北航行,看见正西方向有相距10 n mlie的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°方向上,另一灯塔在船的南偏西75°方向上,则这艘船的速度是每小时导学号68370127(C)A.5 n mlie B.5 3 n mlieC.10 n mlie D.10 3 n mlie[解析]如图,依题意有∠BAC=60°,∠BAD=75°,∴∠CAD =∠CDA =15°,从而CD =CA =10, 在Rt △ABC 中,求得AB =5, ∴这艘船的速度是50.5=10(n mlie/h).4.某观察站C 与两灯塔A 、B 的距离分别为300 m 和500 m ,测得灯塔A 在观察站C 北偏东30°,灯塔B 在观察站C 正西方向,则两灯塔A 、B 间的距离为导学号 68370128( C )A .500 mB .600 mC .700 mD .800 m[解析] 根据题意画出图形如图.在△ABC 中,BC =500,AC =300,∠ACB =120°, 由余弦定理得,AB 2=AC 2+BC 2-2AC ·BC cos120° =3002+5002-2×300×500×(-12)=490 000,∴AB =700(m).5.要直接测量河岸之间的距离(河的两岸可视为平行),由于受地理条件和测量工具的限制,可采用如下办法:如图所示,在河的一岸边选取A 、B 两点,观察对岸的点C ,测得∠CAB =45°,∠CBA =75°,且AB =120 m 由此可得河宽为(精确到1m)导学号 68370129( C )A .170 mB .98 mC .95 mD .86 m[解析] 在△ABC 中,AB =120,∠CAB =45°,∠CBA =75°,则∠ACB =60°,由正弦定理,得BC =120sin45°sin60°=406.设△ABC 中,AB 边上的高为h ,则h 即为河宽, ∴h =BC ·sin ∠CBA =406×sin75°≈95(m).6.甲船在湖中B 岛的正南A 处,AB =3 km ,甲船以8 km /h 的速度向正北方向航行,同时乙船从B 岛出发,以12 km/h 的速度向北偏东60°方向驶去,则行驶15 min 时,两船的距离是导学号 68370130( B )A .7 kmB .13 kmC .19 kmD .10-3 3 km[解析] 由题意知AM =8×1560=2,BN =12×1560=3,MB =AB -AM =3-2=1,所以由余弦定理,得MN 2=MB 2+BN 2-2MB ·BN cos120°=1+9-2×1×3×(-12)=13,所以MN =13km .二、填空题7.两船同时从A 港出发,甲船以每小时20 n mile 的速度向北偏东80°的方向航行,乙船以每小时12 n mile 的速度向北偏西40°方向航行,一小时后,两船相距__28__n mile .导学号 68370131[解析] 如图,△ABC 中,AB =20,AC =12,∠CAB =40°+80°=120°,由余弦定理,得BC 2=202+122-2×20×12×cos120°=784. ∴BC =28 n mile .8.一只蜘蛛沿东北方向爬行x cm 捕捉到一只小虫,然后向右转105°,爬行10 cm 捕捉到另一只小虫,这时它向右转135°爬行回它的出发点,则x =3__cm .导学号 68370132 [解析] 如图,由题意知,∠BAC =75°,∠ACB =45°. ∠B =60°,由正弦定理,得x sin ∠ACB =10sin B ,∴x =10sin ∠ACB sin B =10×sin45°sin60°=1063.三、解答题9.如图,我炮兵阵地位于地面A 处,两观察所分别位于地面点C 和D 处,已知CD =6 000 m .∠ACD =45°,∠ADC =75°,目标出现于地面B 处时测得∠BCD =30°,∠BDC =15°.求炮兵阵地到目标的距离.(结果保留根号)导学号 68370133[解析] 在△ACD 中,∠CAD =60°, AD =CD ·sin45°sin60°=63CD .在△BCD 中,∠CBD =135°,BD =CD ·sin30°sin135°=22CD ,∠ADB =90°.在Rt △ABD 中,AB =AD 2+BD 2=426CD =1 00042(m).10.一艘船以32.2 n mile/h 的速度向正北航行.在A 处看灯塔S 在船的北偏东20°的方向,30 min 后航行到B 处,在B 处看灯塔在船的北偏东65°的方向,已知距离此灯塔6.5 n mile 以外的海区为航行安全区域,这艘船可以继续沿正北方向航行吗?导学号 68370134[解析] 在△ASB 中,∠SBA =115°,∠S =45°.由正弦定理,得SB =AB sin20°sin45°=16.1sin20°sin45°≈7.787(n mile).设点S 到直线AB 的距离为h ,则h =SB sin65°≈7.06(n mile).∵h >6.5 n mile ,∴此船可以继续沿正北方向航行.B 级 素养提升一、选择题1.已知船A 在灯塔C 北偏东85°且到C 的距离为2 km ,船B 在灯塔C 西偏北25°且到C 的距离为 3 km ,则A 、B 两船的距离为导学号 68370135( D )A .2 3 kmB .3 2 kmC .15 kmD .13 km[解析] 如图可知∠ACB =85°+(90°-25°)=150°,AC =2,BC =3,∴AB 2=AC 2+BC 2-2AC ·BC ·cos150°=13, ∴AB =13.2.一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68 n mile 的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船的航行速度为导学号 68370136( A )A .1762 n mile/hB .34 6 n mile/hC .1722n mile/hD .34 2 n mile/h[解析] 如图所示,在△PMN 中,PM sin45°=MNsin120°,∴MN =68×3222=346,∴v =MN 4=1762(n mile/h).3.如图,货轮在海上以40 km/h 的速度沿着方位角(从指北方向顺时针转到目标方向线的水平角)为140°的方向航行.为了确定船的位置,船在B 点观测灯塔A 的方位角为110°,航行12h 到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是 导学号 68370137( B )A .10 kmB .10 2 kmC .15 kmD .15 2 km[解析] 在△ABC 中,BC =40×12=20( km),∠ABC =140°-110°=30°,∠ACB =(180°-140°)+65°=105°,则A =180°-(30°+105°)=45°. 由正弦定理,得AC =BC ·sin ∠ABC sin A =20·sin30°sin45°=102( km).二、填空题4.海上一观测站测得方位角240°的方向上有一艘停止航行待修的商船,在商船的正东方有一艘海盗船正向它靠近,速度为每小时90 n mile .此时海盗船距观测站107 n mile ,20 min 后测得海盗船距观测站20 n mlie ,再过__403__min ,海盗船到达商船.导学号 68370138[解析] 如下图,设开始时观测站、商船、海盗船分别位于A 、B 、C 处,20 min 后,海盗船到达D 处,在△ADC 中,AC =107,AD =20,CD =30,由余弦定理,得cos ∠ADC =AD 2+CD 2-AC 22AD ·CD =400+900-7002×20×30=12.∴∠ADC =60°,在△ABD 中,由已知得∠ABD =30°, ∠BAD =60°-30°=30°,∴BD =AD =20,2090×60=403(min).5.如图,一艘船上午8∶00在A 处测得灯塔S 在它的北偏东30°处,之后它继续沿正北方向匀速航行,上午8∶30到达B 处,此时又测得灯塔S 在它的北偏东75°处,且与它相距4 2 n mile ,则此船的航行速度是__16__n mile/h .导学号 68370139[解析] 在△ABS 中,∠A =30°,∠ABS =105°, ∴∠ASB =45°,∵BS =42,BS sin A =ABsin ∠ASB ,∴AB =BS ·sin ∠ASBsin A =42×2212=8,∵上午8∶00在A 地,8∶30在B 地, ∴航行0.5小时的路程为8 n mile , ∴此船的航速为16 n mile/h . 三、解答题6.如图,为了解某海域海底构造,在海平面内一条直线上的A 、B 、C 三点进行测量,已知AB =50 m ,BC =120 m ,于A 处测得水深AD =80 m ,于B 处测得水深BE =200 m ,于C 处测得水深CF =110 m ,求∠DEF 的余弦值.导学号 68370140[解析] 由题意可得DE 2=502+1202=1302, DF 2=1702+302=29 800, EF 2=1202+902=1502, 由余弦定理,得cos ∠DEF =1665.C 级 能力拔高1.为了测量两山顶M 、N 间的距离,飞机沿水平方向在A 、B 两点进行测量,A 、B 、M 、N 在同一个铅垂平面内(如图).能够测量的数据有俯角和A 、B 间的距离.请设计一个方案,包括:①指出需要测量的数据(用字母表示,并在图中标出);②用文字和公式写出计算M 、N 间的距离的步骤.导学号 68370141[解析] 方案一:①需要测量的数据有:点A 到点M 、N 的俯角α1、β1;点B 到点M 、N 的俯角α2、β2;A 、B 间的距离d (如图).②第一步:计算AM ,由正弦定理,得AM =d sin α2sin (α1+α2);第二步:计算AN ,由正弦定理,得AN =d sin β2sin (β2-β1);第三步:计算MN ,由余弦定理,得 MN =AM 2+AN 2-2AM ·AN cos (α1-β1).方案二:①需要测量的数据有:点A 到点M 、N 的俯角α1、β1;点B 到点M 、N 的俯角α2、β2;A 、B 间的距离d (如图).②第一步:计算BM ,由正弦定理,得BM =d sin α1sin (α1+α2);第二步:计算BN ,由正弦定理,得BN =d sin β1sin (β2-β1);第三步:计算MN ,由余弦定理,得 MN =BM 2+BN 2+2BM ·BN cos (β2+α2).2.已知海岛B 在海岛A 的北偏东45°方向上,A 、B 相距10 n mile ,小船甲从海岛B 以2 n mile /h 的速度沿直线向海岛A 移动,同时小船乙从海岛A 出发沿北偏西15°方向也以2 n mile/h 的速度移动.导学号 68370142(1)经过1 h 后,甲、乙两小船相距多少海里?(2)在航行过程中,小船甲是否可能处于小船乙的正东方向?若可能,请求出所需时间,若不可能,请说明理由.[解析] 经过1 h 后,甲船到达M 点,乙船到达N 点, AM =10-2=8,AN =2,∠MAN =60°,所以MN 2=AM 2+AN 2-2AM ·AN cos60°=64+4-2×8×2×12=52.所以MN =213.所以经过1 h 后,甲、乙两小船相距213海里.(2)设经过t (0<t <5)h 小船甲处于小船乙的正东方向,则甲船与A 距离为AE =(10-2t )n mile ,乙船与A 距离为AF =2t n mile ,∠EAF =60°,∠EF A =75°,则由正弦定理,得AF sin45°=AE sin75°,即2t sin45°=10-2t sin75°, 则t =10sin45°2sin75°+2sin45°=103+3=5(3-3)3<5.答:经过5(3-3)3小时小船甲处于小船乙的正东方向.。
2017_2018学年高考数学大题精做04解三角形的实际应用(含解析)文新人教A版

精做04 解三角形的实际应用1.如图,港口A 北偏东30°方向的C 处有一检查站,港口正东方向的B 处有一轮船,距离检查站31海里,该轮船从B 处沿正西方向航行20海里后到达D 处观测站,已知观测站与检查站距离21海里,问此时轮船离港口A 还有多远?【答案】15海里.代入并计算得15=AD ,即此时轮船距港口A 还有15海里.2.如图,一山顶有一信号塔CD (CD 所在的直线与地平面垂直),在山脚A 处测得塔尖C 的仰角为α,沿倾斜角为的山坡向上前进米后到达B 处,测得C 的仰角为β.AE DCBαβθ(1)求BC 的长;(2)若24,45,75,30l αβθ====,求信号塔CD 的高度.【答案】(1)sin()sin()l --αθβα;(2)2483-.【名师点睛】解三角形应用题的一般步骤:(1)读懂题意,理解问题的实际背景,明确已知和所求,理清量与量之间的关系.(2)根据题意画出示意图,将实际问题抽象成解三角形模型.(3)选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.3.如图,有一段河流,河的一侧是以O 为圆心,半径为103米的扇形区域OCD ,河的另一侧是一段笔直的河岸l ,岸边有一烟囱AB (不计B 离河岸的距离),且OB 的连线恰好与河岸l 垂直,设OB 与圆弧CD 的交点为E .经测量,扇形区域和河岸处于同一水平面,在点C ,点O 和点E 处测得烟囱AB 的仰角分别为45︒,30︒和60︒.(1)求烟囱AB 的高度;(2)如果要在CE 间修一条直路,求CE 的长. 【答案】(1)15米;(2)10米.答:CE 的长为10米.4.如图,某测量人员为了测量西江北岸不能到达的两点A ,B 之间的距离,他在西江南岸找到一个点C ,从C 点可以观察到点A ,B ;找到一个点D ,从D 点可以观察到点A ,C ;找到一个点E ,从E 点可以观察到点B ,C .并测量得到数据:90ACD ∠=,60ADC ∠=,30ACB ∠=,105BCE ∠=,45,CEB ∠=DC =CE =2(百米).(1)求CDE △的面积; (2)求A ,B 之间的距离.【答案】(1)2平方百米;(2)2532-百米.【解析】(1)连接DE ,在CDE △中,=3609030105=135DCE ∠---,则112sin 222222CDE S DC CE DCE =⋅⋅∠=⨯⨯⨯=△(平方百米).则235221220-=-=AB (百米).5.为了应对日益严重的气候问题,某气象仪器科研单位研究出一种新的“弹射型”气候仪器,这种仪器可以弹射到空中进行气候观测,如图所示,,,A B C 三地位于同一水平面上,这种仪器在C 地进行弹射实验,观测点,A B 两地相距100米,60BAC ∠=,在A 地听到弹射声音的时间比B 地晚217秒,在A 地测得该仪器至最高点H 处的仰角为30.(1)求,A C 两地的距离;(2)求这种仪器的垂直弹射高度HC (已知声音的传播速度为340米/秒). 【答案】(1)420米;(2)1403米. 【解析】(1)设BC x =,由条件可知23404017AC x x =+⨯=+, 在△ABC 中,由余弦定理,可得2222cos BC AB AC AB AC BAC =+-⨯∠, 即2221100(40)2100(40)2x x x =++-⨯⨯+⨯,解得380x =. 所以38040420AC =+=(米). 故,A C 两地的距离为420米.(2)在ACH △中,420AC =米,30,903060HAC AHC ∠=︒∠=︒-︒=︒,由正弦定理,可得sin sin AC HC AHC HAC =∠∠,即420sin 60sin 30HC=︒︒, 所以14202140332HC ⨯==(米), 故这种仪器的垂直弹射高度为1403米.6.海岛B 上有一座高为10米的塔,塔顶的一个观测站A ,上午11时测得一游船位于岛北偏东15°方向上,且俯角为30°的C 处,一分钟后测得该游船位于岛北偏西75°方向上,且俯角45°的D 处(假设游船匀速行驶).(1)求该船行驶的速度(单位:米/分钟);(2)又经过一段时间后,游船到达海岛B 的正西方向E 处,问此时游船距离海岛B 多远. 【答案】(1)20米/分钟;(2)65米.故又经过一段时间后,游船到达海岛B 的正西方向E 处,此时游船距离海岛65米. 7.如图,某城市有一条公路从正西方AO 通过市中心O 后转向东偏北α角方向的OB .位于该市的某大学M 与市中心O 的距离313km OM =,且AOM ∠=β.现要修筑一条铁路L ,L 在OA 上设一站A ,在OB 上设一站B ,铁路在AB 部分为直线段,且经过大学M .其中tan 2=α,3cos 13=β,15km AO =.(1)求大学M 与站A 的距离AM ; (2)求铁路AB 段的长.【答案】(1)62km ;(2)302km .【解析】(1)在AOM △中,15AO =,AOM β∠=且3cos 13=β,313OM = 由余弦定理得,2222cos AM OA OM OA OM AOM =+-⋅⋅∠223(313)1523131513=+-⨯⨯⨯ 13915152315372.=⨯+⨯-⨯⨯⨯=62AM ∴=,即大学M 与站A 的距离AM 为62km ;(2)3cos 13=β,且β为锐角, 2sin 13∴=β, 在AOM △中,由正弦定理得,sin sin AM OM MAO=∠β,即623132sin 13MAO =∠,2sin 2MAO ∴∠=, π4MAO ∴∠=,π4ABO ∴∠=-α, tan 2=α,2sin 5∴=α,1cos 5=α, π1sin sin()410ABO ∴∠=-=α,又πAOB ∠=-α,2sin sin(π)5AOB ∴∠=-=α, 在AOB △中,15AO =,由正弦定理得,sin sin AB AOAOB ABO=∠∠,即1521510AB =, 302AB ∴=,即铁路AB 段的长为302km .8.如图所示,PAQ ∠是某海湾旅游区的一角,其中120PAQ ∠=,为了营造更加优美的旅游环境,旅游区管委会决定在直线海岸AP 和AQ 上分别修建观光长廊AB 和AC ,其中AB 是宽长廊,造价是800元/米,AC 是窄长廊,造价是400元/米,两段长廊的总造价为120万元,同时在线段BC 上靠近点B 的三等分点D 处建一个观光平台,并建水上直线通道AD (平台大小忽略不计),水上通道的造价是1000元/米.(1)若规划在三角形ABC 区域内开发水上游乐项目,要求ABC △的面积最大,那么AB 和AC 的长度分别为多少米?(2)在(1)的条件下,建直线通道AD 还需要多少钱?【答案】(1)AB 和AC 的长度分别为750米和1500米;(2)50万元.(2)解法一:在(1)的条件下,750m,1500m AB AC ==.由2133AD AB AC =+得222133AD AB AC ⎛⎫=+ ⎪⎝⎭22441999AB AB AC AC =+⋅+224411750750150015009929⎛⎫=⨯+⨯⨯⨯-+⨯ ⎪⎝⎭ 250000=. 所以500AD =,所以1000500500000⨯=元,即建水上通道AD 还需要50万元. 解法二:在ABC △中,222cos120BC AB AC AB AC =+-⋅22750150027501500cos120=+-⨯⨯7507= 在ABC △中,222cos 2AB BC AC B AB BC +-=⋅2227507507150027507507+-⨯⨯27=所以()250,2503D . 所以()()22250025030AD =-+- 500=.所以1000500500000⨯=元,即建水上通道AD 还需要50万元.9.(2014·上海卷理)如图,某公司要在AB 、两地连线上的定点C 处建造广告牌CD ,其中D 为顶端,AC 长35米,CB 长80米.设点AB 、在同一水平面上,从A 和B 看D 的仰角分别为βα和.(1)设计中CD 是铅垂方向,若要求βα2≥,问CD 的长至多为多少(结果精确到0.01米)?(2)施工完成后,CD 与铅垂方向有偏差.现在实测得,,45.1812.38==βα求CD 的长(结果精确到0.01米).【答案】(1)28.28米;(2)26.93米.【解析】(1)∵2αβ≥,且022βαπ<≤<, tan tan 20αβ∴≥>,即24003516400CDCD CD ≥>-,10.(2013·江苏卷)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50 m/min ,在甲出发2 min 后,乙从A 乘缆车到B ,在B 处停留1 min 后,再从B 匀速步行到C .假设缆车匀速直线运行的速度为130 m/min ,山路AC 长为1 260 m ,经测量,cos A =1213,cos C =35. (1)求索道AB 的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?【答案】(1)1 040 m ;(2)3537;(3)1250625,4314⎡⎤⎢⎥⎣⎦. 【解析】(1)在ABC △中,因为cos A =1213,cos C =35, 所以sin A =513,sin C =45. 从而sin B =sin[π-(A +C )]=sin(A +C )=sin A cos C +cos A sin C =531246313513565⨯+⨯=. 由正弦定理sin sin AB AC C B =,得12604sin =1040(m)63sin 565AC AB C B =⨯=⨯. 所以索道AB 的长为1 040 m.设乙步行的速度为v m/min ,由题意得5007103350v -≤-≤,解得12506254314v ≤≤, 所以为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在1250625,4314⎡⎤⎢⎥⎣⎦(单位:m/min)范围内.。
山东省菏泽市2017-2018学年高中数学 第一章 解三角形 第二章 数列周测题 新人教A版必修5

解三角形.数列一、选择题(本大题共10小题,共50分)1.△ABC的内角A、B、C的对边分别为a、b、c,若a、b、c成等比数列,且c=2a,则cosB=()A.B.C.D.2.在锐角△ABC中,角A,B,C所对的边分别为a,b,c,若,a=2,,则b的值为()A.B.C.D.3.△ABC的内角A,B,C的对边分别为a,b,c,已知sinB+sinA(sinC﹣cosC)=0,a=2,c=,则C=()A.B.C.D.4.在△ABC中,B=,BC边上的高等于BC,则cosA=()A.B.C.﹣D.﹣5.如图,在△ABC中,D是边AC上的点,且AB=AD,2AB=BD,BC=2BD,则sinC的值为()A.B.C.D.6.已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)7.数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n≥1),则a6=()A.3×44B.3×44+1 C.44D.44+18.等比数列{a n}中,a4=2,a5=5,则数列{lga n}的前8项和等于()A.6 B.5 C.4 D.39.数列{a n}中,对任意n∈N*,a1+a2+…+a n=2n﹣1,则a12+a22+…+a n2等于()A.(2n﹣1)2 B.C.4n﹣1 D.10.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为()A.钱 B.钱 C.钱 D.钱二、填空题(本大题共4小题,共20分)11.在△ABC中,B=60°,AC=,则AB+2BC的最大值为.12.已知等差数列{a n}中,满足S3=S10,且a1>0,S n是其前n项和,若S n取得最大值,则n= .13.设△ABC的内角A,B,C的对边分别为a,b,c,且a=2,cosC=﹣,3sinA=2sinB,则c= .14.2011年3月11日,日本9.0级地震造成福岛核电站发生核泄漏危机.如果核辐射使生物体内产生某种变异病毒细胞,若该细胞开始时有2个,记为a0=2,它们按以下规律进行分裂,1 小时后分裂成4个并死去1个,2小时后分裂成6个并死去1个,3小时后分裂成10个并死去1 个,…,记n小时后细胞的个数为a n,则a n= (用n表示).三、解答题(本大题共4题,共50分)15.△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.16.设等差数列{a n}的公差为d,前n项和为S n,等比数列{b n}的公比为q,已知b1=a1,b2=2,q=d,S10=100.(1)求数列{a n},{b n}的通项公式(2)当d>1时,记c n=,求数列{c n}的前n项和T n.17.S n为数列{a n}的前n项和,己知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式:(Ⅱ)设b n=,求数列{b n}的前n项和.一.填空题:(每题5分,共50分)二、填空题:(每题5分,共20分)11 12、13、 14、三、解答题(12+12+13+13共50分)15、16、17、解三角形.数列答案一.选择题(共10小题)1.B ;2.A ;3.B ;4.C ;5.D ;6.C ;7.A ;8.C ;9.D ;10.B ;二.填空题(共4小题)11.2;12.6或7;13.4;14.2n +1;三.解答题(共4小题)15. 解:(I )由已知及正弦定理得,()2cosC sin cos sin cos sinC A B+B A =, 即()2cosCsin sinC A+B =.故2sinCcosC sinC =.可得1cosC 2=,所以C 3π=.(II )由已知,1sin C 2ab =.又C 3π=,所以6ab =.由已知及余弦定理得,222cosC 7a b ab +-=., 解得,或,当时,当时,a n =(2n+79),b n =9•;(2)当d >1时,由(1)知a n =2n ﹣1,b n =2n ﹣1,∴c n ==,∴T n =1+3•+5•+7•+9•+…+(2n ﹣1)•,∴T n=1•+3•+5•+7•+…+(2n﹣3)•+(2n﹣1)•,∴T n=2+++++…+﹣(2n﹣1)•=3﹣,∴T n=6﹣.17.解:(I)由a n2+2a n=4S n+3,可知a n+12+2a n+1=4S n+1+3两式相减得a n+12﹣a n2+2(a n+1﹣a n)=4a n+1,即2(a n+1+a n)=a n+12﹣a n2=(a n+1+a n)(a n+1﹣a n),∵a n>0,∴a n+1﹣a n=2,∵a12+2a1=4a1+3,∴a1=﹣1(舍)或a1=3,则{a n}是首项为3,公差d=2的等差数列,∴{a n}的通项公式a n=3+2(n﹣1)=2n+1:(Ⅱ)∵a n=2n+1,∴b n===(﹣),∴数列{b n}的前n项和T n=(﹣+…+﹣)=(﹣)=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第05周 解三角形(测试时间:60分钟,总分:90分)班级:____________ 姓名:____________ 座号:____________ 得分:____________ 一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在ABC △中,角,,A B C 的对边分别为,,a b c ,且,则B = A .60 或120 B .60 C .120D .30或150【答案】A,∵b a >,∴60B =︒或120 ,故本题选A.2.在ABC △中,角,,A B C 的对边分别为,,a b c ,若2c =,221a b =+,则cos a B =A B CD .5【答案】B【解析】由余弦定理得,2222212cos 154cos a b a c ac B a a B=+=+-+=+-554cos 0cos 4a B a B ⇒-=⇒=,故选B. 3.若ABC △的内角,,A B C 所对的边分别为,,a b c ,已知2sin23sin b A a B =,且2c b =,则A BCD 【答案】B【解析】2sin 23sin b A a B =4sin cos 3sin 4sin sin cos 3sin sin b A A a B B A A A B ⇒=⇒=2224cos 343,2b c a A bc+-⇒=⇒⋅=B.【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果. 4.在中,,,分别为角,,的对边,若2a b +=,,则角的最大值为A .B .C .D .【答案】C【解析】由题意得,又()2221211cos 12222a b ab c ab C ab ab ab +---===-≥-,时等号成立.所以120C =︒时为最大值.选C .5.在ABC △中,角,,A B C 所对的边分别是,,a b c ,若()sin sin 2sin2C B A A +-=,且2c =,则ABC △的面积为ABC D 【答案】A6.在ABC △中,角A B C 、、的对边分别为a b c 、、,60,1A b == ,则ABC △外接圆的直径是ABC D 【答案】D【名师点睛】本题主要考查了三角形面积公式,正弦定理、余弦定理的综合应用,属于基础题;由已知利用三角形面积公式可解得c ,由余弦定理即可求得a 的值,利用正弦定理即可得ABC △外接圆的直径2R .7.在中,若,,则一定是A .钝角三角形B .正三角形C .等腰直角三角形D .非等腰直角三角形【答案】B【解析】在ABC △中,∵22,sin sin sin a b c A B C =+=,∴由正弦定理可得2a =b +c ,且a 2=bc .再由余弦定理可得:()2222222222421cos 2222b c bc a b c a a a a A bc bc a +--+---====,3A π∴=. 再根据()()22224440b c b c bc a a -=+-=-=,可得b =c ,故ABC △一定是等边三角形,故本题选择B 选项.【名师点睛】解决判断三角形的形状问题,一般将条件化为只含角的三角函数的关系式,然后利用三角恒等变换得出内角之间的关系式;或将条件化为只含有边的关系式,然后利用常见的化简变形得出三边的关系.另外,在变形过程中要注意A ,B ,C 的范围对三角函数值的影响.8.在锐角ABC △中,角,,A B C 的对边分别为,,a b c ,若s i n,,则a c +的取值范围是ABCD 【答案】Aπcos 2,,21,3sin b B B B R B=∴=∴==故选A.【名师点睛】解三角形问题的两重性:①作为三角形问题,它必须要用到三角形的内角和定理,正弦、余弦定理及其有关三角形的性质,及时进行边角转化,有利于发现解题的思路;②它毕竟是三角变换,只是角的范围受到了限制,因此常见的三角变换方法和原则都是适用的,注意“三统一”(即“统一角、统一函数、统一结构”)是使问题获得解决的突破口. 二、填空题(本题共4小题,每小题5分,共20分)9.在ABC △中,角,,A B C 的对边分别为,,a b c ,若::7:8:13a b c =,则C =__________. 【答案】120【解析】设7,8,13a k b k c k ===10.已知ABC △的内角所对的边分别为,若3cos 2cos a C c A =,1tan 3A =,则=____________. 【答案】34π11.如果满足,,的恰有一个,则实数的取值范围是____________.【答案】【解析】由正弦定理有:10sin sin 45k A =,则,,结合图象可得,当时满足题意,此时.12.ABC △的三个内角,,A B C 的对边长分别为,,a b c ,R 是ABC △的外接圆半径,则下列四个条件:(1)()()3a b c a b c ab +++-=; (2)sin 2cos sin A B C =;(3)cos ,cos b a C c a B ==; (4有两个结论:甲:ABC △是等边三角形;乙:ABC △是等腰直角三角形. 请你选出给定的四个条件中的两个作为条件,两个结论中的一个作为结论,写出一个你认为正确的命题是__________.【答案】(1)(2)⇒甲或(2)(4)⇒乙或(3)(4)⇒乙【解析】以(1)(2)作为条件,甲为结论,得到的命题为真命题,理由如下:由()()3a b c a b c ab +++-=,变形得:22223a b ab c ab ++-=,即222a b c ab +-=,C 为三角形的内角,∴C =60°, 又()sin sin sin cos cos sin 2cos sin A B C B C B C B C =+=+=,∴()sin cos cos sin sin 0B C B C B C -=-=,∵B C -π<-<π,∴B −C =0,即B =C ,则A =B =C =60°,∴ABC △是等边三角形; 以(2)(4)作为条件,乙为结论,得到的命题为真命题,理由如下: 化简得:()sin sin sin cos cos sin 2cos sin A B C B C B C B C =+=+=, 即()sin cos cos sin sin 0B C B C B C -=-=, ∵B C -π<-<π,∴B −C =0,即B =C ,∴b =c ,又b =c ,∴a 2=2b 2,又2222b c b +=,∴a 2=b 2+c 2,∴90A ∠=︒,则三角形为等腰直角三角形;以(3)(4)作为条件,乙为结论,得到的命题为真命题,理由如下:,又2222cos b c a ab C =+-,由cos cos b a C c a B ==,,根据正弦定理得sin sin cos sin sin cos B A C C A B ==:,,sin cos sin cos B B C C =,∴sin 2sin 21B C ==,∴45B =︒,则三角形为等腰直角三角形.故正确的命题是:(1)(2)⇒甲或(2)(4)⇒乙或(3)(4)⇒乙.三、解答题(本大题共3小题,共30分.解答应写出文字说明、证明过程或演算步骤) 13.在ABC △中,角,,A B C 的对边分别为,,a b c ,且满足()()cos 2cos πb A c a B =+-.(1)求角B 的大小;(2)若4b =,ABC △的面积为,求ABC △的周长.【答案】(1(2 【解析】(1)∵()()cos 2cos πb A c a B =+-, ∴()()cos 2cos b A c a B =+-,由正弦定理可得:()sin cos 2sin sin cos B A C A B =--, ∴()sin 2sin cos sin A B C B C +=-=. 又角C 为ABC △内角, ∴sin 0C >,又()0,πB ∈, ,得4ac =, 又()222216b a c ac a c ac =++=+-=,所以ABC △的周长为14.已知锐角ABC △中内角,,A B C 所对边的边长分别为,,a b c ,满足226cos a b ab C +=,且.(1)求角C 的值;(2,且()f x 图象上相邻两最高点间的距离为π,求()f A 的取值范围.【答案】(1(2【解析】(1)因为226cos a b ab C +=,由余弦定理知2222cos a b c ab C +=+,(2π3x ⎛⎫=+ ⎪⎝⎭ω,15.如图所示,MCN 是某海湾旅游区的一角,为营造更加优美的旅游环境,旅游区管委会决定建立面积为ABC ,并在区域CDE 建立水上餐厅.已知120ACB ∠=,30DCE ∠=.(1)设AC x =,AB y =,用x 表示y ,并求y 的最小值;(2)设ACD θ∠=(θ为锐角),当AB 最小时,用θ表示区域CDE 的面积S ,并求S 的最小值.【答案】(1)y =y 的最小值为(2)S =S 的最小值为8-(2)由(1)可知,4AB AC BC ===, 所以30BAC ∠=︒,在ACD △中,由正弦定理,sin 4sin 302sin sin(150)sin(150)AC DAC CD ADC ⋅∠︒===∠︒-︒-θθ,在ACE △中,由正弦定理,sin 4sin 302sin sin(120)sin(120)AC EAC CE AEC ⋅∠︒===∠︒-︒-θθ,所以,11sin2sin(150)sin(120)S CD CE DCE =⋅⋅∠==︒-⋅︒-θθ. 因为θ为锐角,所以当π4=θ时,S 有最小值8-。