Brownian motion and the Riemann zeta-function

合集下载

非达霉素的固态形式及其制备方法[发明专利]

非达霉素的固态形式及其制备方法[发明专利]

专利名称:非达霉素的固态形式及其制备方法
专利类型:发明专利
发明人:T.福纳格,A.科瓦斯内-梅泽,L.斯祖罗斯,E.N.阿瓦伊申请号:CN201380036058.5
申请日:20130510
公开号:CN104768963A
公开日:
20150708
专利内容由知识产权出版社提供
摘要:本发明提供非达霉素的固态形式、制备该固态形式的方法以及包含一种或多种非达霉素的所述固态形式的药物组合物和制剂,和制备该组合物和制剂的方法。

本发明的固态形式表现出有利性质,例如在制造与加工中改善的可靠性和重现性以及在制剂中的稳定性。

申请人:特瓦制药厂有限公司
地址:匈牙利德布勒森
国籍:HU
代理机构:中国专利代理(香港)有限公司
更多信息请下载全文后查看。

马赫泽德干涉仪偏振态控制和拉曼光纤温度传感器设计的开题报告

马赫泽德干涉仪偏振态控制和拉曼光纤温度传感器设计的开题报告

马赫泽德干涉仪偏振态控制和拉曼光纤温度传感器设计的开题报告一、课题背景和研究意义近年来,随着科技的飞速发展,干涉仪和光纤传感技术已经成为了现代科学研究中不可或缺的重要工具。

其中,马赫泽德干涉仪具有高灵敏度、精度高等优异特点,在物理、材料学等领域应用广泛。

同时,拉曼光纤温度传感技术也具有响应速度快、准确度高等优点,被广泛应用于各种领域中。

本课题旨在探究马赫泽德干涉仪中偏振态控制和拉曼光纤温度传感器的设计。

通过对偏振态控制的研究,提高马赫泽德干涉仪的测量精度和稳定性,为物理、材料学等领域的研究提供更加准确的测量结果;同时,通过对光纤传感器的设计研究,开发出更加先进、可靠的拉曼光纤温度传感器,为工业生产、医疗保健等领域中的温度测量提供更好的解决方案。

二、研究内容和研究方法(一)偏振态控制1. 研究马赫泽德干涉仪中偏振态控制的理论和基本原理;2. 设计实验方案,完成偏振态控制装置的搭建和测试;3. 分析和总结实验结果,对偏振态控制装置进行改进和优化。

(二)拉曼光纤温度传感器设计1. 研究光纤传感技术中的拉曼散射原理和温度反演算法;2. 设计并搭建拉曼光纤温度传感器实验平台;3. 进行温度传感实验,并对实验结果进行分析和总结;4. 对实验结果进行改进和优化,提高拉曼光纤温度传感器的准确度和稳定性。

(三)研究方法本课题采用基础理论与实验相结合的方法,通过对偏振态控制和光纤传感技术的理论分析和实验验证,实现对马赫泽德干涉仪和拉曼光纤温度传感器的控制和设计研究。

三、预期研究成果通过对马赫泽德干涉仪和拉曼光纤温度传感器的研究,本课题预期取得以下成果:1. 提高马赫泽德干涉仪的测量精度和稳定性;2. 设计出更加先进、可靠的拉曼光纤温度传感器;3. 对偏振态控制和光纤传感技术的理论与实践有更加深入的了解。

四、研究意义本课题的研究成果不仅可以有效提高马赫泽德干涉仪和拉曼光纤温度传感器的测量精度和稳定性,也可以为控制和光纤传感技术的应用研究提供有力支持,具有重要的理论和应用价值。

平移式老花接触镜片对[发明专利]

平移式老花接触镜片对[发明专利]

专利名称:平移式老花接触镜片对
专利类型:发明专利
发明人:J.H.罗夫曼,E.梅内泽斯,K.A.彻哈布申请号:CN201280041732.4
申请日:20120814
公开号:CN103748505A
公开日:
20140423
专利内容由知识产权出版社提供
摘要:本发明公开了平移式、多焦点接触镜片对,所述平移式、多焦点接触镜片对具有在所述对的所述第一镜片和所述第二镜片之间有所不同的光焦度区,所述平移式、多焦点接触镜片用于矫正佩戴者的老花。

每个镜片可在所述光焦度子区的区段高度、焦度、非球面度、形状、取向和/或内移量方面有所不同,由此来提供远距、中距和近距距离处的清晰且舒适的视力。

申请人:庄臣及庄臣视力保护公司
地址:美国佛罗里达州
国籍:US
代理机构:中国专利代理(香港)有限公司
更多信息请下载全文后查看。

4.布朗运动与伊藤公式

4.布朗运动与伊藤公式
S k∆ (t ), t = tk , ∆ S (t ) = t − t ∆ t − t ∆ k S k +1 + k +1 S k , tk ≤ t ≤ tk +1. ∆ ∆
S ∆ (t ) is called the path of the random walk.
Distribution of the Path
r −σ 2 / 2 t +σ W ( t )
)
Geometric Brownian Motion cont.-This means the underlying asset price movement as a continuous stochastic process, its logarithmic function is described by the Brownian motion. The underlying asset price S(t) is said to fit geometric Brownian motion. This means: Corresponding to the discrete BTM of the underlying asset price in a riskneutral world (i.e. under the martingale measure), its continuous model obeys the geometric Brownian motion .
Application of Central Limit Them.
Consider limit S (t ) / t as ∆→ 0.
S (t ) 1 t − tk ∆ tk +1 − t ∆ = ∆ S k +1 + ∆ S k t t tk +1 − t k +1 1 t − tk k = ∑ Ri + ∆ ∑ Ri t ∆ i =1 i =1 t − tk = ∆ tk tk k tk − t tk +1 k +1 ∑ Ri + ∑ Ri → X t i =1 ∆ t (k + 1) i =1

SP(Lecture6) 布朗运动

SP(Lecture6) 布朗运动

命题 5 对任意的 t ∈ [0, 1], Sn (t ) − → S(t ) = S(0)eσB(t )− 2 σ t ,
d
1 2
其中 B(t ) ∼ N (0, t ),称 S(t ) 为对数正态分布。 证明: 只需证明 log Sn (t ) 依分布收敛于 log S(t ),而 1 log S(t ) = log S(0) + σB(t ) − σ2t , 2 1 σ 1 σ log Sn (t ) = logS(0) + (nt + Mnt ) log(1 + √ ) + (nt − Mnt ) log(1 − √ ). 2 n 2 n 由 Taylor 公式可得 1 log(1 + x) = x − x2 + O(x3 ), 2 因此我们有 σ σ σ2 log(1 + √ ) = √ − + O(n−3/2 ), n n 2n σ σ σ2 log(1 − √ ) = − √ − + O(n−3/2 ). n n 2n
2 BROWNIAN 运动的定义及性质
6-6
(2)任意的 m ≥ 1 以及 0 = t0 < t1 < . . . < tm ,随机向量 (B(t1 ), . . . , B(tm ))t 为联合正态 分布,其均值为 0,协方差阵为 t1 t1 . . . t1
+1 Skm−1 是相互独立的,称 Ski+1 − Ski = ∑ ji= ki +1 X j 为随机游动 {Sn } 的增量,容易知道
k
E (Ski+1 − Ski ) = Var(Ski+1 − Ski ) = E (

应用数学专业(47)硕士研究生培养方案

应用数学专业(47)硕士研究生培养方案

应用数学专业(47)硕士研究生培养方案一、培养目标本专业的主要培养目标是培养德智体全面发展的,能适应社会主义现代化建设需要的,从事偏微分方程及其应用,金融数学,小波理论、分形几何及其应用等领域的教学和研究工作的高层次专业人才,使他们具有宽厚的理论知识和应用能力。

本专业要求硕士毕业后,能较好地利用基础理论,专业知识为社会主义现代化服务,能独立地从事科学研究和教学工作,能独立承担专业技术工作和科研项目。

二、研究方向1.偏微分方程及其应用2.金融数学3.小波理论、分形几何及其应用三、学习年限与学分年限为2-3年,总学分为34-38学分。

四、课程设置(一)学位课程(公共必修课,其中4门专业学位课程任选3门,计23学分)(三)任意选修课程(每方向不少于两门,8学分)五、教学实践(1学分)在第二学年安排一个学期的教学辅导工作,辅导一门课或讲授至少8个学时的本科专业课程,初步了解和掌握本科教学各环节。

成绩合格者计1学分。

六、调查研究(1学分)在完成基础课之后(第一学年以后)分期安排研究生参加全国性学术会议和各种暑期学术活动。

了解学术动态,建立学术合作伙伴,会后要有书面报告交导师。

三年级的研究生参加学术会议要有论文报告。

对有论文提交会议者优先安排参加学术会议和学术活动。

七、科学研究及学位论文要求(2学分)1.本专业硕士生在校期间应至少完成3篇课程论文,1篇学年论文。

2.本专业硕士生至迟应在第四学期初确定学位论文题目,通过学位论文开题报告,并订出学位论文工作计划。

3.本专业硕士生学位论文选题及学术水平的要求为:(1)选题应属于本研究领域的国际前沿和主流问题。

(2)从结论来讲要有明显的创新和独到之处。

(3)一般推广性的论文应有一定的篇幅。

(4)要求论文语言通顺流畅,推理严谨无误。

(5)能在省级以上的学术刊物上公开发表。

八、培养方式与方法1.学位课程:教师讲授与学生自学相结合,独立完成习题。

2.选修课程:教师讲授与讨论相结合,在学习过程中掌握国内外研究状况,了解最新研究动态。

stochastic calculus for fractional brownian motion and related processes附录

stochastic calculus for fractional brownian motion and related processes附录

kH (t, u)dWu = CH Γ (1 + α)
(2)
R
α (I− 1(0,t) )(x)dWx
(see Lemma 1.1.3). Therefore, the first equality is evident, since
0 R t
(kH (t, u))2 x)α )2 dx +
k n
2H
2
.
C . n2
(B.0.12)
References
[AOPU00] Aase, K., Øksendal, B., Privault, N., Ubøe, J.: White noise generalization of the Clark-Haussmann-Ocone theorem with applications to mathematical finance. Finance Stoch., 4, 465–496 (2000) [AS96] Abry, P., Sellan, F.: The wavelet-based synthesis for fractional Brownian motion proposed by F. Sellan and Y. Meyer: Remarks and fast implementation. Appl. Comp. Harmon. Analysis, 3, 377–383 (1996) [AS95] Adler, R.J.; Samorodnitsky, G.: Super fractional Brownian motion, fractional super Brownian motion and related self-similar (super) processes. Ann. Prob., 23, 743–766 (1995) [ALN01] Al` os, E., Le´ on, I.A., Nualart, D.: Stratonovich stochastic calculus with respect to fractional Brownian motion with Hurst parameter less than 1/2. Taiwanesse J. Math., 5, 609–632 (2001) [AMN00] Al` os, E., Mazet, O., Nualart, D.: Stochastic calculus with respect to fractional Brownian motion with Hurst parameter less than 1/2. Stoch. Proc. Appl., 86, 121–139 (2000) [AMN01] Al` os, E., Mazet, O., Nualart, D.: Stochastic calculus with respect to Gaussian processes. Ann. Prob., 29, 766–801 (2001) [AN02] Al` os, E., Nualart, D.: Stochastic integration with respect to the fractional Brownian motion. Stoch. Stoch. Rep., 75, 129–152 (2002) [And05] Androshchuk, T.: The approximation of stochastic integral w.r.t. fBm by the integrals w.r.t. absolutely continuous processes. Prob. Theory Math. Stat., 73, 11–20 (2005) [AM06] Androshchuk, T., Mishura Y.: Mixed Brownian–fractional Brownian model: absence of arbitrage and related topics. Stochastics: Intern. J. Prob. Stoch. Proc., 78, 281–300 (2006) [AG03] Anh, V., Grecksch, W.: A fractional stochastic evolution equation driven by fractional Brownian motion. Monte Carlo Methods Appl. 9, 189–199 (2003)

斯普林格数学研究生教材丛书

斯普林格数学研究生教材丛书

斯普林格数学研究生教材丛书《斯普林格数学研究生教材丛书》(Graduate Texts in Mathematics)GTM001《Introduction to Axiomatic Set Theory》Gaisi Takeuti, Wilson M.Zaring GTM002《Measure and Category》John C.Oxtoby(测度和范畴)(2ed.)GTM003《T opological Vector Spaces》H.H.Schaefer, M.P.Wolff(2ed.)GTM004《A Course in Homological Algebra》P.J.Hilton, U.Stammbach(2ed.)(同调代数教程)GTM005《Categories for the Working Mathematician》Saunders Mac Lane(2ed.)GTM006《Projective Planes》Daniel R.Hughes, Fred C.Piper(投射平面)GTM007《A Course in Arithmetic》Jean-Pierre Serre(数论教程)GTM008《Axiomatic set theory》Gaisi Takeuti, Wilson M.Zaring(2ed.)GTM009《Introduction to Lie Algebras and Representation Theory》James E.Humphreys(李代数和表示论导论)GTM010《A Course in Simple-Homotopy Theory》M.M CohenGTM011《Functions of One Complex VariableⅠ》John B.ConwayGTM012《Advanced Mathematical Analysis》Richard Beals GTM013《Rings and Categories of Modules》Frank W.Anderson, Kent R.Fuller(环和模的范畴)(2ed.)GTM014《Stable Mappings and Their Singularities》Martin Golubitsky, Victor Guillemin (稳定映射及其奇点)GTM015《Lectures in Functional Analysis and OperatorTheory》Sterling K.Berberian GTM016《The Structure of Fields》David J.Winter(域结构)GTM017《Random Processes》Murray RosenblattGTM018《Measure Theory》Paul R.Halmos(测度论)GTM019《A Hilbert Space Problem Book》Paul R.Halmos (希尔伯特问题集)GTM020《Fibre Bundles》Dale Husemoller(纤维丛)GTM021《Linear Algebraic Groups》James E.Humphreys (线性代数群)GTM022《An Algebraic Introduction to Mathematical Logic》Donald W.Barnes, John M.MackGTM023《Linear Algebra》Werner H.Greub(线性代数)GTM024《Geometric Functional Analysis and Its Applications》Paul R.HolmesGTM025《Real and Abstract Analysis》Edwin Hewitt, Karl StrombergGTM026《Algebraic Theories》Ernest G.ManesGTM027《General Topology》John L.Kelley(一般拓扑学)GTM028《Commutative Algebra》VolumeⅠOscar Zariski, Pierre Samuel(交换代数)GTM029《Commutative Algebra》VolumeⅡOscar Zariski, Pierre Samuel(交换代数)GTM030《Lectures in Abstract AlgebraⅠ.Basic Concepts》Nathan Jacobson(抽象代数讲义Ⅰ基本概念分册)GTM031《Lectures in Abs tract AlgebraⅡ.Linear Algabra》Nathan.Jacobson(抽象代数讲义Ⅱ线性代数分册)GTM032《Lectures in Abstract AlgebraⅢ.Theory of Fields and Galois Theory》Nathan.Jacobson(抽象代数讲义Ⅲ域和伽罗瓦理论)GTM033《Differential Topology》Morris W.Hirsch(微分拓扑)GTM034《Principles of Random Walk》Frank Spitzer(2ed.)(随机游动原理)GTM035《Several Complex Variables and Banach Algebras》Herbert Alexander, John Wermer(多复变和Banach代数)GTM036《Linear Topological Spaces》John L.Kelley, Isaac Namioka(线性拓扑空间)GTM037《Mathematical Logic》J.Donald Monk(数理逻辑)GTM038《Several Complex Variables》H.Grauert, K.Fritzshe GTM039《An Invitation to C*-Algebras》William Arveson (C*-代数引论)GTM040《Denumerable Markov Chains》John G.Kemeny, /doc/e96250642.htmlurie Snell, Anthony W.KnappGTM041《Modular Functions and Dirichlet Series in Number Theory》Tom M.Apostol (数论中的模函数和Dirichlet序列)GTM042《Linear Representations of Finite Groups》Jean-Pierre Serre(有限群的线性表示)GTM043《Rings of Continuous Functions》Leonard Gillman, Meyer JerisonGTM044《Elementary Algebraic Geometry》Keith KendigGTM045《Probabi lity TheoryⅠ》M.Loève(概率论Ⅰ)(4ed.)GTM046《Probability TheoryⅡ》M.Loève(概率论Ⅱ)(4ed.)GTM047《Geometric Topology in Dimensions 2 and 3》Edwin E.MoiseGTM048《General Relativity for Mathematicians》Rainer.K.Sachs, H.Wu伍鸿熙(为数学家写的广义相对论)GTM049《Linear Geometry》K.W.Gruenberg, A.J.Weir(2ed.)GTM050《Fermat's Last Theorem》Harold M.EdwardsGTM051《A Course in Differential Geometry》WilhelmKlingenberg(微分几何教程)GTM052《Algebraic Geometry》Robin Hartshorne(代数几何)GTM053《 A Course in Mathematical Logic for Mathematicians》Yu.I.Manin(2ed.)GTM054《Combinatorics with Emphasis on the Theory of Graphs》Jack E.Graver, Mark E.WatkinsGTM055《Introduction to Operator TheoryⅠ》Arlen Brown, Carl PearcyGTM056《Algebraic Topology:An Introduction》W.S.MasseyGTM057《Introduction to Knot Theory》Richard.H.Crowell, Ralph.H.FoxGTM058《p-adic Numbers, p-adic Analysis, and Zeta-Functions》Neal Koblitz(p-adic 数、p-adic分析和Z函数)GTM059《Cyclotomic Fields》Serge LangGTM060《Mathematical Methods of Classical Mechanics》V.I.Arnold(经典力学的数学方法)(2ed.)GTM061《Elements of Homotopy Theory》George W.Whitehead(同论论基础)GTM062《Fundamentals of the Theory of Groups》M.I.Kargapolov, Ju.I.Merzljakov GTM063《Modern Graph Theory》Béla BollobásGTM064《Fourier Series:A Modern Introduction》VolumeⅠ(2ed.)R.E.Edwards(傅里叶级数)GTM065《Differential Analysis on Complex Manifolds》Raymond O.Wells, Jr.(3ed.)GTM066《Introduction to Affine Group Schemes》William C.Waterhouse(仿射群概型引论)GTM067《Local Fields》Jean-Pierre Serre(局部域)GTM069《Cyclotomic FieldsⅠandⅡ》Serge LangGTM070《Singular Homology Theory》William S.MasseyGTM071《Riemann Surfaces》Herschel M.Farkas, Irwin Kra (黎曼曲面)GTM072《Classical Topology and Combinatorial Group Theory》John Stillwell(经典拓扑和组合群论)GTM073《Algebra》Thomas W.Hungerford(代数)GTM074《Multiplicative Number Theory》Harold Davenport (乘法数论)(3ed.)GTM075《Basic Theory of Algebraic Groups and Lie Algebras》G.P.HochschildGTM076《Algebraic Geometry:An Introduction to Birational Geometry of Algebraic Varieties》Shigeru Iitaka GTM077《Lectures on the Theory of Algebraic Numbers》Erich HeckeGTM078《A Course in Universal Algebra》Stanley Burris, H.P.Sankappanavar(泛代数教程)GTM079《An Introduction to Ergodic Theory》Peter Walters (遍历性理论引论)GTM080《A Course in_the Theory of Groups》Derek J.S.RobinsonGTM081《Lectures on Riemann Surfaces》Otto ForsterGTM082《Differential Forms in Algebraic Topology》Raoul Bott, Loring W.Tu(代数拓扑中的微分形式)GTM083《Introduction to Cyclotomic Fields》Lawrence C.Washington(割圆域引论)GTM084《A Classical Introduction to Modern Number Theory》Kenneth Ireland, Michael Rosen(现代数论经典引论)GTM085《Fourier Series A Modern Introduction》Volume 1(2ed.)R.E.Edwards GTM086《Introduction to Coding Theory》J.H.van Lint(3ed .)GTM087《Cohomology of Groups》Kenneth S.Brown(上同调群)GTM088《Associative Algebras》Richard S.PierceGTM089《Introduction to Algebraic and Abelian Functions》Serge Lang(代数和交换函数引论)GTM090《An Introduction to Convex Polytopes》Ame BrondstedGTM091《The Geometry of Discrete Groups》Alan F.BeardonGTM092《Sequences and Series in BanachSpaces》Joseph DiestelGTM093《Modern Geometry-Methods and Applications》(PartⅠ.The of geometry Surface s Transformation Groups and Fields)B.A.Dubrovin, A.T.Fomenko, S.P.Novikov (现代几何学方法和应用)GTM094《Foundations of Differentiable Manifolds and Lie Groups》Frank W.Warner(可微流形和李群基础)GTM095《Probability》A.N.Shiryaev(2ed.)GTM096《A Course in Functional Analysis》John B.Conway (泛函分析教程)GTM097《Introduction to Elliptic Curves and Modular Forms》Neal Koblitz(椭圆曲线和模形式引论)GTM098《Representations of Compact Lie Groups》Theodor Bre?cker, Tammo tom DieckGTM099《Finite Reflection Groups》L.C.Grove, C.T.Benson (2ed.)GTM100《Harmonic Analysis on Semigroups》Christensen Berg, Jens Peter Reus Christensen, Paul ResselGTM101《Galois Theory》Harold M.Edwards(伽罗瓦理论)GTM102《Lie Groups, Lie Algebras, and Their Representation》V.S.Varadarajan(李群、李代数及其表示)GTM103《Complex Analysis》Serge LangGTM104《Modern Geometry-Methods and Applications》(PartⅡ.Geometry and Topology of Manifolds)B.A.Dubrovin, A.T.Fomenko, S.P.Novikov(现代几何学方法和应用)GTM105《SL? (R)》Serge Lang(SL? (R)群)GTM106《The Arithmetic of Elliptic Curves》Joseph H.Silverman(椭圆曲线的算术理论)GTM107《Applications of Lie Groups to Differential Equations》Peter J.Olver(李群在微分方程中的应用)GTM108《Holomorphic Functions and Integral Representations in Several Complex Variables》R.Michael Range GTM109《Univalent Functions and Teichmueller Spaces》Lehto OlliGTM110《Algebraic Number Theory》Serge Lang(代数数论)GTM111《Elliptic Curves》Dale Husemoeller(椭圆曲线)GTM112《Elliptic Functions》Serge Lang(椭圆函数)GTM113《Brownian Motion and Stochastic Calculus》Ioannis Karatzas, Steven E.Shreve (布朗运动和随机计算)GTM114《A Course in Number Theory and Cryptography》Neal Koblitz(数论和密码学教程)GTM115《Differential Geometry:Manifolds, Curves, and Surfaces》M.Berger, B.Gostiaux GTM116《Measure and Integral》Volume1 John L.Kelley, T.P.SrinivasanGTM117《Algebraic Groups and Class Fields》Jean-Pierre Serre(代数群和类域)GTM118《Analysis Now》Gert K.Pedersen (现代分析)GTM119《An introduction to Algebraic Topology》Jossph J.Rotman(代数拓扑导论)GTM120《Weakly Differentiable Functions》William P.Ziemer(弱可微函数)GTM121《Cyclotomic Fields》Serge LangGTM122《Theory of Complex Functions》Reinhold RemmertGTM123《Numbers》H.-D.Ebbinghaus, H.Hermes, F.Hirzebruch, M.Koecher, K.Mainzer, J.Neukirch, A.Prestel, R.Remmert(2ed.)GTM124《Modern Geometry-Methods and Applications》(PartⅢ.Introduction to Homology Theory)B.A.Dubrovin, A.T.Fomenko, S.P.Novikov(现代几何学方法和应用)GTM125《Complex Variables:An introduction》Garlos A.Berenstein, Roger Gay GTM126《Linear Algebraic Groups》Armand Borel (线性代数群)GTM127《A Basic Course in Algebraic Topology》William S.Massey(代数拓扑基础教程)GTM128《Partial Differential Equations》Jeffrey RauchGTM129《Representation Theory:A First Course》William Fulton, Joe HarrisGTM130《T ensor Geometry》C.T.J.Dodson, T.Poston(张量几何)GTM131《A First Course in Noncommutative Rings》/doc/e96250642.htmlm(非交换环初级教程)GTM132《Iteration of Rational Functions:Complex Analytic Dynamical Systems》AlanF.Beardon(有理函数的迭代:复解析动力系统)GTM133《Algebraic Geometry:A First Course》Joe Harris (代数几何)GTM134《Coding and Information Theory》Steven Roman GTM135《Advanced Linear Algebra》Steven RomanGTM136《Algebra:An Approach via Module Theory》William A.Adkins, Steven H.WeintraubGTM137《Harmonic Function Theory》Sheldon Axler, Paul Bourdon, Wade Ramey(调和函数理论)GTM138《A Course in Computational Algebraic NumberTheory》Henri Cohen(计算代数数论教程)GTM139《T opology and Geometry》Glen E.BredonGTM140《Optima and Equilibria:An Introduction to Nonlinear Analysis》Jean-Pierre AubinGTM141《A Computational Approach to Commutative Algebra》Gr?bner Bases, Thomas Becker, Volker Weispfenning, Heinz KredelGTM142《Real and Functional Analysis》Serge Lang(3ed.)GTM143《Measure Theory》J.L.DoobGTM144《Noncommutative Algebra》Benson Farb, R.Keith DennisGTM145《Homology Theory:An Introduction to Algebraic Topology》James W.Vick(同调论:代数拓扑简介)GTM146《Computability:A Mathematical Sketchbook》Douglas S.BridgesGTM147《Algebraic K-Theory and Its Applications》Jonathan Rosenberg(代数K理论及其应用)GTM148《An Introduction to the Theory of Groups》Joseph J.Rotman(群论入门)GTM149《Foundations of Hyperbolic Manifolds》John G.Ratcliffe(双曲流形基础)GTM150《Commutative Algebra with a view toward Algebraic Geometry》David EisenbudGTM151《Advanced Topics in the Arithmetic of Elliptic Curves》Joseph H.Silverman(椭圆曲线的算术高级选题)GTM152《Lectures on Polytopes》Günter M.ZieglerGTM153《Algebraic Topology:A First Course》William Fulton(代数拓扑)GTM154《An introduction to Analysis》Arlen Brown, Carl PearcyGTM155《Quantum Groups》Christian Kassel(量子群)GTM156《Classical Descriptive Set Theory》Alexander S.KechrisGTM157《Integration and Probability》Paul MalliavinGTM158《Field theory》Steven Roman(2ed.)GTM159《Functions of One Complex Variable VolⅡ》John B.ConwayGTM160《Differential and Riemannian Manifolds》Serge Lang(微分流形和黎曼流形)GTM161《Polynomials and Polynomial Inequalities》Peter Borwein, Tamás Erdélyi(多项式和多项式不等式)GTM162《Groups and Representations》J.L.Alperin, Rowen B.Bell(群及其表示)GTM163《Permutation Groups》John D.Dixon, Brian Mortime rGTM164《Additive Number Theory:The Classical Bases》Melvyn B.NathansonGTM165《Additive Number Theory:Inverse Problems and the Geometry of Sumsets》Melvyn B.NathansonGTM166《Differential Geometry:Cartan's Generalization of Klein's Erlangen Program》R.W.SharpeGTM167《Field and Galois Theory》Patrick MorandiGTM168《Combinatorial Convexity and Algebraic Geometry》Günter Ewald(组合凸面体和代数几何)GTM169《Matrix Analysis》Rajendra BhatiaGTM170《Sheaf Theory》Glen E.Bredon(2ed.)GTM171《Riemannian Geometry》Peter Petersen(黎曼几何)GTM172《Classical Topics in Complex Function Theory》Reinhold RemmertGTM173《Graph Theory》Reinhard Diestel(图论)(3ed.)GTM174《Foundations of Real and Abstract Analysis》Douglas S.Bridges(实分析和抽象分析基础)GTM175《An Introduction to Knot Theory》W.B.Raymond LickorishGTM176《Riemannian Manifolds:An Introduction to Curvature》John M.LeeGTM177《Analytic Number Theory》Donald J.Newman(解析数论)GTM178《Nonsmooth Analysis and Control Theory》F.H.clarke, Yu.S.Ledyaev, R.J.Stern, P.R.Wolenski(非光滑分析和控制论)GTM179《Banach Algebra Techniques in Operator Theory》Ronald G.Douglas(2ed.)GTM180《A Course on Borel Sets》S.M.Srivastava(Borel 集教程)GTM181《Numerical Analysis》Rainer KressGTM182《Ordinary Differential Equations》Wolfgang Walter GTM183《An introduction to Banach Spaces》Robert E.MegginsonGTM184《Modern Graph Theory》Béla Bollobás(现代图论)GTM185《Using Algebraic Geomety》David A.Cox, John Little, Donal O’Shea(应用代数几何)GTM186《Fourier Analysis on Number Fields》Dinakar Ramakrishnan, Robert J.Valenza GTM187《Moduli of Curves》Joe Harris, Ian Morrison(曲线模)GTM188《Lectures on the Hyperreals:An Introduction to Nonstandard Analysis》Robert GoldblattGTM189《Lectures on Modules and Rings》/doc/e96250642.htmlm(模和环讲义)GTM190《Problems in Algebraic Number Theory》M.Ram Murty, Jody Esmonde(代数数论中的问题)GTM191《Fundamentals of Differential Geometry》Serge Lang(微分几何基础)GTM192《Elements of Functional Analysis》Francis Hirsch, Gilles LacombeGTM193《Advanced Topics in Computational Number Theory》Henri CohenGTM194《One-Parameter Semigroups for Linear Evolution Equations》Klaus-Jochen Engel, Rainer Nagel(线性发展方程的单参数半群)GTM195《Elementary Methods in Number Theory》Melvyn B.Nathanson(数论中的基本方法)GTM196《Basic Homological Algebra》M.Scott OsborneGTM197《The Geometry of Schemes》David Eisenbud, Joe HarrisGTM198《A Course in p-adic Analysis》Alain M.RobertGTM199《Theory of Bergman Spaces》Hakan Hedenmalm, Boris Korenblum, Kehe Zhu(Bergman空间理论)GTM200《An Introduction to Riemann-Finsler Geometry》D.Bao, S.-S.Chern, Z.Shen GTM201《Diophantine Geometry An Introduction》Marc Hindry, Joseph H.Silverman GTM202《Introduction to T opological Manifolds》John M.Lee GTM203《The Symmetric Group》Bruce E.SaganGTM204《Galois Theory》Jean-Pierre EscofierGTM205《Rational Homotopy Theory》Yves Félix, Stephen Halperin, Jean-Claude Thomas(有理同伦论)GTM206《Problems in Analytic Number Theory》M.Ram MurtyGTM207《Algebraic Graph Theory》Chris Godsil, Gordon Royle(代数图论)GTM208《Analysis for Applied Mathematics》Ward Cheney GTM209《A Short Course on Spectral Theory》William Arveson(谱理论简明教程)GTM210《Number Theory in Function Fields》Michael RosenGTM211《Algebra》Serge Lang(代数)GTM212《Lectures on Discrete Geometry》Jiri Matousek (离散几何讲义)GTM213《From Holomorphic Functions to Complex Manifolds》Klaus Fritzsche, Hans Grauert(从正则函数到复流形)GTM214《Partial Differential Equations》Jüergen Jost(偏微分方程)GTM215《Algebraic Functions and Projective Curves》David M.Goldschmidt(代数函数和投影曲线)GTM216《Matrices:Theory and Applications》Denis Serre (矩阵:理论及应用)GTM217《Model Theory An Introduction》David Marker(模型论引论)GTM218《Introduction to Smooth Manifolds》John M.Lee (光滑流形引论)GTM219《The Arithmetic of Hyperbolic 3-Manifolds》Colin Maclachlan, Alan W.Reid GTM220《Smooth Manifolds and Observables》Jet Nestruev(光滑流形和直观)GTM221《Convex Polytopes》Branko GrüenbaumGTM222《Lie Groups, Lie Algebras, and Representations》Brian C.Hall(李群、李代数和表示)GTM223《Fourier Analysis and its Applications》Anders Vretblad(傅立叶分析及其应用)GTM224《Metric Structures in Differential Geometry》Gerard Walschap(微分几何中的度量结构)GTM225《Lie Groups》Daniel Bump(李群)GTM226《Spaces of Holomorphic Functions in the Unit Ball》Kehe Zhu(单位球内的全纯函数空间)GTM227《Combinatorial Commutative Algebra》Ezra Miller, Bernd Sturmfels(组合交换代数)GTM228《A First Course in Modular Forms》Fred Diamond, Jerry Shurman(模形式初级教程)GTM229《The Geometry of Syzygies》David Eisenbud(合冲几何)GTM230《An Introduction to Markov Processes》Daniel W.Stroock(马尔可夫过程引论)GTM231《Combinatorics of Coxeter Groups》Anders Bjr?ner, Francesco Brenti(Coxeter 群的组合学)GTM232《An Introduction to Number Theory》Graham Everest, Thomas Ward(数论入门)GTM233《T opics in Banach Space Theory》Fenando Albiac, Nigel J.Kalton(Banach空间理论选题)GTM234《Analysis and Probability:Wavelets, Signals, Fractals》Palle E.T.Jorgensen(分析与概率)GTM235《Compact Lie Groups》Mark R.Sepanski(紧致李群)GTM236《Bounded Analytic Functions》John B.Garnett(有界解析函数)GTM237《An Introduction to Operators on the Hardy-Hilbert Space》Rubén A.Martínez-Avendano, Peter Rosenthal (哈代-希尔伯特空间算子引论)GTM238《A Course in Enumeration》Martin Aigner(枚举教程)GTM239《Number Theory:VolumeⅠT ools and Diophantine Equations》Henri Cohen GTM240《Number Theory:VolumeⅡAna lytic and Modern T ools》Henri Cohen GTM241《The Arithmetic of Dynamical Systems》Joseph H.SilvermanGTM242《Abstract Algebra》Pierre Antoine Grillet(抽象代数)GTM243《Topological Methods in Group Theory》Ross GeogheganGTM244《Graph Theory》J.A.Bondy, U.S.R.MurtyGTM245《Complex Analysis:In the Spirit of Lipman Bers》Jane P.Gilman, Irwin Kra, Rubi E.RodriguezGTM246《A Course in Commutative Banach Algebras》Eberhard KaniuthGTM247《Braid Groups》Christian Kassel, Vladimir TuraevGTM248《Buildings Theory and Applications》Peter Abramenko, Kenneth S.Brown GTM249《Classical Fourier Analysis》Loukas Grafakos(经典傅里叶分析)GTM250《Modern Fourier Analysis》Loukas Grafakos(现代傅里叶分析)GTM251《The Finite Simple Groups》Robert A.WilsonGTM252《Distributions and Operators》Gerd GrubbGTM253《Elementary Functional Analysis》Barbara D.MacCluerGTM254《Algebraic Function Fields and Codes》Henning StichtenothGTM255《Symmetry Representations and Invariants》Roe Goodman, Nolan R.Wallach GTM256《A Course in Commutative Algebra》Kemper GregorGTM257《Deformation Theory》Robin HartshorneGTM258《Foundation of Optimization》Osman GülerGTM259《Ergodic Theory:with a view towards Number Theory》Manfred Einsiedler, Thomas WardGTM260《Monomial Ideals》Jurgen Herzog, Takayuki Hibi GTM261《Probability and Stochastics》Erhan CinlarGTM262《Essentials of Integration Theory for Analysis》Daniel W.StroockGTM263《Analysis on Fock Spaces》Kehe ZhuGTM264《Functional Analysis, Calculus of Variations and Optimal Control》Francis ClarkeGTM265《Unbounded Self-adjoint Operatorson Hilbert Space》Konrad Schmüdgen GTM266《Calculus Without Derivatives》Jean-Paul PenotGTM267《Quantum Theory for Mathematicians》Brian C.HallGTM268《Geometric Analysis of the Bergman Kernel and Metric》Steven G.Krantz GTM269《Locally Convex Spaces》M.Scott Osborne。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Brownian Motion and the Riemann Zeta-Function
363
Wiener’s Theorem. For x ∈ R, there exists a unique measure W x on (C [0, ∞), C ) such that for n ∈ N, for 0 < t1 < t2 < . . . < tn and for A1 , A2 , . . . , An ∈ B (R), W x ({w ∈ C [0, ∞) : wti ∈ Ai (1 ≤ i ≤ n)})
Thus pt (x, ·) is the density of the normal distribution of mean x and variance t. The fact that p solves the heat equation:
1 1 Dxx p = 2 Dyy p Dt p = 2
362 ContWhat is Brownian Motion? We meet Brownian motion as a continuous 1 ∆. Markov process generated by 2 2. Cauchy’s Proof of the Functional Equation. Jacobi’s theta-function identity says that BM (S 1 ) lifts to BM (R). 3. Brownian Bridges and Bessel Bridges. Brownian bridge is Brownian motion starting at 0 and conditioned to be at 0 at time 1. Bessel process is the radial part of Brownian motion in some Rn , and Bessel bridge is the radial part of some Brownian bridge. The higher-dimensional processes are necessary for understanding the 1-dimensional situation. 4. The Excursion Picture of Reflecting Brownian Motion on [0, ∞). In terms of local time at 0, the excursions away from 0 are the points of a Poisson point process in excursion space. We can build reflecting Brownian motion from this. 5. The Itˆ o Excursion Law: Bessel Descriptions. The nicest descriptions of the Poisson point process of excursions involve Bessel processes. Time and space get mixed up. 6. Integrated Local Time. Local time gives a way of ‘interchanging time and space’. 7. Ferromagnetism and the Lee-Yang Theorem. Zeros on a line. Appendix. Proof of equation (5.1). 1. What is Brownian Motion? For t > 0 and x, y ∈ R, define pt (x, y ) = (2πt)−1/2 exp{−(y − x)2 /2t}. (1.1)
The theory of Brownian motion contains many remarkable identities. Many now have a complete explanation, though even in certain of these cases, there was a time when they were regarded as ‘coincidences’. Amongst the identities for which a proper explanation remains to be found are some which are closely related to Riemann’s ξ -function.

Z (w)Px (dw). f (y )Px (Bt ∈ dy ) =
Then B is called a Brownian motion if Px ◦ B −1 = W x (x ∈ R) on C . Canonical Brownian motion is the set-up: (Ω, F , Px , B ) = (C [0, ∞), C , W x , id). Properties (1.3) and (1.4) say: Brownian motion is Markovian with tran1 ∆. sition density function p and with generator 2 Expectation. If Z : Ω → R is F -measurable, we define Ex Z =
n
=
x 1 ∈ A1
···
xn ∈An i=1
pti −ti−1 (xi−1 , xi )dxi
(1.4)
where t0 = 0, x0 = x. The probability measure W x is called Wiener measure corresponding to starting position x. Suppose that we have a set-up (Ω, F , Px , B ) where Ω is a set, F is a σ -algebra on Ω, each Px is a probability measure on (Ω, F ), and B : Ω → C [0, ∞), ω → (t → Bt (ω )). B −1 : C → F ,
(1.2)
is best regarded as expressing the formula Pt = exp(t 1 2 ∆), where Pt f (x) := pt (x, y )f (y )dy,
R
(1.3)
which is made precise by Hille-Yosida theory. Let C be the smallest σ algebra on ‘path-space’ C [0, ∞) such that, for each t > 0, the evaluation map w → w(t) on C [0, ∞) is C measurable.
Brownian Motion and the Riemann Zeta-Function
David Williams
My intention when I went to Oxford as an undergraduate was to be a physicist, but to do some mathematics first. In the first undergraduate year of mathematics, John Hammersley gave a course which included the quaternion proof of the Four-Squares Theorem, the ‘elementary’ proof of the Prime Number Theorem, and an introduction to Operational Research. It was strong meat for first-year undergraduates, and I’m sure that there was little which I understood fully. But it was marvellous material, conveyed with style and infectious excitement; and, more than anything, it persuaded me to stay with mathematics. My intention when I was invited to contribute to this volume was to submit something on one or other of two concrete problems of interest to John Hammersley. But, unfortunately, while John had been able to convey enthusiasm to us students, it was of course impossible for him to grant us some of his creativity with hard problems; and, left therefore to my own devices, I have failed to make progress with either problem. Meanwhile . . . It seems that number-theorists have recently become interested in path-integral representations of the Riemann ζ -function. Such representations have for a long time been familiar to aficionados of Brownian excursion theory — I am sure that Kai Lai Chung and many others have known them as long as I have. C.M. Newman (1975) had explained that if it could be shown that a certain probability density function is ‘ferromagnetic’, then the Riemann Hypothesis would follow. The fact that this density function arises fairly naturally in the study of Brownian motion (of which more, I hope, in a later paper with Tim Mortimer) therefore has a certain entertainment value, though perhaps nothing more. Here — with thanks, apologies for not being brighter, and very best wishes, to John Hammersley — is a talk I gave recently to some of the number-theorists at Cambridge.
相关文档
最新文档