【高考数学】二轮大复习 专题五解析几何 第1讲直线与圆

合集下载

2021届高考数学二轮复习专题5解析几何第1讲直线与圆课件人教版.pptx

2021届高考数学二轮复习专题5解析几何第1讲直线与圆课件人教版.pptx
(3)原点到直线的距离d= 122+12= 2,故|OP|的最小值为 2, 故选B.
求解直线方程应注意的问题 (1)求解两条直线平行的问题时,在利用A1B2-A2B1=0建立方程 求出参数的值后,要注意代入检验,排除两条直线重合的情况. (2)要注意几种直线方程的局限性,点斜式、斜截式要求直线不能 与x轴垂直;两点式要求直线不能与坐标轴垂直;截距式方程不能表 示过原点的直线,也不能表示垂直于坐标轴的直线. (3)求直线方程要考虑直线的斜率是否存在.
8
5
距离
02 考点分类 • 析重点
考点一 直线的方程
1.直线方程的五种形式 (1)点斜式:y-y1=k(x-x1). (2)斜截式:y=kx+b. (3)两点式:yy2--yy11=xx2--xx11(x1≠x2,y1≠y2). (4)截距式:ax+by=1(a≠0,b≠0). (5)一般式:Ax+By+C=0(A,B不同时为0).
第二部分
专题篇•素养提升(文理)
专题五 解析几何
第1讲 直线与圆
1 解题策略 • 明方向 2 考点分类 • 析重点 3 易错清零 • 免失误 4 真题回放 • 悟高考 5 预测演练 • 巧押题
01 解题策略 • 明方向
1.直线方程、圆的方程、两直线的平行与垂直、直线与圆的位 置关系是本讲高考的重点.
考点二 圆的方程
1.圆的标准方程 当圆心为(a,b),半径为r时,其标准方程为(x-a)2+(y-b)2=r2, 特别地,当圆心在原点时,方程为x2+y2=r2. 2.圆的一般方程 x2+y2+Dx+Ey+F=0(其中D2+E2-4F>0)表示以 -D2 ,-E2 为圆 心, D2+2E2-4F为半径的圆.
2.考查的主要内容包括求直线(圆)的方程、点到直线的距离、直 线与圆的位置关系判断、简单的弦长与切线问题,多为选择题、填空 题.

老高考适用2023版高考数学二轮总复习第2篇经典专题突破核心素养提升专题5解析几何第1讲直线与圆课件

老高考适用2023版高考数学二轮总复习第2篇经典专题突破核心素养提升专题5解析几何第1讲直线与圆课件

F=0,
则16+4D+F=0, 16+4+4D+2E+F=0,
F=0,
解得D=-4, E=-2,
所以圆的方程为 x2+y2-4x-2y=0,
即(x-2)2+(y-1)2=5; 若过(0,0),(4,2),(-1,1),
F=0,
则1+1-D+E+F=0, 16+4+4D+2E+F=0,
F=0Байду номын сангаас 解得D=-83,
因为 OP⊥OQ,故 1+ 2p×(- 2p)=0⇒p=12, 抛物线 C 的方程为:y2=x, 因为⊙M 与 l 相切,故其半径为 1, 故⊙M:(x-2)2+y2=1.
(2)设 A1(x1,y1),A2(x2,y2),A3(x3,y3).
当 A1,A2,A3 其中某一个为坐标原点时(假设 A1 为坐标原点时),
A2+B2
3.两条平行直线 l1:Ax+By+C1=0,l2:Ax+By+C2=0(A,B 不
同时为零)间的距离
d=
|C1-C2| . A2+B2
典例1 (1)(2022·辽宁高三二模)若两直线l1:(a-1)x-3y-2=0
与l2:x-(a+1)y+2=0平行,则a的值为
(A )
A.±2
B.2
C.-2
y0=-x0+5, 设所求圆的圆心坐标为(x0,y0),则x0+12=y0-x20+12+16. 解得xy00= =32, 或xy00= =1-1,6. 因此所求圆的方程为(x-3)2+(y-2)2=16 或(x-11)2+(y+6)2=144.
6.(2021·全国甲卷)抛物线C的顶点为坐标原点O,焦点在x轴上,直 线l:x=1交C于P,Q两点,且OP⊥OQ.已知点M(2,0),且⊙M与l相 切.

【高考数学二轮学习精品讲义教师版】第三部分_重点板块_专题五解析几何:第1讲直线与圆

【高考数学二轮学习精品讲义教师版】第三部分_重点板块_专题五解析几何:第1讲直线与圆

r=
故圆 C 的标准方程为(x-2)2+y2=9.
22+( 5)2=3,
答案:(x-2)2+y2=9
第 260 页 共 434 页
考点三 直线与圆的位置关系
题型一 圆的切线问题
[例 2] (1)(2019·永州模拟)自圆 C:(x-3)2+(y+4)2=4 外一点 P(x,y)引该圆的一条切
线,切点为 Q,PQ 的长度等于点 P 到原点 O 的距离,则点 P 的轨迹方程为( )
点 A,B,曲线 Γ 与 y 轴交于点 C. (1)是否存在以 AB 为直径的圆过点 C?若存在,求出该圆的方程;若不存在,请说明理
由. (2)求证:过 A,B,C 三点的圆过定点.
[解] 由曲线 Γ:y=x2-mx+2m(m∈R),令 y=0,得 x2-mx+2m=0.
设 A(x1,0),B(x2,0),则可得 Δ=m2-8m>0,x1+x2=m,x1x2=2m. 令 x=0,得 y=2m,即 C(0,2m). (1)若存在以 AB 为直径的圆过点 C,则―A→C ·―B→C =0,得 x1x2+4m2=0, 即 2m+4m2=0,所以 m=0 或 m=-12. 由 Δ>0 得 m<0 或 m>8,所以 m=-12,
2.已知直线 mx+4y-2=0 与 2x-5y+n=0 互相垂直,垂足为 P(1,p),则 m-n+p 的
值是( )
第 257 页 共 434 页
A.24
B.20
C.0
D.-4
解析:选 B ∵直线 mx+4y-2=0 与 2x-5y+n=0 互相垂直,∴-m4×25=-1,∴m=
10.
直线 mx+4y-2=0,即 5x+2y-1=0,
解析:由x-2y+3=0,得x=1,所以直线 2x+3y-8=0 y=2,

高考数学二轮专题五解析几何第讲直线与圆课件

高考数学二轮专题五解析几何第讲直线与圆课件

(2,3),则圆C的半径为
()
A.2 2
B.8
C.5
D. 5
返回
解析:∵圆C截两坐标轴所得弦长相等,∴圆心C在直线y =x或y=-x上. ①当圆心C在直线y=x上时,设C(m,m),半径为R,则 (m+1)2+m2=(m-2)2+(m-3)2=R2,可得m=1,R2= 5,∴R= 5; ②当圆心C在直线y=-x上时,设C(m,-m),半径为 R,则(m+1)2+(-m)2=(m-2)2+(-m-3)2=R2,该方 程组无解. ∴圆C的半径为 5,故选D. 答案:D
到直线方程. “专题检测”见“专题检测” (十八)
考点3 直线与圆的位置关系
考点3 直线与圆的位置关系
“专题检测”见“专题检测” (十八)
考点3 直线与圆的位置关系
考点3 直线与圆的位置关系
考点3 直线与圆的位置关系
考点3 直线与圆的位置关系
返回
2.轴对称问题的两种类型及求解方法 若两点P1(x1,y1)与P2(x2,y2)关于直线l:Ax+By +C=0对称,则线段P1P2的中点在对称轴l上,而 且连接P1,P2的直线垂直于对称轴l.由方程组
[答案] (1)ABC (2)ACD
返回
解题方略
求圆的方程的2种方法 几何 通过研究圆的性质,直线和圆、圆与圆的位置关系,
法 从而求得圆的基本量和方程 代数 用待定系数法先设出圆的方程,再由条件求得各系 法 数,从而求得圆的方程
返回
[跟踪训练]
1.已知圆C截两坐标轴所得弦长相等,且圆C过点(-1,0)和
0,则下列说法正确的是
()
A.圆A的半径为2
B.圆A截y轴所得的弦长为2 3
C.圆A上的点到直线3x-4y+12=0的最小距离为1

高三数学二轮专题五第1讲直线与圆

高三数学二轮专题五第1讲直线与圆
答案 -1
热点分类突破
第1讲
(2)在平面直角坐标系中,如果 x 与 y 都是整数,就称点(x,
y)为整点,下列命题中正确的是________(写出所有正确命题
本 讲
的编号).
栏 目
①存在这样的直线,既不与坐标轴平行又不经过任何整点
开 关
②如果 k 与 b 都是无理数,则直线 y=kx+b 不经过任何整点
考题分析 本题考查直线与圆的位置关系、点到直线的距
本 离公式以及不等式基础知识,体现了对分析问题、转化应
讲 栏
用能力的考查,题目难度适中.

开 关
易错提醒 (1)应透彻理解题意.
(2)不能将问题转化,使解题受阻.
主干知识梳理
第1讲
1.直线的方程
本 讲
(1)在确定直线的斜率、倾斜角时,首先要注意斜率存
③直线 l 经过无穷多个整点,当且仅当 l 经过两个不同的整点
④直线 y=kx+b 经过无穷多个整点的充分必要条件是:k 与
b 都是有理数
⑤存在恰经过一个整点的直线
热点分类突破
第1讲
解析 ①正确,比如直线 y= 3x- 2,当 x 取整数时,y
始终是一个无理数;②错,直线 y= 2x- 2中 k 与 b 都是
栏 目
在的条件,其次要注意倾斜角的范围.
开 关
(2)在利用直线的截距式解题时,要注意防止由于“零
截距”而造成丢解的情况.
(3)在利用直线的点斜式、斜截式解题时,要注意检验
斜率不存在的情况,防止丢解.
(4)求直线方程的主要方法是待定系数法.在使用待定
系数法求直线方程时,要注意方程的选择,注意分类讨论
的思想.
时要格外注意.

高考数学二轮复习专题五解析几何第1讲直线与圆课件

高考数学二轮复习专题五解析几何第1讲直线与圆课件

故两圆相交.
(2)如图,把圆的方程化成标准形式得 x2+(y-1)2=1,
12/11/2021
所以圆心为(0,1),半径为 r=1,四边形 PACB 的面积 S=2S△PBC, 所以若四边形 PACB 的最小面积是 2, 则 S△PBC 的最小值为 1. 而 S△PBC=12r·|PB|,即|PB|的最小值为 2, 此时|PC|最小,|PC|为圆心到直线 kx+y+4=0 的距离 d, 此时 d= k|25+| 1= 12+22= 5, 即 k2=4, 因为 k>0,所以 k=2. 【答案】 (1)B (2)D
所以|MN|=4 6.
12/11/2021
3.(2019·宁波镇海中学高考模拟)已知圆 C:x2+y2-2x-4y+1=0 上存在两点关于直线 l:x+my+1=0 对称,经过点 M(m,m)作圆 C 的切线,切点为 P,则 m=________; |MP| =________. 解析:因为圆 C:x2+y2-2x-4y+1=0 上存在两点关于直线 l:x+my+1=0 对称, 所以直线 l:x+my+1=0 过圆心 C(1,2), 所以 1+2m+1=0.解得 m=-1.
第2部分 高考热点 专题突破
专题五 解析几何 第1讲 直线与圆
12/11/2021
数学
01 02 03 04 05
12/11/2021
考点1 考点2 考点3 考点4 专题强化训练
直线方程
[核心提炼] 1.三种距离公式 (1)A(x1,y1),B(x2,y2)两点间的距离: |AB|= (x2-x1)2+(y2-y1)2. (2)点到直线的距离:d=|Ax0+A2B+y0B+2 C|(其中点 P(x0,y0),直线方程:Ax+By+C=0). (3)两平行直线间的距离:d= |CA2-2+CB1|2(其中两平行线方程分别为 l1:Ax+By+C1=0,l2: Ax+By+C2=0).

高考数学二轮复习 专题五 第1讲 直线与圆课件 理

高考数学二轮复习 专题五 第1讲 直线与圆课件 理

0 的对称点仍在圆上,且圆与直线 x-y+1=0 相交的弦长为
2 2,则圆的方程是________.
解析 设圆的方程为(x-a)2+(y-b)2=r2,点 的对称点仍在圆上,说明圆心在直线 x+2y=0 上,即有
a+2b=0,又(2-a)2+(3-b)2=r2,而圆与直线 x-y+1=0 相交
考点整合
1.两直线平行或垂直 (1)两条直线平行:对于两条不重合的直线l1,l2,其斜率分别为 k1,k2,则有l1∥l2⇔k1=k2.特别地,当直线l1,l2的斜率都不存 在且l1与l2不重合时,l1∥l2. (2)两条直线垂直:对于两条直线l1,l2,其斜率分别为k1,k2, 则有l1⊥l2⇔k1·k2=-1.特别地,当l1,l2中有一条直线的斜率不 存在,另一条直线的斜率为零时,l1⊥l2.
2.圆的方程 (1)圆的标准方程:(x-a)2+(y-b)2=r2(r>0),圆心为(a,b),半 径为 r. (2)圆的一般方程:x2+y2+Dx+Ey+F=0(D2+E2-4F>0),圆心 为-D2 ,-E2,半径为 r= D2+2E2-4F;对于二元二次方程 Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 表 示 圆 的 充 要 条 件 是 B=0, A=C≠0, D2+E2-4AF>0.
探究提高 (1)直线与圆相切时利用“切线与过切点的半径垂直, 圆心到切线的距离等于半径”建立切线斜率的等式,所以求切线 方程时主要选择点斜式. (2)过圆外一点求解切线长转化为圆心到圆外点距离,利用勾股定 理处理.
[微题型3] 与圆有关的弦长问题 【例 1-3】 (2015·泰州调研)若圆上一点 A(2,3)关于直线 x+2y=
5.直线与圆中常见的最值问题 (1)圆外一点与圆上任一点的距离的最值. (2)直线与圆相离,圆上任一点到直线的距离的最值. (3)过圆内一定点的直线被圆截得弦长的最值. (4)直线与圆相离,过直线上一点作圆的切线,切线长的最小值 问题. (5)两圆相离,两圆上点的距离的最值.

高考数学大二轮复习专题5解析几何第1讲直线与圆课件(文科)

高考数学大二轮复习专题5解析几何第1讲直线与圆课件(文科)

=-7.故所求直线方程为:2x+3y-7=0,故选 B.
答案:B
2.(2019·淮南模拟)设 λ∈R,则“λ=-3”是“直线 2λx+(λ-1)y=1 与直线 6x+(1- λ)y=4 平行”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件
解析:当 λ=-3 时,两条直线的方程分别为 6x+4y+1=0,3x+2y-2=0,此时两条 直线平行;若两条直线平行,则 2λ×(1-λ)=-6(1-λ),所以 λ=-3 或 λ=1,经检验, 两者均符合,综上,“λ=-3”是“直线 2λx+(λ-1)y=1 与直线 6x+(1-λ)y=4 平行” 的充分不必要条件,故选 A.
是考查的热点,属中档题.题型主要以选择、填 2.利用待定系数法求圆的方程.
空题为主,要求相对较低,但内容很重要,有时 3.借助圆的方程研究圆的简单性质.
也会在解答题中出现.
[题组练透]
1.圆(x-2)2+(y+3)2=2 的圆心和半径分别是( )
A.(-2,3),1
B.(2,-3),3
C.(-2,3), 2
答案:A
3.已知直线 l:ax+y-2-a=0 在 x 轴和 y 轴上的截距相等,则 a 的值是( )
A.1
B.-1
C.2 或 1
D.-2 或 1
解析:当 a=0 时,直线方程为 y=2,显然不符合题意,当 a≠0 时,令 y=0 时,得到 直线在 x 轴上的截距是2+a a,令 x=0 时,得到直线在 y 轴上的截距为 2+a,根据题意 得2+a a=2+a,解得 a=-2 或 a=1,故选 D. 答案:D
C.-1 或 3
D.3 或 5
解析:由题得圆的方程为(x+1)2+(y-2)2=3,所以圆心为(-1,2),半径为 3.所以圆 心到直线的距离为 32-12=|-1-22+a|,∴a=1 或 5.故选 B.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1讲 直线与圆高考定位 1.直线方程、圆的方程、两直线的平行与垂直、直线与圆的位置关系是本讲高考的重点;2.考查的主要内容包括求直线(圆)的方程、点到直线的距离、直线与圆的位置关系判断、简单的弦长与切线问题,多为选择题、填空题.真 题 感 悟1.(2016·全国Ⅱ卷)圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a =( )A.-43B.-34C. 3D.2解析 圆x 2+y 2-2x -8y +13=0化为标准方程为(x -1)2+(y -4)2=4,故圆心为(1,4).由题意,得d =|a +4-1|a 2+1=1,解得a =-43. 答案 A2.(2016·山东卷)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A.内切B.相交C.外切D.相离解析 圆M :x 2+y 2-2ay =0(a >0)可化为x 2+(y -a )2=a 2,由题意,d =a 2,所以有a 2=a 22+2,解得a =2. 所以圆M :x 2+(y -2)2=22,圆心距为2,半径和为3,半径差为1,所以两圆相交.3.(2016·全国Ⅰ卷)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为________.解析 圆C 的标准方程为x 2+(y -a )2=a 2+2,圆心为C (0,a ),点C 到直线y =x +2a 的距离为d =|0-a +2a |2=|a |2. 又由|AB |=23,得⎝ ⎛⎭⎪⎫2322+⎝ ⎛⎭⎪⎫|a |22=a 2+2,解得a 2=2,所以圆C 的面积为π(a 2+2)=4π.答案 4π4.(2017·天津卷)设抛物线y 2=4x 的焦点为F ,准线为l .已知点C 在l 上,以C 为圆心的圆与y 轴的正半轴相切于点A .若∠FAC =120°,则圆的方程为________. 解析 由题意知该圆的半径为1,设圆心C (-1,a )(a >0),则A (0,a ).又F (1,0),所以AC→=(-1,0),AF →=(1,-a ). 由题意知AC →与AF →的夹角为120°,得cos 120°=-11×1+a 2=-12,解得a = 3.所以圆的方程为(x +1)2+(y -3)2=1. 答案 (x +1)2+(y -3)2=1考 点 整 合1.两条直线平行与垂直的判定若两条不重合的直线l 1,l 2的斜率k 1,k 2存在,则l 1∥l 2⇔k 1=k 2,l 1⊥l 2⇔k 1k 2=-1.若给出的直线方程中存在字母系数,则要考虑斜率是否存在.2.两个距离公式(1)两平行直线l 1:Ax +By +C 1=0与l 2:Ax +By +C 2=0间的距离d =|C 1-C 2|A 2+B 2. (2)点(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2.(1)圆的标准方程:(x -a )2+(y -b )2=r 2(r >0),圆心为(a ,b ),半径为r .(2)圆的一般方程:x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),圆心为⎝ ⎛⎭⎪⎫-D 2,-E 2,半径为r =D 2+E 2-4F 2. 4.直线与圆的位置关系的判定(1)几何法:把圆心到直线的距离d 和半径r 的大小加以比较:d <r ⇔相交;d =r ⇔相切;d >r ⇔相离.(2)代数法:将圆的方程和直线的方程联立起来组成方程组,利用判别式Δ来讨论位置关系:Δ>0⇔相交;Δ=0⇔相切;Δ<0⇔相离.热点一 直线的方程【例1】 (1)设a ∈R ,则“a =-2”是直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件(2)(2017·山东省实验中学二模)过点P (2,3)的直线l 与x 轴、y 轴正半轴分别交于A ,B 两点,O 为坐标原点,则S △OAB 的最小值为________.解析 (1)当a =-2时,l 1:-2x +2y -1=0,l 2:x -y +4=0,显然l 1∥l 2. 当l 1∥l 2时,由a (a +1)=2且a +1≠-8得a =1或a =-2,所以a =-2是l 1∥l 2的充分不必要条件. (2)依题意,设直线l 的方程为x a +y b =1(a >0,b >0).∵点P (2,3)在直线l 上.∴2a +3b =1,则ab =3a +2b ≥26ab ,故ab ≥24,当且仅当3a =2b (即a =4,b =6)时取等号.因此S △AOB =12ab ≥12,即S △AOB 的最小值为12.答案 (1)A (2)12探究提高 1.求解两条直线平行的问题时,在利用A 1B 2-A 2B 1=0建立方程求出参数的值后,要注意代入检验,排除两条直线重合的可能性.2.求直线方程时应根据条件选择合适的方程形式利用待定系数法求解,同时要考虑直线斜率不存在的情况是否符合题意.【训练1】 (1)(2017·贵阳质检)已知直线l 1:mx +y +1=0,l 2:(m -3)x +2y -1=0,则“m =1”是“l 1⊥l 2”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(2)在△ABC 中,A (1,1),B (m ,m )(1<m <4),C (4,2),则当△ABC 的面积最大时,m =________.解析 (1)“l 1⊥l 2”的充要条件是“m (m -3)+1×2=0⇔m =1或m =2”,因此“m =1”是“l 1⊥l 2”的充分不必要条件.(2)由两点间距离公式可得|AC |=10,直线AC 的方程为x -3y +2=0,所以点B 到直线AC 的距离d =|m -3m +2|10, 则S △ABC =12|AC |d =12|m -3m +2|=12⎪⎪⎪⎪⎪⎪⎝⎛⎭⎪⎫m -322-14,又1<m <4,所以1<m <2, 所以当m =32,即m =94时,S 取得最大值.答案 (1)A (2)94热点二 圆的方程【例2-1】 (1)(2016·天津卷)已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为455,则圆C 的方程为________.(2)(2015·全国Ⅰ卷)一个圆经过椭圆x 216+y 24=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为________.解析 (1)∵圆C 的圆心在x 轴的正半轴上,设C (a ,0),且a >0.则圆心C 到直线2x -y =0的距离d =|2a -0|5=455,解得a =2. ∴圆C 的半径r =|CM |=(2-0)2+(0-5)2=3,因此圆C 的方程为(x -2)2+y 2=9.(2)由题意知,椭圆顶点的坐标为(0,2),(0,-2),(-4,0),(4,0).由圆心在x 轴的正半轴上知圆过顶点(0,2),(0,-2),(4,0).设圆的标准方程为(x -m )2+y 2=r 2,则有⎩⎪⎨⎪⎧m 2+4=r 2,(4-m )2=r 2,解得⎩⎪⎨⎪⎧m =32,r 2=254, 所以圆的标准方程为⎝ ⎛⎭⎪⎫x -322+y 2=254. 答案 (1)(x -2)2+y 2=9 (2)⎝ ⎛⎭⎪⎫x -322+y 2=254 探究提高 1.直接法求圆的方程,根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程.2.待定系数法求圆的方程:(1)若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值;(2)若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,进而求出D ,E ,F 的值.温馨提醒 解答圆的方程问题,应注意数形结合,充分运用圆的几何性质.【训练2】 (1)(2015·全国Ⅱ卷)过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M ,N 两点,则|MN |=( ) A.2 6B.8C.4 6D.10(2)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得的弦的长为23,则圆C 的标准方程为________.解析 (1)由已知,得AB→=(3,-1),BC →=(-3,-9),则AB →·BC →=3×(-3)+ (-1)×(-9)=0,所以AB→⊥BC →,即AB ⊥BC ,故过三点A ,B ,C 的圆以AC 为直径,得其方程为(x -1)2+(y +2)2=25.令x =0,得(y +2)2=24,∴y 1=-2-26,y 2=-2+26,因此|MN |=|y 1-y 2|=4 6.(2)设圆心⎝ ⎛⎭⎪⎫a ,a 2(a >0),半径为a . 由勾股定理得(3)2+⎝ ⎛⎭⎪⎫a 22=a 2,解得a =2. 所以圆心为(2,1),半径为2,所以圆C 的标准方程为(x -2)2+(y -1)2=4.答案 (1)C (2)(x -2)2+(y -1)2=4热点三 直线与圆的位置关系命题角度1 圆的切线问题【例3-1】 (2017·郑州调研)在平面直角坐标系xOy 中,以点A (1,0)为圆心且与直线mx -y -2m -1=0(m ∈R )相切的所有圆中,半径最大的圆的标准方程为________.解析 直线mx -y -2m -1=0恒过定点P (2,-1),当AP 与直线mx -y -2m -1=0垂直,即点P (2,-1)为切点时,圆的半径最大,∴半径最大的圆的半径r =(1-2)2+(0+1)2= 2.故所求圆的标准方程为(x -1)2+y 2=2.答案 (x -1)2+y 2=2命题角度2 圆的弦长相关计算【例3-2】 (1)(2017·菏泽二模)已知圆C 的方程是x 2+y 2-8x -2y +8=0,直线l :y =a (x -3)被圆C 截得的弦长最短时,直线l 方程为________.(2)(2016·全国Ⅲ卷) 已知直线l :x -3y +6=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,则|CD |=________.解析 (1)圆C 的标准方程为(x -4)2+(y -1)2=9,∴圆C 的圆心C (4,1),半径r =3.又直线l :y =a (x -3)过定点P (3,0),则当直线y =a (x -3)与直线CP 垂直时,被圆C 截得的弦长最短.因此a ·k CP =a ·1-04-3=-1,∴a =-1. 故所求直线l 的方程为y =-(x -3),即x +y -3=0.(2)由圆x 2+y 2=12知圆心O (0,0),半径r =23,∴圆心(0,0)到直线x -3y +6=0的距离d =61+3=3,|AB |=212-32=2 3.过C 作CE ⊥BD 于E .如图所示,则|CE |=|AB |=2 3.∵直线l 的方程为x -3y +6=0,∴直线l 的倾斜角∠BPD =30°,从而∠BDP =60°,因此|CD |=|CE |sin 60°=23sin 60°=4.答案 (1)x +y -3=0 (2)4探究提高 1.研究直线与圆的位置关系最常用的解题方法为几何法,将代数问题几何化,利用数形结合思想解题.2.与弦长有关的问题常用几何法,即利用圆的半径r ,圆心到直线的距离d ,及半弦长l 2,构成直角三角形的三边,利用其关系来处理.【训练3】 (2016·江苏卷)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :x 2+y 2-12x -14y +60=0及其上一点A (2,4).(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程;(2)设平行于OA 的直线l 与圆M 相交于B ,C 两点,且|BC |=|OA |,求直线l 的方程;(3)设点T (t ,0)满足:存在圆M 上的两点P 和Q ,使得TA→+TP →=TQ →,求实数t 的取值范围.解 (1)圆M 的方程化为标准形式为(x -6)2+(y -7)2=25,圆心M (6,7),半径r =5,由题意,设圆N 的方程为(x -6)2+(y -b )2=b 2(b >0), 且(6-6)2+(b -7)2=b +5.解得b =1,∴圆N 的标准方程为(x -6)2+(y -1)2=1.(2)∵k OA =2,∴可设直线l 的方程为y =2x +m ,即2x -y +m =0.又|BC |=|OA |=22+42=25,由题意,圆M 的圆心M (6,7)到直线l 的距离为d =52-⎝ ⎛⎭⎪⎫|BC |22=25-5=25, 即|2×6-7+m |22+(-1)2=25,解得m =5或m =-15. ∴直线l 的方程为2x -y +5=0或2x -y -15=0.(3)由TA →+TP →=TQ →,则四边形AQPT 为平行四边形,又∵P ,Q 为圆M 上的两点,∴|PQ |≤2r =10.∴|TA |=|PQ |≤10,即(t -2)2+42≤10,解得2-221≤t ≤2+221.故所求t 的范围为[2-221,2+221].1.解决直线方程问题应注意:(1)要注意几种直线方程的局限性.点斜式、两点式、斜截式要求直线不能与x 轴垂直.而截距式方程不能表示过原点的直线,也不能表示垂直于坐标轴的直线.(2)求直线方程要考虑直线斜率是否存在.(3)求解两条直线平行的问题时,在利用A 1B 2-A 2B 1=0建立方程求出参数的值后,要注意代入检验,排除两条直线重合的可能性.2.求圆的方程两种主要方法:(1)直接法:利用圆的性质、直线与圆、圆与圆的位置关系,数形结合直接求出圆心坐标、半径,进而求出圆的方程.(2)待定系数法:先设出圆的方程,再由条件构建系数满足的方程(组)求得各系数,进而求出圆的方程.3.直线与圆相关问题的两个关键点(1)三个定理:切线的性质定理、切线长定理和垂径定理.(2)两个公式:点到直线的距离公式d =|Ax 0+By 0+C |A 2+B2,弦长公式|AB |=2r 2-d 2(弦心距d ). 4.直线(圆)与圆的位置关系的解题思路(1)讨论直线与圆及圆与圆的位置关系时,要注意数形结合,充分利用圆的几何性质寻找解题途径,减少运算量.研究直线与圆的位置关系主要通过圆心到直线的距离与半径的比较来实现,两个圆的位置关系的判断依据是两圆心距离与两半径差与和的比较.(2)直线与圆相切时利用“切线与过切点的半径垂直,圆心到切线的距离等于半径”建立切线斜率的等式,所以求切线方程时主要选择点斜式,过圆外一点求解切线段长可转化为圆心到圆外点距离,利用勾股定理计算.一、选择题1.(2017·昆明诊断)已知命题p:“m=-1”,命题q:“直线x-y=0与直线x +m2y=0互相垂直”,则命题p是命题q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要解析“直线x-y=0与直线x+m2y=0互相垂直”的充要条件是1×1+(-1)·m2=0⇔m=±1.∴命题p是命题q的充分不必要条件.答案 A2.过点(3,1)作圆(x-1)2+y2=r2的切线有且只有一条,则该切线的方程为()A.2x+y-5=0B.2x+y-7=0C.x-2y-5=0D.x-2y-7=0解析依题意知,点(3,1)在圆(x-1)2+y2=r2上,且为切点.∵圆心(1,0)与切点(3,1)连线的斜率为12,所以切线的斜率k=-2.故圆的切线方程为y-1=-2(x-3),即2x+y-7=0.答案 B3.(2017·济南调研)若直线x-y+m=0被圆(x-1)2+y2=5截得的弦长为23,则m的值为()A.1B.-3C.1或-3D.2解析∵圆(x-1)2+y2=5的圆心C(1,0),半径r= 5.又直线x-y+m=0被圆截得的弦长为2 3.∴圆心C到直线的距离d=r2-(3)2=2,因此|1-0+m|12+(-1)2=2,∴m=1或m=-3.答案 C4.(2015·全国Ⅱ卷)已知三点A (1,0),B (0,3),C (2,3),则△ABC 外接圆的圆心到原点的距离为( )A.53B.213C.253D.43解析 设圆的一般方程为x 2+y 2+Dx +Ey +F =0,∴⎩⎪⎨⎪⎧1+D +F =0,3+3E +F =0,7+2D +3E +F =0,∴⎩⎪⎨⎪⎧D =-2,E =-433,F =1, ∴△ABC 外接圆的圆心为⎝⎛⎭⎪⎫1,233, 因此圆心到原点的距离d =12+⎝ ⎛⎭⎪⎫2332=213. 答案 B5.(2017·汉中模拟)已知过点(-2,0)的直线与圆C :x 2+y 2-4x =0相切于点P (P 在第一象限内),则过点P 且于直线3x -y =0垂直的直线l 的方程为( )A.x +3y -2=0B.x +3y -4=0C.3x +y -2=0D.x +3y -6=0 解析 圆C :x 2+y 2-4x =0的标准方程(x -2)2+y 2=4,∴圆心C (2,0),半径r =2.又过点(-2,0)的直线与圆C 相切于第一象限,∴易知倾斜角θ=30°,切点P (1,3),设直线l 的方程为x +3y +c =0,代入点P (1,3),得c =-4.∴直线l 的方程为x +3y -4=0.答案 B二、填空题6.(2017·广安调研)过点(1,1)的直线l 与圆(x -2)2+(y -3)2=9相交于A ,B 两点,当|AB |=4时,直线l 的方程为________.解析 易知点(1,1)在圆内,且直线l 的斜率k 存在,则直线l 的方程为y -1=k (x -1),即kx -y +1-k =0.又|AB |=4,r =3,∴圆心(2,3)到l 的距离d =32-22= 5. 因此|k -2|k 2+(-1)2=5,解得k =-12.∴直线l 的方程为x +2y -3=0.答案 x +2y -3=07.(2017·北京卷)已知点P 在圆x 2+y 2=1上,点A 的坐标为(-2,0),O 为原点,则AO→·AP →的最大值为________. 解析 法一 由题意知,AO→=(2,0),令P (cos α,sin α),则AP →=(cos α+2,sin α).AO →·AP →=(2,0)·(cos α+2,sin α)=2cos α+4≤6,故AO→·AP →的最大值为6. 法二 由题意知,AO→=(2,0),令P (x ,y ),-1≤x ≤1, 则AO →·AP →=(2,0)·(x +2,y )=2x +4≤6,故AO→·AP →的最大值为6. 答案 68.(2017·池州模拟)某学校有2 500名学生,其中高一1 000人,高二900人,高三600人,为了了解学生的身体健康状况,采用分层抽样的方法,若从本校学生中抽取100人,从高一和高三抽取样本数分别为a ,b ,且直线ax +by +8=0与以A (1,-1)为圆心的圆交于B ,C 两点,且∠BAC =120°,则圆C 的方程为________.解析 由题意,1002 500=a 1 000=b 600,∴a =40,b =24,∴直线ax +by +8=0,即5x +3y +1=0,A (1,-1)到直线的距离为|5-3+1|25+9=334, ∵直线ax +by +8=0与以A (1,-1)为圆心的圆交于B ,C 两点,且∠BAC =120°,∴r =634, ∴圆C 的方程为(x -1)2+(y +1)2=1817.答案 (x -1)2+(y +1)2=1817三、解答题9.已知点A (3,3),B (5,2)到直线l 的距离相等,且直线l 经过两直线l 1:3x -y -1=0和l 2:x +y -3=0的交点,求直线l 的方程.解 解方程组⎩⎨⎧3x -y -1=0,x +y -3=0,得交点P (1,2). ①若点A ,B 在直线l 的同侧,则l ∥AB .而k AB =3-23-5=-12, 由点斜式得直线l 的方程为y -2=-12(x -1),即x +2y -5=0.②若点A ,B 分别在直线l 的异侧,则直线l 经过线段AB 的中点⎝ ⎛⎭⎪⎫4,52, 由两点式得直线l 的方程为y -2x -1=52-24-1, 即x -6y +11=0.综上所述,直线l 的方程为x +2y -5=0或x -6y +11=0.10.(2015·全国Ⅰ卷)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点.(1)求k 的取值范围;(2)若OM→·ON →=12,其中O 为坐标原点,求|MN |. 解 (1)由题设,可知直线l 的方程为y =kx +1,因为l 与C 交于两点,所以|2k -3+1|1+k 2<1. 解得4-73<k <4+73.所以k 的取值范围为⎝ ⎛⎭⎪⎫4-73,4+73. (2)设M (x 1,y 1),N (x 2,y 2).将y =kx +1代入方程(x -2)2+(y -3)2=1,整理得(1+k 2)x 2-4(1+k )x +7=0. 所以x 1+x 2=4(1+k )1+k 2,x 1x 2=71+k 2. OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1=4k (1+k )1+k 2+8. 由题设可得4k (1+k )1+k 2+8=12,解得k =1, 所以l 的方程为y =x +1.故圆心C 在l 上,所以|MN |=2.11.(2017·全国Ⅲ卷)在直角坐标系xOy 中,曲线y =x 2+mx -2与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.(1)解 不能出现AC ⊥BC 的情况,理由如下:设A (x 1,0),B (x 2,0),则x 1,x 2是方程x 2+mx -2=0的根,所以x 1+x 2=-m ,x 1x 2=-2,又C 的坐标为(0,1),则AC →·BC →=(-x 1,1)·(-x 2,1)=x 1x 2+1=-2+1=-1≠0,所以不能出现AC ⊥BC 的情况.(2)证明 法一 过A ,B ,C 三点的圆的圆心必在线段AB 垂直平分线上,设圆心E (x 0,y 0),由(1)知x 0=x 1+x 22=-m 2.由|EA |=|EC |得⎝ ⎛⎭⎪⎫x 1+x 22-x 12+y 20=⎝ ⎛⎭⎪⎫x 1+x 222+(y 0-1)2,化简得y 0=1+x 1x 22=-12. 所以圆E 的方程为⎝ ⎛⎭⎪⎫x +m 22+⎝ ⎛⎭⎪⎫y +122=⎝ ⎛⎭⎪⎫-m 22+⎝ ⎛⎭⎪⎫-12-12. 令x =0得y 1=1,y 2=-2,所以过A ,B ,C 三点的圆在y 轴上截得的弦长为1-(-2)=3.所以过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.法二 设过A ,B ,C 三点的圆与y 轴的另一个交点为D ,由x 1x 2=-2可知原点O 在圆内.由相交弦定理可得|OD ||OC |=|OA ||OB |=|x 1||x 2|=2,又|OC |=1,所以|OD |=2, 所以过A ,B ,C 三点的圆在y 轴上截得的弦长为|OC |+|OD |=3,为定值.。

相关文档
最新文档