函数的基础知识大全(完整)(包括函数在高考中所有考点知识)

合集下载

高一函数 知识点大全

高一函数 知识点大全

高一函数知识点大全一、函数的定义函数是一种数学操作,它将输入值(或参数)映射到输出值(或结果)。

函数的定义通常包括函数名称、参数列表和函数体。

在高一阶段,我们将学习一些基本的函数,如一次函数、二次函数、幂函数和对数函数等。

二、函数的表示方法函数的表示方法有三种:符号表示法、列表表示法和图像表示法。

符号表示法是用函数名称和参数列表来表示函数,例如y = 2x + 1;列表表示法是将输入值和对应的输出值列成一个表格;图像表示法是通过绘制函数的图像来表示函数的关系。

三、函数的性质函数的性质包括奇偶性、单调性、周期性和对称性等。

奇偶性是指函数是否具有奇偶性;单调性是指函数在某个区间内是单调递增或单调递减;周期性是指函数是否存在周期性;对称性是指函数是否具有对称性。

四、函数的运算函数的运算包括函数的加减乘除、复合运算和反函数运算等。

函数的加减乘除是指将两个或多个函数进行加、减、乘、除运算;复合运算是指将多个函数嵌套在一起,形成一个复合函数;反函数运算是指将一个函数转换为其反函数。

五、函数的图像函数的图像是用来描述函数变化的直观工具。

在绘制函数的图像时,我们需要先确定函数的定义域和值域,然后根据函数的表达式绘制出对应的图像。

同时,我们还需要掌握一些常见的图像变换方法,如平移、伸缩和对称变换等。

六、函数的实际应用高一函数知识点还包括一些实际应用,如利用函数解决实际问题、利用函数进行数据分析等。

在实际问题中,我们需要根据问题的具体情境来选择合适的函数和数学模型进行解决。

我们还需要掌握一些数据处理和分析的方法,如回归分析、聚类分析等。

高一函数知识点是数学学习的重要内容之一。

通过学习和掌握这些知识点,我们可以更好地理解函数的本质和特点,为后续的学习和实际应用打下坚实的基础。

高一函数知识点总结函数是数学的重要概念,是高中数学的核心内容。

在初中数学中,函数通常被视为变量之间的依赖关系,而高中的函数则更加强调映射的概念。

(完整版)高考函数知识点总结(全面)

(完整版)高考函数知识点总结(全面)

高考函数总结一、函数的概念与表示 1、函数 (1)函数的定义①原始定义:设在某变化过程中有两个变量x 、y ,如果对于x 在某一范围内的每一个确定的值,y 都有唯一确定的值与它对应,那么就称y 是x 的函数,x 叫作自变量。

②近代定义:设A 、B 都是非空的数的集合,f :x →y 是从A 到B 的一个对应法则,那么从A 到B 的映射f :A →B 就叫做函数,记作y=f(x),其中B y A x ∈∈,,原象集合A 叫做函数的定义域,象集合C 叫做函数的值域。

B C ⊆(2)构成函数概念的三要素 ①定义域 ②对应法则 ③值域 3、函数的表示方法 ①解析法 ②列表法 ③图象法 注意:强调分段函数与复合函数的表示形式。

二、函数的解析式与定义域1、函数解析式:函数的解析式就是用数学运算符号和括号把数和表示数的字母连结而成的式子叫解析式, 求函数解析式的方法:(1) 定义法 (2)变量代换法 (3)待定系数法(4)函数方程法 (5)参数法 (6)实际问题2、函数的定义域:要使函数有意义的自变量x 的取值的集合。

求函数定义域的主要依据: (1)分式的分母不为零;(2)偶次方根的被开方数不小于零,零取零次方没有意义; (3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数必须大于零且不等于1;如果函数是由一些基本函数通过四则运算而得到的,那么它的定义域是由各基本函数定义域的交集。

3。

复合函数定义域:已知f (x )的定义域为[]b a x ,∈,其复合函数[])(x g f 的定义域应由不等式b x g a ≤≤)(解出。

三、函数的值域 1.函数的值域的定义在函数y=f (x )中,与自变量x 的值对应的y 的值叫做函数值,函数值的集合叫做函数的值域。

2.确定函数的值域的原则①当函数y=f (x )用表格给出时,函数的值域是指表格中实数y 的集合;②当函数y=f (x )用图象给出时,函数的值域是指图象在y 轴上的投影所覆盖的实数y 的集合; ③当函数y=f(x )用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定; ④当函数y=f (x )由实际问题给出时,函数的值域由问题的实际意义确定。

数学高考知识点总结函数

数学高考知识点总结函数

数学高考知识点总结函数一、函数的基本概念1.1 函数的定义在数学中,函数是一种对应关系,它描述了一个集合中的每个元素与另一个集合中的唯一元素之间的关系。

如果对于集合X中的每一个元素x,都有集合Y中的唯一元素y与之对应,那么我们就称这种对应关系为函数。

通常用f(x)表示函数,其中x是自变量,f(x)是因变量。

1.2 函数的表示函数可以用不同的形式进行表示,常见的表示形式包括:① 变量关系式表示:y=f(x)或者y=f(x₁,x₂,…,xₙ)。

② 表格表示:将自变量和因变量的对应关系列成表格。

③ 图像表示:通过绘制函数的图像来表示函数的关系。

二、函数的性质2.1 奇函数和偶函数奇函数和偶函数是函数的一种性质,它们的定义如下:① 奇函数:如果对于任意的x,都有f(-x)=-f(x),那么我们称函数f(x)是奇函数。

② 偶函数:如果对于任意的x,都有f(-x)=f(x),那么我们称函数f(x)是偶函数。

奇函数以原点对称,而偶函数以y轴对称。

2.2 周期函数如果函数f(x)满足对于任意的x,都有f(x+T)=f(x),其中T为一个正常数,那么我们称函数f(x)是周期函数,T称为函数的周期。

2.3 单调性函数的单调性是指函数在定义域内的增减性质,可以分为严格单调增、严格单调减、非严格单调增、非严格单调减四种类型。

2.4 凹凸性函数的凹凸性描述了函数图像的凹凸形状,它可以分为凹函数和凸函数两种类型。

2.5 极值函数的极值是指函数在一定区间内取得最大值或最小值的点,可以分为最大值和最小值两种。

三、函数的图像3.1 函数的图像基本性质函数的图像是函数在平面直角坐标系中的几何形象,它具有以下基本性质:① 函数的图像可以用方程y=f(x)来表示。

② 函数的图像关于y轴对称,当且仅当函数f(-x)=f(x)时。

③ 函数的图像可以用表格来表示,通过将自变量和因变量的对应关系列成表格。

3.2 常见函数的图像常见的函数包括一次函数、二次函数、指数函数、对数函数、幂函数、三角函数等,它们都有各自的特点和图像形状。

高考数学函数基础知识清单

高考数学函数基础知识清单

高考数学函数基础知识清单函数是高中数学中的重要内容和基础知识点,对于高考数学来说尤为重要。

本文将为大家总结高考数学函数基础知识清单,帮助大家复习和巩固相关概念和技能。

一、函数的定义与性质1. 函数的定义:函数是一个集合和对应关系的二元关系,通常用f(x)表示。

2. 定义域和值域:函数的定义域是输入变量x的取值范围,值域是函数对应值f(x)的取值范围。

3. 函数的性质:单调性、奇偶性、周期性等。

二、常见的函数类型1. 一次函数:y = kx + b,其中k和b是常数,k称为比例系数,b 称为常数项。

2. 二次函数:y = ax^2 + bx + c,其中a、b和c是常数,且a ≠ 0。

3. 幂函数:y = x^n,其中n为整数。

4. 指数函数:y = a^x,其中a为正实数且a ≠ 1。

5. 对数函数:y = log_a(x),其中a为正实数且a ≠ 1。

6. 三角函数:正弦函数、余弦函数等。

三、函数的图像与性质1. 函数图像的表示:坐标系、平面直角坐标系。

2. 函数图像的基本性质:对称性、零点、极值等。

3. 函数的平移、伸缩和翻折:函数图像在坐标系中的变化与函数式的关系。

四、函数的运算与复合1. 函数的四则运算:加、减、乘、除。

2. 复合函数:f(g(x)),其中f(x)和g(x)是两个函数。

3. 反函数:f^(-1)(x),满足f(f^(-1)(x)) = x和f^(-1)(f(x)) = x的函数。

五、函数方程与函数不等式1. 函数方程:包括一元函数方程和多元函数方程。

2. 函数不等式:包括一元函数不等式和多元函数不等式。

六、函数的应用1. 函数的模型:将实际问题抽象化为函数模型进行求解。

2. 函数的最大值与最小值:求极值的方法和应用。

3. 函数的应用举例:求面积、体积、最优解等实际问题。

以上是高考数学函数基础知识的清单,希望能够对大家的复习和考试有所帮助。

在复习过程中,要理解函数的定义与性质,熟练掌握各种函数的类型,能够准确绘制函数图像并分析函数的各种性质,同时要培养应用函数解决实际问题的能力。

高考常用函数知识点汇总

高考常用函数知识点汇总

高考常用函数知识点汇总函数是数学中非常重要的一个概念,也是高考中常常出现的考点。

理解和掌握常用函数的知识点对于高考数学题目的解答非常有帮助。

本文将对高考常用的函数知识点进行汇总,以帮助同学们更好地备考。

一、一次函数一次函数是最基本的函数之一,其定义域为全体实数。

一次函数的一般形式为y = kx + b,其中k和b是常数。

一次函数的图像为一条直线,其斜率k决定了直线的倾斜程度,常数b决定了直线与y轴的交点。

二、二次函数二次函数是高中数学中较为复杂的函数之一,其定义域为全体实数。

二次函数的一般形式为y = ax^2 + bx + c,其中a、b和c是常数且a ≠ 0。

二次函数的图像为一条抛物线,其开口方向由二次项系数a的正负决定。

三、指数函数指数函数是以一个正常数为底数的幂函数,其定义域为全体实数。

指数函数的一般形式为y = a^x,其中a是正常数且a ≠ 1。

指数函数的特点是呈现指数递增或递减的趋势,底数a的大小决定了函数的增长速度。

四、对数函数对数函数是指数函数的逆函数,其定义域为x > 0。

对数函数的一般形式为y = loga(x),其中a是正常数且a ≠ 1。

对数函数的特点是呈现递增或递减的趋势,底数a的大小决定了函数的增长速度。

五、三角函数三角函数是研究角及其变化规律的函数,其定义域为全体实数。

常见的三角函数有正弦函数、余弦函数和正切函数。

三角函数的图像为周期性的波动曲线,其周期和振幅由函数的参数决定。

六、反三角函数反三角函数是三角函数的逆函数,其定义域由对应的三角函数确定。

常见的反三角函数有反正弦函数、反余弦函数和反正切函数。

反三角函数的图像可通过对应的三角函数的图像通过y = x镜像得到。

七、指数对数函数指数对数函数是指数函数和对数函数的组合,其定义域由对应的函数确定。

常见的指数对数函数有指数对数函数、指数对数对函数和对数指数函数。

这些函数的图像由对应的指数函数和对数函数的图像组合而成。

(完整版)函数的基础知识大全(完整)(包括函数在高考中所有考点知识)

(完整版)函数的基础知识大全(完整)(包括函数在高考中所有考点知识)

函数基础知识大全§1.2.1、函数的概念1、 设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作:()A x x f y ∈=,.2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等.3.两个函数的相等:函数的定义含有三个要素,即定义域A 、值域C 和对应法则f .当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定.因此,定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数. §1.2.2、函数的表示法1、 函数的三种表示方法:解析法、图象法、列表法. 1.函数的三种表示法(1)解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式.(2)列表法:就是列出表格来表示两个变量的函数关系. (3)图象法:就是用函数图象表示两个变量之间的关系. 2.求函数解析式的题型有:(1)已知函数类型,求函数的解析式:待定系数法;(2)已知()f x 求[()]f g x 或已知[()]f g x 求()f x :换元法、配凑法; (3)已知函数图像,求函数解析式;(4)()f x 满足某个等式,这个等式除()f x 外还有其他未知量,需构造另个等式解方程组法; (5)应用题求函数解析式常用方法有待定系数法等. 求函数解析式的常用方法: 1、换元法( 注意新元的取值范围)2、待定系数法(已知函数类型如:一次、二次函数、反比例函数等)3、整体代换(配凑法) 4.赋值法:3.映射的定义:一般地,设A 、B 是两个集合,如果按照某种对应关系f ,对于集合A 中的任何一个元素,在集合B 中都有唯一的元素和它对应,那么,这样的对应(包括集合A 、B ,以及集合A 到集合B 的对应关系f )叫做集合A 到集合B 的映射,记作f :A →B.由映射和函数的定义可知,函数是一类特殊的映射,它要求A 、B 非空且皆为数集.4.映射的概念中象、原象的理解:(1) A 中每一个元素都有象;(2)B 中每一个元素不一定都有原象,不一定只一个原象;(3)A 中每一个元素的象唯一。

函数高考知识点梳理

函数高考知识点梳理

函数高考知识点梳理函数是高中数学的重要内容,也是高考考点之一。

掌握函数的相关知识对于高考数学成绩的提升至关重要。

本文将对函数的相关知识点进行梳理和总结,帮助同学们更好地备考。

一、函数的定义和性质1. 函数的定义:函数是一种有序对的关系,是自变量与因变量之间的映射关系。

2. 定义域:函数中自变量的取值范围。

3. 值域:函数中因变量的取值范围。

4. 图像:函数在坐标系中的表示,通常用曲线表示。

5. 奇偶性:函数关于坐标原点对称称为偶函数,关于y轴对称称为奇函数,否则为无偶奇性。

6. 单调性:函数的增减趋势。

7. 有界性:函数在某个区间上是否有上下界。

二、函数的分类1. 初等函数:基本初等函数(常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数)以及它们的有限次四则运算、函数的复合和函数的构造所得的函数。

2. 反函数:与原函数满足互逆关系的函数。

3. 反比例函数:自变量与因变量之间呈现反比例关系的函数。

4. 分段函数:根据自变量的取值范围,函数表达式有不同的形式。

5. 参数方程:自变量和因变量均用参数表示的函数。

三、函数的性质与运算1. 函数的和、差、积、商:函数间的四则运算。

2. 复合函数:一个函数作为另一个函数的自变量时构成的函数。

3. 反函数的性质:反函数的定义域和值域与原函数的相反。

4. 函数的平移:函数图像在坐标系中的平移和拉伸。

5. 函数的复合:多个函数进行复合运算的结果仍然是一个函数。

6. 函数的解析式与图像的关系:函数图像与函数的解析式之间的对应关系。

四、应用题1. 函数在实际问题中的应用,如函数模型的建立、函数图像的解读等。

2. 函数方程的解:求解函数方程的解析式。

通过对函数的相关知识点进行梳理和总结,我们可以更加全面地了解函数的定义、性质和运算规律。

在高考数学备考中,熟练掌握函数的相关知识点,能够灵活运用函数解决实际问题,将会为我们取得更好的成绩提供有力的支持。

精确理解函数的定义、掌握函数的分类和性质、善于运用函数的运算、熟练应用函数解决实际问题,是我们备考高考数学时不可或缺的能力。

数学高考函数的总结知识点

数学高考函数的总结知识点

数学高考函数的总结知识点一、函数的定义函数是一个或多个自变量和一个因变量之间的关系。

函数通常用一个字母表示,如f(x)。

其中,x为自变量,f(x)为因变量。

在函数中,自变量的取值范围称为定义域,对应的因变量的取值范围称为值域。

二、函数的性质1. 奇偶性- 奇函数:f(-x)=-f(x),即对任意x,有f(-x)=-f(x)。

满足这个性质的函数称为奇函数。

典型的奇函数有sin(x)和tan(x)。

- 偶函数:f(-x)=f(x),即对任意x,有f(-x)=f(x)。

满足这个性质的函数称为偶函数。

典型的偶函数有cos(x)和e^x。

2. 单调性- 递增函数:对任意x1<x2,有f(x1)≤f(x2)。

满足这个性质的函数称为递增函数。

- 递减函数:对任意x1<x2,有f(x1)≥f(x2)。

满足这个性质的函数称为递减函数。

3. 周期性- 周期函数:对任意x,有f(x+T)=f(x),其中T为正实数。

满足这个性质的函数称为周期函数。

4. 增减性- 函数增减性:f'(x)>0表示函数在区间上是增函数,f'(x)<0表示函数在区间上是减函数。

5. 最值- 最大值和最小值:函数在其定义域上可能存在最大值和最小值。

6. 奇点- 奇点:当函数在某点x0附近没有定义或者不连续时,称这个点为奇点。

7. 极限- 极限:当自变量趋于某个值时,函数的取值趋于某个值,这个趋势是函数的极限。

三、常见函数- 定义:f(x)=kx+b,其中k,b为常数且k≠0,称为一次函数。

- 基本性质:一次函数的图像是一条直线,斜率为k,截距为b。

2. 二次函数- 定义:f(x)=ax^2+bx+c,其中a≠0,称为二次函数。

- 基本性质:二次函数的图像是抛物线,开口方向由a的正负决定,a>0为向上开口,a<0为向下开口。

3. 幂函数- 定义:f(x)=x^a,其中a为常数,称为幂函数。

- 基本性质:幂函数的图像是曲线,a>0时过原点且递增,a<0时在第一象限递减,第四象限递增。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数基础知识大全§1.2.1、函数的概念1、 设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作:()A x x f y ∈=,.2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等.3.两个函数的相等:函数的定义含有三个要素,即定义域A 、值域C 和对应法则f .当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定.因此,定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数. §1.2.2、函数的表示法1、 函数的三种表示方法:解析法、图象法、列表法. 1.函数的三种表示法(1)解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式.(2)列表法:就是列出表格来表示两个变量的函数关系. (3)图象法:就是用函数图象表示两个变量之间的关系. 2.求函数解析式的题型有:(1)已知函数类型,求函数的解析式:待定系数法;(2)已知()f x 求[()]f g x 或已知[()]f g x 求()f x :换元法、配凑法; (3)已知函数图像,求函数解析式;(4)()f x 满足某个等式,这个等式除()f x 外还有其他未知量,需构造另个等式解方程组法; (5)应用题求函数解析式常用方法有待定系数法等. 求函数解析式的常用方法: 1、换元法( 注意新元的取值围)2、待定系数法(已知函数类型如:一次、二次函数、反比例函数等)3、整体代换(配凑法) 4.赋值法:3.映射的定义:一般地,设A 、B 是两个集合,如果按照某种对应关系f ,对于集合A 中的任何一个元素,在集合B 中都有唯一的元素和它对应,那么,这样的对应(包括集合A 、B ,以及集合A 到集合B 的对应关系f )叫做集合A 到集合B 的映射,记作f :A →B.由映射和函数的定义可知,函数是一类特殊的映射,它要求A 、B 非空且皆为数集.4.映射的概念中象、原象的理解:(1) A 中每一个元素都有象;(2)B 中每一个元素不一定都有原象,不一定只一个原象;(3)A 中每一个元素的象唯一。

1.映射:注意: ①第一个集合中的元素必须有象;②一对一或多对一. 2求函数定义域一般有三类问题:(1)给出函数解析式的:函数的定义域是使解析式有意义的自变量的取值集合;(2)实际问题:函数的定义域的求解除要考虑解析式有意义外,还应考虑使实际问题有意义;(3)已知()f x 的定义域求[()]f g x 的定义域或已知[()]f g x 的定义域求()f x 的定义域: 掌握基本初等函数(尤其是分式函数、无理函数、对数函数、三角函数)的定义域; (1)分式的分母不为0;(2)偶次方根的被开方数不小于0;(3)对数函数的真数大于0;(4)指数函数、对数函数的底数大于0且不等于1;(5)零指数、负指数幂的底数不等于0.②① 若f(x)的定义域为[a ,b ],则复合函数f[g(x)]的定义域由不等式a ≤ g(x) ≤ b 解出 ② 若f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域. 2.函数值域的求法:①直接法 ;②配方法 ;③判别式法 ;④利用函数单调性 ;⑤换元法 ;⑥利用均值不等式 2222b a ba ab +≤+≤; ⑦几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性(xa 、x sin 、x cos 等);⑨平方法;⑩ 导数法(11)分离常数法;(12)反函数法;(13)数形结合法。

3求函数值域的各种方法函数的值域是由其对应法则和定义域共同决定的其类型依解析式的特点分可分三类:(1)求常见函数值域;(2)求由常见函数复合而成的函数的值域;(3)求由常见函数作某些“运算”而得函数的值域①直接法:利用常见函数的值域来求一次函数y=ax+b(a ≠0)的定义域为R ,值域为R ; 反比例函数)0(≠=k xky 的定义域为{x|x ≠0},值域为{y|y ≠0}; 二次函数)0()(2≠++=a c bx ax x f 的定义域为R ,当a>0时,值域为{ab ac y y 4)4(|2-≥};当a<0时,值域为{ab ac y y 4)4(|2-≤}②配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:),(,)(2n m x c bx ax x f ∈++=的形式;③分式转化法(或改为“分离常数法”)④换元法:通过变量代换转化为能求值域的函数,化归思想;⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域; ⑥基本不等式法:转化成型如:)0(>+=k xkx y ,利用平均值不等式公式来求值域; ⑦单调性法:函数为单调函数,可根据函数的单调性求值域⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域 ⑨逆求法(反求法):通过反解,用y 来表示x ,再由x 的取值围,通过解不等式,得出y 的取值围;常用来解,型如:),(,n m x dcx bax y ∈++=⑩判别式法 ⑾.导数法:6.复合函数:若y=f(u),u=g(x),x(a,b),u (m,n),那么y=f[g(x)]称为复合函数,u 称为中间变量,它的取值围是g(x)的值域。

(2)复合函数单调性的判定:①首先将原函数)]([x g f y =分解为基本函数:函数)(x g u =与外函数)(u f y =②分别研究、外函数在各自定义域的单调性③根据“同性则增,异性则减”来判断原函数在其定义域的单调性. 4.分段函数:在函数定义域,对于自变量x 的不同取值区间,有着不同的对应关系,这样的函数通常叫分段函数。

值域(最值)、单调性、图象等问题,先分段解决,再下结论。

5.函数的奇偶性 1.(1)判断函数的奇偶性有时可以用定义的等价形式:()()0f x f x ±-=,()1()f x f x =±- 讨论函数的奇偶性的前提条件是函数的定义域关于原点对称,要重视这一点;(2)奇函数的图象关于原点对称,偶函数的图象关于y 轴对称,因此根据图象的对称性可以判断函数的奇偶性2.奇偶函数的性质:(1)函数的定义域关于原点对称是函数具有奇偶性的必要条件....(2)偶函数的图象关于y 轴对称,奇函数的图象关于原点对称; (3)()f x 为偶函数()(|f x f x ⇔=(4)若奇函数)(x f 在0处有定义,,则f(0)=0,因此,“f(x)为奇函数”是"f(0)=0"的非充分非必要条件; (5)设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上:(6)定义在R 上的任意函数f(x)均可表示为一个偶函数与一个奇函数之和。

(7)在定义域的公共部分,两个奇函数之积(商)为偶函数;两个偶函数之积(商)为偶函数;一奇一偶函数之积(商)为奇函数;两个奇(偶)函数之和、差为奇(偶)函数。

即奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶,奇⨯偶=奇(8)偶函数在关于原点对称的区间上单调性相反;奇函数在关于原点对称的区间上单调性一致. (9)f(x)既是奇函数又是偶函数的充要条件是f(x)=0. 3.奇、偶性的推广:(1)函数()x f y =与函数()x f y -=的图像关于直线0=x (y 轴)对称. 推广一:函数y=f(x)对于定义域任一x 都有()()f a x f a x +=- ,则y=f(x)的图象关于x=a 对称,即y=f(a+x)为偶函数;推广二:如果函数()x f y =对于一切x ∈R ,都有()()f a x f b x +=-成立,那么()x f y =的图像关于直线2a b x +=(由“x 和的一半()()2a x b x x ++-=确定”)对称.推广三:函数()x a f y +=,()y f b x =-的图像关于直线2b ax -=(由a x b x +=-确定)对称. 推广四:函数()x f y =与函数()y A f x =-的图像关于直线2A y =对称(由“y 和的一半[()][()]2f x A f x y +-=确定”).(2) 函数()x f y =与函数()x f y -=的图像关于直线0=y (x 轴)对称. 推广一:函数y=f(x)对定义域任一x 都有()()f a x f a x +=-- ,则y=f(x)的图象关于点(a,0)成中心对称,即y=f(a+x)为奇函数。

推广二:函数y=f(x)对定义域任一x 都有()()2f a x f a x b ++-=,则y=f(x)的图象关于点(),a b 成中心对称。

推广三:函数()x f y =与函数()y m f n x =--的图像关于点(,)22n m 中心对称.4.对于复合函数F (x )=f[g(x)]满足同奇则奇,有偶则偶。

6.函数的单调性: ⑴单调性的定义:①)(x f 在区间M 上是增函数,,21M x x ∈∀⇔当21x x <时有12()()f x f x <; ②)(x f 在区间M 上是减函数,,21M x x ∈∀⇔当21x x <时有12()()f x f x >; ⑵单调性的判定:①定义法:一般要将式子)()(21x f x f -化为几个因式作积或作商的形式,以利于判断符号;设2121,x x A x x <∈且;作差)()(21x f x f -(一般结果要分解为若干个因式的乘积,且每一个因式的正或负号能清楚地判断出);判断正负号。

②导数法(见导数部分);若)(x f 在某个区间A 有导数,则()0f x ≥’,)x A ∈(⇔)(x f 在A 为增函数;⇔∈≤)0)(A x x f ,(’)(x f 在A 为减函数。

③复合函数法;复合函数[])(x g f y =在公共定义域上的单调性:①若f 与g 的单调性相同,则[])(x g f 为增函数;“同则增” ②若f 与g 的单调性相反,则[])(x g f 为减函数。

“异则减” 注意:先求定义域,单调区间是定义域的子集。

④图像法注:证明单调性主要用定义法和导数法。

(3)性质①奇函数在其对称区间上的单调性相同; ②偶函数在其对称区间上的单调性相反; ③在公共定义域:增函数+)(x f 增函数)(x g 是增函数;减函数+)(x f 减函数)(x g 是减函数; 增函数-)(x f 减函数)(x g 是增函数;减函数-)(x f 增函数)(x g 是减函数。

相关文档
最新文档