四年级等差数列的奥数题

合集下载

四年级奥数等差数列求和

四年级奥数等差数列求和

等差数列求和例1、有一个数列:3、6、9、12、……480,这个数列共有几项?其中48是第几项?练1、有一个数列:13、21、29、37、……85,这个数列共有几项?练2、有一个数列:113、108、103、98、……48,这个数列共有几项?练3、已知一个等差数列,首项是6,末项是126,公差是5,其中121是第几项?练4、已知等差数列5、7、9、11……这个数列的第20项和第92项分别是什么?练5、已知等差数列500、497、494、491……这个数列的第20项和第92项分别是什么?例2、计算1+2+3+4+5+6+7+8+9+10练、计算1+2+3+4+5+……+99+100 1+2+3+4+……+500计算1+2+3+4+……+133 1+2+3+4+……+311例3、计算5+8+11+14+17……+38练、计算16+19+22+25……+100 5+7+9+11+……+47计算41+46+51+……306 6+16+26……+666计算999+997+995+……+101 777+769+761+753……+401例4、有一个等差数列:1、5、9、13……那么这个等差数列前100项的和是多少?练1、有一个等差数列:1、5、9、13……那么这个等差数列前50项的和是多少?练2、有一个等差数列:9、11、13、15……那么这个等差数列前65项的和是多少?练3、有一个等差数列:300、297、294……那么这个等差数列前55项的和是多少?练4、有一个等差数列a1=18,d=5,那么这个等差数列前99项的和是多少?例5、计算(1+3+5+……+2019)-(2+4+6+……2018)练1、计算(2+4+6+...+100)-(1+3+5+ (99)练2、计算1000-1-2-3-……-20练3、计算2000-3-6-9-……-51-54练4、计算1+2+3+......+9+10+20+30+......+90+100+200+300+ (1000)请认真完成作业~·~1、有一个数列:10、13、16、19……124,这个数列共有几项?其中28是第几项?2、计算1+2+3+4+……199 1+2+3+4……+3333、计算80+81+82+83……+150 332+331+330+……+1004、计算1+3+5+7+9……+99 8+10+12+14+……+1885、计算23+26+29+……119 222+118+114+……+986、有一个等差数列,a1=13,d=4,求前40项的和。

小学四年级数学奥数题100题附答案(完整版)

小学四年级数学奥数题100题附答案(完整版)

小学四年级数学奥数题100题附答案(完整版)题目1有一个数列:1,3,5,7,9,11,13,15,17,19。

求这个数列的和。

答案:这是一个等差数列,首项为1,末项为19,公差为2,项数为10。

根据等差数列求和公式:总和= (首项+ 末项)×项数÷2即:(1 + 19)×10 ÷2 = 100题目2小明从一楼走到三楼需要2 分钟,那么他从一楼走到六楼需要几分钟?答案:从一楼到三楼,实际上走了 2 层楼梯,用了2 分钟,所以走一层楼梯需要1 分钟。

从一楼到六楼需要走5 层楼梯,所以需要5 分钟。

题目3在一个减法算式里,被减数、减数与差的和等于240,而减数是差的5 倍,差是多少?答案:因为被减数= 减数+ 差,被减数+ 减数+ 差= 240,所以被减数= 240÷2 = 120。

又因为减数是差的5 倍,设差为x,则减数为5x,所以x + 5x = 120,解得x = 20,即差是20。

题目4两个数相除,商是8,余数是20,如果被除数和除数同时扩大10 倍,商是多少?余数是多少?答案:被除数和除数同时扩大相同的倍数,商不变,余数扩大相同的倍数。

所以商还是8,余数是20×10 = 200。

题目5鸡兔同笼,共有头100 个,脚316 只,鸡兔各有多少只?答案:假设全是鸡,那么脚有100×2 = 200 只,比实际少316 - 200 = 116 只。

每把一只鸡换成一只兔,脚就多4 - 2 = 2 只。

所以兔有116÷2 = 58 只,鸡有100 - 58 = 42 只。

题目6一块长方形草地,长18 米,宽12 米,中间有一条宽2 米的小路,求草地(阴影部分)的面积。

答案:方法一:整个长方形的面积为18×12 = 216 平方米。

小路的面积为18×2 + 12×2 - 2×2 = 56 平方米。

等差数列奥数题四年级

等差数列奥数题四年级

等差数列奥数题四年级在一个阳光明媚的早晨,小明像往常一样走进了学校。

他一边走,一边想着今天的数学课,心里有点小紧张,因为老师今天要讲的可是等差数列呢。

说到这个,小明心里嘀咕:“等差数列又是什么鬼?”他从没觉得数字能这么有趣,不过这回,老师可是要把这个复杂的数学概念化成简单的故事来讲。

上课铃一响,老师微笑着走进教室,眼睛里闪烁着光芒,像是准备要讲个大新闻。

她开口就说:“小朋友们,今天我们来聊聊等差数列,听起来很酷吧!”大家都一脸茫然,像是被闷在密闭的房间里,不知道怎么呼吸。

老师见状,立刻来了个大转变,开始讲一个故事。

她说有一位小公主,每天都要往城堡的花园里浇水,她的花园里种着不同的花,每种花每天都要浇的水量是前一天的水量加上一个固定的量。

“比如说,第一天小公主给玫瑰浇了2升水,第二天就浇了3升,第三天浇了4升……你们看,这就是一个等差数列啊!”老师兴奋地说,像个孩子一样。

小明心里一动,原来这就是等差数列!它就是每天增加一个固定的数字!他脑海中闪过一个想法,哦,这就像是吃糖果一样,第一天吃一颗,第二天吃两颗,慢慢地,糖果越吃越多,真是让人欲罢不能啊!然后,老师又说到这个数列的“终极武器”——求和公式。

她把黑板擦得干干净净,写下了“Sn = n/2 × (a1 + an)”。

小明眼睛一亮,哇,这个公式可真像魔法咒语,能把零散的数字变成一大堆的糖果总数!可是,老师并没有让他们直接记住,而是用大家最喜欢的游戏来让他们记住这个公式。

她说:“想象一下,我们有十个好朋友,每天都来聚会,每次聚会都有不一样的零食,怎么样才能知道总共有多少零食呢?用这个公式就能算出来!”小明和同学们开始动手算,结果越来越兴奋。

有人说:“我算出总共能吃到500颗糖!”另一个同学却抗议:“不对不对,我算是520颗!”老师在旁边笑得前仰后合,真是乐趣无穷。

小明觉得这堂课简直就是一场盛大的派对,每个人都在欢快地讨论自己的答案,没想到数字竟然能这么有趣。

四年级奥数等差数列求和一

四年级奥数等差数列求和一

等差数列的通项公式
定义:等差数列中任意一项 都等于前一项加上一个常数
公式:an=a1+(n-1)d, 其中an是第n项,a1是第 一项,d是公差
特点:每一项与前一项的差 等于公差,且差值相等
求解方法:根据已知项和公 差,利用通项公式求出任意
一项
02
等差数列求和的方法
公式法求和
适用范围:适用 于已知首项和公 差的等差数列
公式:S_n = n/2 * (2a_1 + (n1)d),其中a_1是 首项,d是公差, n是项数
推导过程:由等 差数列的性质, 可以推导出该公 式
计算步骤:代入 已知数值,计算 出等差数列的和
倒序相加法求和
添加标题
定义:将等差数列从前往后和从后往前分别相加,再除以2得到等差数列 的和
添加标题
适用范围:适用于等差数列求和问题
+(n-1)d)
变形一: Sn=an^2/2+( n-9)an/2nd/2+n^2/4n/4
变形二: Sn=d/2*n^2+ (a1-d/2)*n
拓展:等差数列 求和公式的应用 范围和适用条件
05
等差数列求和的练习题
基础练习题
题目:1+2+3+...+99=? 题目:求1到100的所有偶数的和。 题目:求1到100的所有奇数的和。 题目:已知等差数列的前三项分别为a、b、c,求该等差数列的和。
添加标题
举例:对于数列1, 3, 5, 7, 9,倒序相加得到1+9, 3+7, 5+5,结果为 10+10+5=25
添加标题
优势:可以快速求解等差数列求和问题

四年级下册数学试题奥数等差数列人教版

四年级下册数学试题奥数等差数列人教版

小学四年级奥数《等差数列》(高斯求和 )A 卷求和的方法,可以总结出等差数列的以下公式:等差数列的和 =(首项 +末项)×项数÷ 2 末项 =首项 +公差×(项数 -1)例1、计算: 11+12+13+14+15+16+17+18+19+20练习 1:11+13+15+17+19+.....+25+27+29练习 2:求 50 以内所有奇数的和。

例 2:建筑工地上堆着一些钢管,最下一层有 16 根,每往上一层少一根,共有 8 层,求最上一层有几根,一共有多少根钢管?练习 1:有一堆电线杆,最下一层有8 根,每往上一层少一根,共有8 层,最上一层有 1 根,求一共有多少根电线杆?练习 2、自 1 开始,每隔 4 个数数一次,获取数列 1、5、9、13、、、97,他们的和是多少?1、计算22+23+24+25+26+27+28+29+30+31+322、计算:13+23+33+43+53+63+73+83+933、计算:11+14+17+20+23+27+304、计算5+10+15+20+25+30+35+405、计算13+16+19+22+25+28+31+34+37+40+43等差数列(高斯求和 )B 卷1、下面数列中,那些是等差数列?若是是,指出公差;若是不是,明原由。

(1)37,41,45,49,53.。

(2)21,22,23,24,25,26,27,28.。

(3)31,32,31,32,31,32,31,32.。

(4)3,6,12,24,48,。

(5)8、8、8、8、8、8、8。

2 算: 31+33+35+37+39+41+43+453 算( 2+4+6+⋯.+2006+2008)-(1+3+5+⋯.2005+2007)4、算 13+23+33+43+53+63+73+83+935、算 111+112+113+114+115+116+117+118+119+1206、在5和69之间插入8个数此后,使这些数成为一个等差数列的和是多少 ?7、计算1+2+3+。

奥数4年级-1-等差数列-难版

奥数4年级-1-等差数列-难版

第1讲等差数列知识梳理按一定次序排列的一列数叫做数列,数列中的数称为项,第一个数叫第一项,又叫首项。

第二个数叫第二项,…,最后一个数叫做末项。

(1)1,2,3,4,5, (100)(2)1,3,5, (33)(3)5,10,15, (105)这三个数列都有共同的规律:从第二项起,每一项与它前面一项的差都相等,这样的数列叫等差数列。

后项与前项的差叫该数列的公差。

如第一个数列中,公差=2-l=1;第二个数列中,公差=3-l=2;第三个数列中,公差=10-5=5。

等差数列的求和公式:和=(首项+末项)×项数÷2以及另外两个重要公式:(1)项数=(末项-首项)÷公差+l(2)末项=首项+公差×(项数-1)典型例题【例1】★把比100大的奇数从小到大排成一列,其中第21个是多少?【解析】该数列为等差数列,首项为101,公差为2,第21个数的项数为21.则101+(21-1)×2=141【小试牛刀】2,5,8,11,14……是按照规律排列的一串数,第21项是多少?【解析】此数列为一个等差数列,将第21项看做末项。

末项=2+(21-1)×3=62【例2】★从1开始的奇数:1,3,5,7,……其中第100个奇数是_____。

【解析】199【小试牛刀】观察右面的五个数:19、37、55、a 、91排列的规律,推知a =________ 。

【解析】19+18=37,37+18=55,所以a =55+18=73【例3】★2、4、6、8、10、12、L 是个连续偶数列,如果其中五个连续偶数的和是320,求它们中最小的一个.【解析】方法一:利用等差数列的“中项定理”,对于奇数个连续自然数,最中间的数是所有这些自然数的平均值,五个连续偶数的中间一个数应为320564÷=,因相邻偶数相差2,故这五个偶数依次是60、62、64、66、68,其中最小的是60.【小试牛刀】1、3、5、7、9、11、L 是个奇数列,如果其中8个连续奇数的和是256,那么这8个奇数中最大的数是多少?【解析】我们可以找中间的两个数其中一个为y ,那么这8个数为:6y -,4y -,2y -,y ,2y +,4y +,6y +,8y +,根据题意可得:88256y +=,所以31y =,最大的奇数是839y +=.【例4】★在等差数列6,13,20,27,…中,从左向右数,第 _______个数是1994. 【解析】每个数比前一个数大7,根据求通项1(1)n a a n d =+-的公式得1()1n n a a d =-÷+,列式得: (19946)7284-÷=2841285+=即第285个数是1994.【小试牛刀】5、8、11、14、17、20、L ,这个数列有多少项?它的第201项是多少?65是其中的第几项?【解析】它是一个无限数列,所以项数有无限多项.第n 项=首项+公差1n ⨯-(),所以,第201项532011605=+⨯-=(),对于数列5,8,11,L ,65,一共有:6553121n =-÷+=(),即65是第21项.【例5】★★⑴如果一个等差数列的第4项为21,第6项为33,求它的第8项.⑵如果一个等差数列的第3项为16,第11项为72,求它的第6项.【解析】⑴要求第8项,必须知道首项和公差.第6项-第4项64=-⨯()公差 ,所以 , 公差6=;第4项=首项3+⨯公差 ,21=首项36+⨯,所以,首项3= ;第8项=首项7+⨯公差45= .⑵公差7=,首项2=,第6项37=.【小试牛刀】已知一个等差数列第8项等于50,第15项等于71.请问这个数列的第1项是多少?【解析】71-50=21。

(完整版)四年级奥数混合运算(等差数列的项)

(完整版)四年级奥数混合运算(等差数列的项)

家庭教育心得作文400字(精选8篇)家庭教育心得作文400字篇1父母与子女之间存在着血浓于水的亲情,与子女间的情感体验当然也是无时无刻的。

家长的兴趣习惯,常常也决定了子女的.行为举止,所以,在教育子女时,父母更是模范和表率。

随着孩子年龄的增长,世界观价值观也在不断地完善。

孩子会从父母为其建造的象牙塔里走出来,接触外面更加纷繁的世界。

社会中的真善美与假丑恶也将给孩子带来更加直观的感受。

孩子心智不成熟,家庭教育尤为重要。

对于不可避免的社会丑陋现象,家长要给予及时的指导,不能一味地逃避,要提高孩子的鉴别能力,同时也要随时注意自己的言行举止,树立榜样。

古语有云:“身修而后家齐,家齐而后国治,国治而后天下平”的“齐家、治国、平天下”是指只有家庭好了,国家才会更加繁荣昌盛。

我们家长要与学校积极配合,与学校形成帮助孩子成长的最大合力,才能让孩子得到最大程度的发展。

孩子的性格各异,爱好不同,缺乏耐心,发掘不出孩子的潜能。

我们要用心引导,尽心培养,不急躁,不强求,孩子孩子总会有绽放优秀的一天。

每个孩子都会是一朵灿烂绽放的花朵,让我们静待花开!家庭教育心得作文400字篇2今天,媛媛老师又曾破天荒地给我们玩了三场游戏,和之前不一样的是,这次游戏和之前比,都知道会更吓人,有一个男生和女生都哭了!好了,我给你讲吧,不知道你会不会看的吓人呀。

第一场游戏开始了,请读者做好心理准备,现在请你闭上眼睛想像你在一片草原上,你突然发现了一条石子路,出乎好奇,你步上了石子路,你走呀走,过了一条小河,在到了一座,美得要人发出声音的城堡,你把大门给打开了,到里面后,有一个镜子,你在镜子里看到了什么。

我可以告诉你,我在里面看到了什么,我感觉后面总是有人在看我一样,镜子里三条可爱的的小猫和一只生气的大老虎,想想都觉得可怕。

第两次游戏开始了也请你闭上眼睛,这是有着华丽的房间的城堡,你正有其中的一个房间里,里面有一个婴儿床,里面有一个婴儿,它的脸蛋是什么样的呢?这次可不一样,有一个男生等老师一说完,就哭了起来,可怜的老师都去抱了抱他,其实我也不知道他讲了什么,可是,有许多人都说:那个婴儿脸上全是伤,那全班是不是只我和一个男生、媛媛老师是一张笑的脸吧?你们说这次的游戏可不可怕?家庭教育心得作文400字篇3通过学习家庭教育促进法,我更深刻地了解到,祖国要强大,孩子的教育是重中之重!首先作为父母,我们有义务去引导孩子建立健全正确的人生观,世界观,价值观。

四年级数学有趣经典的奥数题及答案解析

四年级数学有趣经典的奥数题及答案解析

四年级数学有趣经典的奥数题及答案解析在四年级学习数学的过程中,经典的奥数题对于培养学生对数学的兴趣和思维能力起到了至关重要的作用。

本文将为大家介绍一些有趣的经典奥数题,并给出相应的答案解析,希望能够帮助大家更好地理解和掌握其中隐藏的数学知识。

1. 等差数列求和题目:1 + 2 + 3 + ... + 100 = ?解析:这是一个等差数列求和的问题。

根据等差数列求和公式,我们可以得到求和结果为:S = (首项 + 末项) * 项数 / 2。

根据题目中的条件,首项为1,末项为100,项数为100。

代入公式得到:S = (1 + 100) * 100 / 2 = 5050。

因此,1 + 2 + 3 + ... + 100 = 5050。

2. 数字排列组合题目:用数字1、2、3、4组成没有重复数字的三位数共有多少个?解析:对于这个问题,我们可以采用穷举法来解决。

首先确定百位数,根据题意,百位数可以是1、2、3、4中的一个数字,即有4种选择。

然后确定十位数,由于百位数已经确定,所以十位数只能是剩下的3个数字中的一个,即有3种选择。

最后,个位数由于前两位数已经确定,所以只剩下1个数字可选。

因此,总共的排列组合方式为4 *3 * 1 = 12种。

所以,用数字1、2、3、4组成没有重复数字的三位数共有12个。

3. 分数约分题目:将分数8/24化简为最简形式。

解析:要将一个分数化简为最简形式,需要找到其最大公约数,并将分子和分母都除以最大公约数。

首先,求解8和24的最大公约数。

可以发现8和24都可以被2整除,因此最大公约数为2。

然后,将分子8和分母24都除以2得到4/12。

再次求解4和12的最大公约数,可以发现4和12都可以被4整除,因此最大公约数为4。

最后,将4/12化简为1/3。

所以,分数8/24化简为最简形式为1/3。

4. 阶乘计算题目:计算4的阶乘。

解析:阶乘是指从1乘到给定的正整数的连续乘积。

4的阶乘表示为4!,计算方法为4! = 4 * 3 * 2 * 1 = 24。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等差数列
等差数列的求和公式为:S=(首项+末项)×项数÷2
求首项是5,末项是93,公差是4的等差数列的和
1.求等差数列1,6,11,16…的第20项是多少第35项是多少251是这个
等差数列的第几项?
2、已知等差数列2,5,8,11,14…,问47是其中第几项?
3、如果一等差数列的第4项为21,第6项为33,求它的第8项.
4、已知等差数列的公差为4,末项为280,数列共25项,这个数列的首项是多
少这个数列的第16项是多少?
5、小剧场共有40排座位,每一排都比前一排多2个座位,最后一排有120个
座位,第一排有多少个座位第25排有多少个座位
解答:
1.公差为5;
第20项为(20-1)*5+1=96;
第35项为(35-1)*5+1=171;
251是第((251-1)/5)+1=51 项
2.公差为3;
47是第((47-2)/3)+1=16项
3.公差为(33-21)/(6-4)=6;
第8项为33+(8-6)*6=45;
也可直接由33+(33-21)得出
4.令首项为x,则x+(25-1)*4=280,得首项为184;
第16项为184+(16-1)*4=244;
5.公差为2,项数为40,末项为120,
则令首项为x,有x+(40-1)*2=120,得首项为42;
第25排有座位 42+(25-1)*2=90个
6.若在等差数列2,5,8,…的每相邻两项中间插入三项,使它构成一个新的等差数列,则原数列的第10项,是新数列的第()项。

相关文档
最新文档