模块化多电平换流器(MMC)原理简介..
柔性直流输电技术

3)容量相对较小:由于目前可关断器件的电压、电流额定值都比晶闸管低,如不采用多个可关断器件并联,MMC 的电流额定值就比LCC低,因此相同直流电压下MMC基本单元的容量比LCC基本单元(单个6脉动换流器)低。但是, 如采用MMC基本单元的串、并联组合技术,柔性直流输电达到传统直流输电的容量水平是没有问题的,技术上 并不存在根本性的困难。本书后面有专门章节讨论将MMC基本单元进行串、并联组合构成大容量换流器的技术。 可以预期,在不远的将来,柔性直流输电也会采用特高压电压等级,其输送容量会与传统特高压直流输电相当。
柔性直流输电技术
4)不太适合长距离架空线路输电:目前柔性直流输电采用的两电平和三电平VSC或多电平MMC,在直流侧发生短路 时,即使ICBT全部闭锁,换流站通过与IGBT反并联的二极管,仍然会向故障点馈入电流,从而无法像传统直流输 电那样通过换流器自身的控制来清除直流侧的故障。所以,目前的柔性直流输电技术在直流侧发生故障时,清 除故障的手段是跳换流站交流侧开关。这样,故障清除和直流系统再恢复的时间就比较长。当直流线路采用电 缆时,由于电缆故障率低,且如果发生故障,通常是永久性故障,本来就应该停电检修,因此跳交流侧开关并 不影响整个系统的可用率。而当直流线路采用长距离架空线时,因架空线路发生暂时性短路故障的概率很高, 如果每次暂时性故障都跳交流侧开关,停电时间就会太长,影响了柔性直流输电的可用率。因此,目前的柔性 直流输电技术并不完全适合用于长距离架空线路输电。针对上述缺陷,目前柔性直流输电技术的一个重 要研究 方向就是开发具有直流侧故障自清除能力的电压源换流器,本书后面多章内容就是针对此问题而展开的。可以预 期,在很短的时间内,这个问题就能被克服。
mmc的工作原理与基本特性

噪音特性
MMC的运行噪音较低,符合 环保要求。
环境特性
温度特性
01
MMC能够在较宽的温度范围内稳定运行,适应不同的气候和环
境条件。
湿度特性
02
MMC对湿度的适应性较强,能够在不同的湿度环境下正常运行
。
防护特性
03
MMC具备一定的防水、防尘、防震等防护能力,能够适应复杂
的环境条件。
03
MMC的应用领域
政策支持Байду номын сангаас
02
03
合作研发
政府可以提供政策支持,如补贴 和税收优惠,以降低MMC的初 始投资和运营维护成本。
通过合作研发,共享技术和资源 ,加快MMC的研发进程和市场 推广。
05
MMC的发展趋势与未来展望
技术发展趋势
高效能化
随着电力电子技术的不断进步,MMC的功 率等级和转换效率将得到进一步提升,以满 足更高性能的应用需求。
电力传输与分配
高效输电
MMC能够通过灵活的配置和拓扑结构,实现高压直流输电(HVDC)和灵活 交流输电系统(FACTS)等功能,提高电力传输的效率和稳定性。
分布式电网
MMC可以作为分布式电网的核心组成部分,支持微电网、智能电网等新型电网 模式的发展,实现能源的分布式管理和优化。
可再生能源系统
风能集成
模块化设计
为了便于制造、调试和维护,MMC的模块化设计 将成为未来的发展趋势,各模块之间的接口将更加 标准化和简单化。
智能化控制
通过引入先进的控制算法和智能传感器,实 现对MMC的实时监测和控制,提高系统的 稳定性和可靠性。
市场发展前景
1 2
广泛应用领域
MMC作为一种高效、灵活的电能转换技术,将 在可再生能源、智能电网、电动汽车等领域得到 广泛应用。
模块化多电平换流器(MMC)原理简介

3、用途介绍
柔性直流输电
110KV侧短路容1000MVA 等效电感 0.0385
e1r Idc e2r DC1 e1l e2l
0.0385 [H]
R=0
3 [MVAR]
10 [MW]
A端电网
B端电网
R=0
#1
#2
e1l
rectify
inverter
e1r
0.0385 [H] #1 #2
3、用途介绍
5、MMC功率模块均压控制
每个MMC换流器的功率模块电压的分别进行均衡控制,6个桥臂相互之间没有影 响。 在一个控制周期内,则根据桥臂电流的方向确定此桥臂功率模块的投入/切除状态: (a)若桥臂电流为投入的模块电容充电,则功率模块按照电容电压从低到高的 顺序排列,最低的N个模块在该控制周期内一直处于投入状态。 (b)若桥臂电流为投入的模块电容放电,则功率模块按照电容电压从高到低的 顺序排列,最高的N个模块在该控制周期内一直处于投入状态。
据全国大部分的市场份额。
32
2、鼠笼型异步电机 在不影响“能起动”的前提下,尽可能减小起动电流, 以减小起动电流对电网的冲击 I. 降压起动(起动电流减小,起动转矩随电压平方减小) 1 自耦变压器降压起动
2 Y 转换起动
3 定子回路串电抗器起动 4 用晶闸管构成的交流调压器降压起动
33
2、鼠笼型异步电机
模块 2CL2 模块 2CL20
换流器1
换流器2
MMC主回路拓扑结构
技术特点
1)所需开关器件耐压低,对器件的一致性要求低; 2)电平数多,谐波大大降低;
3)开关频率更低,开关损耗更小,系统利用率更高。
4) 很容易实现背靠背结构,能量方便双向流动。 5)无需输出变压器,大大地减小了装置体积和损耗,并且 节约了成本。 siemens和中国电科院所投 运的VSC-HVDC工程均采用 此拓扑结构。 6) 模块化的结构使得容量拓展和冗余设计更为容易。
mmc工作原理

mmc工作原理
MMC(Modular Multilevel Converter)是一种多级模块化变流器,用于将直流电转换为交流电或将交流电转换为直流电。
它由多个模块组成,每个模块都包含一个电容和一个开关器件(通常是IGBT或IGCT)。
MMC的工作原理如下:
1. 输入电压:MMC的输入电压可以是直流电压或交流电压。
如果输入电压是直流电压,MMC将其转换为交流电压;如果输入电压是交流电压,MMC将其转换为直流电压。
2. 模块电压:每个模块都有一个电容,用于存储能量。
当开关器件打开时,电容充电,当开关器件关闭时,电容放电。
通过控制开关器件的开关状态,可以调节模块电压的大小。
3. 多级结构:MMC由多个模块组成,每个模块的电压可以独立控制。
通过调节每个模块的电压,可以实现对输出电压的调节和控制。
4. PWM调制:为了实现对输出电压的精确控制,MMC使用脉宽调制(PWM)技术。
通过调节开关器件的开关频率和占空比,可以控制输出电压的大小和波形。
5. 电流平衡:MMC还具有电流平衡功能,可以在不同模块之间均衡电流分配,以提高系统的稳定性和可靠性。
总的来说,MMC通过控制模块电压和开关状态,实现对输入电压的转换和输出电压的调节。
它具有模块化、高可靠性和高功率密度等优点,在电力系统中广泛应用于高压直流输电、电动汽车充电等领域。
1。
MMC柔性直流电基本原理

MMC柔性直流电基本原理通常,为了减小长距离输电线路的损耗必须提高输电线路的电压等级,即必须采用高压输电。
现有的高压输电技术主要包括高压交流(HVAC)和高压直流(HVDC)两种主流技术。
由于输电线路造价低、相同绝缘条件下线路的电力输送能力强,高压直流输电技术更适用于长距离大容量的电力输送,目前,高压直流输电技术主要有:基于电流源型换流器的HVDC(LCC-HVDC),即常规直流输电技术基于电压源型换流器的HVDC(VSC-HVDC)由于可控性和兼容性更佳,VSC-HVDC在中国也被称为柔性直流输电,简称“柔直”。
近年来,模块化多电平换流器(MMC)以其模块化的结构、低谐波含量、高运行效率等优点在柔性直流输电领域获得了广泛关注,并在多个实际工程中获得应用。
对应用于直流输电系统的MMC来说,具有如下特点:换流器容量大——通常在数百至上千MW电压等级高——交、直流电压在百kV等级功率模块数量巨大——高达数百至数千例如:广东南澳多端柔直工程容量200MW,直流电压±160kV,交流电压166kV,青澳站换流器功率模块数量为1320个云南鲁西背靠背柔直工程容量1000MW,直流电压±350kV,交流电压380kV,广西侧换流器功率模块数量高达2808个现有文献对应用于柔性直流输电系统的MMC开展了较多的研究,包括电路拓扑、数学模型、调制与均压、桥臂环流谐波抑制、快速仿真方法、故障保护策略等在电路拓扑方面,现有文献重点研究了具有直流短路故障抑制能力的换流器拓扑基于半桥型功率模块构建的换流器结构简单,运行效率高,但是无法抑制直流短路故障基于全桥或者双箝位型功率模块构建的换流器具有短路故障抑制能力,但是所需功率器件多,损耗大,造价高在MMC的数学模型方面,现有文献主要对MMC的交流侧、直流侧等效模型进行了研究,分析了电容参数及桥臂电感参数的设计方法现有文献对MMC的均压与调制策略也进行了研究载波移相脉宽调制策略开关频率固定,需要对每个功率模块都进行闭环均压控制,功率模块数量较多时几乎难以实现最近电平逼近调制策略具有开关频率低、均压实现简单的特点,但是模块的开关具有随机性,功率模块的开关频率不固定在基于最近电平逼近调制策略的低开关频率均压策略方面,现有文献提出了若干方法,但是这些方法在基波周期中的大多数时间内令功率模块投切状态不变,导致模块电容电压波动范围很大现有文献分析了桥臂环流谐波分量产生的原因,推导了桥臂环流谐波特性,提出了桥臂环流dq同步旋转坐标系下多PI控制器的抑制方法,实现较为复杂;基于PR控制器的抑制方法坐标变换简便,易于实现另外,在实际工程中发现,功率模块中的控制电路具有恒功率的负载特性,负载的恒功率特性导致了MMC在不控充电阶段会出现正反馈机制的电压发散现象2.MMC基本原理MMC特点:模块化结构,冗余设计降低系统停机概率多电平输出,输出电压谐波含量低储能电容分散,降低了直流储能电容的体积单个功率模块电压等级低通过功率模块串联可以适用于高压大功率场合功率模块介绍:半桥功率模块工作状态上管(S1)开:输出电压为UC上管(S2)开:输出电压为0上管开,对电容进行充放电,定义为投入状态下管开,功率模块不参与工作,定义为切除状态2个半桥功率模块串联输出电压S2开(切除), S4开(切除),输出电压之和为0S2开(切除), S3开(投入),输出电压之和为UC2S1开(投入), S3开(投入),输出电压之和为UC1+ UC2两个功率模块串联连接时输出电压为0,UC,2 UC所以当多个半桥功率模块串联输出电压所有功率模块均处于切除状态,输出电压为零;任意一个处于投入状态,输出电压为UC;任意两个处于投入状态,输出电压为2UC;任意x个功率模块均处于投入状态,输出电压为xUC。
mmc 桥臂电流

mmc 桥臂电流
MMC(Modular Multilevel Converter,模块化多电平变流器)
是一种新型的换流器拓扑结构,常用于高压直流输电系统及其他高功率电力电子应用。
MMC桥臂电流指的是MMC中每个
桥臂(Bridge Arm)传导的电流。
在MMC中,每个桥臂由多个子模块(Submodule)组成,每
个子模块都包含一个晶闸管(IGBT)和一个电容。
桥臂电流
是通过IGBT和电容进行控制和调节的,以实现有源电流补偿,提高功率因数及电流质量。
MMC桥臂电流的大小和方向是通过控制每个子模块的开关状
态来实现的。
开关状态的不同组合会导致不同的电压和电流波形,以实现对输出电压和电流的控制。
准确控制MMC桥臂电流是MMC系统正常运行的重要条件之一,有助于提高整个系统的功率传输效率和稳定性。
模块化多电平换流器(MMC)调制方法综述
•分布式电源及并网技术!电器与能效管理技术(2017%). 8)模块化多电平换流器(MMC )调制方法综述王蕊1,王斌2,万杰星1(!东南大学电气工程学院,江苏南京210096;2.中航宝胜海洋工程电缆有限公司,江苏南京225100)摘要:介绍了模块化多电平换流器(MMC )的拓扑和工作原理,分类别详叙了各种调制方法。
总结了不同调制技术的优缺点和应用场合,为MMC 的工程应用提供了借鉴意义。
提出了 MMC 调制技术的改进方向,对进一步的研究探索有积极意义。
关键词:模块化多电平换流器;调制技术;载波移相调制法;载波层叠调制;最近电平逼近调制;多电平SVPWM ;特定次谐波消除脉宽调制中图分类号:TM 46文献标志码# A文章编号# 2095-8188(2017)08-0043-05DOI : 10.16628/j . cnki . 2095-8188. 2017. 08. 011王 蕊(1993—),女,硕士研究生,研 究方向为电力电子 技术在电力系统中 的应用。
Review on Modulation Metliods for Modular Multi-level ConvertersWANG Rui 1, WANG Bin 2, WAN Jiexing 1(1. School of Electrical Engineering ,Southeast University ,Nanjing 210096,China ;2. China Ocean Engineering Baoshen Cable Co .,Ltd .,Nanjing 225100,China )Abstract : The topology and working principle ofmodular multi-level converter ( MMC ) were introduced andthe different modulation methods were introduced in detail . Next,it summarized the advantages and disadvantages of different modulation techniques and applications,providing a reference for the MMC ) s engineering application .At last , this paper put forward the improvement direction of MMC modulation technology ,significance for the further research and exploration .Key words : modular multi-level converter ( MMC ); modulation technique ; carrier phase shifted SPWM ( CPS -SPWM ); phase disposition PWM (PDPWM ); nearest level modulation (NLM ); multi-level space vector PWM ( SVPWM ); selective harmonic elimination PWM ( SHEPWM )步的研究成果,展现出良好的应用前景[1]。
模块化多电平换流器(MMC)原理简介方案
4、MMC控制策略
【总体控制功能设计】 外环控制器:换流器1作为从站,换流器2作为主站,高压直流电压(额定极间电压 20 kV)由换流器1从站负责控制,两站之间的有功功率可以反转,两站各自的无功 功率控制相互独立。 换流器1为直流电压环+无功功率给定; 换流器2为有功功率给定+无功功率给定;
5、MMC功率模块均压控制
为了保持 磁通为常数,调频时应同时调压,使 U/F=C, 变频调速系统常被称为变压变频(VVVF) 调速系统
(Variable voltage,variable frequnecy)
35
3 异步电动机的调速
变频调速
n
n0(1
s
)
60 f1 p
(1
s
)
MMC目前的技术能力能够满足: 在1-50Hz变频工况,功率单元按照
2、主回路参数设计
桥臂电感Larm设计
由于交流侧的三相线电压有效值为10 kV,即相电压有效值为5.77 kV。由于 直流电压为20 kV,则MMC输出的交流相电压有效值最大为7.07 kV。 ±2.5 Mvar,零功率因数运行时,允许电感上的压降最大为 7.07kV 5.77kV 1.3kV 此时,允许的网侧电感最大值为1.3 kV/(2×50 Hz×π×145A)=28.6 mH。 在初始引进技术资料中取值20mH。
3、用途介绍
柔性直流输电
R=0 R=0
110KV侧短路容1000MVA 等效电感 0.0385
0.0385 [H]
rectify e1r Idc
e1l inverter
e1l
e1r
#1 #2
e2r DC1 e2l
#1 #2
基于新型模块化多电平变换器的五电平PWM整流器
基于新型模块化多电平变换器的五电平PWM整流器一、本文概述随着电力电子技术的不断发展,多电平变换器已成为现代电力系统中重要的研究方向之一。
模块化多电平变换器(Modular Multilevel Converter, MMC)因其高电压、大容量的特性,在高压直流输电(HVDC)、风力发电和电机驱动等领域具有广泛的应用前景。
本文旨在研究一种基于新型模块化多电平变换器的五电平PWM(脉冲宽度调制)整流器,通过对其拓扑结构、工作原理和控制策略的分析,为现代电力电子系统的优化设计与稳定运行提供理论支持和技术指导。
本文首先介绍了模块化多电平变换器的基本原理和五电平PWM整流器的拓扑结构,阐述了其在现代电力电子系统中的重要性和优势。
接着,详细分析了五电平PWM整流器的工作原理,包括其调制策略、开关状态切换以及功率因数校正等方面。
在此基础上,本文提出了一种适用于五电平PWM整流器的控制策略,旨在实现高效、稳定的能量转换和电网接入。
本文还对五电平PWM整流器的性能进行了仿真和实验研究,验证了其在实际应用中的可行性和有效性。
通过对比传统整流器与五电平PWM整流器的性能,本文进一步证明了新型模块化多电平变换器在提升电力电子系统性能、降低谐波污染和提高能源利用效率等方面的优势。
本文的研究对于推动模块化多电平变换器和五电平PWM整流器在现代电力电子系统中的应用具有重要意义。
通过对其拓扑结构、工作原理和控制策略的研究,有望为电力电子技术的发展提供新的思路和方向,为现代电力系统的智能化、绿色化和高效化提供有力支持。
二、模块化多电平变换器原理及特性分析随着电力电子技术的不断发展,模块化多电平变换器(Modular Multilevel Converter, MMC)已成为高压大功率应用中的关键设备。
MMC以其独特的结构设计和灵活的扩展性,在电力系统中得到了广泛应用。
本文所研究的五电平PWM整流器,正是基于MMC的一种实现方式。
MMC的工作原理与基本特性PPT
瞬时有功功率除了直流 分量外,主要包含6k次
0.01 0.02 0.03 0.04
时间(s)
谐波分量。对于瞬时有
功功率的直流分量,解 析值为350 MW,仿真 值为351 MW,两者之 间的误差为0.3%
12
解析计算值 仿真值
瞬时有功功率 (MW)
9
6
3
0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
数学模型
U dc
urj irj icirj uc,rj ic,rj uL,rj iT1 iD1 iT2 iD2
换流器内部
ZJU
MMC数学模型的基本假设
所有电气量均以工频周期T为周期; a、b、c三相的同一电气量在时域上依次滞后T/3;
1) 2)
3) 同相上、下桥臂的同一电气量在时域上彼此相差T/2;
L0
L0
相单元
+
vb
vc -
U dc o U dc 2
ism
A
B
T1
D1
L0
R0
L0
R0
SM1 SM2
L0
R0
SM1 SM2
usm+ T 2
-
C0
D2
+ uc -
+ una -
SMN
+ unb -
SMN
+ unc -
SM1 SM2
SMN
ina
inb
inc
ZJU
子模块的3种工作状态
ZJU
MMC运行原理
谐波次数
瞬时无功功率
ZJU
200
解析计算曲线 仿真曲线
瞬时无功功率(Mvar)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
vb Rs
Ls Ls
ica
icb
pcc isa isb pcc
usb
vc Rs
Sn1
Ean
+ C -
icc
pcc
isc
NS
usa
usc
Sn2
S i1
Sn4
E bn C
+ -
Si 3
Sn3
HBbn
E cn C
+ -
HBcn
ilc ilb ila
E a2
+ -
C
HBa2
+ E b2 - C
模块 2CL2 模块 2CL20
换流器1
换流器2
MMC主回路拓扑结构
技术特点
1)所需开关器件耐压低,对器件的一致性要求低; 2)电平数多,谐波大大降低;
3)开关频率更低,开关损耗更小,系统利用率更高。
4) 很容易实现背靠背结构,能量方便双向流动。 5)无需输出变压器,大大地减小了装置体积和损耗,并且 节约了成本。 siemens和中国电科院所投 运的VSC-HVDC工程均采用 此拓扑结构。 6) 模块化的结构使得容量拓展和冗余设计更为容易。
MMC主回路拓扑结构
什么是MMC?
模块化多电平换流器(modular-multilevel-converter,MMC)的 简称。siemens和中国电科院所投运的VSC-HVDC工程均采用此拓扑结 构。现在泛指半桥-模块化-多电平-逆变器。
MMC主回路拓扑结构
模块 1AU1
模块 1AU2
模块 1BU1
模块 1CU1
模块 2AU1
模块 2AU2
模块 2BU1
模块 2CU1
模块 1BU2
模块 1CU2
模块 2BU2
模块 2CU2
模块 1AU20
模块 1BU20
模块 1CU20
模块 2AU20
模块 2BU20
模块 2CU20
Larm
三相 10 kV 电网
Larm
B
Larm
Larm
Larm b
三相 10 kV 电网
(2)子模块中上IGBT关断,下IGBT导通,子模块的端 口电压等于0,子模块中电容被旁路,子模块电容电压
保持稳定,此状态称切除状态。
(3)子模块上下IGBT均关断,此状态称闭锁状态,一 般在故障与启动时使用。
具体开关状态如表1所述。 表1 子模块的工作状态
MMC主回路拓扑结构
表1 子模块的工作状态 模式 1 2 3 4 5 6 T1 1 1 0 0 0 0 T2 0 0 1 1 0 0
HBb2
E c2 +C -
HBc2
load
u di
Si 2 Si 4
uoi
Ea1
+ -
C
HBa1
+ E b1 - C
HBb1
E c1 +C -
HBc1
n
链式串联拓扑结构
功率单元全桥拓扑结构
全桥主回路拓扑结构
每个H桥输出产生SPWM波,基 波成分为:
Sn1
E an
+ C -
Sn 2
U1 U m sin(t )
MMC变流器原理介绍
基本原理
US
I
UC
U
在电网中,有功功率从相位超前侧流向相位滞后侧,无功功率由电压幅值高侧流向幅 值低侧!
基本原理
US
I UL
UC
US
I
UL
UC
U
UC
US
t
U
US UC
t
I Us UL I Uc UC > US时, I 为容性
UC
UL US
UC < US 时,I 为感性
全桥串联主回路拓扑结构
MMC主回路拓扑结构
子模块都是两端元件,通过两个开关单元T1和T2的作用, USM可以同时在两种电流方向的情况下进行电容电压UC 与0之间的切换。一个子模块共有三种开关状态: (1)子模块中上IGBT导通,下IGBT关断,子模块端口 电压等于子模块中电容电压,这样根据电流的方向来决
定电容处于充电或是放电状态,此状态称投入状态。
2、主回路参数设计
功率模块直流电容
模块电容参数的大小直接决定了电容电压的波动范围。在额定工况下,由于功率模块 直流电容的额定电压为2000 V,按照纹波系数 =5%,则直流电容C应满足:
CPM
I ac 578 4.6m F 4U SM 4 100 5% 2000
因为本次试验方式受到时序限制,所以设置功率模块直流电容10mF。
A
C Larm
模块 1AL1
Udc
a
c
Larm
模块 2AL1
Larm
模块 1BL1
Larm
模块 1CL1
Larm
模块 2BL1 模块 2CL1
模块 1AL2 模块 1AL20
模块 1BL2 模块 1BL20
模块 1CL2 模块 1CL20
模块 2AL2 模块 2AL20
模块 2BL2 模块 2BL20
2、主回路参数设计
桥臂电感Larm设计
电感量越大,电流波形越好控制、并网冲击越小、环流抑制越方便,但是电感
压降越大、成本越高。因为需要更多的功率单元支撑才能发出同等无功功率。
电感量越小,柜体体积和成本越低,但是系统稳定性变差。对控制算法提出更
高要求。
通过电科院动模试验,目前已经把桥臂电感量从20mH下降到5mH。实际上在系统 仿真模型中,桥臂电感量可以达到3mH并且系统保持稳定。
iSM
>0 <0 >0 <0 >0 <0
USM UC UC
0 0
状态 投入 投入 切除 切除 闭锁 闭锁
UC
0
MMC主回路拓扑结构
2、主回路参数设计
桥臂电感Larm设计
桥臂电感作用 1、交流连接电感
2、抑制相间环流
3、抑制短路电流
2、主回路参数设计
桥臂电感Larm设计
由于交流侧的三相线电压有效值为10 kV,即相电压有效值为5.77 kV。由于 直流电压为20 kV,则MMC输出的交流相电压有效值最大为7.07 kV。 ±2.5 Mvar,零功率因数运行时,允许电感上的压降最大为 7.07kV 5.77kV 1.3kV 此时,允许的网侧电感最大值为1.3 kV/(2×50 Hz×π×145A)=28.6 mH。 在初始引进技术资料中取值20mH。
N级功率单元串联,最大输出 电压:
E ai
Sn3
Sn 4
Si1
+ CSi 4
U a NU m sin(t )
E a1
S11
+ C -
S12
S13
S14
三角波移相载波原理
uc ur
u
O
t
uo uo Ud uof
O
t
-U d
表示uo的基波分量 单极性PWM调制波形图,单极性PWM控制方式(单相桥逆变)在ur 和uc的交点时刻控制IGBT的通断
2、主回路参数设计-减小电容后波形
2、主回路参数设计-增加电容后波形
2、主回路参数设计
目前的控制方法,能够满足:
1、在1-50Hz变频工况,功率单元按照30uf/A电容设置,装置保持稳定