几何计算之线段最值

合集下载

例谈求线段最值的方法

例谈求线段最值的方法

例谈求线段最值的方法几何最值问题属于中考题中的热点问题,也是难点问题,其中,求线段的最值问题是近年常见的题型.下面结合一些实例谈谈解决此类问题的方法.一、轨迹法对于线段最小值问题,若线段的一个端点是定点,另一个端点是动点,可以考虑轨迹法,即考虑动点的轨迹.若动点的轨迹是一条直线,可以用“垂线段最短”原理解决;若动点的轨迹是圆(或一段圆弧),可以用“圆最值模型”解决.圆最值模型如图1, P是⊙O外的一点,直线PO分别交⊙O于点,A B,则PA是点P到⊙O上的点的最短距离, PB是点P到⊙O上的点的最长距离.PC OC.证明如图1,在⊙O是任取一点C(不为,A B),连结,Q,<+=+=+,P O P C O C P O P A O A P A O C∴<,P A P C即PA是点P到⊙?O上的点的最短距离.PD OD.如图2,在⊙O是任取一点D(不为,A B) ,连接,Q,+>=+=+,PO OD PD PB PO OB PO OD∴>,PB PD即PB是点P到⊙O上的点的最长距离.例1 (2016年无锡市中考题)如图3,已知平行四边形OABC的顶点,A C分别在直线x=上,O是坐标原点,则对角线OB长的最小值为.x=和41解析 如图3,设直线1x =和x 轴交于点E .作BF ⊥直线4x =点F ,因为平行四边形OABC ,所以OA 和BC 平行且相等,可得AOE ∆和CBF ∆全等,所以OE BF =,可得点B 的轨迹是直线5x =.当点B 在x 轴上时,OB ⊥直线5x =,此时OB 最小,最小值为5.例2 (2016年安徽省中考题)如图4,Rt ABC ∆中,,6,4,AB BC AB BC P ⊥==是ABC ∆内部的一个动点,且满足PAB PBC ∠=∠,则线段CP 长的最小值为( )(A) 32 (B) 2 (c)解析 根据PAB PBC ∠=∠,可得90APB ∠=︒,故点P 在以AB 为直径的圆上(如图4).取AB 的中点,O OC 交⊙O 于点P ,根据圆最值模型知此时CP 最小.13,52OP AB OC ===Q , 所以CP 的最小值为532OC OP -=-=, 选B.二、构造法对于线段最大值问题,若线段的一个端点是定点,另一个端点是动点,但动点轨迹难确定,可以考虑构造法,即找一个定点,当这三点共线时,线段最大.例3 如图5,平面直角坐标系中,已知矩形,2,1ABCD AB BC ==,点A 和B 分别在x 轴正半轴和第一象限角平分线上滑动,点C 在第一象限,求OC 的最大值.解析 如图5,取AOB ∆外接圆的圆心I ,因为2AB =是确定的,且45AOB ∠=︒也是确定的,所以AOB ∆外接圆是确定的.那么线段OIBIC ∆是确定的,135,1IBC BI BC ∠=︒=,可解三角形得CI =所以当,,O I C三点共线时,线段OC 取得最大值,即为OI CI + 三、转化法对于线段最值问题,若线段的两个端点都是动点,可以考虑运用转化法,将它转化为求与之有关的另一条线段的最值.例4 (2016年三明市中考题)如图6,在等边ABC ∆中,4AB =,点P 是BC 边上的动点,点P 关于直线,AB AC 的对称点分别为,M N ,则线段MN 长的取值范围是 .解析 如图6,连结,,AP AM AN ,由对称可得,AP AM AN BAP MAB ==∠=∠,CAP NAC ∠=∠,所以2120MAN BAC ∠=∠=︒,所以AMN ∆是顶角为120°的等腰三角形,可得MN ==.于是求线段MN 长的取值范围,就转化为求线段AP 长的取值范围.AP 最小为AP 垂直BC 时,最大为AB ,所以AP 的取值范围是4AP ≤≤,所以MN 的取值范围是6AP ≤≤ 四、函数法当线段最值问题从几何角度很难求解的时候,可以考虑引入参数,建立函数模型,用函数法来解决.例5 如图7,在ABC ∆中,2AB AC BC ===,点P 是AB 边上的动点(不与点,A B 重合).过点P 作//PE BC 交AC 于点E ,作P F B C ⊥于点F ,连结,EF M 是EF 上的点,且2EM FM =,则PM 的最小值是 .解析 由条件“2AB AC BC ===”可知ABC ∆是确定的,tan 2B =;又根据作图可知PBF ∆形状也是确定的,PF 二2BF,并且有2PF BF =.所以,分析可得PM 的大小取决于BF 的大小,所以引入参数.设BF x =,则2PF x =,22PE x =-.加图7,作MN PF ⊥于点N .2EM FM =Q ,122333MN PE x ∴==-,2433PN PF x ==, 在Rt PMN ∆中,222224()()333PM x x =-+, 化简得2220116()9545PM x =-+.所以当15BF =时,PM。

几何专项——线段最值问题

几何专项——线段最值问题

1 / 14线段最值问题一、将军饮马问题作法图形原理在直线l 上求作点P ,使PA +PB 最小.连接AB ,与l 交点即为P.两点之间,线段最短. PA +PB 最小值即为AB 长.在直线l 上求一点P ,使AP BP +最短将A 对称到'A ,连接'A B ,与l 的交点即为点P两点之间,线段最短.'AP BP A B +=在直线12l l 、上分别求点M N 、,使PMN △周长最小分别将点P 关于两直线对称到'''P P 、,连接'''P P 与两直线交点即为M N 、两点之间,线段最短.'''PM MN PN P P ++=在直线l 1、l 2上分别求点M N 、,使四边形PMNQ 周长最小将P Q 、分别对称到P ′、Q ′,连接''P Q 与直线的交点即为M N 、两点之间,线段最短.''PM MN NQ P Q ++=直线l 1∥l 2,在l 1、l 2上分别求点M N 、,使MN ⊥l 1,且AM +MN +NB 最小.将点A 向下平移MN 的长度 得A ′,连接A ′B ,交l 2于点N ,过点N 作MN⊥l 1于点M.两点之间,线段最短. AM +MN +NB 的最小值为A ′B+MN .2 / 14在直线l 上求两点M N 、(M在左),使得MN =a ,并使AM MN NB ++最短将B 向左平移a 个单位到B ′,对称A 到A′,连接A′B′与l 交点即为M ,右平移a 个单位即为N.两点之间,线段最短.AM MN NB ++的最小值为A′B′+MN .在OA 上求点M ,在OB 上求点B ,使PM+PN 值最小.作点P 关于OA 的对称点P ′,作P ′N ⊥OB 于点N ,交OA 于点M.点到直线,垂线段最短.PA+AB 的最小值为线段P ′N 的长.P ,Q 为OA ,OB 的定点,在OA ,OB 上求作点M ,N ,使PN +NM +MQ 的值最小.作点P 关于OA 的对称点P ′,作点Q 关于OB 的对称点Q ′,连P ′Q′交OA 于点M ,交OB 于点N.两点之间,线段最短. PN +NM +MQ 最小值为线段P′Q′的长.在直线l 上求作点P ,使|PA -PB|的值最小.连AB ,作AB 的垂直平分线与直线l 的交点即为P.垂直平分线上的点到线段两端的距离相等.|PA -PB|最小为0.在直线l 上求作点P ,使|PA -PB|的值最大.作直线AB ,与直线l 的交点即为P.三角形任意两边之差小于第三边. |PA -PB|最大值即为AB 长.在直线l 上求点P ,使AP BP -最大 作点B 关于l 的对称点B ′,作直线'AB ,与l 的交点即为点P .三角形任意两边之差小于第三边. |AP −BP |最大值即为AB′.3 / 14二、垂线段最值问题作法图形原理在直线l 上求作点P ,使线段AP 的值最小. 过点A 作AP ′⊥l于点P ′.连结直线外一点和直线上各点的所有线段中,垂线段最短. AP ′即为最小值.三、轨迹问题问题作法图形原理如图,在Rt△ABC 中,∠ACB=90°,AC=4,BC=6,点D 是边BC 的中点,点E 是边AB 上的任意一点(点E 不与点B 重合),沿DE 翻折△DBE 使点B 落在点F 处,连接AF ,则线段AF 长的最小值是________.由翻折得到,DF=DB=3.所以点F 在以点D 为圆心以3为半径的圆上.连接A 与圆心D ,AD 与圆的交点即为F'所以AF 的最小值是AD-DF'=5-3=2.利用“画圆”来确定动点问题解决最值问题. 如图,E ,F 是正方形ABCD 的边AD 上两个动点,满足AE=DF .连接CF 交BD 于点G ,连接BE 交AG 于点H .若正方形的边长为2,则线段DH 长度的最小值是________.取AB 的中点O ,连接OH 、OD ,根据直角三角形斜边上的中线等于斜边的一半可得OH=AB=1,利用勾股定理列式求出OD ,然后根据三角形的三边关系可知当O 、D 、H 三点共线求线段的最大值与最小值需要将该条线段转化到一个三角形中,在该三角形中,其他两边是已知的,则所求线段的最大值为其他两线段之和,最小时,DH的长度最小.值为其他两线段之差.4/ 14巩固练习类型一、将军饮马问题1.如图,在Rt△ABC中∠ACB=90°,AC=BC=8,CD=2,点P是AB上的一的动点,求:PC+PD的最小值。

初中几何最值问题常用解法

初中几何最值问题常用解法

初中几何最值问题常用解法初中几何最值问题一直是学生们的难点,但通过一些常用的解法,我们可以轻松解决这些问题。

以下将介绍9种常用的解法,帮助您更好地理解和学习。

一、轴对称法轴对称法是一种常用的解决最值问题的方法。

通过将图形进行轴对称变换,可以将问题转化为相对简单的问题,从而找到最值。

二、垂线段法垂线段法是指在几何图形中,利用垂线段的性质来求取最值。

例如,在矩形中,要使矩形的周长最小,可以将矩形的一条边固定,然后通过调整其他边的长度,使得矩形的周长最小。

三、两点之间线段最短两点之间线段最短是几何学中的基本原理。

在解决最值问题时,我们可以利用这个原理,找到两个点之间的最短距离。

四、利用三角形三边关系三角形三边关系是指在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边。

利用这个关系,可以解决一些与三角形相关的最值问题。

五、利用余弦定理求最值余弦定理是三角学中的基本定理,它可以用来解决一些与角度和边长相关的问题。

通过余弦定理,我们可以找到一个角的最大或最小余弦值,从而求得最值。

六、利用基本不等式求最值基本不等式是指在一个数列中,平均值总是小于等于几何平均值。

利用这个不等式,可以解决一些与数列相关的最值问题。

七、代数运算求最值代数运算是一种基本的数学运算方法,它可以用来解决一些与代数式相关的最值问题。

例如,通过求导数或微分的方法,可以找到一个函数的最大或最小值。

八、代数方程求最值代数方程是一种基本的数学方程形式,它可以用来解决一些与代数方程相关的最值问题。

例如,通过解二次方程或不等式的方法,可以找到一个表达式的最大或最小值。

九、几何变换求最值几何变换是指在几何图形中,通过平移、旋转、对称等方式改变图形的形状和大小。

利用几何变换的方法,可以解决一些与图形变换相关的最值问题。

例如,在矩形中,要使矩形的面积最大。

初中数学线段最值问题解题技巧

初中数学线段最值问题解题技巧

初中数学线段最值问题解题技巧(最新版4篇)目录(篇1)1.线段最值问题的定义和特点2.解题思路和方法3.具体解题步骤和技巧正文(篇1)一、线段最值问题的定义和特点线段最值问题是指在已知线段长度范围内,求取最大或最小值的问题。

此类问题在数学中较为常见,尤其是在几何学和代数中的应用广泛。

其特点在于,通常需要结合线段长度、角度、边长等几何要素进行求解。

二、解题思路和方法1.转化:将问题转化为具体几何模型或代数方程。

2.寻找最大值点:通过观察线段或几何图形,找到最大值点。

3.应用数学知识:利用数学知识求解最大值,如三角函数、勾股定理等。

4.运用数学公式:运用特定数学公式,如辅助线公式、几何倍增等,来寻找最大值。

三、具体解题步骤和技巧1.分析问题:首先需要认真阅读问题,理解问题的要求。

2.构建模型:根据问题建立几何模型或代数方程。

3.寻找最大值点:根据题目中的条件,找到最大值点。

这可能需要对几何图形或代数方程进行深入分析。

4.应用数学知识:使用所学的数学知识求解最大值,例如:三角函数、勾股定理等。

5.验证结果:验证所求得的解是否符合题目要求,必要时进行修正。

总之,解决线段最值问题需要灵活运用数学知识,同时注意分析问题、建立模型、寻找最大值点和应用数学知识等多个步骤。

目录(篇2)一、初中数学线段最值问题解题技巧概述1.解题技巧简介2.解题技巧的应用范围和优势3.解题技巧的适用条件和限制二、初中数学线段最值问题解题技巧详解1.寻找临界点法2.构造辅助线法3.转化角度法4.函数思想法三、初中数学线段最值问题解题技巧的实际应用案例1.题目类型:线段和的最值问题2.题目类型:线段长的最值问题3.题目类型:线段差的的最值问题4.题目类型:三角形中的最值问题正文(篇2)初中数学线段最值问题解题技巧是解决线段相关问题的有效工具。

它通过寻找临界点、构造辅助线、转化角度以及运用函数思想等方法,将复杂的问题简单化,从而快速准确地求解。

二次函数背景下的几何问题——线段最值问题

二次函数背景下的几何问题——线段最值问题

二次函数背景下的几何问题——线段最值问题线段最值问题是在二次函数背景下的一种几何问题,主要是求解一个线段的最大值或最小值。

这个问题可以通过二次函数的图像和相关的数学理论来解决。

在解决这类问题时,我们可以利用二次函数的性质和相关的数学技巧来找到线段的最值点,从而得出最值。

首先,我们来回顾一下二次函数的一般形式:f(x) = ax^2 + bx+ c,其中a、b、c都是常数且a不等于0。

根据二次函数的图像特点,我们知道它是一个抛物线,可以是开口向上(a>0)或开口向下(a<0)的。

对于线段最值问题,我们通常要确定线段的端点,然后找出其中的最大值或最小值点。

这可以通过以下步骤来完成:1.确定二次函数的图像形状:根据二次函数的参数a的值,确定抛物线是开口向上还是开口向下。

2.确定线段的端点:线段的端点可以是给定的数值,也可以通过求解二次函数的解来确定。

根据二次函数的性质,它的两个解(也就是x的值)对应着抛物线与x轴的交点,即抛物线的顶点和x轴的两个交点。

3.求解最值点:对于线段的最大值点,我们需要找到抛物线的顶点,并通过计算确定它的y坐标值。

通过二次函数的解析式,我们可以知道抛物线的顶点坐标是(-b/2a, f(-b/2a))。

同样的,对于线段的最小值点,我们也可以通过类似的方法来解决。

4.判断最值点是否在线段上:在找到最值点之后,我们需要判断它是否在给定的线段上。

这可以通过将最值点的x坐标值与线段的端点的x坐标值进行比较来实现。

如果最值点的x坐标值位于线段的端点之间,则最值点就在线段上。

通过以上步骤,我们可以很容易地求解线段的最值问题。

当然,在实际应用中,可能会碰到更复杂的情况,例如线段与其他二次函数曲线的交点等。

但是,通过理解二次函数的性质和运用相关的数学知识,我们可以应对这些情况并解决问题。

总结而言,线段最值问题是在二次函数背景下的一种几何问题,通过确定二次函数的图像形状、线段的端点、求解最值点和判断最值点是否在线段上,我们可以解决线段的最值问题。

几何中的最值

几何中的最值

几何中的最值几何中的最值问题是指在一定的条件下,求平面几何图形中某个量(如线段长度、角度大小、图形周长或面积)等的最大值或最小值。

求几何最值问题的基本方法有:1、几何定理(公理)法;2、临界状态(特殊位置与极端位置法);解决几何最值问题的通常思路(分析定点、动点,寻找定量)①模型解题:若属于常见模型,调用模型解决问题;②定理解题:若不属于常见模型,寻找定量,借助基本定理解决问题. ③轨迹解题:一般用于压轴题转化原则:尽量减少变量,向定点、定线段、定图形靠拢.一.几何定理:(画出模型)1.线段公理——两点之间,线段最短;2.直线外一点与直线的所有连线中垂线段最短3.三角形三边关系(两边之和大于第三边,两边之差小于第三边)4.两平行线间距离最短;5.过圆内一点,最长的弦为直径,最短的弦为垂直于直径的弦二、常见模型㈠.过河问题llB线段求其和, AB 河两侧,线段求其差, AB 河同侧,㈡、角平分线模型P A +PB 最小,需要点在异侧 |P A -PB |最大, 需要点在同侧蜂蜜蚂蚁C㈢梯子靠墙模型O A ⊥OB,AB=a ,⊿ABP 是等腰直角三角形。

求OP 的最大值 解法一:根据直角三角形斜边上的中线等于斜边的一半,可知a AB OE 2121==是定值,与OP 构造三角形OEP.解法二:根据等腰直角三角形ABP 斜边上的中线等于斜边的一半,可知解法三:A,B,O 三点在以AB 为直径的圆上,即二.常见临界状态(有待补充):三、观察动点的运动轨迹在武汉中考题的压轴题中求最值问题时,仅依靠定理或模型解决不了问题时,需要我们尝试去思考动的运动轨迹是什么,从而帮助我们解题。

一、过河模型1、在直线l 上找一点P ,使得其到直线同侧两点A 、B 的距离之和最小。

2、直线12l l 、交于O 、P 是两直线间的一点,在直线12l l 、上分别找一点A 、B ,使得△PAB的周长最短。

3、如图,圆柱形玻璃杯,高为12cm ,底面周长为18cm ,在杯内离杯底4cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为______cm .AB2第2题图4、如图,当四边形P ABN 的周长最小时,a = .5、如图,两点A 、B 在直线MN 外的同侧,A 到MN 的距离AC =8,B 到MN 的距离BD =5,CD =4,P 在直线MN 上运动,则PA PB -的最大值等于 .6、点A 、B 均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角坐标系如图所示.若P 是x 轴上使得PA PB -的值最大的点,Q 是y 轴上使得QA +QB 的值最小的点,则OP OQ ⋅= .(1)如图1,若点C (x ,0)且-1<x <3,BC ⊥AC ,求y 与x 之间的函数关系式; (2)如图2,当点B 的坐标为(-1,1)时,在x 轴上另取两点E ,F ,且EF =1.线段EF 在x 轴上平移,线段EF 平移至何处时,四边形ABEF 的周长最小?求出此时点E 的坐标.B (-图1 图28、在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,OA =3,OB =4,D 为边OB 的中点.(1)若E 为边OA 上的一个动点,当△CDE 的周长最小时,求点E 的坐标;(2)若E 、F 为边OA 上的两个动点,且EF =2,当四边形CDEF 的周长最小时,求点E 、F 的坐标.1. (2011湖北荆门3分)分,高为5cm .若一只蚂蚁从P 点开始经过4 】A.13cmB.12cmC.10cmD.8cm2.(2011四川广安3分)如图,圆柱的底面周长为6cm ,AC 是底面圆的直径,高BC=6cm ,点P 是母线BC 上一点,且PC=23BC .一只蚂蚁从A 点出发沿着圆柱体的表面爬行到点P 的最短距离是【 】A 、6(4)π+㎝ B 、5cm C 、㎝ D 、7cm3.(2011广西贵港2分)如图所示,在边长为2P 为线段EF 上一个动点,连接BP 、GP ,则△BPG 19、已知:抛物线2(0)y ax bx c a =++≠的对称轴为C ,其中(3,0)A -,(0,2)C -。

几何最值的解题方法

几何最值的解题方法

几何最值的解题方法1. 引言几何最值问题是数学中常见的一类问题,它涉及到在给定的几何形状或空间中寻找某个特定量的最大值或最小值。

在解决这类问题时,我们需要运用几何知识和数学分析方法,结合具体情境进行推理和计算。

本文将介绍几何最值问题的解题方法,并通过实例进行说明。

2. 几何最值问题的分类几何最值问题可以分为两类:平面几何中的最值问题和立体几何中的最值问题。

2.1 平面几何中的最值问题在平面几何中,我们常常需要求解线段、角度、面积等量的最大值或最小值。

例如,求一个给定周长的矩形的面积最大,或者求一个给定半径的圆形内接三角形的面积最大。

为了解决这类问题,我们可以使用以下方法:2.1.1 导数法当需要求解平面图形上某个量(如面积)取得极大或极小值时,我们可以通过对该量进行微分,并令导数等于零来求得临界点。

通过判断临界点处导数符号变化来确定极大或极小值。

例如,对于矩形的面积最大问题,我们可以设矩形的长为x,宽为y,则矩形的面积为S=xy。

根据周长固定的条件,可以得到2x+2y=常数。

将这个条件代入面积公式S=xy中,可以得到只含有一个变量x的函数表达式S(x),然后对S(x)求导,并令导数等于零,即可求得临界点。

2.1.2 直观法直观法是一种通过观察和推理来解决几何最值问题的方法。

在解决一些简单的几何最值问题时,我们可以通过直观地找出一些特殊情况或者利用几何图形的性质来确定最值。

例如,在求解一个给定周长的矩形面积最大问题时,我们可以发现正方形是具有相同周长下面积最大的矩形,因而答案是正方形。

2.2 立体几何中的最值问题在立体几何中,我们常常需要求解体积、表面积等量的最大值或最小值。

例如,求一个给定表面积的圆柱体体积最大,或者求一个给定体积的圆柱体表面积最小。

为了解决这类问题,我们可以使用以下方法:2.2.1 导数法与平面几何中的导数法类似,我们可以通过对体积或表面积进行微分,并令导数等于零来求得临界点。

中考数学专题复习-例说线段的最值问题 (共62张)

中考数学专题复习-例说线段的最值问题  (共62张)

MA MD 1 AD 1,FDM 60. 2
A
N
B
解答过程:
F M D 3 0 , F D = 1 M D = 1 .
2
2
FM =MD cos30= 3 . 2
MC = FM 2+CF 2 = 7.
A 'C = M C M A ' = 7 1.
FD
C
M
A‘'
A
N
B
小结:
“关联三角形”的另外两条边尽可能长度已知(或 可求),再利用三角形三边关系求解,线段取得最值时 ,“关联三角形”不存在(三顶点共线).
解答过程:
连接OC交e O于点P,此时PC最小. 在RtBCO中, Q BC=4,OB=3, OC=5,PC=OC OP=2. 即PC最小值为2.
小结:
此道作业题构造“辅助圆”的突破口在于发现动点与 两定点连线的夹角为确定值;若点P在△ABC外部,则CP 长存在最大值;若∠APB为非直角时,则作△ABP的外接 圆,此时AB为非直径的弦.
'
2
2
2
在 R t C D D '中 ,
C D '= C D 2 D D '2 3 2 4 2 5 , 即 PC PD的 最 小 值 为 5.
小结:
1. 本题从形的角度得到点P的位置,再从数的角度计算 出点P的坐标,进而得到最小值.这正是体现了数形结合 的重要性.
典型例题2:
D
C
M
A‘'
,52
),B(4,m)两点,点P是线段AB上异于A,B的动点
,过点P作PC⊥x轴于点D,交抛物线于点C.
(1)求抛物线的表达式.
y
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

典例精析(单线段最值)
例4:如图,在直角三角形ABC中,∠ACB=90°, ∠BAC=30°,AB=4,点M是直角边AC上一动点, 连接BM,并将线段BM绕点B逆时针旋转60°得 到线段BN,连接CN.则在点M运动过程中,线 段CN长度的最大值是 ,最小值是 .
典例精析(单线段最值)
例4:如图,在直角三角形ABC中,∠ACB=90°, ∠BAC=30°,AB=4,点M是直角边AC上一动点, 连接BM,并将线段BM绕点B逆时针旋转60°得 到线段BN,连接CN.则在点M运动过程中,线 段CN长度的最大值是 ,最小值是 .


计 算 之
线 段 最



单线段最值
线段 最值
和差最值 和倍最值——初三内容
典例精析(单线段最值)
例1:如图,在矩形ABCD中,AB=4,BC=6,E是 边AD上的一个动点,将△ABE沿BE对折成△BEF, 则线段DF长的最小值为 .
典例精析(单线段最值)
例1:如图,在矩形ABCD中,AB=4,BC=6,E是 边AD上的一个动点,将△ABE沿BE对折成△BEF, 则线段DF长的最小值为 .
典例精析(单线段最值)
例2:如图,直角△ABC中,AC⊥BC,AC=8, BC=12,P是△ABC内部的一个动点,且满足 ∠PCA=∠PBC,则线段AP长的最小值为_____.
典例精析(单线段最值)
例2:如图,直角△ABC中,AC⊥BC,AC=8, BC=12,P是△ABC内部的一个动点,且满足 ∠PCA=∠PBC,则线段AP长的最小值为_____.
求单线段最值的方法(二)——找动点所在的 定直线(轨迹),利用垂线段最短找最小值
典例精析(和差最值)
例5:如图,△ABC中,∠A=90°,AB=AC= , 点P为BC上一动点,以PA为腰作等腰直角△APQ, 则AQ+BQ的最小值为______.
典例精析(和差最值)
例5:如图,△ABC中,∠A=90°,AB=AC= , 点P为BC上一动点,以PA为腰作等腰直角△APQ, 则AQ+BQ的最小值为______.
BF=3CF,点M、N为线段BD上的动点,MN= ,
求四边形EMNF周长的最小值

思路:表面四条线段和最小,实质两条线段和
最小,考虑先平移再对称的综合变换
典例精析(和差最值)
例7:在正方形ABCD,AB=4,E是CD中点,
BF=3CF,点M、N为线段BD上的动点,MN= ,
求四边形EMNF周长的最小值
最小值为

典例精析(和差最值)
例6:如图,∠AOB=60°,∠POQ=30°,OQ=2,
OP=3,点M、N分别在OA、OB上,则PN+MN+QM的
最小值为

典例精析(和差最值)
求和差最值的方法(一)——直接对称变换, 利用两点之间线段最短,或者“垂线段最短” 求最小值
典例精析(和差最值)
例7:在正方形ABCD,AB=4,E是CD中点,
典例精析(单线段最值)
例1:如图,在矩形ABCD中,AB=4,BC=6,E是 边AD上的一个动点,将△ABE沿BE对折成△BEF, 则线段DF长的最小值为 .
典例精析(单线段最值)
例2:如图,直角△ABC中,AC⊥BC,AC=8, BC=12,P是△ABC内部的一个动点,且满足 ∠PCA=∠PBC,则线段AP长的最小值为_____.
CB=12,CS=PS=6,AS=10 ∴AP≥AS-PS 三点共线 时取等号 ∴AP的最小值为4
典例精析(单线段最值)
求单线段最值的方法(一)——通过找、造将 该线段置于一个含有两条已知边的三角形中, 利用三边关系求范围,三点共线时取等号
典例精析(单线段最值)
例3:如图,一副三角板拼在一起,O 为AD的中 点,AB=a.将△ABO沿BO对折于△A’BO ,M为BC 上一动点,则A’M的最小值为 .
典例精析(单线段最值)
例3:如图,一副三角板拼在一起,O 为AD的中 点,AB=a.将△ABO沿BO对折于△A’BO ,M为BC 上一动点,则A’M的最小值为 .
典例精析(单线段最值)
例3:如图,一副三角板拼在一起,O 为AD的中 点,AB=a.将△ABO沿BO对折于△A’BO ,M为BC 上一动点,则A’M的最小值为 .
典例精析(单线段最值)
例4:如图,在直角三角形ABC中,∠ACB=90°, ∠BAC=30°,AB=4,点M是直角边AC上一动点, 连接BM,并将线段BM绕点B逆时针旋转60°得 到线段BN,连接CN.则在点M运动过程中,线 段CN长度的最大值是 ,最小值是 . 答案:2 1
典例精析(单线段最值)
典例精析(和差最值)
例5:如图,△ABC中,∠A=90°,AB=AC= , 点P为BC上一动点,以PA为腰作等腰直角△APQ, 则AQ+BQ的最小值为______.
典例精析(和差最值)
例6:如图,∠AOB=60°,∠POQ=30°,OQ=2,
OP=3,点M、N分别在OA、OB上,则PN+MN+QM二)——综合变换,即先 平移,再对称,利用两点之间线段最短求得最 小值


放有效三角形
单线段最值
找轨迹
线段 最值
和差最值 直接对称变换
综合变换
和倍最值——初三内容
谢谢观看
相关文档
最新文档