2018年专题10 (几何)最值问题(含详细答案)

合集下载

平面向量中的极化恒等式及有关最值(范围)问题(1)

平面向量中的极化恒等式及有关最值(范围)问题(1)

2(a·b-a·c-b·c+1)=48+2(a+b)·c=48+2|a+b|cos θ(其中θ为 a+b
与 c 的夹角),因为|a-b|=|a+b|,所以|a-b|2=48+2|a-b|cos θ,则由
cos θ∈[-1,1],得 48-2|a-b|≤|a-b|2≤48+2|a-b|,解得 6≤|a-
1x 2
2-1x2=1.
4
4
(2)如图,由已知|OF|=1,取 FO 中点 E,连接 PE,由极化恒等式得
O→P·F→P=|PE|2-1|OF|2=|PE|2-1,
4
4
∵|PE|2max=245,∴O→P·F→P的最大值为 6.
答案 (1)1 (2)C
题型二 平面向量中的最值(范围)问题
类型 1 利用函数型
则A→P·B→P的取值范围是________;若向量A→C=λD→E+μA→P,则λ+μ的最
小值为________.
解析 (1)由题意,不妨设 b=(2,0),a=(cos θ,sin θ)(θ∈[0,2π)),
则 a+b=(2+cos θ,sin θ),a-b=(cos θ-2,sin θ).
令 y=|a+b|+|a-b|
= (2+cos θ)2+sin2θ+ (cos θ-2)2+sin2θ
= 5+4cos θ+ 5-4cos θ,
则 y2=10+2 25-16cos2θ∈[16,20].
由此可得(|a+b|+|a-b|)max= 20=2 5,
(|a+b|+|a-b|)min= 16=4,
即|a+b|+|a-b|的最小值是 4,最大值是 2 5.
4a2
4a2
θ)2=1,化简得
b2(1-cos2θ)=

初中数学几何最值问题综合测试卷(含答案)

初中数学几何最值问题综合测试卷(含答案)

初中数学几何最值问题综合测试卷一、单选题(共6道,每道16分)1.如图,已知∠MON=40°,P为∠MON内一定点,OM上有一点A,ON上有一点B,当△PAB的周长取最小值时,求∠APB的度数为( )A.100°B.110°C.140°D.80°答案:A解题思路:作定点P关于直线OM,ON的对称点,然后利用两点之间线段最短解题.试题难度:三颗星知识点:最值问题2.如图,当四边形PABN的周长最小时,a的值为( )A. B.1C.2D.答案:A解题思路:先平移AP或BN使P,N重合,然后作其中一个定点关于定直线l的对称点,然后利用两点之间线段最短解题.试题难度:三颗星知识点:最值问题3.如图,已知两点A,B在直线l的异侧,A到直线l的距离AC=6,B到直线l的距离BD=2,CD=3,点P在直线l上运动,则的最大值为( )A. B.3C.1D.5答案:D解题思路:作其中一个定点关于定直线l的对称点,然后利用三角形三边关系解题.试题难度:三颗星知识点:最值问题4.如图,直角梯形纸片ABCD中,AD⊥AB,AB=4,AD=2,CD=3,点E,F分别在线段AB,AD上,将△AEF 沿EF翻折,点A的落点记为P.当点P落在直角梯形ABCD内部时,PD的最小值为( )A.2B.1C. D.3答案:C解题思路:找运动过程中的不变特征进行转化,转化成求DP+PE+EB的最大值,减少变量,然后利用两点之间线段最短来解题.试题难度:三颗星知识点:最值问题5.如图,∠MON=90°,等腰Rt△ABC的顶点A,B分别在OM,ON上,当点B在ON上运动时,点A随之在OM上运动,且等腰Rt△ABC的形状和大小保持不变,若AB=2,则运动过程中点C到点O 的最大距离为( )A. B.2C. D.3答案:B解题思路:找运动过程中的不变特征:直角特征不变、AB的长度不变——取AB的中点M,连接OM、CM,则OM=1,CM=1,当且仅当O,M,C三点共线时OC取最大值2.试题难度:三颗星知识点:最值问题6.如图,AC=5,C为AB上一个动点,分别以AC,BC为边在AB的同侧作等边△ABD和等边△BCE,那么DE长的最小值是()A. B.3C. D.答案:A解题思路:分别过点D,E作DM⊥AC,EN⊥AC交于点M,N,DE的最小值即MN的值.试题难度:三颗星知识点:最值问题。

几何最值问题(习题及答案)

几何最值问题(习题及答案)

➢例题示范几何最值问题(习题)例1:如图,已知∠AOB 的大小为α,P 是∠AOB 内部的一个定点,且OP=2,E,F 分别是OA,OB 边上的动点.若△PEF 周长的最小值为2,则α=()A.30°B.45°C.60°D.90°思路分析:1.分析定点、动点.定点:P动点(定直线):E(射线OA),F(射线OB)和最小(周长最小)对称到异侧2.根据不变特征分析判断属于轴对称最值问题,可调用轴对称最值问题的处理方式:作点P 关于OA 的对称点P′,点P 关于OB 的对称点P′′,连接P′P′′,交OA 于点E,交OB 于点F,此时△PEF 的周长取得最小值.3.设计方案求解.如图,由题意得OP′=OP′′=P′P′′=2,所以△OP′P′′是等边三角形,故α=30°.13➢巩固练习1.如图,在平面直角坐标系中,Rt△OAB 的直角顶点A 在x 轴的正半轴上,顶点B 的坐标为(3,),P 为斜边OB 上一动点.若点C 的坐标为(1,0),则PA+PC 的最小值为()2A.132B.312C.3 + 192D.22.如图,已知A,B 两点在直线l 的异侧,A 到直线l 的距离AM=4,B 到直线l 的距离BN=1,且MN=4.若点P 在直线l 上运动,则PA -PB 的最大值为()A.5 B.41 C.3 415D.63.已知点A,B 均在由面积为1 的相同小长方形组成的网格的格点上,建立如图所示的平面直角坐标系,若P 是x 轴上使得PA+PB 的值最小的点,Q 是y 轴上使得QA -QB 的值最大的点,则OP·OQ= .2第1 题图第2 题图74.如图1,A,B 两个单位位于一条封闭街道的两旁(直线l1,l2分别是街道的两边),现准备合作修建一座过街人行天桥.图1 图2 (1)天桥建在何处才能使由A 经过天桥走到B 的路程最短?在图2 中作出此时桥PQ 的位置.(注:桥的宽度忽略不计,桥必须与街道垂直)(2)根据图1 中提供的数据计算由A 经过天桥走到B 的最短路程.(单位:米)5.如图,已知正方形ABCD 的边长为2,当点A 在x 轴上运动时,点D 随之在y 轴上运动,则在运动过程中,点B 到原点O 的最大距离为.3【参考答案】➢巩固练习1. B2. A3. 34. (1)略(2)由A 经过天桥走到 B 的最短路程为85 米55. 1+4。

2018中考数学压轴题探究专题 :几何最值的存在性问题

2018中考数学压轴题探究专题 :几何最值的存在性问题

∴OA+OB+OC=O′A′+OB+OO′=BA′时值最小; ②当等边△ABቤተ መጻሕፍቲ ባይዱ 的边长为 1 时,OA+OB+OC 的最小值 A′B= .
3.已知:在直角坐标系中,点 A(0,6),B(8,0),点 C 是线段 AB 的中点, CD⊥OB 交 OB 于点 D,Rt△EFH 的斜边 EH 在射线 AB 上,顶点 F 在射线 AB 的左 侧,EF∥OA.点 E 从点 A 出发,以每秒 1 个单位的速度向点 B 运动,到点 B 停 止.AE=EF,运动时间为 t(秒). (1)在 Rt△EFH 中,EF= t ,EH= t ;F( t , 6﹣ t )(用含有 t 的代数式表示) (2)当点 H 与点 C 重合时,求 t 的值. (3)设△EFH 与△CDB 重叠部分图形的面积为 S(S>0),求 S 与 t 的关系式; (4)求在整个运动过程中 Rt△EFH 扫过的面积.
由旋转的性质可知,∠OCD=60°,∠ADC=∠BOC=120°, ∴∠DAO=360°﹣60°﹣90°﹣120°=90°, 故答案为:90°; ②线段 OA,OB,OC 之间的数量关系是 OA2+OB2=OC2. 如图 1,连接 OD. ∵△BOC 绕点 C 按顺时针方向旋转 60°得△ADC, ∴△ADC≌△BOC,∠OCD=60°. ∴CD=OC,∠ADC=∠BOC=120°,AD=OB. ∴△OCD 是等边三角形, ∴OC=OD=CD,∠COD=∠CDO=60°, ∵∠AOB=150°,∠BOC=120°, ∴∠AOC=90°, ∴∠AOD=30°,∠ADO=60°. ∴∠DAO=90°. 在 Rt△ADO 中,∠DAO=90°, ∴OA2+AD2=OD2. ∴OA2+OB2=OC2. (2)①如图 2,当 α=β=120°时,OA+OB+OC 有最小值. 作图如图 2, 如图 2,将△AOC 绕点 C 按顺时针方向旋转 60°得△A′O′C,连接 OO′. ∴△A′O′C≌△AOC,∠OCO′=∠ACA′=60°. ∴O′C=OC,O′A′=OA,A′C=BC, ∠A′O′C=∠AOC. ∴△OC O′是等边三角形. ∴OC=O′C=OO′,∠COO′=∠CO′O=60°. ∵∠AOB=∠BOC=120°, ∴∠AOC=∠A′O′C=120°. ∴∠BOO′=∠OO′A′=180°. ∴四点 B,O,O′,A′共线.

几何综合及几何最值问题(含答案)

几何综合及几何最值问题(含答案)

学生做题前请先回答以下问题问题1:几何综合的思考流程是什么?问题2:几何综合中常见结构、常用模型有哪些?问题3:直角的思考角度有哪些?边:____________________;角:____________________;面积:多个直角,把直角当作高,常考虑____________________;固定模型和用法:①直角+中点______________________;②直角+特殊角____________________;③直角+角平分线__________________;④直角三角形斜边上的高___________;⑤弦图结构;⑥三等角模型;⑦斜直角放正.函数背景下考虑:______________________________;圆背景下考虑:________________________________.问题4:轴对称思考层次有哪些?问题5:旋转思考层次有哪些?问题6:圆的思考角度有哪些?几何综合及几何最值问题一、单选题(共10道,每道10分)1.如图,在Rt△ABC中,∠ACB=90°,,沿△ABC的中线OC将△AOC折叠,使点A落在点D处.若CD⊥AB于点M,则tanA的值为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:直角三角形两锐角互余2.如图,BE,CF分别是△ABC两边上的高,M为BC的中点.若EF=6,BC=10,则△MEF的边ME上的高为( )A. B. C.4 D.答案:B解题思路:试题难度:三颗星知识点:等面积法3.如图,在矩形ABCD中,E是AD的中点,F是CE的中点,若△BDF的面积为6,则矩形ABCD的面积为( )A.24B.36C.48D.72答案:C解题思路:试题难度:三颗星知识点:转化法(等底或等高)求面积4.如图,在矩形ABCD中,,BC=3,F为CD的中点,EF⊥BF交AD于点E,连接CE交BF于点G,则EG的长为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:类倍长中线5.如图,在四边形ABCD中,M为BC边的中点.若∠B=∠AMD=∠C=45°,AB=8,CD=9,则AD的长为( )A.3B.4C.5D.6答案:C解题思路:试题难度:三颗星知识点:三等角模型6.如图,在平面直角坐标系xOy中,正方形ABCD的顶点A的坐标是(0,2),顶点B在x轴负半轴上,对角线AC,BD相交于点M,,则点D的坐标是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:弦图模型7.如图,在半径为3的⊙O中,B是劣弧的中点,连接AB并延长至点D,使BD=AB,连接AC,BC,CD.若AB=2,则CD的长为( )A.2B.1C.D.答案:D解题思路:试题难度:三颗星知识点:圆心角、弧、弦的关系8.如图,直线与半径为4的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P作PB⊥于点B,连接PA,设,则的最大值是( )A.1B.2C.4D.6答案:B解题思路:试题难度:三颗星知识点:二次函数最值9.如图,在菱形ABCD中,AB=4,∠ABC=60°,P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为( )A.2B.C.4D.答案:D解题思路:试题难度:三颗星知识点:轴对称—最短路线问题10.如图,在Rt△POQ中,OP=OQ=4,M是PQ的中点,把一块直角三角板的直角顶点放在点M处,并将此三角板绕点M旋转,三角板的两直角边与边OP,OQ分别交于点A,B,连接AB.则在旋转三角板的过程中,△AOB周长的最小值为( )A. B.C.6D.答案:B解题思路:试题难度:三颗星知识点:斜直角的处理思路(斜转直)。

2018年中考数学专题复习第七讲几何最值问题解题策略

2018年中考数学专题复习第七讲几何最值问题解题策略

中考数学专题复习第七讲几何最值问题解题策略【专题分析】最值问题是初中数学的重要内容,无论是代数问题还是几何问题都有最值问题,在中考压轴题中出现比较高的主要有利用重要的几何结论(如两点之间线段最短、三角形两边之和大于第三边、两边之差小于第三边、垂线段最短等)以及用一次函数和二次函数的性质来求最值问题.【知识归纳】1.在求几何图形中的周长或线段长度最值时,解决此类问题的方法一般是先将要求线段(要求的量)用未知数x表示出来,建立函数模型(一般所表示的式子为一次函数解析式或二次函数解析式),常用勾股定理或三角形相似求得函数关系式,再用函数的增减性或最值来求解即可.2.利用对称的性质求两条线段之和最小值的问题,解决此类问题的方法为:如图,要求直线l上一动点P到点A,B距离之和的最小值,先作点A关于直线l的对称点A',连接A'B,则A'B与直线l的交点即为P点,根据对称性可知此时A'B的长即为PA+PB的最小值,求出A'B的值即可.【题型解析】题型1: 三角形中最值问题例题:(2017山东枣庄)如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P 的坐标为()A.(﹣3,0)B.(﹣6,0)C.(﹣,0) D.(﹣,0)【考点】F8:一次函数图象上点的坐标特征;PA:轴对称﹣最短路线问题.【分析】(方法一)根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,结合点C、D′的坐标求出直线CD′的解析式,令y=0即可求出x的值,从而得出点P的坐标.(方法二)根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,根据三角形中位线定理即可得出点P为线段CD′的中点,由此即可得出点P的坐标.【解答】解:(方法一)作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.令y=x+4中x=0,则y=4,∴点B的坐标为(0,4);令y=x+4中y=0,则x+4=0,解得:x=﹣6,∴点A的坐标为(﹣6,0).∵点C、D分别为线段AB、OB的中点,∴点C(﹣3,2),点D(0,2).∵点D′和点D关于x轴对称,∴点D′的坐标为(0,﹣2).设直线CD′的解析式为y=kx+b,∵直线CD′过点C(﹣3,2),D′(0,﹣2),∴有,解得:,∴直线CD′的解析式为y=﹣x﹣2.令y=﹣x﹣2中y=0,则0=﹣x﹣2,解得:x=﹣,∴点P的坐标为(﹣,0).故选C.(方法二)连接CD,作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.令y=x+4中x=0,则y=4,∴点B的坐标为(0,4);令y=x+4中y=0,则x+4=0,解得:x=﹣6,∴点A的坐标为(﹣6,0).∵点C、D分别为线段AB、OB的中点,∴点C(﹣3,2),点D(0,2),CD∥x轴,∵点D′和点D关于x轴对称,∴点D′的坐标为(0,﹣2),点O为线段DD′的中点.又∵OP∥CD,∴点P为线段CD′的中点,∴点P的坐标为(﹣,0).故选C.方法指导:出现最值问题,可转化为轴对称知识所涉及的最短路径问题是我们解答此类问题的常见方法.题型2: 四边形中最值问题例题:(2017贵州安顺)如图所示,正方形ABCD的边长为6,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为 6 .【考点】PA:轴对称﹣最短路线问题;KK:等边三角形的性质;LE:正方形的性质.【分析】由于点B与D关于AC对称,所以连接BD,与AC的交点即为P点.此时PD+PE=BE最小,而BE是等边△ABE的边,BE=AB,由正方形ABCD的边长为6,可求出AB的长,从而得出结果.【解答】解:设BE与AC交于点P,连接BD,∵点B与D关于AC对称,∴PD=PB,最小.∴PD+PE=PB+PE=BE即P在AC与BE的交点上时,PD+PE最小,为BE的长度;∵正方形ABCD的边长为6,∴AB=6.又∵△ABE是等边三角形,∴BE=AB=6.故所求最小值为6.故答案为:6.方法指导:本题借助不等式“a2+b2≥2ab”通过代换转化来求平行四边形面积的最值,体现了转化思想和整体思想的运用.题型3:圆中最值问题例题:(2017浙江衢州)如图,在直角坐标系中,⊙A的圆心A的坐标为(﹣1,0),半径为1,点P为直线y=﹣x+3上的动点,过点P作⊙A的切线,切点为Q,则切线长PQ的最小值是2.【考点】MC:切线的性质;F5:一次函数的性质.【分析】连接AP,PQ,当AP最小时,PQ最小,当AP⊥直线y=﹣x+3时,PQ 最小,根据两点间的距离公式得到AP=3,根据勾股定理即可得到结论.【解答】解:连接AP,PQ,当AP最小时,PQ最小,∴当AP⊥直线y=﹣x+3时,PQ最小,∵A的坐标为(﹣1,0),y=﹣x+3可化为3x+4y﹣12=0,∴AP==3,∴PQ==2.方法指导: 此题综合性强,解题方法很多,考查范围较广,与初中数学很多内容有关,如勾股定理、圆周角定理及推论、垂径定理、相似、三角函数、二次函数、垂线段的性质、二次根式的计算与化简等.考查了多种数学思想,如建模思想、化归思想等.此题难度中等,有一定的灵活性,考生不易拿满分.【提升训练】1. (2017江苏盐城)如图,在边长为1的小正方形网格中,将△ABC绕某点旋转到△A'B'C'的位置,则点B运动的最短路径长为π.【考点】O4:轨迹;R2:旋转的性质.【分析】如图作线段AA′、CC′的垂直平分线相交于点P,点P即为旋转中心,观察图象可知,旋转角为90°(逆时针旋转)时B运动的路径长最短【解答】解:如图作线段AA′、CC′的垂直平分线相交于点P,点P即为旋转中心,观察图象可知,旋转角为90°(逆时针旋转)时B运动的路径长最短,PB==,∴B运动的最短路径长为==π,故答案为π.2. (2017?新疆)如图,在边长为6cm的正方形ABCD中,点E、F、G、H分别从点A、B、C、D同时出发,均以1cm/s的速度向点B、C、D、A匀速运动,当点E 到达点B时,四个点同时停止运动,在运动过程中,当运动时间为 3 s时,四边形EFGH的面积最小,其最小值是18 cm2.【考点】H7:二次函数的最值;LE:正方形的性质.【分析】设运动时间为t(0≤t≤6),则AE=t,AH=6﹣t,由四边形EFGH的面积=正方形ABCD的面积﹣4个△AEH的面积,即可得出S四边形EFGH关于t的函数关系式,配方后即可得出结论.【解答】解:设运动时间为t(0≤t≤6),则AE=t,AH=6﹣t,根据题意得:S四边形EFGH=S正方形ABCD﹣4S△AEH=6×6﹣4×t(6﹣t)=2t2﹣12t+36=2(t ﹣3)2+18,∴当t=3时,四边形EFGH的面积取最小值,最小值为18.故答案为:3;18【点评】本题考查了二次函数的最值、三角形以及正方形的面积,通过分割图形求面积法找出S四边形EFGH关于t的函数关系式是解题的关键.3. (2017湖北宜昌)正方形ABCD的边长为1,点O是BC边上的一个动点(与B,C不重合),以O为顶点在BC所在直线的上方作∠MON=90°.(1)当OM经过点A时,①请直接填空:ON 不可能(可能,不可能)过D点;(图1仅供分析)②如图2,在ON上截取OE=OA,过E点作EF垂直于直线BC,垂足为点F,作EH ⊥CD于H,求证:四边形EFCH为正方形.(2)当OM不过点A时,设OM交边AB于G,且OG=1.在ON上存在点P,过P 点作PK垂直于直线BC,垂足为点K,使得S△PKO=4S△OBG,连接GP,求四边形PKBG 的最大面积.【考点】LO:四边形综合题.【分析】(1)①若ON过点D时,则在△OAD中不满足勾股定理,可知不可能过D 点;②由条件可先判业四边形EFCH为矩形,再证明△OFE≌△ABO,可证得结论;(2)由条件可证明△PKO∽△OBG,利用相似三角形的性质可求得OP=2,可求得△POG面积为定值及△PKO和△OBG的关系,只要△CGB的面积有最大值时,则四边形PKBG的面积就最大,设OB=a,BG=b,由勾股定理可用b表示出a,则可用a表示出△CBG的面积,利用二次函数的性质可求得其最大值,则可求得四边形PKBG面积的最大值.【解答】解:(1)①若ON过点D,则OA>AB,OD>CD,∴OA2>AD2,OD2>AD2,∴OA2+OD2>2AD2≠AD2,∴∠AOD≠90°,这与∠MON=90°矛盾,∴ON不可能过D点,故答案为:不可能;②∵EH⊥CD,EF⊥BC,∴∠EHC=∠EFC=90°,且∠HCF=90°,∴四边形EFCH为矩形,∵∠MON=90°,∴∠EOF=90°﹣∠AOB,在正方形ABCD中,∠BAO=90°﹣∠AOB,∴∠EOF=∠BAO,在△OFE和△ABO中∴△OFE≌△ABO(AAS),∴EF=OB,OF=AB,,又OF=CF+OC=AB=BC=BO+OC=EF+OC∴CF=EF,∴四边形EFCH为正方形;(2)∵∠POK=∠OGB,∠PKO=∠OBG,∴△PKO∽△OBG,∵S△PKO=4S△OBG,∴=()2=4,∴OP=2,∴S△POG=OG?OP=×1×2=1,设OB=a,BG=b,则a2+b2=OG2=1,∴b=,∴S△OBG=ab=a==,∴当a2=时,△OBG有最大值,此时S△PKO=4S△OBG=1,∴四边形PKBG的最大面积为1+1+=.4. (2017甘肃张掖)如图,已知二次函数y=ax2+bx+4的图象与x轴交于点B(﹣2,0),点C(8,0),与y轴交于点A.(1)求二次函数y=ax2+bx+4的表达式;(2)连接AC,AB,若点N在线段BC上运动(不与点B,C重合),过点N作NM ∥AC,交AB于点M,当△AMN面积最大时,求N点的坐标;(3)连接OM,在(2)的结论下,求OM与AC的数量关系.【考点】HF:二次函数综合题.【分析】(1)由B、C的坐标,利用待定系数法可求得抛物线解析式;(2)可设N(n,0),则可用n表示出△ABN的面积,由NM∥AC,可求得,则可用n表示出△AMN的面积,再利用二次函数的性质可求得其面积最大时n的值,即可求得N点的坐标;(3)由N点坐标可求得M点为AB的中点,由直角三角形的性质可得OM=AB,在Rt△AOB和Rt△AOC中,可分别求得AB和AC的长,可求得AB与AC的关系,从而可得到OM和AC的数量关系.【解答】解:(1)将点B,点C的坐标分别代入y=ax2+bx+4可得,解得,∴二次函数的表达式为y=﹣x2+x+4;(2)设点N的坐标为(n,0)(﹣2<n<8),则BN=n+2,CN=8﹣n.∵B(﹣2,0),C(8,0),∴BC=10,在y=﹣x2+x+4中令x=0,可解得y=4,∴点A(0,4),OA=4,∴S△ABN=BN?OA=(n+2)×4=2(n+2),∵MN∥AC,∴,∴==,∴,∵﹣<0,∴当n=3时,即N(3,0)时,△AMN的面积最大;(3)当N(3,0)时,N为BC边中点,∵MN∥AC,∴M为AB边中点,∴OM=AB,∵AB===2,AC===4,∴AB=AC,∴OM=AC.5. (2017江苏盐城)【探索发现】如图①,是一张直角三角形纸片,∠B=60°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为.【拓展应用】如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为.(用含a,h的代数式表示)【灵活应用】如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),求该矩形的面积.【实际应用】如图④,现有一块四边形的木板余料ABCD,经测量AB=50cm,BC=108cm,CD=60cm,且tanB=tanC=,木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积最大的矩形PQMN,求该矩形的面积.【考点】LO:四边形综合题.【分析】【探索发现】:由中位线知EF=BC、ED=AB、由=可得;【拓展应用】:由△APN∽△ABC知=,可得PN=a﹣PQ,设PQ=x,由S矩形2+,据此可得;PQMN=PQ?PN═﹣(x﹣)【灵活应用】:添加如图1辅助线,取BF中点I,FG的中点K,由矩形性质知AE=EH20、CD=DH=16,分别证△AEF≌△HED、△CDG≌△HDE得AF=DH=16、CG=HE=20,从而判断出中位线IK的两端点在线段AB和DE上,利用【探索发现】结论解答即可;【实际应用】:延长BA、CD交于点E,过点E作EH⊥BC于点H,由tanB=tanC 知EB=EC、BH=CH=54,EH=BH=72,继而求得BE=CE=90,可判断中位线PQ的两端点在线段AB、CD上,利用【拓展应用】结论解答可得.【解答】解:【探索发现】∵EF、ED为△ABC中位线,∴ED∥AB,EF∥BC,EF=BC,ED=AB,又∠B=90°,∴四边形FEDB是矩形,则===,故答案为:;【拓展应用】∵PN∥BC,∴△APN∽△ABC,∴=,即=,∴PN=a﹣PQ,设PQ=x,则S矩形PQMN=PQ?PN=x(a﹣x)=﹣x2+ax=﹣(x﹣)2+,∴当PQ=时,S矩形PQMN最大值为,故答案为:;【灵活应用】如图1,延长BA、DE交于点F,延长BC、ED交于点G,延长AE、CD交于点H,取BF中点I,FG的中点K,由题意知四边形ABCH是矩形,∵AB=32,BC=40,AE=20,CD=16,∴EH=20、DH=16,∴AE=EH、CD=DH,在△AEF和△HED中,∵,∴△AEF≌△HED(ASA),∴AF=DH=16,同理△CDG≌△HDE,∴CG=HE=20,∴BI==24,∵BI=24<32,∴中位线IK的两端点在线段AB和DE上,过点K作KL⊥BC于点L,由【探索发现】知矩形的最大面积为×BG?BF=×(40+20)×(32+16)=720,答:该矩形的面积为720;【实际应用】如图2,延长BA、CD交于点E,过点E作EH⊥BC于点H,∵tanB=tanC=,∴∠B=∠C,∴EB=EC,∵BC=108cm,且EH⊥BC,∴BH=CH=BC=54cm,∵tanB==,∴EH=BH=×54=72cm,在Rt△BHE中,BE==90cm,∵AB=50cm,∴AE=40cm,∴BE的中点Q在线段AB上,∵CD=60cm,∴ED=30cm,∴CE的中点P在线段CD上,∴中位线PQ的两端点在线段AB、CD上,由【拓展应用】知,矩形PQMN的最大面积为BC?EH=1944cm2,答:该矩形的面积为1944cm2.。

题型六 几何最值(专题训练)(解析版)

题型六 几何最值(专题训练)(解析版)

题型六几何最值(专题训练)1.如图,△ABC 中,AB =AC =10,tanA =2,BE ⊥AC 于点E ,D 是线段BE 上的一个动点,则CD BD +的最小值是( )【答案】B【详解】如图,作DH ⊥AB 于H ,CM ⊥AB 于M .∵BE ⊥AC ,∴∠AEB=90°,∵tanA=BE AE=2,设AE=a ,BE=2a ,则有:100=a 2+4a 2,∴a 2=20,∴,∴,∵AB=AC ,BE ⊥AC ,CM ⊥AB ,∴(等腰三角形两腰上的高相等))∵∠DBH=∠ABE ,∠BHD=∠BEA ,∴sin DH AE DBH BD AB Ð===,∴BD ,∴BD=CD+DH ,∴CD+DH ≥CM ,∴BD ≥∴BD 的最小值为故选B .2.如图,在Rt ABC D 中,90°Ð=C ,4AC =,3BC =,点O 是AB 的三等分点,半圆O 与AC 相切,M ,N 分别是BC 与半圆弧上的动点,则MN 的最小值和最大值之和是( )A .5B .6C .7D .8【答案】B【详解】如图,设⊙O 与AC 相切于点D ,连接OD ,作OP BC ^垂足为P 交⊙O 于F ,此时垂线段OP 最短,PF 最小值为OP OF -,∵4AC =,3BC =,∴5AB =∵90OPB °Ð=,∴OP ACP ∵点O 是AB 的三等分点,∴210533OB =´=,23OP OB AC AB ==,∴83OP =,∵⊙O 与AC 相切于点D ,∴OD AC ^,∴OD BC ∥,∴13OD OA BC AB ==,∴1OD =,∴MN 最小值为85133OP OF -=-=,如图,当N 在AB 边上时,M 与B 重合时,MN 经过圆心,经过圆心的弦最长,MN 最大值1013133=+=,513+=633,∴MN 长的最大值与最小值的和是6.故选B .3.如图,在矩形纸片ABCD 中,2AB =,3AD =,点E 是AB 的中点,点F 是AD 边上的一个动点,将AEF V 沿EF 所在直线翻折,得到'A EF V ,则'A C 的长的最小值是( )A B .3C 1-D 1-【答案】D【详解】以点E 为圆心,AE 长度为半径作圆,连接CE ,当点A'在线段CE 上时,A'C 的长取最小值,如图所示,根据折叠可知:1A'E AE AB 12===.在Rt BCE V 中,1BE AB 12==,BC 3=,B 90Ð=o ,CE \==,A'C \的最小值CE A'E 1=-=.故选D .4.如图,四边形ABCD 是菱形,AB=4,且∠ABC=∠ABE=60°,G 为对角线BD (不含B 点)上任意一点,将△ABG 绕点B 逆时针旋转60°得到△EBF ,当AG+BG+CG 取最小值时EF 的长( )A .B .C .D .【答案】D【详解】解:如图,∵将△ABG 绕点B 逆时针旋转60°得到△EBF ,∴BE=AB=BC ,BF=BG ,EF=AG ,∴△BFG 是等边三角形.∴BF=BG=FG ,.∴AG+BG+CG=FE+GF+CG .根据“两点之间线段最短”,∴当G 点位于BD 与CE 的交点处时,AG+BG+CG 的值最小,即等于EC 的长,过E 点作EF ⊥BC 交CB 的延长线于F ,∴∠EBF=180°-120°=60°,∵BC=4,∴BF=2,,在Rt △EFC 中,∵EF 2+FC 2=EC 2,∴.∵∠CBE=120°,∴∠BEF=30°,∵∠EBF=∠ABG=30°,∴EF=BF=FG ,∴EF=13故选:D .5.如图,Rt ABC △中,AB BC ^,6AB =,4BC =,P 是ABC △内部的一个动点,且满足90PAB PBA °Ð+Ð=,则线段CP 长的最小值为________.【答案】2:【详解】∵∠PAB+∠PBA=90°∴∠APB=90°∴点P 在以AB 为直径的弧上(P 在△ABC 内)设以AB 为直径的圆心为点O ,如图接OC ,交☉O 于点P ,此时的PC 最短∵AB=6,∴OB=3∵BC=4∴5OC ===∴PC=5-3=26.如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE=1,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为 .【分析】同样是作等边三角形,区别于上一题求动点路径长,本题是求CG 最小值,可以将F 点看成是由点B 向点A 运动,由此作出G 点轨迹:考虑到F 点轨迹是线段,故G 点轨迹也是线段,取起点和终点即可确定线段位置,初始时刻G 点在1G 位置,最终G 点在2G 位置(2G 不一定在CD 边),12G G 即为G点运动轨迹.CG 最小值即当CG ⊥12G G 的时候取到,作CH ⊥12G G 于点H ,CH 即为所求的最小值.根据模型可知:12G G 与AB 夹角为60°,故12G G ⊥1EG .过点E 作EF ⊥CH 于点F ,则HF=1G E =1,CF=1322CE =,所以CH=52,因此CG 的最小值为52.GA B CDE F27.如图,矩形ABCD 中,4AB =,6BC =,点P 是矩形ABCD 内一动点,且D D =PAB PCD S S ,则PC PD +的最小值为_____.【答案】【详解】ABCD Q 为矩形,AB DC\=又=V V Q PAB PCDS S \点P 到AB 的距离与到CD 的距离相等,即点P 线段AD 垂直平分线MN 上,连接AC ,交MN 与点P ,此时PC PD +的值最小,且PC PD AC +=====故答案为:8.如图,在△ABC 中,∠ACB =90°,∠A =30°,AB =5,点P 是AC 上的动点,连接BP ,以BP 为边作等边△BPQ ,连接CQ ,则点P 在运动过程中,线段CQ 长度的最小值是2______.【答案】54.【详解】解:如图,取AB的中点E,连接CE,PE.∵∠ACB=90°,∠A=30°,∴∠CBE=60°,∵BE=AE,∴CE=BE=AE,∴△BCE是等边三角形,∴BC=BE,∵∠PBQ=∠CBE=60°,∴∠QBC=∠PBE,∵QB=PB,CB=EB,∴△QBC≌△PBE(SAS),∴QC=PE,∴当EP⊥AC时,QC的值最小,在Rt△AEP中,∵AE=52,∠A=30°,∴PE=12AE=54,∴CQ的最小值为54.故答案为:549.如图,在正方形ABCD 中,AB =8,AC 与BD 交于点O ,N 是AO 的中点,点M 在BC 边上,且BM =6.P 为对角线BD 上一点,则PM ﹣PN 的最大值为 .【答案】2【分析】作以BD 为对称轴作N 的对称点N',连接PN',MN',依据PM ﹣PN =PM ﹣PN'≤MN',可得当P ,M ,N'三点共线时,取“=”,再求得//AN CN BM CM ==31,即可得出PM ∥AB ∥CD ,∠CMN'=90°,再根据△N'CM 为等腰直角三角形,即可得到CM =MN'=2.【解答】解:如图所示,作以BD 为对称轴作N 的对称点N',连接PN',MN',根据轴对称性质可知,PN =PN',∴PM ﹣PN =PM ﹣PN'≤MN',当P ,M ,N'三点共线时,取“=”,∵正方形边长为8,∴AC =2AB =28,∵O 为AC 中点,∴AO =OC =24,∵N 为OA 中点,∴ON =22,∴ON'=CN'=22,∴AN'=26,∵BM =6,∴CM =AB ﹣BM =8﹣6=2,∴//AN CN BM CM ==31∴PM ∥AB ∥CD ,∠CMN'=90°,∵∠N'CM =45°,∴△N'CM 为等腰直角三角形,∴CM =MN'=2,即PM ﹣PN 的最大值为2,故答案为:2.【点评】本题主要考查了正方形的性质以及最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.10.如图,ABC V 是等边三角形,6AB =,N 是AB 的中点,AD 是BC 边上的中线,M 是AD 上的一个动点,连接,BM MN ,则BM MN +的最小值是________.【答案】【分析】根据题意可知要求BM+MN 的最小值,需考虑通过作辅助线转化BM ,MN 的值,从而找出其最小值,进而根据勾股定理求出CN ,即可求出答案.【解析】解:连接CN ,与AD 交于点M ,连接BM .(根据两点之间线段最短;点到直线垂直距离最短),AD 是BC 边上的中线即C 和B 关于AD 对称,则BM+MN=CN ,则CN 就是BM+MN 的最小值.∵ABC V 是等边三角形,6AB =,N 是AB 的中点,∴AC=AB=6,AN=12AB=3, CN AB ^,∴CN ====即BM+MN的最小值为故答案为:【点睛】本题考查的是轴对称-最短路线问题,涉及到等边三角形的性质,勾股定理,轴对称的性质,等腰三角形的性质等知识点的综合运用.11.如图,在中,∠ACB=90°,BC=12,AC=9,以点C 为圆心,6为半径的圆上有一个动点D .连接AD 、BD 、CD ,则2AD+3BD 的最小值是 .【分析】首先对问题作变式2AD+3BD=233AD BD æö+ç÷èø,故求23AD BD +最小值即可.考虑到D 点轨迹是圆,A 是定点,且要求构造23AD ,条件已经足够明显.当D 点运动到AC 边时,DA=3,此时在线段CD 上取点M 使得DM=2,则在点D 运动过程中,始终存在23DM DA =.ABC D A BCD问题转化为DM+DB 的最小值,直接连接BM ,BM 长度的3倍即为本题答案.12.如图,四边形ABCD 中,AB ∥CD ,∠ABC =60°,AD =BC =CD =4,点M 是四边形ABCD 内的一个动点,满足∠AMD =90°,则点M 到直线BC 的距离的最小值为_____.【答案】2-【解析】【分析】取AD 的中点O ,连接OM ,过点M 作ME ⊥BC 交BC 的延长线于E ,点点O 作OF ⊥BC 于F ,交CD 于G ,则OM+ME ≥OF .求出OM ,OF 即可解决问题.【详解】解:取AD 的中点O ,连接OM ,过点M 作ME ⊥BC 交BC 的延长线于E ,点点O 作OF ⊥BC 于F ,交CD 于G ,则OM+ME ≥OF .∵∠AMD=90°,AD=4,OA=OD,∴OM=12AD=2,∵AB∥CD,∴∠GCF=∠B=60°,∴∠DGO=∠CGE=30°,∵AD=BC,∴∠DAB=∠B=60°,∴∠ADC=∠BCD=120°,∴∠DOG=30°=∠DGO,∴DG=DO=2,∵CD=4,∴CG=2,∴OG=,GF,OF=,∴ME≥OF﹣OM=﹣2,∴当O,M,E共线时,ME的值最小,最小值为2.【点睛】本题考查解直角三角形,垂线段最短,直角三角形斜边中线的性质等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.13.如图,四边形ABCD是菱形,A B=6,且∠ABC=60° ,M是菱形内任一点,连接AM,BM,CM,则AM+BM+CM 的最小值为________.【答案】【详解】将△BMN 绕点B 顺时针旋转60度得到△BNE ,∵BM=BN ,∠MBN=∠CBE=60°,∴MN=BM ∵MC=NE ∴AM+MB+CM=AM+MN+NE .当A 、M 、N 、E 四点共线时取最小值AE .∵AB=BC=BE=6,∠ABH=∠EBH=60°,∴BH ⊥AE ,AH=EH ,∠BAH=30°,∴BH=12AB=3,BH=AE=2AH=故答案为14.如图,在矩形ABCD 中,E 为AB 的中点,P 为BC 边上的任意一点,把PBE △沿PE 折叠,得到PBE △,连接CF .若AB =10,BC =12,则CF 的最小值为_____.【答案】8【解析】【分析】点F 在以E 为圆心、EA 为半径的圆上运动,当E 、F 、C 共线时时,此时FC 的值最小,根据勾股定理求出CE ,再根据折叠的性质得到BE =EF =5即可.【详解】解:如图所示,点F在以E为圆心EA为半径的圆上运动,当E、F、C共线时时,此时CF的值最小,根据折叠的性质,△EBP≌△EFP,∴EF⊥PF,EB=EF,∵E是AB边的中点,AB=10,∴AE=EF=5,∵AD=BC=12,∴CE=13,∴CF=CE﹣EF=13﹣5=8.故答案为8.【点睛】本题考查了折叠的性质、全等三角形的判定与性质、两点之间线段最短的综合运用,灵活应用相关知识是解答本题的关键.15、如图,△ABC中,∠BAC=30°且AB=AC,P是底边上的高AH上一点.若AP+BP+CP的最小值为,则BC=_____.-【详解】如图将△ABP绕点A顺时针旋转60°得到△AMG.连接PG,CM.∵AB=AC ,AH ⊥BC ,∴∠BAP=∠CAP ,∵PA=PA ,∴△BAP ≌△CAP (SAS ),∴PC=PB ,∵MG=PB ,AG=AP ,∠GAP=60°,∴△GAP 是等边三角形,∴PA=PG ,∴PA+PB+PC=CP+PG+GM ,∴当M ,G ,P ,C 共线时,PA+PB+PC 的值最小,最小值为线段CM 的长,∵AP+BP+CP 的最小值为,∴,∵∠BAM=60°,∠BAC=30°,∴∠MAC=90°,∴AM=AC=2,作BN ⊥AC 于N .则BN=12AB=1,,,∴16.如图所示,30AOB Ð=o ,点P 为AOB Ð内一点,8OP =,点,M N 分别在,OA OB 上,求PMN D 周长的最小值_____.【答案】PMN D 周长的最小值为8【详解】如图,作P 关于OA 、OB 的对称点12P P 、,连结1OP 、2OP ,12PP 交OA 、OB 于M 、N ,此时PMN D 周长最小,根据轴对称性质可知1PM PM =,2P N PN =,1212PM N PM M N PN PP \D =++=,且1A O P A O P Ð=Ð,2BO P BO P Ð=Ð,12260POP AOB Ð=Ð=°,128O P O P O P ===,12PPO D 为等边三角形,1218PP OP ==即PMN D 周长的最小值为8.17.在正方形ABCD 中,点E 为对角线AC (不含点A )上任意一点,AB=;(1)如图1,将△ADE 绕点D 逆时针旋转90°得到△DCF ,连接EF ;①把图形补充完整(无需写画法); ②求2EF 的取值范围;(2)如图2,求BE+AE+DE 的最小值.【答案】(1)①补图见解析;②2816EF ££;(2)2+【详解】(1)①如图△DCF 即为所求;②∵四边形ABCD 是正方形,∴BC =AB =,∠B =90°,∠DAE =∠ADC =45°,∴AC AB =4,∵△ADE 绕点D 逆时针旋转90°得到△DCF ,∴∠DCF =∠DAE =45°,AE =CF ,∴∠ECF =∠ACD +∠DCF =90°,设AE =CF =x ,EF 2=y ,则EC =4−x ,∴y =(4−x )2+x 2=2x 2−8x +160(0<x ≤4).即y =2(x −2)2+8,∵2>0,∴x =2时,y 有最小值,最小值为8,当x =4时,y 最大值=16,∴8≤EF 2≤16.(2)如图中,将△ABE 绕点A 顺时针旋转60°得到△AFG ,连接EG ,DF .作FH ⊥AD 于H .由旋转的性质可知,△AEG 是等边三角形,∴AE =EG ,∵DF ≤FG +EG +DE ,BE =FG ,∴AE +BE +DE 的最小值为线段DF 的长.在Rt △AFH 中,∠FAH =30°,AB ==AF ,∴FH =12AF ,AH ,在Rt △DFH 中,DF ==2+,∴BE +AE +ED 的最小值为2.。

中考压轴题突破:几何最值问题(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)

中考压轴题突破:几何最值问题(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)

中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)一、基本图形所有问题的老祖宗只有两个:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。

由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。

余不赘述,下面仅举一例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。

已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。

证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP ≤d+r,AP最小时点P在B处,最大时点P在C处。

即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。

(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。

上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。

二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。

类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。

(一)直接包含基本图形例1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。

简析:由∠B=30°知弧AD一定,所以D是定点,C是直线AC上的动点,即为求定点D到定线AC的最短路径,求得当CD⊥AC时最短为3。

(二)动点路径待确定例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题10 几何最值问题【十二个基本问题】1.如图,长方体的底面边长分别为2cm和4cm,高为5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为()A.61cm B.11cm C.13cm D.17cm第1题第2题第3题第4题'2.已知圆锥的底面半径为r=20cm,高h=20 15cm,现在有一只蚂蚁从底边上一点A出发.在侧面上爬行一周又回到A点,蚂蚁爬行的最短距离为________.3.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC 于F,则EF的最小值为()A.2 B.C.D.4.如图,在矩形ABCD中,AB=10,BC=5.若点M、N分别是线段AC,AB上的两个动点,则BM+MN的最小值为()A.10 B.8 C.5 3 D.65.如图,一个长方体形的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬到柜角C处.(1)请你画出蚂蚁能够最快到达目的地的可能路径;(2)当AB=4,BC=4,CC=5时,求蚂蚁爬过的最短路径的长.(3)在(2)的条件下,求点B到最短路径的距离.·6.如图,已知P为∠AOB内任意一点,且∠AOB=30°,点P、P分别在OA、OB上,求作点P、P,使△PPP的周长最小,连接OP,若OP=10cm,求△PPP的周长.7.如图,E ,F 是正方形ABCD 的边AD 上两个动点,满足AE =DF .连接CF 交BD 于点G ,连接BE 交AG 于点H .若正方形的边长为2,则线段DH 长度的最小值是________. ?第7题 第8题 第9题8.如图,在等腰Rt △ABC 中,∠BAC =90°,AB =AC ,BC =4 2,点D 是AC 边上一动点,连接BD ,以AD 为直径的圆交BD 于点E ,则线段CE 长度的最小值为 .9.如图,⊙O 的半径为1,弦AB =1,点P 为优弧(⌒)AB 上一动点,AC ⊥AP 交直线PB 于点C ,则△ABC 的最大面积是( )A .12B .22C .32D .3410.如图,已知抛物线y =-x +bx +c 与一直线相交于A (-1,0),C (2,3)两点,与y 轴交于点N .其顶点为D .(1)抛物线及直线AC 的函数关系式;(2)设点M (3,m ),求使MN +MD 的值最小时m 的值;(3)若抛物线的对称轴与直线AC 相交于点B ,E 为直线AC 上的任意一点,过点E 作EF ∥BD 交抛物线于点F ,以B ,D ,E ,F 为顶点的四边形能否为平行四边形若能,求点E 的坐标;若不能,请说明理由;(4)若P 是抛物线上位于直线AC 上方的一个动点,求△APC 的面积的最大值.~…11.如图,抛物线l交x轴于点A(-3,0)、B(1,0),交y轴于点C(0,-3).将抛物线l沿y轴翻折得抛物线l.(1)求l的解析式;(2)在l的对称轴上找出点P,使点P到点A的对称点A及C两点的距离差最大,并说出理由;(3)平行于x轴的一条直线交抛物线l于E、F两点,若以EF为直径的圆恰与x轴相切,求此圆的半径.—【{12.(2016﹒朝阳)小颖在学习“两点之间线段最短”查阅资料时发现:△ABC内总存在一点P与三个顶点的连线的夹角相等,此时该点到三个顶点的距离之和最小.【特例】如图1,点P为等边△ABC的中心,将△ACP绕点A逆时针旋转60°得到△ADE,从而有DE=PC,连接PD得到PD=PA,同时∠APB+∠APD=120°+60°=180°,∠ADP+∠ADE=180°,即B、P、D、E四点共线,故PA+PB+PC=PD+PB+DE=BE.在△ABC中,另取一点P′,易知点P′与三个顶点连线的夹角不相等,可证明B、P′、D′、E四点不共线,所以P′A+P′B+P′C>PA+PB+PC,即点P到三个顶点距离之和最小.%|!13.问题提出(1)如图1,点A为线段BC外一动点,且BC=a,AB=b,填空:当点A位于时,线段AC的长取得最大值,且最大值为(用含a,b的式子表示).问题探究(2)点A为线段BC外一动点,且BC=6,AB=3,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE,找出图中与BE相等的线段,请说明理由,并直接写出线段BE长的最大值.问题解决:@(3)①如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,求线段AM长的最大值及此时点P 的坐标.②如图4,在四边形ABCD中,AB=AD,∠BAD=60°,BC=42,若对角线BD⊥CD于点D,请直接写出对角线AC的最大值.。

\14.如图所示,已知抛物线y =a (x +3)(x -1)(a ≠0),与x 轴从左至右依次相交于A 、B 两点,与y 轴相交于点C ,经过点A 的直线y =- 3x +b 与抛物线的另一个交点为D .(1)若点D 的横坐标为2,求抛物线的函数解析式;(2)若在第三象限内的抛物线上有点P ,使得以A 、B 、P 为顶点的三角形与△ABC 相似,求点P 的坐标;(3)在(1)的条件下,设点E 是线段AD 上的一点(不含端点),连接BE .一动点Q 从点B 出发,沿线段BE 以每秒1个单位的速度运动到点E ,再沿线段ED 以每秒2 33个单位的速度运动到点D 后停止,问当点E 的坐标是多少时,点Q 在整个运动过程中所用时间最少&\,答案1.平面展开---最短路径问题解:如图所示:.∵长方体的底面边长分别为2cm 和4cm,高为5cm .∴PA =4+2+4+2=12(cm),QA =5cm,∴PQ =PA 2+AQ 2=13cm .故选:C .2.解:设扇形的圆心角为n ,圆锥的顶为E ,∵r =20cm,h =20 15cm∴由勾股定理可得母线l =r +h =80cm,而圆锥侧面展开后的扇形的弧长为2×20π=n π×80180,∴n =90°即△EAA ′是等腰直角三角形,*∴由勾股定理得:AA '=A ′E +AE =80 2cm .答:蚂蚁爬行的最短距离为80 2cm .故答案为:80 2cm .3.解:连接AP ,∵在△ABC 中,AB =3,AC =4,BC =5,∴AB +AC =BC ,即∠BAC =90°.又∵PE ⊥AB 于E ,PF ⊥AC 于F ,∴四边形AEPF 是矩形,∴EF =AP ,∵AP 的最小值即为直角三角形ABC 斜边上的高,即,¥∴EF 的最小值为,故答案为:.4.解:过B 点作AC 的垂线,使AC 两边的线段相等,到E 点,过E 作EF 垂直AB 交AB 于F 点,AC =5 5,AC 边上的高为=A B ﹒BC AC =25,所以BE =4 5. ∵△ABC ∽△EFB ,∴AB EF =AC BE ,即10EF =5 54 5EF =8.故选:B .5.解:(1)如图,木柜的表面展开图是矩形ABC 'D 或ACCA .故蚂蚁能够最快到达目的地的可能路径有如图的AC '或AC ;$(2)蚂蚁沿着木柜表面矩形ABC 'D 爬过的路径AC '的长是l =4+(4+5).蚂蚁沿着木柜表面矩形矩形ABCD 爬过的路径AC 的长l =97,蚂蚁沿着木柜表面ACCA 爬过的路径AC 的长是l =(4+4)+5.l >l ,故最短路径的长是l 89.(3)作BE ⊥AC 于E ,∵∠CEB =∠CAA ,∠ACA 是公共角,∴△AAC ∽△BEC ,即BE AA =BC AC ,则BE =BC AC ﹒AA =489﹒5=2089为所求. 6.解:分别作点P 关于OA 、OB 的对称点M 、N ,连接MN ,分别交OA 、OB 于点P 、P ,连接OM 、ON 、PP 、PP ,此时△PPP 的周长最小,△PPP 的周长=PP ,PP +PP +PP =MP +PP +NP =MN ,…∵M 、N 分别是P 关于OA 、OB 的对称点,∴∠MOA =∠AOP ,∠NOB =∠BOP ,PP =PM ,PP =PN ,MO =PO =NO ,∴∠MON =∠MOA +∠AOP +∠NOB +∠BOP =2∠AOB ,∵∠AOB =30°,∴∠MON =2×30°=60°,∴△OMN 是等边三角形,又∵△PPP 的周长=PP ,PP +PP +PP =MP +PP +NP =MN ,∴△MNP 的周长=MN =MO =PO =10cm .7.解:在正方形ABCD 中,AB =AD =CD ,∠BAD =∠CDA ,∠ADG=∠CDG ,在△ABE 和△DCF 中,(⎩⎪⎨⎪⎧AB =CD∠BAD =∠CDA AE =DF, ∴△ABE ≌△DCF (SAS ),∴∠1=∠2,在△ADG 和△CDG 中,⎩⎪⎨⎪⎧AD =CD∠ADG =∠CDG DG =DG, ∴△ADG ≌△CDG (SAS ),∴∠2=∠3,∴∠1=∠3,∵∠BAH +∠3=∠BAD =90°,∴∠1+∠BAH =90°,∴∠AHB =180°-90°=90°,取AB 的中点O ,连接OH 、OD ,则OH =AO =12AB =1,在Rt △AOD 中,OD =AO +AD =1+2=5,根据三角形的三边关系,OH +DH >OD ,∴当O 、D 、H 三点共线时,DH 的长度最小, ?最小值=OD -OH =5-1.(解法二:可以理解为点H 是在Rt △AHB ,AB 直径的半圆(⌒)AB 上运动当O 、H 、D 三点共线时,DH 长度最小)故答案为:5-1.8. 解:连结AE ,如图1,∵∠BAC =90°,AB =AC ,BC =4 2,∴AB =AC =4,∵AD 为直径,∴∠AED =90°,∴∠AEB =90°,∴点E 在以AB 为直径的⊙O 上,∵⊙O 的半径为2,∴当点O 、E 、C 共线时,CE 最小,如图2,在Rt △AOC 中,∵OA =2,AC =4,~∴OC =OA +AC =2 5,∴CE =OC -OE =2 5-2,即线段CE 长度的最小值为2 5-2.故答案为2 5-2.9.解:连结OA 、OB ,作△ABC 的外接圆D ,如图1,∵OA =OB =1,AB =1,∴△OAB 为等边三角形,∴∠AOB =60°,∴∠APB =12∠AOB =30°,∵AC ⊥AP ,∴∠C =60°,@∵AB =1,要使△ABC 的最大面积,则点C 到AB 的距离最大,∵∠ACB =60°,点C 在⊙D 上,∴∠ADB =120°,如图2,当点C 优弧AB 的中点时,点C 到AB 的距离最大,此时△ABC 为等边三角形,且面积为34AB =34,∴△ABC 的最大面积为34.故选:D .10. 解:(1)由抛物线y =-x +bx +c 过点A (-1,0)及C (2,3)得,⎩⎨⎧-1-b +c =0-4+2b +c =3,解得 ⎩⎨⎧b =2c =3, 故抛物线为y =-x +2x +3又设直线为y =kx +n 过点A (-1,0)及C (2,3)得⎩⎨⎧-k +n =02k +n =3,解得 ⎩⎨⎧k =1n =1故直线AC 为y =x +1;](2)如图1,作N 点关于直线x =3的对称点N ′,则N ′(6,3),由(1)得D (1,4),故直线DN ′的函数关系式为y =- 15x + 215,当M (3,m )在直线DN ′上时,MN +MD 的值最小, 则m =- 15×3+ 215=185;(3)由(1)、(2)得D (1,4),B (1,2),∵点E 在直线AC 上,设E (x ,x +1),①如图2,当点E 在线段AC 上时,点F 在点E 上方,则F (x ,x +3),∵F 在抛物线上,∴x +3=-x +2x +3,}解得,x =0或x =1(舍去)∴E (0,1);②当点E 在线段AC (或CA )延长线上时,点F 在点E 下方,则F (x ,x -1)由F 在抛物线上∴x -1=-x +2x +3解得x =1- 172或x =1+ 172∴E ⎝ ⎛⎭⎪⎫1- 172, 3- 172或⎝ ⎛⎭⎪⎫ 1+ 172, 3+ 172 综上,满足条件的点E 的坐标为(0,1)、⎝ ⎛⎭⎪⎫ 1- 172, 3- 172或⎝ ⎛⎭⎪⎫ 1+ 172, 3+ 172;(4)方法一:如图3,过点P 作PQ ⊥x 轴交AC 于点Q ,交x 轴于点H ;过点C 作CG ⊥x 轴于点G ,设Q (x ,x +1),则P ()x ,-x +2x +3∴PQ =()-x +2x +3-(x +1)=-x +x +2又∵S =SS =12PQ ﹒AG =12()-x +x +2×3=- 32⎝⎛⎭⎫x - 12+ 278 ∴面积的最大值为278.方法二:过点P 作PQ ⊥x 轴交AC 于点Q ,交x 轴于点H ;过点C 作CG ⊥x 轴于点G ,如图3,设Q (x ,x +1),则P ()x ,-x +2x +3又∵S =S _(△APH )+S _(直角梯形PHGC )-S _(△AGC ) =12(x +1)()-x +2x +3+ 12()-x +2x +3+3(2-x )- 12×3×3=- 32x + 32x +3/=- 32⎝⎛⎭⎫x - 12+ 278 ∴△APC 的面积的最大值为278.11.解:(1)如图1所示,设经翻折后,点A 、B 的对应点分别为A 、B ,依题意,由翻折变换的性质可知A (3,0),B (-1,0),C 点坐标不变,因此,抛物线l 经过A (3,0),B (-1,0),C (0,-3)三点,设抛物线l 的解析式为y =ax +bx +c ,则有:⎩⎪⎨⎪⎧9a +3b +c =0a -b +c =0c =-3,解得a =1,b =-2,c =-3,故抛物线l 的解析式为:y =x -2x -3.(2)抛物线l 的对称轴为:x =- b 2a =1,如图2所示,连接BC 并延长,与对称轴x =1交于点P ,则点P 即为所求.、此时,|PA -PC |=|PB -PC |=BC .设P ′为对称轴x =1上不同于点P 的任意一点,则有:|P ′A -P ′C |=|P ′B _(1)-P ′C |<B _(1)C (三角形两边之差小于第三边),故|P ′B -P ′C |<|PA -PC |,即|PA -PC |最大.设直线BC 的解析式为y =kx +b ,则有:⎩⎨⎧-k +b =0b =-3,解得k =b =-3,故直线BC 的解析式为:y =-3x -3.令x =1,得y =-6,故P (1,-6).(3)依题意画出图形,如图3所示,有两种情况.①当圆位于x 轴上方时,设圆心为D ,半径为r ,由抛物线及圆的对称性可知,点D 位于对称轴x =1上,则D (1,r ),F (1+r ,r ).:∵点F (1+r ,r )在抛物线y =x -2x -3上,∴r =(1+r )-2(1+r )-3,化简得:r -r -4=0解得r =17+12,r = (- gh (17)+1)/(2)(舍去),∴此圆的半径为17+12;②当圆位于x 轴下方时,同理可求得圆的半径为17-12. 综上所述,此圆的半径为17+12或17-12.12.解:(1)如图1,将△ACP 绕点A 逆时针旋转60°得到△ADE ,∴∠PAD =60°,△PAC ≌△DAE ,∴PA =DA 、PC =DE 、∠APC =∠ADE =120°,∴△APD 为等边三角形,∴PA =PD ,∠APD =∠ADP =60°,∴∠APB +∠APD =120°+60°=180°,∠ADP +∠ADE =180°,即B 、P 、D 、E 四点共线, "∴PA +PB +PC =PD +PB +DE =BE .∴PA +PB +PC 的值最小.(2)方法一:如图2,分别以AB 、BC 为边在△ABC 外作等边三角形,连接CD 、AE 交于点P ,∴AB =DB 、BE =BC =8、∠ABD =∠EBC =60°,∴∠ABE =∠DBC ,在△ABE 和△DBC 中,∵ ⎩⎪⎨⎪⎧AB =DB∠ABE =∠DBC BE =BC,∴△ABE ≌△DBC (SAS ),∴CD =AE 、∠BAE =∠BDC , 又∵∠AOP =∠BOD ,∴∠APO =∠OBD =60°,在DO 上截取DQ =AP ,连接BQ ,在△ABP 和△DBQ 中,∵ ⎩⎪⎨⎪⎧AB =DB∠BAP =∠BDQ AP =DQ,∴△ABP ≌△DBQ (SAS ), ∴BP =BQ ,∠PBA =∠QBD , 又∵∠QBD +∠QBA =60°,∴∠PBA +∠QBA =60°,即∠PBQ =60°,∴△PBQ 为等边三角形,∴PB =PQ ,则PA +PB +PC =DQ +PQ +PC =CD =AE ,;在Rt △ACE 中,∵AC =6、CE =8,∴AE =CD =10,故点P 到三个顶点的距离之和的最小值为10.方法二:如图3,由(2)知,当∠APB =∠APC =∠BPC =120°时,AP +BP +PC 的值最小,把△CPB 绕点C 逆时针旋转60°得△CP ′B ′,由(2)知A 、P 、P ′、B ′共线,且AP +BP +PC =AB ′,∠PCB =∠P ′CB ,∴∠PCB +∠PCA =∠P ′CB +∠PCA =30°,∴∠ACB ′=90°,∴AB ′=AC +B ′C =AC +BC =1013.解:(1)∵点A 为线段BC 外一动点,且BC =a ,AB =b ,∴当点A 位于CB 的延长线上时,线段AC 的长取得最大值,且最大值为BC +AB =a +b , !故答案为:CB 的延长线上,a +b ;(2)①CD =BE , 理由:∵△ABD 与△ACE 是等边三角形,∴AD =AB ,AC =AE ,∠BAD =∠CAE =60°, ∴∠BAD +∠BAC =∠CAE +∠BAC ,即∠CAD =∠EAB ,在△CAD 与△EAB 中,⎩⎪⎨⎪⎧AD =AB∠CAD =∠EAB AC =AE,∴△CAD ≌△EAB (SAS ),∴CD =BE ; ②∵线段BE 长的最大值=线段CD 的最大值,∴由(1)知,当线段CD 的长取得最大值时,点D 在CB 的延长线上,∴最大值为BD +BC =AB +BC =3+6=9;[(3)如图1,连接BM ,∵将△APM 绕着点P 顺时针旋转90°得到△PBN ,连接AN ,则△APN 是等腰直角三角形, ∴PN =PA =2,BN =AM ,∵A 的坐标为(2,0),点B 的坐标为(5,0),∴OA =2,OB =5, ∴AB =3,∴线段AM 长的最大值=线段BN 长的最大值,∴当N 在线段BA 的延长线时,线段BN 取得最大值,最大值=AB +AN ,∵AN =2AP =2 2,∴最大值为2 2+3;如图2,过P 作PE ⊥x 轴于E ,∵△APN 是等腰直角三角形,∴PE =AE =2,∴OE =BO -AB -AE =5-3- 2=2- 2,{{}}∴P (2- 2, 2).(4)如图4中,以BC 为边作等边三角形△BCM ,∵∠ABD =∠CBM =60°,∴∠ABC =∠DBM ,∵AB =DB ,BC =BM ,∴△ABC ≌△DBM ,∴AC =MD ,∴欲求AC 的最大值,只要求出DM 的最大值即可,∵BC =4 2=定值,∠BDC =90°,∴点D 在以BC 为直径的⊙O 上运动,由图象可知,当点D 在BC 上方,DM ⊥BC 时,DM 的值最大,最大值=2 2+2 6,∴AC 的最大值为2 2+2 6. 14.解:(1)∵y=a (x +3)(x -1),∴点A 的坐标为(-3,0)、点B 两的坐标为(1,0),∵直线y =- 3x +b 经过点A ,∴b =-3 3,∴y =- 3x -3 3,当x =2时,y =-5 3, 则点D 的坐标为(2,-5 3),∵点D 在抛物线上,∴a (2+3)(2-1)=-5 3,解得,a =- 3,则抛物线的解析式为y =- 3(x +3)(x -1)=- 3x -2 3x +3 3;(2)如图1中,作PH ⊥x 轴于H ,设点 P 坐标(m ,n ),当△BPA ∽△ABC 时,∠BAC =∠PBA ,∴tan ∠BAC =tan ∠PBA ,即OC OA =PH HB ,∴-3a 3=-n -m +1,即n =-a (m -1),∴ ⎩⎨⎧n =-a (m -1)n =a (m +3)(m -1)解得m =-4或1(舍弃), 当m =-4时,n =5a ,∵△BPA ∽△ABC ,∴AC AB =AB PB ,∴AB =AC ﹒PB ,∴4=9a +9﹒ 25a +25,解得a =- 1515或 (gh (15))/(15)(舍弃),则n =5a =- 153,∴点P 坐标⎝ ⎛⎭⎪⎫-4,- 153. 当△PBA ∽△ABC 时,∠CBA =∠PBA ,∴tan ∠CBA =tan ∠PBA ,即OC OB =PH HB ,∴-3a 1=-n -m +1,∴n =-3a (m -1),∴ ⎩⎨⎧n =-3a (m -1)n =a (m +3)(m -1),解得m =-6或1(舍弃), 当m =-6时,n =21a ,∵△PBA ∽△ABC ,∴BC BA =AB PB ,即AB =BC ﹒PB ,∴4=1+9a ﹒ 7+(-21a ),解得a =- 77或(77 不合题意舍弃),则点P 坐标(-6,-37), 综上所述,符合条件的点P 的坐标⎝ ⎛⎭⎪⎫-4,- 153和(-6,-3 7). (3)如图2中,作DM ∥x 轴交抛物线于M ,作DN ⊥x 轴于N ,作EF ⊥DM 于F ,则tan ∠DAN =DN AN =5 35=3,∴∠DAN =60°,∴∠EDF =60°,∴DE =EF sin ∠EDF =2 33EF ,∴Q 的运动时间t =BE 1+ DE 2 33=BE +EF , ∴当BE 和EF 共线时,t 最小,则BE ⊥DM ,此时点E 坐标(1,-4 3).。

相关文档
最新文档